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Abstract

Assigning patients to rooms and nurses to patients are critical tasks

within hospitals that directly affect patient and staff satisfaction, quality

of care, and hospital efficiency. Both patient-to-room assignments and

nurse-to-patient assignments are typically agreed upon at the ward level,

and they interact in several ways such as jointly determining the walk-

ing distances nurses must cover between different patient rooms. This

motivates to consider both problems jointly in an integrated fashion.

This paper presents the first optimization models and algorithms for

the integrated patient-to-room and nurse-to-patient assignment problem.

We provide a mixed integer programming formulation of the inte-

grated problem that considers the typical objectives from the single

problems as well as additional objectives that can only be properly

evaluated when integrating both problems. Moreover, motivated by the

inherent complexity that results from integrating these two NP-hard

and already computationally challenging problems, we devise an effi-

cient heuristic for the integrated patient-to-room and nurse-to-patient

assignment problem. To evaluate the running time and quality of

the solution obtained with the heuristic, we conduct extensive com-

putational experiments on both artificial and real-world instances.

The artificial instances are generated by a parameterized instance

generator for the integrated problem that is made freely available.

Keywords: Integrated Planning, Hospital, Patient-to-room assignment,
Nurse-to-patient assignment, Heuristic

1 Introduction

For many years, an ever-rising demand for healthcare and increasing healthcare
expenditures challenge hospitals to increase the efficiency of their opera-
tions [18]. This results in a need for advanced managerial planning approaches
that help to use the available scarce resources as efficiently as possible. Con-
sequently, a wide range of methods and approaches have been developed in
the Operations Research (OR) literature that aims at improving resource
utilization through efficient planning [30, 31, 43]. In particular, quantitative
decision support has been proposed for important resources such as operating
rooms [22, 55], intensive care units [3], inpatient beds [26], physicians [19], and
nurses [5, 14].

While efficient planning of single resources can already lead to improved
resource utilization and large efficiency gains, it ignores the inherent complex
interactions between different resources [30] and, as a consequence, might lead
to suboptimal decisions on a system level. Therefore, a need for OR models and
methods for integrated planning of several resources has been identified [30, 32,
56]. This need is particularly apparent in hospitals, where different resources
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are typically required and used for treating patients. A recent literature review
on integrated planning of multiple resources in hospitals is provided in [42].

Rooms and beds are critical assets of hospitals since they account for a
considerable part of a hospital’s infrastructure and large financial investments
are necessary for equipping them with medical devices that facilitate patient
care [58]. Additionally, a shift in demographics, the growing number of patient
admissions, and rising inpatient units costs lead to high overall bed occupancy
levels and require an increased focus on efficient bed management [26, 46].
On the operational level, an important planning problem typically referred to
as patient-to-room assignment (PRA) consists of assigning patients to suit-
able rooms such that a variety of constraints concerning, for instance, the
patient’s medical needs (e.g., required medical equipment) and preferences
(e.g., concerning age and gender of roommates) are satisfied, while available
room capacities are respected and transfers of patients between rooms are
avoided [11, 12, 17, 46]. Different variants of the PRA problem have been stud-
ied extensively in the literature both in the static setting, when all information
about patients and their admission and discharge times is known in advance,
and in dynamic settings, when new patients may arrive unexpectedly – see
Section 2.1 for a detailed overview.

Medical staff also represent a particularly critical resource in hospitals since
(1) medical staff are involved in most patient-related activities in a hospital,
and (2) medical staff are a particularly scarce resource due to a general short-
age of nurses [2] and physicians [7, 19, 52]. This has led to increasing workloads
for the staff over the last decades and makes good planning of medical staff
a central concern for hospitals [5]. In particular, aspects such as a fair distri-
bution of workloads among staff members have a large impact on employee
satisfaction and the efficient operation of a hospital. Concerning the nursing
staff, distributing work fairly among nurses is considered essential for optimal
quality of care [38]. Here, the workload of each single nurse is mostly deter-
mined by the patients the nurse is assigned to and their care requirements.
Consequently, determining a suitable nurse-to-patient assignment (NPA) that
balances the workloads of the nurses represents an important operational prob-
lem that has received considerable attention in the literature – see Section 2.2
for an extensive literature review.

With a few exceptions detailed in Section 2.3, the PRA problem and
the NPA problem have mostly been considered separately in the literature –
although there are important interactions between them. For instance, stud-
ies show that the walking distances that result from traveling between their
assigned patients’ rooms and other locations such as the nearest nursing station
have a substantial impact on a nurse’s workload during a shift [1, 10]. These
walking distances, however, can only be determined and optimized when con-
sidering PRAs and NPAs jointly. Moreover, it has been observed that assigning
the minimum possible number of nurses to patients in the same room can
help to minimize negative effects such as the spread of infections between
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rooms by nurses or the disturbance of patients by other nurses entering their
room [15, 16, 20, 24]. This provides a strong motivation for integrating the PRA
problem and the NPA problem by considering them jointly in one optimization
model.

While several publications motivate and discuss the integration of the two
assignment problems (see Section 2.3), this paper explicitly considers deci-
sions on PRAs and NPAs in one integrated optimization problem for the first
time. Besides the objectives classically considered in the two separate prob-
lems, this integrated problem also allows the evaluation of additional objectives
that rely on the interaction of PRAs and NPAs. Based on existing studies
on nurse workloads [1, 10], these objectives include the walking distances of
nurses between assigned patients’ rooms and additional relevant rooms such
as the nearest nursing station. Moreover, also motivated by findings from the
literature [15, 20, 24], assigning the minimum possible number of nurses to
patients in the same room is considered as an objective in order to mitigate
negative effects such as the spread of infections between rooms by nurses or
the disturbance of patients by other nurses entering their room.

In order to solve the computationally challenging integrated PRA and NPA
problem, we provide a formulation of the problem as a mixed integer program
(MIP) as well as an efficient heuristic. The heuristic extends the heuristic for
the PRA problem presented in [46] to the integrated problem and additionally
employs a new heterogeneity check between patient admission and discharge
times for the room assignment part. Both the MIP and the heuristic are evalu-
ated in extensive experimental results on real-world instances obtained from a
ward of our partner hospital Amsterdam University Medical Centers (Amster-
dam, The Netherlands) as well as artificial instances. The artificial instances
are generated by a parameterized instance generator for the integrated prob-
lem that is made freely available. While the MIP only addresses the static
version of the integrated problem in which all information about patients is
known in advance, the heuristic can be easily adapted to dynamic settings
where new patients arrive after some assignments have already been fixed.

The remainder of the paper is structured as follows. Section 2 summa-
rizes the related literature on the PRA and the NPA problems as well as
existing work related to their integration. Afterward, Section 3 introduces the
integrated PRA and NPA problem, while Section 4 presents our MIP for-
mulation of the problem. Afterward, Section 5 presents a sequential solution
approach based on a natural decomposition of the MIP formulation as well
as our heuristic for the problem. Section 6 then describes both the devel-
oped instance generator for generating artificial test instances as well as the
real-world instances obtained from a ward of our partner hospital. Our exper-
imental results obtained on both types of instances are presented in Section 7.
The paper concludes in Section 8 with a summary and an outlook on future
research.
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2 Related literature

In this section, we first summarize the state of the art concerning PRA and
NPA separately before discussing existing work on the integration of the two
problems.

2.1 Patient-to-room assignment

The static version of the PRA problem has been formally introduced by
Demeester et al. [17] under the name of patient admission scheduling problem.1

In this version, all information about patients is known in advance, and the
task is to assign patients to suitable rooms such that room capacity and gen-
der policy are respected while minimizing both patient transfers and penalty
costs for undesirable PRAs. One important characteristic in this definition is
that not every patient can be assigned to every room and patients may also
have preferences towards specific rooms based on, e.g., available equipment or
the number of beds.

For the static PRA problem, mostly heuristic solution approaches are
proposed in the literature, e.g., a tabu search algorithm [17], a local search
algorithm [11], a destroy and repair matheuristic [23], and algorithms based
on the Hungarian algorithm [8], column generation [44], or MIP [54]. Cur-
rently the best solutions for the benchmark instances provided by Demeester
et al. [17] are found by the heuristic of Guido et al. [23] and by the exact,
MIP-based solution approach proposed by Bastos et al. [4]. However, the exact
approach uses considerably more computation time.

The complexity of the static PRA problem is studied by Vancroonenburg
et al. [57] using its correspondence to the red-blue-transportation problem.
They show that the PRA problem is NP-hard in general and even if all rooms
have a capacity of three. This result is strengthened by Ficker et al. [21], who
prove that the PRA problem is also NP-hard if all rooms have capacity two.

Ceschia and Schaerf [11, 12] propose a dynamic version of the PRA prob-
lem that includes the handling of emergency patients and uncertainty in the
patients’ length-of-stay. They propose a metaheuristic based on simulated
annealing and an instance generator as well as a set of benchmark instances.
Vancroonenburg et al. [58] studied a similar problem version using two online
integer linear programming (ILP) models. Lusby et al. [35] propose a large
neighborhood search heuristic for the dynamic PRA problem as proposed by
Ceschia and Schaerf.

A different approach for incorporating emergency patients is taken by
Schäfer et al. [45–47], who use a rolling horizon approach, i.e., recomputation
of the solution whenever a new event occurs, using a fast heuristic. In their
problem definition, they consider objectives for three stakeholders (patients,

1We refer to the problem exclusively as the PRA problem in the following since this is the
most common term used in the recent literature. Moreover, the original term patient admission

scheduling problem is also used with a different meaning in the literature.
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nurses, and physicians) and they are also the first to consider interdependencies
between patients in the same room.

For a more detailed overview of the different versions and solution
approaches for the PRA problem, we refer to Zhu et al. [59], who study the
compatibility of short-term and long-term objectives in the context of dynamic
PRA.

2.2 Nurse-to-patient assignment

The NPA problem is also considered by many different authors, where the
most common objective is balancing the workloads of the nurses. For instance,
Mullinax and Lawley [38] use this objective in the daily assignment of newborn
infants to nurses in an intensive care nursery that is divided into several zones
(rooms). Here, each infant might yield a different workload depending on their
acuity and each nurse can be assigned a certain maximum number of infants
to take care of at the beginning of the shift, but all of these need to be from
the same zone. Since they find the problem to be too hard to solve using an
integer program, they present a two-step heuristic approach that exploits the
subdivision into zones by first computing the number of nurses allocated to
each zone before assigning patients to nurses in each zone independently.

The problem introduced by Mullinax and Lawley [38] is also considered
in [33, 36, 48, 50] – each time with a slightly different objective function. Based
on the formulation proposed in [38], Sir et al. [50] formulate four MIP models
for NPA that model the workloads of nurses by either the patient acuity indi-
cators from a patient classification system (PCS), survey-based nurse-specific
workload scores, or a combination of the two. Ku et al. [33] focus on minimizing
the variance of the nurses’ workloads using mixed integer quadratic program-
ming (MIQP) and constraint programming (CP), while Schaus and Régin [48]
minimize the variance using a two-step decomposition approach that first com-
putes the number of nurses allocated to each zone (which is done optimally
by solving a resource allocation problem) before assigning patients to nurses
in each zone independently using CP. Finally, Marzouk and Kamoun [36] for-
mulate a binary integer program that assigns nurses to zones and individual
patients with the objective of minimizing the total number of nurses used in
a shift.

Other work on NPA includes Punnakitikashem et al. [40], who present a
stochastic integer programming model with the objective of minimizing excess
workload for nurses and compare their approach to several other assignment
policies (random assignment without considering workload, a simple heuristic,
and solving the mean value problem using a deterministic integer program).
Sundaramoorthi et al. [51] then use three of the assignment policies from [40]
as well as a clustered assignment policy to test their developed simulation
model for evaluating NPAs.

While most of the literature on NPA mentioned above uses patient acuity
as the main factor influencing nursing workloads, Acar and Butt [1] perform
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a detailed study in order to identify the activities that comprise a nurse’s
workload. They find that nurses spend a substantial part of their time travel-
ing (walking) between locations, where travel between patient rooms and the
nursing station is the most common type of travel. Here, according to Butt et
al. [10], the distance traveled by nurses is correlated to their assigned patient
load and location, and key distances influencing the total travel distance of a
nurse are the distances between assigned patients’ rooms and (1) the nearest
nursing station, (2) the nearest supply room, and (3) other assigned patients’
rooms. Still, walking distances of nurses have not yet been considered explic-
itly as an objective in the literature on NPA since their minimization requires
the simultaneous optimization of PRAs. This also holds for the objective of
assigning the minimum possible number of nurses to patients in the same room,
although it is known that assigning all patients in the same room to the same
nurse or a small pool of nurses helps to avoid the transfer of hospital-acquired
infections [15, 20, 24], in particular Methicillin-resistant Staphylococcus aureus
(MRSA) [16].

2.3 Integration of PRA and nurse-to-patient assignment

While we are not aware of any papers that explicitly integrate decisions con-
cerning PRA and NPA in one optimization model, there still exists some
literature considering the interplay between the two problems or between
related problems. For instance, Thomas et al. [53] present a mixed-integer
goal programming model for the PRA problem that takes nurses into account
via constraints on the required nurse-to-patient ratio in each unit of a hos-
pital. Bilgin et al. [6] develop a general, high-level hyper-heuristic approach
that can be used for both the PRA problem and the nurse rostering problem.
Pesant [39] addresses the integration of the nurse staffing problem (assign-
ing an appropriate number of nurses to each unit within a ward given a
nurse roster) and the NPA problem in a neonatal intensive care unit by solv-
ing CP models for the two problems consecutively, and Punnakitikashem et
al. [41] extend the stochastic programming model from [40] by integrating
nurse staffing decisions over multiple units into the NPA problem. Moreover,
several recent papers consider patient appointment planning in outpatient
chemotherapy clinics while simultaneously assigning nurses to patients or tak-
ing constraints on nurse availability into account [9, 27–29, 34]. Schmidt et
al. [49] integrate patient appointment planning into a patient-to-ward assign-
ment problem, where they assume that rooms in the same ward are equal.
They propose a binary integer program for this problem and compare exact
and heuristic solution approaches. Ceschia and Schaerf [13] consider an inte-
grated planning of PRA with operating room constraints where they allow the
postponement of patient appointments, for which they also provide an instance
generator and a set of benchmark instances.
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3 Problem definition

In this section, we formally introduce the integrated patient-to-room and nurse-
to-patient assignment (IPRNPA) problem as well as the sets and parameters
that are used to represent the input of the problem.

The IPRNPA problem integrates PRA and NPA on the ward level. Thus,
the problem consists of assigning patients to rooms and nurses to patients on
a hospital ward over a given planning period (typically one or several weeks).
This section describes the static version of the problem where, similar to the
static version of the PRA problem [17], all information about the patients (in
particular, each patient’s admission and discharge times) are known at the
beginning of the planning period. The dynamic version of the problem differs
from the static version in that information about new patients only becomes
known either when they are admitted or a fixed time span before admission,
which is analogous to the existing literature on dynamic PRA [11, 12].

We are given a set P of patients, a set N of nurses, and a set R of rooms.
Moreover, there exists a (usually small) set A of additional rooms (such as
the nursing station) with R ∩A = ∅. These additional rooms cannot be used
for assigning patients and will only be relevant when computing the walking
distances of the nurses.

The considered planning period consists of a set S = {1, . . . , S} of shifts,
which is partitioned into the subsets Searly of early shifts, S late of late shifts,
and Snight of night shifts. The shifts are numbered chronologically starting
with an early shift and ending with a night shift. Hence, the first early, late,
and night shift are numbered 1, 2, and, 3, respectively, and belong to the first
day, whereas the second early, late, and night shift belong to the second day
and so on.

A feasible PRA demands that each patient p ∈ P is assigned to exactly
one room r ∈ R during each shift between their admission shift ad shift(p) ∈
Searly and their discharge shift di shift(p) ∈ Snight, which denotes the first and
the last shift, respectively, of the patient’s stay on the ward. In particular,
this means that patients are always admitted and discharged in the morning
between a night shift and the following early shift, as is the case in many real
hospital wards. If patient p has already been on the ward during the last shift
of the previous planning period, the value ad shift(p) is set to 0 /∈ S, and if
patient p will still be on the ward after the last shift S of the current planning
period, the value di shift(p) is set to S+1 /∈ S. Patient transfers between rooms
are possible and are assumed to take place at most once a day for each patient
between a night shift and an early shift. Transfers are, however, undesirable
for both patients and nurses, and should, thus, be minimized. If patient p has
already been on the ward during the last shift of the previous planning period,
the room yprev(p) ∈ R that the patient has been assigned to during this shift
is also given as an input. This allows the evaluation of transfers that happen
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between the last (night) shift of the previous planning period and the first
(early) shift of the current planning period.

Requirements concerning the PRA include respecting the capacity of each
room r ∈ R, which is given shift-independent number of available beds
denoted by num beds(r) (usually between 1 and 4) that defines the maxi-
mum number of patients that can be assigned to room r during any single
shift. Moreover, depending on their specific condition, a patient might benefit
from certain types of equipment in their room during certain shifts, so, dur-
ing these shifts, they should be assigned to a room that features this type of
equipment if possible. The set of possible equipment types is denoted by E .
The types of equipment that are present in room r are represented by the
subset E(r) ⊆ E , and the shift-specific types of desired equipment of patient p
during shift s are represented by the subset E(p, s) ⊆ E . Additionally, gender-
mixed rooms should be avoided if possible. To this end, the set of patients
is partitioned into the subsets F of female patients and M of male patients
(i.e., P = F∪̇M) and the number of gender-mixed rooms should be minimized
across all shifts. Finally, each patient p ∈ P has an associated age group com-

puted as age group(p) = ⌊ age(p)
10 ⌋ with age(p) denoting the age of the patient

in years. Age groups are relevant since large age differences between patients
who are simultaneously assigned to the same room are known to result in
inconvenience for the patients and should, thus, be avoided.

Concerning the NPA part of the problem, the nurse roster for the planning
period is given as an input. Here, for each nurse n ∈ N , we are given the
subset S(n) ⊆ S of shifts that the nurse is assigned to. A feasible NPA should
assign each patient p ∈ P to exactly one nurse n ∈ N with s ∈ S(n) during
each shift s ∈ S between the patient’s admission shift and discharge shift.
Since nurses work at most one shift per day, any patient staying on the ward
for at least two shifts must necessarily be assigned to different nurses during
different shifts. In order to improve continuity of care, however, the number of
different nurses who treat a single patient should be minimized.

Further requirements on the NPA include respecting nurse skill level
requirements of the patients. Each nurse n ∈ N has a skill level skill level(n)
and each patient p ∈ P requires a certain minimum skill level skill req(p, s)
during each shift s ∈ S \ Snight between their admission shift and their dis-
charge shift. The set of possible skill levels is denoted by L = {1, 2, 3}, where
1 = trainee, 2 = regular, and 3 = experienced. While an experienced nurse
(skill level 3) can take care of any patient, the assignment should ensure
that regular nurses (skill level 2) and trainees (skill level 1) are only assigned
patients whose required skill level during a specific shift does not exceed the
nurse’s skill level.

Moreover, patients can induce different, shift-dependent workloads for
nurses, and these workloads are to be distributed fairly among the nurses -
both during each single shift and overall. The workload resulting from tak-
ing care of patient p ∈ P during shift s ∈ S is expressed by a nonnegative
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number w load(p, s) and depends on the age group of the patient, on their
specific condition, on the time since admission, and on whether the shift is a
day shift or a night shift. A fair distribution of workload among the nurses
is then achieved by defining a maximum desired workload max load(n, s) for
each nurse n ∈ N during each shift s ∈ S(n) and ensuring that this maxi-
mum workload is not exceeded if possible while at the same time making sure
that the assigned workloads relative to the respective maxima do not differ
too much between nurses during single shifts as well as overall.

Important considerations that are influenced by both the PRA as well as
the NPA involve trying to assign all patients in a room to the same nurse during
each shift (which minimizes the spread of infections across rooms by nurses and
also leads to patients being disturbed less by other nurses entering their room)
as well as the minimization of the walking distances of nurses between different
rooms. For the evaluation of the walking distances, we are given a nonnegative
number dist(r, r′) for each two rooms r, r′ ∈ R that specifies the walking
distance between rooms r and r′. Similarly, for each additional room a ∈ A
and each regular room r ∈ R, there is a nonnegative number dist(a, r) that
specifies the walking distance between additional room a and room r. The
actual walking distances of nurses during a shift s ∈ S then depend on the
patients they are assigned to during shift s and on how frequently nurses are
expected to walk in a circular pattern directly from patient to patient during
shift s (e.g., when rounds are made during early shifts) and on how frequently
they are expected to walk in a star-like pattern directly from additional rooms
(such as the nursing station) to patients and back (e.g., when a patient calls
for a nurse). These expected (absolute) frequencies are represented by two
nonnegative parameters walk pat◦(s) (circular) and walk pat⋆(s) (star-like),
respectively.

4 Mixed integer programming formulation

In order to model the IPRNPA problem introduced in Section 3 mathemati-
cally, we now present a formulation of the problem as a MIP.

The following lists summarize the sets and parameters introduced in the
previous section as well as the decision variables used in the MIP:

Sets:

P set of patients (index p)
F subset of female patients
M subset of male patients
N set of nurses (index n)
N prev(p) subset of nurses that patient p ∈ P has already been

assigned to during at least one shift in a previous planning
period

R set of rooms (index r)
A set of additional rooms (e.g., the nursing station) (index a)
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S = {1, . . . , S} set of shifts (index s)
Searly subset of early shifts
S late subset of late shifts
Snight subset of night shifts
S(n) subset of shifts that nurse n ∈ N is assigned to
E set of possible equipment types in the rooms (index e)
E(r) subset of equipment types present in room r ∈ R
E(p, s) subset of desired equipment types of patient p ∈ P during

shift s ∈ S
L = {1, 2, 3} set of possible skill levels of nurses (index l), where 1 =

trainee, 2 = regular, 3 = experienced

Parameters:

ad shift(p) shift s ∈ Searly during which patient p ∈ P is admitted
(first shift in which a bed is required for patient p). The
value is set to 0 if patient p has already been on the ward
during the last shift of the previous planning period

di shift(p) shift s ∈ S late during which patient p ∈ P is discharged
(last shift in which a bed is required for patient p). The
value is set to S + 1 if patient p will still be on the ward
after the last shift S of the planning period

yprev(p) room r ∈ R that patient p ∈ P with ad shift(p) = 0
has been assigned to during the last shift of the previous
planning period

num beds(r) nonnegative integer (most likely from {1, 2, 3, 4}) specify-
ing the number of beds in room r ∈ R

age group(p) age group of patient p ∈ P computed as age group(p) =

⌊ age(p)
10 ⌋ with age(p) denoting the age of the patient in years

skill level(n) skill level of nurse n ∈ N (possible values are 1, 2, 3)
skill req(p, s) minimum skill level of a nurse required by patient p ∈ P

during shift s ∈ S \ Snight (possible values are 0, 1, 2)
w load(p, s) nonnegative number specifying the workload resulting

from taking care of patient p ∈ P during shift s ∈ S
max load(n, s) nonnegative number specifying the maximum workload

allowed for nurse n ∈ N during shift s ∈ S(n)
dist(r, r′) nonnegative number specifying the walking distance

between rooms r, r′ ∈ R (where dist(r, r′) = dist(r′, r) for
all r, r′ ∈ R, i.e., distances are symmetric)

dist(a, r) nonnegative number specifying the walking distance
between additional room a ∈ A and room r ∈ R

walk pat◦(s) nonnegative weight for different walking patterns depend-
ing on the shift s ∈ S. A high value of walk pat◦(s)
indicates that most nurses walk directly from patient to
patient during shift s (circular pattern)

walk pat⋆(s) nonnegative weight for different walking patterns depend-
ing on the shift s ∈ S. A high value of walk pat⋆(s)



12 Integrated patient-to-room and nurse-to-patient assignment

indicates that most nurses walk directly from additional
rooms such as the nursing station to patient rooms and
back during shift s (star-like pattern)

Decision variables:

yp,r,s binary variable indicating whether patient p ∈ P is
assigned to room r ∈ R during early shift s ∈ Searly

(only defined if ad shift(p) ≤ s ≤ di shift(p), i.e., if
patient p is on the ward during early shift s)

f in roomr,s binary variable indicating whether at least one female
patient is assigned to room r ∈ R during early shift
s ∈ Searly

m in roomr,s binary variable indicating whether at least one male
patient is assigned to room r ∈ R during early shift s ∈
Searly

viogenderr,s binary variable indicating whether more than one gender

is accommodated in room r ∈ R during shift s ∈ Searly

transp,s binary variable indicating whether patient p ∈ P is trans-
ferred to a different room after night shift s ∈ (Snight ∪
{0}) \ {S} (and before early shift s+ 1)
(only defined if ad shift(p) ≤ s ≤ di shift(p)− 1)

age groupmax
r,s nonnegative fractional variable representing the maximum

age group among all patients p ∈ P assigned to room r ∈
R during early shift s ∈ Searly

age groupmin
r,s nonnegative fractional variable representing the minimum

age group among all patients p ∈ P assigned to room r ∈
R during early shift s ∈ Searly

xp,n,s binary variable indicating whether patient p ∈ P is
assigned to nurse n ∈ N during shift s ∈ S,
(only defined if s ∈ S(n) and ad shift(p) ≤ s ≤ di shift(p),
i.e., if if nurse n is assigned to shift s and patient p is on
the ward during shift s)

vioskillp,s binary variable indicating whether patient p ∈ P is
assigned to a nurse with a lower skill level than required
during shift s ∈ S \ Snight

(only defined if ad shift(p) ≤ s ≤ di shift(p) and
skill req(p, s) ≥ 2, i.e., if patient p is on the ward during
shift s and requires at least an experienced nurse during
shift s)

ever assignedp,n binary variable indicating whether patient p ∈ P is
assigned to nurse n ∈ N during at least one shift s ∈ S

violoadn,s nonnegative fractional variable representing the excess
load assigned to nurse n ∈ N during shift s ∈ S
(only defined if s ∈ S(n), i.e., if nurse n is assigned to
shift s)
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viofairn,n′,s nonnegative fractional variable representing the excess in
relative workload (relative to the desired maximum) of
nurse n ∈ N compared to nurse n′ ∈ N during shift s ∈ S

viofairn,n′ nonnegative fractional variable representing the overall
excess in relative workload (relative to the desired maxi-
mum) of nurse n ∈ N compared to nurse n′ ∈ N

in roomn,r,s binary variable indicating whether nurse n ∈ N is assigned
at least one patient in room r ∈ R during shift s ∈ S
(only defined if s ∈ S(n), i.e., if nurse n is assigned to
shift s)

distn,s nonnegative fractional variable representing the total
walking distance for nurse n ∈ N during shift s ∈ S (only
defined if s ∈ S(n), i.e., if nurse n is assigned to shift s)

both roomsn,r,r′,s binary variable indicating whether nurse n ∈ N is assigned
patients in both room r ∈ R and room r′ ∈ R during
shift s ∈ S
(only defined if assign(n, s) = 1, i.e., if nurse n is assigned
to shift s)

The objective function of the MIP that is to be minimized consists of a
weighted sum of several separate objectives. These objectives include those
classically considered in the PRA problem (objectives (1)–(4)) and the NPA
problem (objectives (5)–(6)). Moreover, two additional objectives are consid-
ered that rely explicitly on the interaction of the two problems: Objective (7)
considers the assigning the minimum number of nurses per room during each
shift, while objective (8) minimizes the walking distances of nurses. The
weights of the different objectives in the weighted sum are chosen based on
the existing literature and discussions with our partner hospital (see Section 7
for the concrete values used in our computational experiments).

Patient transfers objective

(1) Minimization of the number of patient transfers across all patients and
shifts (could also be weighted differently for different patients and / or
different shifts):

min
∑

p∈P,s∈(Snight∪{0})\{S}:
ad shift(p)≤s≤di shift(p)−1

transp,s

Patient inconvenience objective

(2) Minimization of the age group difference across all rooms and shifts:

min
∑

r∈R,s∈Searly

(age groupmax
r,s − age groupmin

r,s )
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Gender mixing objective

(3) Minimization of gender mixing across all rooms and shifts:

min
∑

r∈R,s∈Searly

viogenderr,s

Equipment violation objective

(4) Minimization of required equipment violation across all rooms and shifts:

min
∑

p∈P,r∈R,s∈Searly:
ad shift(p)≤s≤di shift(p)

and E(p,s)\E(r) 6=∅

yp,r,s

Continuity of care objective

(5) Minimization of the number of different nurses that treat each patient
across all patients (could also be weighted differently for different
patients):

min
∑

p∈P,n∈N\Nprev(p)

ever assignedp,n

Penalization of skill level requirements and undesired workload

distributions objective

(6) Minimization of violations of skill level requirements of patients and
undesired workload distributions for nurses:

min
∑

p∈P,s∈S\Snight:
ad shift(p)≤s≤di shift(p)

and skill req(p,s)≥2

vioskillp,s +
∑

n∈N ,s∈S(n)

violoadn,s

+
∑

n,n′∈N

viofairn,n′ +
∑

n,n′∈N ,

s∈S(n)∩S(n′)

viofairn,n′,s

Assigning the minimum number of nurses per room objective

(7) Minimization of the number of nurses assigned to rooms across all shifts:

min
∑

n∈N,r∈R,s∈S

in roomn,r,s

Walking distances objective

(8) Minimization of the walking distances across all nurses and shifts

min
∑

n∈N ,s∈S(n)

distn,s
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The constraints of the MIP can be formulated as follows:

(I) Assignment of patients to rooms

(9) Each patient p ∈ P is assigned to exactly one room r ∈ R during each
early shift s ∈ Searly between their admission and discharge:

∑

r∈R

yp,r,s = 1 ∀p ∈ P , s ∈ Searly : ad shift(p) ≤ s ≤ di shift(p)

(10) No room r ∈ R can be assigned more than num beds(r) patients during
any early shift s ∈ Searly:

∑

p∈P:ad shift(p)≤s≤di shift(p)

yp,r,s ≤ num beds(r) ∀r ∈ R, s ∈ Searly

(11) The variable f in roomr,s (m in roomr,s) is set to one if at least one female
(male) patient is assigned to room r during early shift s ∈ Searly:

yp,r,s ≤ f in roomr,s ∀p ∈ F , r ∈ R, s ∈ Searly : ad shift(p) ≤ s ≤ di shift(p)

yp,r,s ≤ m in roomr,s ∀p ∈ M, r ∈ R, s ∈ Searly : ad shift(p) ≤ s ≤ di shift(p)

(12) No room r ∈ R should be assigned both female and male patients during
any early shift s ∈ Searly:

f in roomr,s +m in roomr,s ≤ 1 + viogenderr,s ∀r ∈ R, s ∈ Searly

(II) Patients transfers

(13) The patient transfer variables transp,s are set correctly for each
patient p ∈ P and each night shift s ∈ Snight between their admission
and discharge:

yp,r,s+1 − yp,r,s−2 ≤ transp,s ∀p ∈ P , r ∈ R, s ∈ Snight \ {S} :

ad shift(p) ≤ s ≤ di shift(p)− 1

(14) The patient transfer variables transp,0 that indicate a transfer between
the last shift of the previous planning period (shift 0) and the first (early)
shift of the current planning period (shift 1) are set correctly for each
patient p ∈ P with ad shift(p) = 0:

yp,r,1 ≤ transp,0 ∀p ∈ P , r ∈ R \ {yprev(p)} : ad shift(p) = 0
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(III) Inconvenience of patients

(15) The variable age groupmax
r,s is restricted by the maximum age group of

patients in room r ∈ R during early shift s ∈ Searly:

age groupmax
r,s ≥ age group(p) · yp,r,s ∀p ∈ P , r ∈ R, s ∈ Searly :

ad shift(p) ≤ s ≤ di shift(p)

(16) The variable age groupmin
r,s is restricted by the minimum age group of

patients in room r ∈ R during early shift s ∈ Searly:

age groupmin
r,s ≤ age group(p) + 12 · (1 − yp,r,s) ∀p ∈ P , r ∈ R, s ∈ Searly :

ad shift(p) ≤ s ≤ di shift(p)

Note that the coefficient 12 on the right-hand side needs to be increased
if patients with ages 130 or older (age group 13 or higher) are present.

(17) The variable age groupmin
r,s is set to zero if no patients are assigned to

room r ∈ R during early shift s ∈ Searly:

age groupmin
r,s ≤ 12 ·

∑

p∈P:ad shift(p)≤s≤di shift(p)

yp,r,s ∀r ∈ R, s ∈ Searly

Note that the coefficient 12 on the right-hand side needs to be increased
if patients with ages 130 or older (age group 13 or higher) are present.

(18) The value of the variable age groupmax
r,s must not be smaller than the

value of the variable age groupmin
r,s for any room r ∈ R and any early

shift s ∈ Searly:

age groupmin
r,s ≤ age groupmax

r,s ∀r ∈ R, s ∈ Searly

Note that this constraint is not required for the correctness of the model
and is only used to improve solution times.

(IV) Assignment of patients to nurses

(19) Each patient p ∈ P is assigned to exactly one nurse n ∈ N with s ∈ S(n)
during each shift s ∈ S between their admission and discharge:

∑

n∈N :s∈S(n)

xp,n,s = 1 ∀p ∈ P , s ∈ S : ad shift(p) ≤ s ≤ di shift(p)



Integrated patient-to-room and nurse-to-patient assignment 17

(20) For each patient p ∈ P and each shift s ∈ S\Snight with skill req(p, s) ≥ 2,
the variable vioskillp,s is set to one if the patient is not assigned to a nurse
with the required skill level:

∑

n∈N :s∈S(n) and
skill level(n)≥skill req(p,s)

xp,n,s = 1− vioskillp,s ∀p ∈ P , s ∈ S \ Snight :

ad shift(p) ≤ s ≤ di shift(p)

and skill req(p, s) ≥ 2

(21) The variable ever assignedp,n is set to one if and only if n ∈ N prev(p) or
patient p ∈ P is assigned to nurse n ∈ N during at least one shift:

xp,n,s ≤ ever assignedp,n ∀p ∈ P , n ∈ N , s ∈ S : s ∈ S(n)

and ad shift(p) ≤ s ≤ di shift(p)

ever assignedp,n = 1 ∀p ∈ P , n ∈ N prev(p)

ever assignedp,n ≤
∑

s∈S:s∈S(n) and
ad shift(p)≤s≤di shift(p)

xp,n,s ∀p ∈ P , n ∈ N \ N prev(p)

(V) Workload of nurses

(22) For each nurse n ∈ N and each shift s ∈ S(n), any workload exceeding
max load(n, s) leads to a corresponding increase of the variable violoadn,s :

∑

p∈P:ad shift(p)≤s≤di shift(p)

xp,n,s · w load(p, s) ≤ max load(n, s) + violoadn,s

∀n ∈ N , s ∈ S(n)

(23) Fair distribution of workload during each shift: For any two nurses
n, n′ ∈ N assigned to a shift s ∈ S, if the relative workload (relative to
the desired maximum) of nurse n during shift s exceeds the relative work-
load of nurse n′ during shift s, the variable viofairn,n′,s must be increased
correspondingly:

∑

p∈P:ad shift(p)≤s≤di shift(p)

xp,n,s ·
w load(p, s)

max load(n, s)

≤
∑

p∈P:ad shift(p)≤s≤di shift(p)

xp,n′,s ·
w load(p, s)

max load(n′, s)
+ viofairn,n′,s

∀n, n′ ∈ N , s ∈ S(n) ∩ S(n′)
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(24) Fair distribution of workload overall: For any two nurses n, n′ ∈ N , if the
relative workload (relative to the desired maximum) of nurse n exceeds
the relative workload of nurse n′, the variable viofairn,n′ must be increased
correspondingly:

∑

s∈S(n)

∑

p∈P:ad shift(p)≤s≤di shift(p)

xp,n,s ·
w load(p, s)

max load(n, s)

≤
∑

s∈S(n′)

∑

p∈P:ad shift(p)≤s≤di shift(p)

xp,n′,s ·
w load(p, s)

max load(n′, s)
+ viofairn,n′

∀n, n′ ∈ N

(VI) Assignment of all patients in the same room to the same nurse

(25) The variables in roomn,r,s are set correctly for each nurse n ∈ N , each
room r ∈ R, and each shift s ∈ S(n):

in roomn,r,s ≥ xp,n,s + yp,r,s − 1 ∀p ∈ P , n ∈ N , r ∈ R, s ∈ S(n) ∩ Searly :

ad shift(p) ≤ s ≤ di shift(p)

in roomn,r,s ≥ xp,n,s + yp,r,s−1 − 1 ∀p ∈ P , n ∈ N , r ∈ R, s ∈ S(n) ∩ S late :

ad shift(p) ≤ s ≤ di shift(p)

in roomn,r,s ≥ xp,n,s + yp,r,s−2 − 1 ∀p ∈ P , n ∈ N , r ∈ R, s ∈ S(n) ∩ Snight :

ad shift(p) ≤ s ≤ di shift(p)

(VII) Walking distances of nurses

(26) The variables both roomsn,r,r′,s are set correctly for each nurse n ∈ N ,
each two rooms r, r′ ∈ R, and each shift s ∈ S(n):

both roomsn,r,r′,s ≥ in roomn,r,s + in roomn,r′,s − 1 ∀n ∈ N , r, r′ ∈ R, s ∈ S(n)

(27) The walking distance variables distn,s are set correctly for each nurse
n ∈ N and each shift s ∈ S(n):

distn,s = walk pat◦(s) ·
1

2
·
∑

r∈R

∑

r′∈R\{r}

both roomsn,r,r′,s · dist(r, r
′)

+ walk pat⋆(s) ·
∑

a∈A

∑

r∈R

in roomn,r,s · dist(a, r) ∀n ∈ N , s ∈ S(n)

5 Solution methods

Addressing PRA and NPA challenges in hospitals reveals complexities that
hinder timely optimal solutions. The PRA problem, even in isolation, is known
to be NP-hard and only unrealistically small instances can be solved to opti-
mality in reasonable time. Thus, it not surprising that the integrated problem
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is very difficult to solve on instances of a realistic size and solving the MIP
provided in the previous section takes a prohibitive amount of time on such
instances (see also Section 7). Therefore, we now present two different meth-
ods for generating good solutions in reasonable computation times. The first
method, which is mainly presented as a point of comparison to the completely
integrated MIP from Section 4, is a sequential approach based on a natu-
ral decomposition of the integrated MIP into models for the two interacting
subproblems. The second method is an efficient greedy heuristic for the inte-
grated problem, which also allows easy adaptions to various dynamic problem
versions.

5.1 Sequential solution approach

As a point of comparison to the completely integrated MIP presented in the
previous section and to potentially achieve faster computation times, we con-
sider the sequential solution of the two submodels for the PRA part and the
NPA part. Here, we first solve the PRA part to determine the PRA and then
solve the NPA part to determine the NPA based on the given PRA. Note
that this approach of solving the two assignment problems sequentially will of
course not yield optimal solutions for the integrated problem in general.

The PRA part of the model consists of the patient transfers objective (1),
the patient inconvenience objective (2), the gender mixing objective (3), and
the equipment violations objective (4) as well as the constraints concerning
the assignment of patients to rooms (I), the patients transfers (II), and the
inconvenience of patients (III) and the associated decision variables.

The NPA part of the model contains the continuity of care objective (5), the
penalization of skill level requirements and undesired workload distributions
objective (6), the objective for assigning the minimum number of nurses per
room (7), and the walking distance objective (8). As constraints, the NPA
part contains those concerning the assignment of patients to nurses (IV), the
workload of nurses (V), the assignment of all patients in the same room to
the same nurse (VI), and the walking distance of nurses (VII). Concerning
variables, the NPA model contains all variables appearing in these objectives
and constraints, but the yp,r,s are not decision variables anymore since their
values are carried over from the solution obtained for the PRA part of the
model.

5.2 Heuristic solution approach

Due to the computationally challenging nature of the PRA problem, heuristic
solution methods are often used to tackle this problem in the recent liter-
ature [23, 46]. Naturally, the computational challenges become even greater
when considering PRAs and NPAs jointly in an integrated optimization prob-
lem as we do in this paper. Therefore, we now introduce a heuristic solution
approach for the IPRNPA problem, which extends the heuristic for the PRA
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problem suggested in [46]. The presented heuristic balances computational
effort and solution quality with the goal of obtaining a practically applicable
procedure for timely, satisfactory outcomes.

Our heuristic is initially tailored to the static version of the IPRNPA prob-
lem, but its scope extends beyond the static setting. In fact, the heuristic does
not require to have all information about patients available in advance and can
easily be extended to a variety of dynamic settings. As an illustrative exam-
ple, instead of restricting patient transfers between rooms to happen between
a night shift and the following early shift as in the static IPRNPA problem,
the heuristic could handle patient transfers whenever new information about
patients is obtained. The same applies for NPAs, which could alternatively be
allowed also during shifts whenever new information becomes available. Thus,
even complex dynamic problem settings based on dynamic PRA problems such
as the one considered by Ceschia and Schaerf [11, 12] can be handled without
difficulties.

5.2.1 Algorithm description

The idea of the heuristic is to assign patients to rooms and nurses to patients in
a greedy fashion. To this end, the heuristic considers the days of the planning
period chronologically, where each day is represented by the corresponding
early shift. For each day, the heuristic iteratively fixes both the PRA and the
NPA for only this day jointly for a single patient in a way that yields the lowest
current contribution to the objective function. After each such assignment, the
current objective function contributions of the remaining possible assignments
for the day are updated before the assignments for the next patient are fixed.
Once the room and nurse assignments have been fixed for all patients that are
on the ward during the considered day, the heuristic moves on to the next day.
During this iterative process, we have to take into account that decisions for
the two kinds of assignments are made on different time scales. Concerning
PRAs, a decision about the room the patient is assigned to is made only once
per day before the start of the early shift, whereas, concerning NPAs, three
different nurse must be assigned to a patient for each day (for the early, late,
and night shift) since each nurse works at most one shift per day.

We now describe our heuristic, whose pseudocode is shown in Algorithm 1,
more formally. Here, we first describe the algorithm without the heterogeneity
check between patient admission and discharge times that is represented by
the heterogeneity matrix HetMatrix in the pseudocode and is motivated and
explained afterwards in Section 5.2.2.

Upon initialization of the heuristic, all relevant assignment variables xp,n,s

and yp,r,s are set to 0 to indicate that no assignments have been made so far.
Afterwards, the days of the planning period are considered in chronological
order represented by their early shifts. When considering a day of the plan-
ning period represented by the corresponding early shift s ∈ Searly, the set of
relevant patients for which room and nurse assignments are to be made for
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this day is denoted by P(s) := {p ∈ P : ad shift(p) ≤ s ≤ di shift(p)}. Note
that P(s) also includes patients that have been on the ward already on the
previous day if they have not been discharged yet since the room and nurse
assignments for such patients have so far only been fixed up to the previous
day. At each point during the assignment process for the day, the set of rooms
that are still available (i.e., not yet fully occupied) is denoted by R(s) ⊆ R.
The set of nurses who are on duty on the corresponding day is partitioned
according to their assigned shifts into N early(s), N late(s), and N night(s). Con-
sequently, the Cartesian product N comb(s) := N early(s)×N late(s)×N night(s)
corresponds to all possible ordered triples of nurses that can potentially be
assigned to a patient during the three shifts of the day that starts with the early
shift s ∈ Searly. The potential contributions to the objective function for each
triple (p, ncomb, r) consisting of a patient p ∈ P(s), a triple ncomb ∈ N comb(s)
of nurses, and an available room r ∈ R(s) are stored in a contribution table
denoted by ContribTable.

Whenever the heuristic starts considering some day of the planning period
starting with early shift s ∈ Searly, the contribution table is filled with the cur-
rent contributions that correspond to the potential assignments of patients p ∈
P(s) to nurse combinations ncomb ∈ N comb(s) and rooms r ∈ R(s). These
current contributions are computed based on the changes to the objective func-
tion value that would currently be induced by the corresponding assignments.
Here, the objective function is the same weighted sum of the objectives (1)–(8)
as in the MIP described in Section 4.

The heuristic then fixes the assignments of rooms and nurse combinations
for the day represented by early shift s for all patients in P(s) in a greedy
fashion. This is done by iteratively identifying the triple (p, ncomb, r) that has
the lowest contribution value in ContribTable and setting the values of the
corresponding assignment variables xp,n,s and yp,r,s to 1, which means that
patient p is assigned to the nurse combination ncomb and the room r. Sub-
sequently, the allocated patient p is removed from P(s) and the room r is
removed from R(s) in case that the assignment has resulted in full occu-
pancy of room r on the corresponding day. Moreover, the contribution table
ContribTable needs to be updated by removing all entries corresponding to
patient p and possibly room r. In addition, the update involves adjusting the
objective contributions for the remaining possible assignments of the day to
ensure that they accurately represent the new state of PRA and NPAs. For
example, the previously-calculated contribution to the gender mixing objec-
tive for room r is updated for all remaining patients in P(s) with a different
gender than the patient p just assigned. After the updated contribution table
has been computed, the heuristic continues with the next iteration based on
the updated contribution table until P(s) = ∅ (i.e., all assignments for the
current day have been fixed) and the procedure continues with the next day.

The heuristic terminates once the last day of the planning period has been
considered, i.e., once all PRA and NPAs have been fixed for the whole planning
period.
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5.2.2 Heterogeneity check between patients

A point that is not taken into account in the heuristic as described so far is
the coordination of arrivals and discharges of patients that are assigned to the
same room. If occupancy levels are high, this could lead to the unnecessary
creation of gender-mixed rooms or avoidable patient transfers. For example,
assigning several male patients with very similar arrival and discharge shifts to
different rooms instead of the same room might leave no other rooms available
for female patients admitted shortly afterward unless some of the male patients
are transferred. In order to avoid such unfavorable incidents explicitly, we
next describe a new patient-to-patient heterogeneity measure, whose values
are stored in a heterogeneity matrix. This heterogeneity matrix is used in the
heuristic to foster the assignment of patients who are discharged at similar
times to the same room by explicitly taking discharge shifts into account during
the computation of possible objective function contributions.

The proposed patient-to-patient heterogeneity measure is based on the dif-
ference between two patients’ discharge shifts. Formally, for two patients p, p′ ∈
P , we let di shift diff(p, p′) denote the absolute difference between the dis-
charge shifts di shift(p) and di shift(p′). The heterogeneity for the two patients
is then calculated by the following formula2:

het(p, p′) := ln di shift diff(p, p′)

This means that the heterogeneity value het(p, p′) is the natural logarithm of
the difference between the di shift(p) and di shift(p′). Here, the logarithm is
used in order to limit the growth of the values in cases where the planning
period is long, where large values would otherwise occur. Note that, since the
logarithm is a strictly increasing function, a lower heterogeneity value for two
patients signifies more similar discharge dates and, thus, a better fit between
the two patients for being assigned to the same room.

The heterogeneity values of all patient pairs are calculated upon ini-
tialization of the heuristic and stored in a heterogeneity matrix denoted
by HetMatrix. Here, since the heterogeneity values are symmetric (i.e.,
het(p, p′) = het(p′, p) for all p, p′ ∈ P), it suffices to compute the values above
the main diagonal of the matrix in order to improve efficiency. The hetero-
geneity values of patient pairs are then used whenever the current objective
contributions are computed for an assignment that involves assigning a patient
to a room to which other patients have already been assigned on the same
day. In this case, the appropriately weighted maximum of the heterogeneity
values between the new patient and the already assigned patients is added as
an additional summand to the current objective contributions.

2In case that di shift(p) = di shift(p′), where the argument of the logarithm equals zero, we set
het(p, p′) to zero. In all other cases, the value is strictly positive.
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Algorithm 1 IPRNPA heuristic
Input: An instance of the IPRNPA problem
Output: patient-to-nurse assignments x, patient-to-room assignments y

1: xp,n,s ← 0 for all p ∈ P, n ∈ N , s ∈ S

2: yp,r,s ← 0 for all p ∈ P, r ∈ R, s ∈ Searly

3: HetMatrix← calculateHeterogeneityMatrix
4: for s ∈ Searly in increasing order do

5: P(s)← {p ∈ P : ad shift(p) ≤ s ≤ di shift(p)}

6: N comb(s)← N early(s)×N late(s)×Nnight(s)
7: R(s)← R

8: ContribTable← calculateContributionTable(P(s),N comb,R(s),HetMatrix)
9: while P(s) 6= ∅ do

10: (p, ncomb, r)← argmin(ContribTable)
11: yp,r,s ← 1

12: (nearly, nlate, nnight)← ncomb

13: x
p,nearly,s

, x
p,nlate,s

, x
p,nnight,s

← 1

14: P(s)← P(s) \ {p}
15: if room r is fully occupied then

16: R(s)← R(s) \ {r}
17: end if

18: ContribTable← updateContributionTable(ContribTable, p, ncomb, r,HetMatrix)
19: end while

20: end for

6 Instance generator and case study

We now present a detailed description of the parameterized instance gener-
ator that we developed for creating realistic test instances of the IPRNPA
problem. Afterwards, we present the structure and key data of the real-world
instances obtained from our partner hospital. The concrete parameter values
used for generating the artificial instances as well as the numbers of instances
considered will be described later in Section 7.

6.1 Instance generator

In order to generate larger numbers of realistic test instances, we developed a
parameterized instance generator for the IPRNPA problem. The source code of
the instance generator is publicly available on GitHub at https://github.com/
TabeaBrandt/instance generation integrated beds and staff planning.git.

The instance generator offers the possibility to create a specifiable number
of test instances based on user-defined parameters. These parameters include
the number of instances to be created, as well as the option to specify the
length of the planning period in weeks. The remaining input parameters can be
divided into two main categories: room-related parameters and nurse-related
parameters. In the context of room-related parameters, aspects such as the
number of patient rooms, their capacity (single, double, triple, or quadruple
rooms), occupancy rate, presence of additional rooms, and possible types of
room equipment play a central role. In the context of nurse-related parame-
ters, significant options for fine-tuning are available. This includes setting the
maximum desired workloads for nurses, as well as specifying the skill levels to
be considered. Concerning the total number of nurses that are available and
the nurse roster, the generator operates in two modes: manual and automatic.

https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git
https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git
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In the manual mode, the user specifies the number of nurses explicitly, based
on which the generator strives to create a feasible nurse roster using the binary
integer program (BIP) outlined in Appendix A. In the automatic mode, on
the other hand, the generator increases the number of nurses until a feasible
nurse roster can be generated using the BIP.

The output of the generator is a set of instances of the specified cardinality.
In each instance, a defined number of rooms is described, which is divided into
single, double, triple, and quadruple rooms according to the specified distribu-
tion of room sizes. The rooms are assigned randomly selected equipment from
the specified types of possible equipment. Additional rooms such as nursing
stations or storage rooms can be added, and a minimum of one such room is
required to calculate walking distances based on the star-like walking pattern.
The weighting factors that determine the importance of the circular versus the
star-like walking pattern depend on the type of shift. The circular pattern is
favored during early shifts, a more equal split is favored during late shifts, and
the star-like pattern is favored during night shifts.

The number of nurses is derived from the number of patient rooms, the
distribution of the number of beds per room, and the number of nurses of each
skill level that is required per shift, all of which are specified when creating
an instance. In instances where three skill levels are specified, we assume that
20% are experienced nurses (skill level 3), 60% are regular nurses (skill level 2)
and that 20% are trainees (skill level 1). For instances with two skill levels, we
assumed that 80% are skill level 2 and 20% are skill level 1. Additionally, the
maximum desired workload associated with each skill level is set to 10 for skill
level 1, 12.5 for skill level 2, and 15 for skill level 3. This represents an average
nurse-to-patient ratio of 1:4, 1:5, and 1:6, respectively, during each shift.

The patients are generated based on the room configuration and the desired
occupancy level. Each patient is assigned a ten-year age group uniformly sam-
pled from 20–30 to 90–100, and, an admission shift, based on the number of
rooms and the rooms’ capacities. A patient’s discharge shift is set as the mini-
mum of the admission shift plus a sampled length of stay (LOS) in days, drawn
from a discrete uniform distribution on {1, . . . , 5}, or the last shift of the plan-
ning period. Gender is currently assigned based on a 50-50 female-male split.
The nurse skill level required for each shift of a patient’s LOS is assumed to
decrease monotonously. The workload generated by a patient p during each
shift is based on a gamma distribution with α = 3, β = 0.5+age group(p)/10,
with a minimum of 1, a maximum of 5, and an exponential smoothing parame-
ter of 0.1 that describes the monotonous decrease. The equipment required by
the patient is sampled from the types of possible room equipment and assumes
monotonously decreasing requirements over the shifts of a patient’s LOS.
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6.2 Real-world instances

To investigate the potential of our methods using real-world data, we also test
them on real-world instances from a Short Stay Unit of our partner hospi-
tal. As with our instance generator, these instances are publicly available on
GitHub at https://github.com/TabeaBrandt/instance generation integrated
beds and staff planning.git.

The considered ward is not restricted to a single medical specialty, but only
patients requiring care that can be delivered according to a strict protocol
are admitted. Consequently, there are no acute admissions to this ward and
admission and discharge dates of patients as well as their care requirements
are known in advance. The ward is closed on weekends, so each patient’s LOS
is at most five days.

During the week, the nursing staff operates in three shifts (early, late and
night) to ensure continuous day and night care. Due to the protocol-based
care, the nurses who work on the ward do not specialize in a single medical
specialty, but require a broad skill set. There are two nurse skill levels: experi-
enced and trainee. One experienced nurse can take care of four to six patients
simultaneously during a shift depending on the patient’s care requirements
and the nurse’s experience, while trainee nurses can take care of about two
patients in parallel. There is no particular nurse-to-patient ratio during night
shifts, but at least two nurses must always be present.

The ward consists of 17 patient rooms of varying sizes: four single rooms,
10 double rooms, two triple rooms, and one quadruple room. Therefore, the
ward has a total capacity of 34 beds. Additionally, there is one nursing station
where the nurses are usually located when they are not attending to patients.
We were provided with the floor plan to estimate the walking distances between
the rooms, which we calculated according to the shortest walking path between
the centers of each room pair.

In our numerical experiments, we use real admission data and nurse ros-
ters of 40 weeks (about nine months), from before the COVID-19 pandemic.
Because the ward closes on the weekend, each week in the data can be consid-
ered as a separate instance. We acknowledge that, despite the comprehensive
dataset shared by the hospital, certain input data have been omitted due to
privacy concerns in order to safeguard individual patient identities. For exam-
ple, data on the skill levels required for taking care of individual patients and
the resulting patient-specific workloads for nurses have not been provided.
These missing data have been generated using the corresponding functions of
our instance generator presented in Section 6.1 based on realistic parameter
values that have been established in cooperation with Amsterdam University
Medical Centers (see Section 6.2). The data provided led to infeasible instances
for two weeks. In one case, a patient was assigned to a shift for which no nurse
was on duty, while in the second instance, a shortage in bed capacity during
a particular shift rendered it infeasible to accommodate the required patient
load.

https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git
https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git
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7 Experimental results

This section presents our experimental results obtained by testing the MIP as
well as the solution methods presented in Section 5 on both artificial instances
generated by our instance generator from Section 6.1 and the real-world
instances described in Section 6.2.

All computational experiments were performed on a Linux system running
Ubuntu 23.04. The hardware includes an AMD EPYC 7542 processor with
32 CPU cores and 64 threads, operating at a base clock speed of 2.9GHz.
The system is equipped with 512 GB of memory. The experiments were
implemented using Python 3.11 and Gurobi 10.0.1. To solve the completely
integrated MIP presented in Section 4 and the two submodels in the sequential
solution approach from Section 5.1, we dedicated 8 threads to each instance
when solving with Gurobi.

As described in Section 4, the objective function to be minimized con-
sists of a weighted sum of several separate objectives. The specific weights for
these objectives were determined based on the existing literature and discus-
sion with our partner hospital. The weights from the existing literature were
taken from Demeester et al. [17] and are as follows: the patient transfers objec-
tive (1) was assigned a weight of 11, the gender mixing objective (3) a weight
of 5, and the equipment violation objective (4) a weight of 5. Furthermore, in
consultation with our partner hospital the following weights were established:
the patient inconvenience objective (2) and the continuity of care objective (5)
were each given a weight of 1, the penalization of skill level requirements and
undesired workload distributions objective (6) a weight of 5, the assignment of
the minimum number of nurses per room objective (7) a weight of 2, and the
walking distances objective (8) a weight of 0.05. When applying our heuris-
tic, we also considered the heterogeneity values of patient pairs as discussed
in Section 5.2.2. Here, we assigned a weight of 1 to appropriately incorporate
this factor.

7.1 Artificial instances

We established a structured framework involving two distinct scenarios, each
subdivided into three specific variations and two different lengths of the plan-
ning period. This results in a total of 12 scenario-variation-planning period
combinations. For each of these 12 combinations, we generated 10 artificial
instances using our instance generator described in Section 6.1.

The two scenarios encompass configurations of 30 and 60 beds. Within each
scenario, Variation 1 comprises exclusively double rooms, Variation 2 exclu-
sively triple rooms, and Variation 3 encompasses a diverse mix of room types,
including single, double, triple, and quadruple rooms. For the 30 beds scenario,
this allocation translates to 3 single rooms, 5 double rooms, 3 triple rooms, and



Integrated patient-to-room and nurse-to-patient assignment 27

2 quadruple rooms. These numbers are doubled for the 60 beds scenario. More-
over, our investigation includes two different lengths of the planning period for
each scenario-variation combination, spanning either 2 or 4 weeks.

Throughout our comprehensive analysis, we used input parameters for our
instance generator that encompass two distinct equipment types, three possible
nurse skill levels, the inclusion of a nursing station as an additional room, and
a constant occupancy rate of 85%.

In addressing the given scenarios, we applied three distinct solution meth-
ods to solve the artificial instances, which we will refer to as Methods 1–3
in the following: the MIP from Section 4 (Method 1), the sequential solution
approach from Section 5.1 (Method 2) and the heuristic solution approach
from Section 5.2 (Method 3). For Method 1, the running time was limited to a
maximum of 3 hours (10800 seconds). In the case of Method 2, the same total
running time limit was evenly distributed between the two addressed submod-
els. Additionally, we configured all MIPs to be terminated when the MIP gap
falls below 5%. The results, including objective values and running time data,
are presented in Table 1.

The reported results present the objective values as percentages, with the
Method 1 objective value serving as the baseline for each instance. These per-
centages represent the resulting objective proportions, averaged across the 10
instances for each scenario-variation-planning period combination. It is impor-
tant to emphasize that values below 100% indicate superior performance to
Method 1 since the model aims to minimize the objective function. Notably,
Method 2 consistently outperforms Method 1 in all scenario-variation-planning
period combinations, while Method 3 solution approach surpasses Method 1
in nearly all instances. When comparing Method 2 to Method 3, it becomes
clear that Method 2 excels in the 30 beds scenario but lags behind Method 3
for the 60 beds scenario, except for one case. The standard deviation of the
objective values for Method 2 and Method 3 is generally low across most
scenario-variation-planning period combinations. However, a few instances
with higher standard deviations can be attributed to a handful of strongly
deviating instances.

When comparing the running times of the three methods, it is evident
that Method 1 consistently exceeded the running time limit in all instances,
while Method 2 did so in nearly all instances. In contrast, Method 3 dis-
played remarkable efficiency, requiring, on average, only 27 to 80 seconds for
the 30 beds scenario instances and 871 to 1784 seconds for the 60 beds scenar-
ios. This disparity in running times is primarily due to the non-linear growth
in nurse combinations for one-day NPAs, as the heuristic assigns three nurses
simultaneously. In total, the 30 beds scenario had 21 nurses available to be on
duty, while the 60 beds scenario had 31 nurses. Additionally, for each scenario-
variation-planning period combination, the running times remained stable with
low standard deviation, highlighting the consistency of Method 3’s perfor-
mance. Doubling the planning horizon from 2 to 4 weeks in both scenarios and
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Table 1 Artificial instances: Running times and objective values

Scenario Variation
Planning

horizon
Running time (seconds) Objective value1

Avg Stdev Avg Stdev

Method 1: MIP

30 beds

Var. 1 (double rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

Var. 2 (triple rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

Var. 3 (mixed rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

60 beds

Var. 1 (double rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

Var. 2 (triple rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

Var. 3 (mixed rooms)
2 weeks 10800 0 100% 0%
4 weeks 10800 0 100% 0%

Method 2: Sequential solution approach

30 beds

Var. 1 (double rooms)
2 weeks 10800 0 61% 2%
4 weeks 10800 0 46% 14%

Var. 2 (triple rooms)
2 weeks 7829 970 73% 4%
4 weeks 10800 0 36% 10%

Var. 3 (mixed rooms)
2 weeks 10800 0 64% 2%
4 weeks 10800 0 38% 13%

60 beds

Var. 1 (double rooms)
2 weeks 10800 0 25% 1%
4 weeks 10800 0 25% 3%

Var. 2 (triple rooms)
2 weeks 10800 0 30% 23%
4 weeks 10800 0 24% 2%

Var. 3 (mixed rooms)
2 weeks 10800 0 24% 1%
4 weeks 10800 0 24% 1%

Method 3: Heuristic solution approach

30 beds

Var. 1 (double rooms)
2 weeks 27 1 88% 4%
4 weeks 57 1 65% 19%

Var. 2 (triple rooms)
2 weeks 38 1 116% 6%
4 weeks 80 1 57% 16%

Var. 3 (mixed rooms)
2 weeks 30 1 98% 5%
4 weeks 65 2 58% 21%

60 beds

Var. 1 (double rooms)
2 weeks 888 46 17% 1%
4 weeks 1531 62 16% 0%

Var. 2 (triple rooms)
2 weeks 1071 46 27% 20%
4 weeks 1784 66 17% 1%

Var. 3 (mixed rooms)
2 weeks 871 45 18% 1%
4 weeks 1515 101 17% 0%

1 All objective values are provided as proportions (expressed as percentages) of those
obtained using Method 1. Values below 100% indicate superior performance to Method 1.

variations resulted in an approximate doubling of the running time, indicating
a linear relationship between running time and planning horizon length.

By factoring in the achieved MIP gaps (Table B1 in appendix) alongside
the objective values and running times, we gain insights into the difficulty lev-
els of each scenario-variation-planning period combination. Variation 2, which
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exclusively considers triple rooms in the 30 beds scenario, emerges as the eas-
iest to solve for both Method 1 and Method 2, while Variations 1 and 3,
focusing on double rooms and a mixed set of room types, respectively, seem
equally challenging for both methods. Notably, Method 3 exhibits greater effi-
ciency in Variations 1 and 3 compared to Variation 2 when considering running
times. MIP gaps exceeding 100% for Method 1 indicate cases where the initial
root relaxation of the MIP model could not be solved within the running time
limit, resulting in Gurobi finding suboptimal heuristic solutions. In summary,
Method 3 consistently outperforms Method 1 and Method 2 across all cases,
excelling in both running time and objective value, particularly in complex
scenarios where achieving optimality is notably demanding.

Since the considered objective function is a weighted sum of the separate
objective functions (1)–(8), we also consider the values of these separate objec-
tive functions for a more comprehensive analysis. The detailed outcomes are
presented in Table 2.

Table 2 Artificial instances: Separate objective values differentiated by method

Objective
Method 1 Method 2 Method 3

Obj. value1 Obj. value1 Obj. value1

30 beds 60 beds 30 beds 60 beds 30 beds 60 beds

(1) Transfers 100% 100% 0% 21% 1% 3%
(2) Inconvenience 100% 100% 29% 41% 64% 56%
(3) Gender mixing 100% 100% 2% 2% 40% 28%
(4) Equipment violation 100% 100% 144% 24% 291% 74%
(5) Continuity of care 100% 100% 103% 109% 98% 100%
(6) Skill & workload 100% 100% 26% 17% 68% 9%
(7) Nurses per room 100% 100% 83% 109% 79% 101%
(8) Walking distances 100% 100% 59% 36% 53% 26%

1 All objective values are provided as proportions (expressed as percentages) of those
obtained using Method 1 (MIP).

Upon examining each objective separately, several noteworthy observations
emerge. Method 2 and Method 3 in both scenarios exhibit a notable advantage
over Method 1 in strictly minimizing patient transfers (objective (1)). The
objectives related to continuity of care (objective (5)) and the number of nurses
per room (objective (7)) exhibit similar behavior across Methods 1 to 3. Gender
mixing (objective (3)) is strongly avoided in Method 2 and to a moderate
extent in Method 3. Interestingly, it is worth noting that skill and workload
violations (objective (4)) are more pronounced in Methods 2 and 3 only in
the 30 beds scenario, while this issue does not appear as prominently in the
60 beds scenario. These findings underscore each method’s distinct strengths
and weaknesses in addressing specific objectives.
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7.2 Real-world instances

To test all developed methods using real-world data, we sourced data from
a Short Stay Unit of our partner hospital as described in Section 6.2. The
dataset comprises 40 individual instances, each spanning a planning period of
one week.

To address the absence of certain input data needed for the IPRNPA prob-
lem, we generated the missing information using the corresponding functions
implemented in our instance generator introduced in Section 6.1 based on
realistic parameter values established in cooperation with our partner hos-
pital. Specifically, we utilized the functions to generate data on nurse skill
level requirements of patients and nurse workloads induced by patients. This
approach allowed us to create complete instances for our analyses while at the
same time maintaining patient privacy and confidentiality.

When comparing average (minimum, maximum) parameter values across
the considered instances, we observe notable variations. There are approxi-
mately 17 (min. 13, max. 23) nurses attending to around 62 (min. 45, max. 76)
patients. Patient LOS are around 4.1 (min. 3.6, max. 4.8) shifts, resulting in
an average occupancy rate of 61% (min. 46%, max. 72%), while each patient
causes a workload of about 2.7 (min. 2.2, max. 3.1) during a day shift, i.e.,
early and late shift.3 We selected the 20 instances with the highest occupancy
rates from the available dataset for further analysis, taking care to exclude
holiday times and instances exhibiting unnatural utilization levels. This care-
ful selection process ensures that the chosen instances accurately represent the
most demanding and meaningful scenarios for in-depth examination.

In tackling the real-world instances, we again applied all three solution
methods, which are again referred to as Methods 1–3 as in Section 7.1. The ter-
mination criteria based on running time limits and MIP gap were also adopted
from Section 7.1. The results, encompassing objective values and running time
data, are presented in Table 3.

The results in real-world instances parallel those in the artificial ones
(Section 7.1) concerning running time limits, where Method 1 consistently
reaches the time limit in all cases. In Method 2, the running time limit
is only exceeded in the PRA subproblem of instance 20. In stark contrast,
Method 3 demonstrates remarkable efficiency, with an average running time of
just 10 seconds, vastly outperforming Method 2, which has an average running
time of 2535 seconds.

Regarding objective values, Method 1 consistently outperforms Methods
2 and 3 across all instances, with average objective values of 107% and
137%, respectively. The real-world instances are less complex than the arti-
ficial 30 beds scenario, evidenced by an average MIP gap of 43% (Table B2
in the appendix). Method 2 optimally solves all PRA subproblems except for

3The presented LOS and workload numbers are averages over all patients of an instance.
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Table 3 Real-world instances: Running times and objective values

Instance #
Method 1: MIP Method 2: Sequ. sol. app. Method 3: Heur. sol. app.

Running time Obj. value1 Running time Obj. value1 Running time Obj. value1

1 10800 100% 4476 103% 10 124%
2 10800 100% 4346 110% 9 129%
3 10800 100% 3300 106% 9 146%
4 10800 100% 3142 100% 10 134%
5 10800 100% 4593 107% 8 127%
6 10800 100% 3397 102% 10 127%
7 10800 100% 1479 106% 11 138%
8 10800 100% 2792 102% 12 128%
9 10800 100% 1997 112% 10 147%

10 10800 100% 1894 109% 13 140%
11 10800 100% 1746 109% 10 137%
12 10800 100% 2358 110% 11 164%
13 10800 100% 294 111% 9 148%
14 10800 100% 113 123% 6 142%
15 10800 100% 656 109% 8 121%
16 10800 100% 4551 104% 8 144%
17 10800 100% 1920 103% 9 122%
18 10800 100% 403 107% 10 125%
19 10800 100% 1233 109% 11 139%
20 10800 100% 6006 101% 13 161%

Total2 10800 100% 2535 107% 10 137%

1 All objective values are provided as proportions (expressed as percentages) of those
obtained using Method 1 (MIP).
2 Average across all instances

instance 20, where a 100% MIP gap occurs because the lower bound equaled 0.
In NPA subproblems, the MIP gap drops below 5% during runtime, prompting
the optimization to halt accordingly.

In summary, the evaluation of three methods for healthcare management
optimization reveals distinct trade-offs. Method 1, while suitable for small-
scale settings such as those provided by our partner hospital, suffers from
prohibitively high running time costs, often taking thousands of seconds to
achieve results comparable to the heuristic, which only needs a few seconds. For
medium-sized problems like the 30 beds scenario, Method 2 delivers superior
results compared to Method 3 at the expense of significant running time. In
contrast, Method 3 consistently stands out regarding running time efficiency
across problem sizes and showcases excellent objective values, particularly in
larger scenarios like the 60 beds scenario. Hence, Method 3 emerges as the
preferred choice for optimizing healthcare management, striking a favourable
balance between computational efficiency and solution quality, especially in
more extensive and complex healthcare settings.

8 Conclusion and outlook

Motivated by important interactions of PRA and NPA decisions in hospital
wards, this paper explicitly considers both types of assignment decisions in one
integrated optimization problem for the first time. We introduce the IPRNPA
problem and provide a formal mathematical description as a mixed integer
program. Since the PRA problem and the NPA problem are already NP-hard
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and very difficult to solve for realistic instance sizes, it is not surprising that
the integrated problem is computationally challenging and cannot be solved
to (near) optimality in reasonable time using the completely integrated MIP
model. Therefore, we also present an efficient heuristic for the integrated prob-
lem that is able to compute high-quality solutions quickly on both artificially
generated instances and real-world instances obtained from our partner hos-
pital. The heuristic solution approach highlighted its superiority in running
time efficiency across various problem sizes, particularly excelling in larger and
more complex scenarios. While the integrated MIP struggles with high running
time costs the heuristic solution approach strikes a favorable balance between
computational efficiency and solution quality. Its superiority in objective val-
ues is notably pronounced in medium and large-scale scenarios, making it the
preferred choice for optimizing real-world healthcare settings.

We also devise a parameterized instance generator for the problem. This
generator is made freely available to other researchers to foster additional inves-
tigations on the IPRNPA problem, which we believe represents a challenging
and at the same time practically relevant problem to be further investigated in
the future. For instance, while our heuristic solution method allows easy adap-
tions to some dynamic versions of the problem, explicitly investigating different
dynamic extensions with increasing degrees of data uncertainty (e.g., no-shows
of patients or unexpected changes of patients’ care requirements and/or LOS
after admission) might represent a fruitful direction for future research. More-
over, while the nurse roster for the planning period is considered as an input
of the problem in this paper, integrating rostering decisions into the problem
formulation might represent an interesting extension.

Statements and declarations

Data availability

The instance generator and the instances used for the computational exper-
iments are available on GitHub, https://github.com/TabeaBrandt/instance
generation integrated beds and staff planning.git.

Funding

This research was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project number 443158418.

Joe Viana’s work is primarily supported by the Norwegian Research Council,
Measure for Improved Availability of medicines and vaccines – Project number
300867.

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the
content of this article.

https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git
https://github.com/TabeaBrandt/instance_generation_integrated_beds_and_staff_planning.git


Integrated patient-to-room and nurse-to-patient assignment 33

References

[1] Acar I, Butt SE (2016) Modeling nurse-patient assignments consider-
ing patient acuity and travel distance metrics. Journal of Biomedical
Informatics 64:192–206

[2] Aiken LH, Clarke SP, Sloane DM, et al (2002) Hospital nurse staffing
and patient mortality, nurse burnout, and job dissatisfaction. JAMA
288(16):1987–1993

[3] Bai J, Fügener A, Schoenfelder J, et al (2018) Operations research
in intensive care unit management: A literature review. Health Care
Management Science 21(1):1–24

[4] Bastos LS, Marchesi JF, Hamacher S, et al (2019) A mixed integer
programming approach to the patient admission scheduling problem.
European Journal of Operational Research 273:831–840

[5] Benazzouz T, Echchatbi A, Bellabdaoui A (2015) A literature review on
the nurses’ planning problems. International Journal of Mathematics and
Computational Science 1(5):268–274

[6] Bilgin B, Demeester P, Misir M, et al (2012) One hyper-heuristic approach
to two timetabling problems in health care. Journal of Heuristics 18:401–
434

[7] Bodenheimer TS, Smith MD (2013) Primary care: Proposed solutions to
the physician shortage without training more physicians. Health Affairs
32(11):1881–1886

[8] Borchani R, Masmoudi M, Jarboui B, et al (2021) Heuristics-based on
the hungarian method for the patient admission scheduling problem. In:
[37], chap 2, p 33–62

[9] Bouras A, Masmoudi M, Saadani NEH, et al (2021) Multi-stage appoint-
ment scheduling for outpatient chemotherapy unit: a case study. RAIRO
Operations Research 55(2):589–610

[10] Butt SE, Fredericks TK, Kumar AR, et al (2004) An evaluation of phys-
iological work demands on registered nurses over a 12-hour shift. In:
Proceedings of the XVIII Annual International Occupational Ergonomics
and Safety Conference (ISOES)

[11] Ceschia S, Schaerf A (2011) Local search and lower bounds for the
patient admission scheduling problem. Computers & Operations Research
38(10):1452–1463

[12] Ceschia S, Schaerf A (2012) Modeling and solving the dynamic patient
admission scheduling problem under uncertainty. Artificial Intelligence in
Medicine 56(3):199–205

[13] Ceschia S, Schaerf A (2016) Dynamic patient admission scheduling with
operating room constraints, flexible horizons, and patient delays. Journal
of Scheduling 19:377–389

[14] Clark A, Moule P, Topping A, et al (2015) Rescheduling nursing shifts:
Scoping the challenge and examining the potential of mathematical model
based tools. Journal of Nursing Management 23(4):411–420



34 Integrated patient-to-room and nurse-to-patient assignment

[15] Cohen B, Hyman S, Rosenberg L, et al (2012) Frequency of patient con-
tact with health care personnel and visitors: Implications for infection
prevention. The Joint Commission Journal on Quality and Patient Safety
38(12):560–565

[16] Dancer SJ (2009) The role of environmental cleaning in the control of
hospital-acquired infection. Journal of Hospital Infection 73(4):378–385

[17] Demeester P, Souffriau W, De Causmaecker P, et al (2010) A hybrid tabu
search algorithm for automatically assigning patients to beds. Artificial
Intelligence in Medicine 48(1):61–70

[18] Drupsteen J, van der Vaart T, van Donk DP (2013) Integrative practices
in hospitals and their impact on patient flow. International Journal of
Operations & Production Management 33(7):912–933
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Appendix A Nurse rostering formulation

We use a simple binary integer programming formulation to generate the nurse
rosters that are part of our random instances. The formulation is based on
the description presented in the first International Nurse Rostering Compe-
tition (INRC) 2010 [25]. As the focus of this work is not on nurse rostering,
we use a simple but fast formulation instead of a perfectly detailed one. This
formulation includes all constraints that are relevant concerning the use of a
nurse roster as an input of the IPRNPA. However, it is very easy to substitute
the used nurse rostering formulation in our code.

Similar to the INRC, we determine the roster for the planning period con-
sidering one ward. We use a subset of constraints of the INRC in order to
compute a simple, yet still realistic nurse roster. These constraints include that
the number of required nurses per shift must be met, not more than a given
maximum allowed number of shifts can be assigned to any single nurse during
the planning period, and that minimum rest times for nurses between shifts
are respected.

In addition to some of the notation and parameters introduced in Section 4,
we use the following parameters and decision variables:

Parameters:

skill nurses(s, l) number of nurses with at least skill level l ∈ L required
during shift s ∈ S. The sum of this number over all skill
levels defines the minimum number of nurses needed per
shift in total.

max shifts maximum allowed number of shifts per nurse within the
time horizon.

Decision variables:

assignn,s binary variable indicating whether nurse n ∈ N is assigned
to shift s ∈ S

The focus of our formulation is on the generation of a feasible roster to be
used as an input for the IPRNPA. Therefore, we consider the minimization
of the total number of assigned nurses as our objective in order to prevent
unnecessary assignments that are not required in order to fulfill the considered
constraints:

Assignment objective

(28) Minimization of the number of assigned nurses:

min
∑

s∈S,n∈N

assignn,s

The following constraints must be met by a feasible nurse roster:

(29) Each nurse can work at most one shift per day:

assignn,s + assignn,s+1 + assignn,s+2 ≤ 1 ∀n ∈ N , s ∈ Searly
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(30) For each skill level l ∈ L, at least skill nurses(s, l) nurses with at least
skill level l must be assigned during each shift s ∈ S:

∑

n∈N :skill level(n)≥l

assignn,s ≥ skill nurses(l, s) ∀l ∈ L, s ∈ S

(31) The minimum total number of nurses must be assigned during each
shift s ∈ S:

∑

n∈N

assignn,s ≥
∑

l∈L

skill nurses(l, s) ∀s ∈ S

(32) No nurse n ∈ N can be assigned to more than max shifts many shifts
during the planning period:

∑

s∈S

assignn,s ≤ max shifts ∀n ∈ N

(33) On the day after a night shift, a nurse can only have another night shift
(or the day off):

assignn,s + assignn,s+1 + assignn,s+2 ≤ 1 ∀n ∈ N , s ∈ Snight

(34) On the day after a late shift, a nurse cannot have a morning shift:

assignn,s + assignn,s+2 ≤ 1 ∀n ∈ N , s ∈ S late
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Appendix B MIP Gap evaluation on artificial
and real-world instances

Table B1 Artificial instances: Average MIP gap

Scenario Variation
Planning

horizon
Method 1 Method 2
MIP gap1 MIP gap1

IPRNPA PRA NPA

30 beds

Var. 1 (double rooms)
2 weeks 70.0% 58.0% 7.6%
4 weeks 80.7% 63.4% 10.9%

Var. 2 (triple rooms)
2 weeks 57.6% 82.7% 5.0%
4 weeks 80.8% 79.7% 6.8%

Var. 3 (mixed rooms)
2 weeks 65.3% 55.0% 6.1%
4 weeks 81.9% 68.9% 8.8%

60 beds

Var. 1 (double rooms)
2 weeks 110.9% 75.2% 60.5%
4 weeks 111.1% 89.3% 62.3%

Var. 2 (triple rooms)
2 weeks 98.0% 94.6% 51.1%
4 weeks 109.5% 97.0% 62.1%

Var. 3 (mixed rooms)
2 weeks 110.0% 74.4% 58.2%
4 weeks 110.3% 90.5% 61.4%

1 The MIP gap is evaluated after either a running time limit of 10,800 seconds or 5,400
seconds for each subproblem or when the MIP gap reaches a value less than 5%. The MIP
gap is shown summarized as an average value.
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Table B2 Real-World instances: MIP gap

Instance #
Method 1 Method 2
MIP gap1 MIP gap1

IPRNPA PRA NPA

1 53% 0% 5%
2 54% 0% 5%
3 45% 0% 5%
4 48% 0% 5%
5 51% 0% 5%
6 46% 0% 5%
7 45% 0% 5%
8 48% 0% 5%
9 35% 0% 5%

10 38% 0% 5%
11 40% 0% 5%
12 47% 0% 5%
13 33% 0% 5%
14 23% 0% 5%
15 48% 0% 5%
16 53% 0% 5%
17 44% 0% 5%
18 35% 0% 5%
19 30% 0% 5%
20 38% 100% 5%

Total2 43% 5% 5%

1 The MIP gap is evaluated after either a running time limit of 10,800 seconds or 5,400
seconds for each subproblem or when the MIP gap reaches a value less than 5%.
2 Average across all instances
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