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Abstract

Call-takers in emergency medical dispatch centers
typically rely on decision-support systems that help
to structure emergency call dialogues and propose
appropriate responses. Current research investigates
whether such systems should follow a hybrid intelligent
approach, which requires their extension with interfaces
and mechanisms to enable an interaction between
call-takers and artificial intelligence (AI). Yet unclear
is how these interfaces and mechanisms should be
designed to foster call handling performances while
making efficient use of call-taker’s often strained mental
capacities. This paper moves towards closing this
gap by 1) deriving required artifacts for human-AI
interaction and 2) proposing an iterative procedure
for their design and evaluation. For 1), we apply
the guidelines for human-AI interaction and conduct
workshops with domain experts. For 2), we argue
that performing a full evaluation of the artifacts is too
extensive at earlier iterations of the design process, and
therefore propose to enact use-case-driven lightweight
evaluations instead.

Keywords: Medical Emergency Calls, Hybrid
Intelligence, Mental Workload, Mental Picture

1. Introduction

Whenever citizens experience situations that require
immediate medical care, skillful responses to their
emergency calls are key (Zachariah and Pepe, 1995).
To promote consistency in this regard, it is seen
advantageous to provide emergency call-takers with
decision support systems (DSS) that help to structure
their conversations by displaying questions and possibly
proposing appropriate emergency responses (Baumann,

2017; Mayr, 2020). Currently available systems,
however, fall short in terms of adapting to the dynamic
nature of emergency calls (Baumann, 2017) and
therefore leave a gap that has to be bridged by the
call-taker. Recent research in this area suggests that
DSSs could provide a more adaptive decision support by
integrating artificial intelligence (AI) (Rietzke, 2021).
In this context, a close human-AI interaction appears
to be a cornerstone for a successful adaptation of such
an AI-driven DSS in practice (Farand et al., 1995).
A conceptual framework to guide the design of this
interaction can be found in hybrid intelligence – a
recently emerged research focus that concentrates on
combining humans and AI with the goal of fostering
synergies in their respective complementary strengths
(Akata et al., 2020; Dellermann et al., 2019).

A fundamental component of a hybrid intelligence
system is an interface that allows for human-AI
interaction. Throughout this interaction, humans and AI
learn from each other to improve their performance over
time (Akata et al., 2020; Dellermann et al., 2019). The
design of an interface and the respective mechanisms
for hybrid intelligent emergency call handling poses a
widely unexplored challenge. Since emergency calls
are often handled under time pressure, we assume that
utilizing a call-taker’s mental resources efficiently will
be a crucial aspect to a successful adaptation of such
an interface. This applies equally to mental overload as
well as the complete lack of mental workload.

In this paper, we 1) characterize the artifacts required
for human-AI interaction in a hybrid intelligent DSS
for medical emergency call handling and 2) describe a
procedure to design and evaluate them with a strong
focus on the resulting mental workload for call-takers.
For 1), we apply the Guidelines for Human-AI
Interaction (Amershi et al., 2019) and discuss their
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implications based on findings from self-conducted
workshops with experts for emergency call handling
from the German state of Rhineland-Palatinate. For
2), we develop a procedure to create and evaluate the
required artifacts, while focusing on their impact on
mental workload. In this context, we also lay out the
most basic aspects of mental workload in emergency
medical dispatch centers. With our work, we take steps
towards hybrid intelligent emergency call handling and
contribute to the current state of decision support for
call-takers of medical emergency calls.

In the following, we will start by giving a general
overview about DSSs in medical emergency call
handling, hybrid intelligence and mental workload
(Section 2). Subsequently, we describe the concept
of hybrid intelligent emergency call handling (Section
3) and define the required artifacts for human-AI
interaction (Section 4). After considering the aspects
of mental workload in medical emergency call handling
and a general description of how it can be measured
(Section 5), we will introduce the procedure to develop
and evaluate the required artifacts (Section 6). We will
conclude by summarizing our findings and giving an
outlook on future work (Section 7).

2. Foundations

Within information systems research, various
concepts and classes of systems exist that aim to
support users with decision-making – DSSs being
one of those. DSSs are computer-based, interactive
systems that align with the following aspects: 1) They
assist rather than replace users in making decisions,
2) they use data and models as a basis, and 3) they
focus on effectiveness rather than efficiency of the
decision-making process (Eom et al., 1998). That
is, DSSs aim to provide decisional advice to enable
faster, better, and easier decision-making (Aronson
et al., 2005). Within healthcare, DSSs are often used to
support medical decision-making and suggest diagnoses
(e.g. Mangiameli et al., 2004). Another important
aspect of DSSs is the provision of ‘decisional guidance’
by explaining to the user why the system performs a
certain action, suggests a specific decision, or outputs
a computed result (Silver, 1991). By imitating the
decision-making ability of a human expert, the class of
expert systems aim to support human users during the
decision-making process (Jackson, 1986). For practical
use of all types of DSSs, providing explanations
describing what the system knows, how it works, and
why specific actions are appropriate is an important
feature in order to increase the users’ acceptance of
the provided decisions, suggestions, or results (Gregor

and Benbasat, 1999; Richardson et al., 1990; Swartout,
1987; Ye and Johnson, 1995).

In the context of information systems for emergency
management, Shen et al. investigates display formats
and conducted two experiments with decision makers
(Shen et al., 2012). When users are supported in
their decision making by provided decisional guidance,
their performance, measured as decision accuracy as
well as decision speed, increases (Shen et al., 2012).
Applying the design science methodology, the authors
Reuter-Oppermann et al., 2017 proposed a design for
an assistant that can support the dispatchers in an
emergency coordination center. While a system in
the back contains optimization approaches to determine
which ambulance to send to an incident, the assistant
offers explanations for the choice of the algorithm
as well as the dispatching suggestion in order to
increase the dispatchers’ trust and decrease their stress
Reuter-Oppermann et al., 2017.

The concept of hybrid intelligence originates from
a socio-technological perspective on AI-based support
for humans, possibly working on cognitively demanding
tasks. The main research goal of hybrid intelligence
lies in augmenting human intelligence, rather than
aiming at a substitution, while leveraging human
strengths and compensate their weaknesses (Akata et al.,
2020). This is done with the goal of achieving
sophisticated goals that neither humans nor AI could
reach alone (Dellermann et al., 2019). Essential to
hybrid intelligence in this context is a collaboration
between humans and AI that is expressed through
interaction. This interaction is steered by a collaboration
mechanism and forms the basis for a mutual learning
process in which both learn to improve their task
performance (Dellermann et al., 2019; Hemmer et al.,
2021). The foundations for any collaborations in
hybrid intelligence systems are interfaces through which
human-AI interactions can be enacted. The design of
interfaces for human-AI interaction has been addressed
by many works, which has led to a widespread body of
design recommendations (Amershi et al., 2019). These
recommendations have been recently consolidated into
the Guidelines for Human-AI Interaction to ease the
application of the field’s knowledge when designing
how human-AI interactions are initiated, executed and
evolved (Amershi et al., 2019).

Mental workload, a fundamental construct in human
factors and cognitive psychology, plays a critical
role in understanding human performance, safety, and
well-being. Mental workload, in its essence, refers to the
cognitive demands imposed on an individual’s mental
resources while performing a task. It encompasses
the allocation and utilization of cognitive processes
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such as attention, memory, decision-making, and
information processing capacity. The concept of
mental workload is rooted in the understanding that
human cognitive resources are finite and limited in
their capacity. When individuals engage in tasks
that require substantial cognitive effort, their mental
workload increases as they allocate and distribute their
cognitive resources to meet the demands of the task
at hand. This allocation of cognitive resources is
influenced by various factors, including task complexity,
time pressure, task novelty, and individual differences.
In complex, safety-critical environments, (e.g., in
emergency call handling in dispatch centers), both
underload and overload are very real concerns (Young
et al., 2015). Understanding mental workload is
essential for optimizing task performance, designing
efficient systems, and promoting human well-being in
complex and demanding environments.

3. Hybrid Intelligence in Medical
Emergency Call Handling

This section outlines how we envision the paradigm
of hybrid intelligence to improve current DSSs in
medical emergency call handling.

According to Møller et al. (Møller et al.,
2021), call-takers handle medical emergency calls by
executing an iterative procedure (Figure 1) that is
driven by contextual influences on themselves and
on their callers. Such influences arise, for example,
from a caller’s ability to describe the situation to
the call-taker. This determines the extent to which
a call-taker is able to obtain information about the
emergency. When executing the iterative procedure,
call-takers interpret this information by applying their
knowledge to construct a so-called mental picture of the
emergency. This mental picture provides the fundament
for call-takers when deciding on how to react to a given
situation. Such decisions can lead to tasks that need
to be managed by the call-taker. Typical examples of
such tasks involve the provision of suitable emergency
resources or instructions to the caller when providing
first aid.

DSSs support call-takers in executing the
iterative procedure by guiding through a predefined
questionnaire and possibly suggesting emergency
responses. In this context, there are DSSs that substitute
the need for mental pictures by forcing call-takers to
follow their instructions precisely. A drawback of this
approach is that it inhibits the ability of call-takers to
adapt to unforeseen situations (Baumann, 2017). Less
strict systems, on the other hand, allow call-takers to
utilize their mental pictures for adaption but typically

Figure 1. Iterative Procedure in Emergency Call

Handling (based on Møller et al., 2021)

only provide rough suggestions. As call-takers have to
analyze these suggestions manually to decide whether
they are relevant to a given situation, the extensiveness
of support is limited by available mental capacities.
Our recent work on hybrid intelligent emergency call
handling (Maletzki et al., 2023; Maletzki et al., 2022)
addresses this issue by aiming at an augmentation
of call-taker’s mental capacities with the analytical
power of AI. The aim of this approach is to achieve
a wider variety of possible and greater precision of
issued suggestions by utilizing AI to analyze obtained
information and derive the relevance of suggestions.
AI, in this context, takes over the role of a co-pilot,
who judges the situation from its perspective and points
in directions that could be important to consider. An
AI’s judgement of the situation is thereby referred to as
the artificial mental picture of the system. It forms the
basis for a human-AI interaction that aims to influence
a call-taker’s mental picture and, consequently, the
decisions to be made. Figure 2 summarizes how the
concept of hybrid intelligent emergency call handling
ties in with the iterative procedure.

4. Required Artifacts for Human-AI
Interaction in Emergency Call
Handling

This section outlines the required artifacts for
a human-AI interaction in medical emergency call
handling that aims to provide call-takers with suitable
suggestions about upcoming steps of the iterative
procedure. We will specify the artifacts by discussing
the most relevant requirements to this work defined
by the Guidelines for Human-AI Interaction (Amershi
et al., 2019). Our arguments originate from workshops
we conducted with experts for emergency call handling
from the German state of Rhineland-Palatinate.

Clarify the System’s Functionalities in Advance:
Call-takers should be able to familiarize
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Figure 2. Hybrid Intelligent Emergency Call

Handling (based on Møller et al., 2021)

with the kind of contributions of the system
and their meanings before any human-AI
interaction takes place. We expect that this
helps them to understand the role of AI in
their decision-makings and fosters efficiency in
human-AI interaction. For this reason, call-takers
should be provided with a concise guide that
specifies the functionalities of the system. This
guide should, for example, define that the system
will provide suggestions about possible diagnoses
and required measures. Thereby, the guide should
also define how the suggestions will be displayed
and how they are to be interpreted when making
decisions.

Clarify the System’s Performance in Advance: To
build trust in the AI’s influence on mental pictures
of call-takers, the system should provide a
dashboard to compare important key figures about
call handling performances with and without AI
support. Initially, this requires the definition of
key figures and subsequently a visual concept for
the dashboard.

Interact at the Right Time: Emergency call handling
focuses on prioritizing most critical aspects for
patient outcome. This can act as a guideline when
identifying the right time to provide a suggestion.
As a foundation to this, the system requires a
mechanism to prioritize suggestions based on
their criticality and a concept to visualize them
accordingly.

Provide Contextually Relevant Information: In
addition to suggestions about suspected diagnoses
and required measures, the system should be able
to provide contextually relevant information that
may affect decision-making. Such contextual
information could be, for example, a weather
warning at the emergency site that may influence
the feasibility of a suggested measure. This
results in the need for artifacts to identify and
visualize contextually relevant information that
possibly influence decision-making based on
provided suggestions.

Enable Efficient Dismissal and Correction: In
its role as a co-pilot, AI will regularly refer
to the call-taker with suggestions to accept,
reject or correct. To allow for efficiency during
this interaction, an appropriate visual concept is
required. Further artifacts to enable efficient
corrections can be identified when considering
that emergency-relevant information can change
during the call. As a result, it could be possible
that a decision was made based on out-of-date
information. In such cases, an efficient correction
requires a visual concept to provide the call-taker
with a procedure that needs to be executed
in reaction to these changes. Further, also a
mechanism to identify this procedure is required.

Provide Alternatives when in Doubt: If it is not
clear, for example, which is the ideal rescue
resource or the most suitable suspected diagnosis
for a call, the system should offer alternatives. At
the same time, the system should also provide
contextually relevant information that facilitates
the selection of a suggestion. Thus, there is a
need for a mechanism to recognize alternatives
and a visualization concept that allows these
alternatives to be weighed up efficiently by
regarding contextually relevant information.

Provide Explanations of AI: In case call-takers
require a thorough understanding of why AI
behaved in a certain way, they should be
provided with suitable explanations. Due to
the time-pressure of medical emergency calls,
these explanations should initially focus on the
necessities and allow for extension. Therefore, a
visualization concept for explanations is needed
that allows for extension according to the needs
of a call-taker.

Learn from User-Behavior and Provide Feedback
Mechanisms: In hybrid intelligent emergency
call handling, learning could be applied to
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optimize how suggestions are handled during
human-AI interaction. This could lead to an
adaption of the priority of a suggestion, or even
to an automation of a reaction to a suggestion.
As a fundament to this, the system requires
a concept to collect appropriate data and a
mechanism for its evaluation. To collect data,
the system could, for example, ask call-takers for
their explicit feedback or log how interactions
are being executed. The system further also
requires a mechanism to ensure that automations
and alterations of priorities are only performed
if they are safe for a patient. Another safeguard
that should be in place is a concept for visualizing
automations that allows for efficient correction by
the call-taker.

Clarify the Impact of User Actions on Future
Interactions: The described concept to
collect data for optimizing upcoming human-AI
interactions could, for example, ask call-takers
for their explicit feedback or log their interactions
with the system. Regardless of how this
feedback is acquired, the system should make
it transparent how feedback will affect future
interactions. Therefore, the system should
provide conspicuously placed descriptions about
how feedback influences the behavior of the
system. If necessary, this explanation should also
provide a general description of the mechanism to
evaluate the feedback.

Keep Adaptions Manageable to the User: Hybrid
intelligent emergency call handling, as introduced
in Section 3, aims at adaptive suggestions on
how to enact the iterative procedure of medical
emergency call handling based on available
information. Whenever information gets available
that leads to an adaption of the system’s
suggestions, it must be ensured that call-takers
can maintain an overview. This results in the
need for a visualization concept that allows
call-takers to keep up with changes in the system’s
suggestions.

By applying the Guidelines for Human-AI
Interaction, we have identified various artifacts to
initialize, execute, and evolve human-AI interactions
in hybrid intelligent medical emergency call handling.
Among these artifacts are mechanisms and visual
concepts to facilitate familiarization with the system,
provide contextual information and explanations, and
handle reactions. To evaluate these artifacts, the mental
workload they produce for call-takers is especially

important for artifacts related to the execution and
evolution of human-AI interactions. As a foundation
for defining a procedure to perform an evaluation
of these artifacts, we will subsequently describe the
characteristics of mental workload of call-takers and lay
out how it can be measured during medical emergency
call handling.

5. Measuring Mental Workload in
Emergency Call Handling

The work of dispatchers in emergency medical
dispatch centers is characterized by complexity. This
is primarily due to the large number of variables that
influence the correct tactical decision. However, some
of the variables needed to make a safe decision, such as
the number of casualties and injury patterns, are largely
unknown at the time of the call. Other components
of the work environment arise from technology, such
as the interaction of data transmission via telephony
or telemetry with the DSS and its subsystems. The
operation of the DSS must take place parallel to the
emergency call in order to be able to trigger an alert
of the required emergency resource (e.g., ambulance)
already during the emergency call dialog. If this
interface is considered in a human-centered way, it
can be assumed (Venkatesh and Davis, 2000), that a
multitude of different variables influence the adaptation
and readiness to use the technology, which must also be
transferred to the DSS and its subsystems (Elsenbast and
Hagemann, 2023). Furthermore, this human-computer
interaction cannot be achieved without the use of mental
resources for the operation of the DSS. Therefore,
according to cognitive load theory (Paas and Sweller,
2010), there is a mental workload due to cognitively
managing the mission and due to operating the DSS.
Consequently, it is also necessary to analyze mental
underload situations (Hancock, 1989), if applicable.

Regarding mental workload, there are many different
explanatory models, but they all have in common the
finite nature of human cognition (Kramer and Spinks,
1991). It is worth mentioning that it is obvious that both
mental overload (hyperstress) and mental underload
(hypostress) lead to performance losses, as Hankock and
Warm state in the Dynamic Adaptive Theory (Hancock,
1989). Figure 3 depicts how mental activations imposed
by a task at hand relate to mental workload and
influence task performance. Notice that the areas of
mental underload and overload are marked red. As a
consequence, both hyperstress and hypostress should be
considered with respect to emergency medical dispatch
centers and high responsibility. The latter could occur,
for example, when call volume is low or when simple,
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Figure 3. Relationship between Performance,

Activation Level and Mental Workload (based on

Young et al., 2015)

repetitive activities accumulate.
Consequently, the question arises as to what level

of mental workload dispatchers should have in order to
make safe and correct decisions on the one hand and to
achieve health resilience on the other.

Unlike, for example, arterial blood pressure, which
can be measured directly with an invasive probe
in an artery, mental workload as a latent construct
cannot be measured directly. Therefore, reflective
parameters, such as physiological correlates, are used
for measurement. These include heart rate variability
(HRV; especially Root Mean Square of Successive
Differences, RMSSD, and Standard Deviation of the
NN Intervall, SDNN), electrodermal activity (EDA),
and, to a limited extent, pupillometry (pupil diameter),
which can be subject to validity loss due to external
influences (e.g., changing brightness of the environment
and screen). In particular, the first two methods are
well established for assessing stress in an occupational
context. EDA is measured by surface electrodes
and sensor [Movisens, EDAMove 4, figure 4] on the
right foot, HRV by chest strap with sensor [Movisens,
ECGMove 4] and pupillometry by eye tracking [Pupil
Labs Core, figure 5].

Pupillometry is only an ancillary finding of the
eye movement analysis and is therefore evaluated
additionally. At the end of each test, participants
are asked to complete a questionnaire that contains
the Raw-TLX, a validated psychometric instrument
for estimating workload, including mental workload.
Note that TLX stands for Task Load Index. The
Raw-TLX is the one-step abbreviated form of the
two-step NASA-TLX. While the NASA-TLX addresses
the different facets of workload in the first step and
applies a weighting in the second step (Hart, 2006), the
Raw-TLX omits the weighting and thus simplifies the
survey. The Raw TLX is highly correlated with the
NASA TLX and can be considered equivalent (Byers

Figure 4. EDA Measurement with Movisens

EDAMove 4

et al., 1989).
In order to generate a comparison between the

status quo in the dispatch center, tests were first
conducted with the conventional DSS. In a second
phase, the conventional DSS will be compared with
the innovative DSS in a within-subjects design. A
within-subjects design has a higher sensitivity because
there is no confounding due to individual differences.
Since the same participants are studied in all conditions,

Figure 5. Pupillometry Measurement with Pupil

Labs Core

all person-related confounding variables are perfectly
paralleled. This allows each participant to determine
how the independent variable affects his or her
behavior. Demand characteristics and position effects
must be taken into account. Demand characteristics
are the subjectively perceived demand contents of the
respective experimental situation and are connected with
the hypothesis of what the subject thinks he has to do.
On the one hand, it should be pointed out that demand
characteristics, as a complex interaction, require an
independent and profound consideration. On the other
hand, the physiological parameters used here are not
expected to be biased to any relevant degree. Position
effects are countered by alternating the position of the
independent variables in the within-subjects design (1st:
A-B, 2nd B-A, 2nd A-B, etc.). An overview of the
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methods used is provided in Table 1.

Measurement Parameter
Electrodermal Activity Skin Conductance Level
Heartrate Variability RMSSD, SDNN

Eyetracking Pupil Diameter
Questionnaire Raw-TLX

Table 1. Measurements and Parameter of Mental

Workload Assesment

The time required is 60–65 minutes per person,
starting with an informational interview where the
preliminary information is expanded to include, for
example, privacy aspects. After verbal and written
consent, the sensors are applied and calibrated. The
actual measurement process begins with a relaxation
sequence to establish a baseline. During this phase,
a relaxation video and relaxing music are played.
Different videos and music can be selected by
the participants to suit their individual preferences.
This is followed by the measurement phase at the
control center workstation. The study ends with
the questionnaire described above and a debriefing
interview. The different phases are shown in Figure 6.
This measurement protocol is based on the presented
aspects of the dispatch center work, but also on the
psychophysiological principles already mentioned. In

Figure 6. Measurement Phases

addition, this excerpt represents a best practice which,
at the time of its submission, is significantly based
on several pre-tests in three different dispatch centers
as well as two series of measurements carried out in
two dispatch centers. Additional measurement series
in other dispatch centers will follow. The raw data and
derived findings will be published after analysis.

6. Procedure to Develop Required
Artifacts

A quantification of mental workload is an important
key figure to evaluate many of the outlined artifacts
for human-AI interaction in medical emergency call
handling. However, a thorough evaluation in the
context of the overall approach of hybrid intelligent
medical emergency call handling requires further key
figures, like a quantification of the call handling
performance. Examples for such key figures are
call-duration, the number of dispatched emergency
resources and the appropriate reliance (Schemmer et al.,
2022) of call-takers on AI. An evaluation that quantifies
all such aspects is an elaborate procedure that requires
extensive resources during its execution. Since we
expect the design of identified artifacts to require
several attempts to yield the best possible results,
evaluating each design thoroughly each time would
produce immense evaluation efforts. Therefore, this
section proposes to include a lightweight preliminary
evaluation into the development procedure that can be
executed with manageable effort. Figure 7 depicts
the proposed procedure to develop the identified
artifacts. The proposed procedure consists of two

Figure 7. Iterative Development Procedure

design-evaluation cycles – the preliminary cycle and
the main cycle. Compared to the main cycle, the
preliminary cycle is characterized by the omission
of an implementation activity and the inclusion of a
lean preliminary evaluation. This preliminary cycle
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aims to iteratively assess and refine the output of the
design step, which is expected to produce interface
mockups and pseudocode. As a means to identify
required refinements, expert workshops are conducted
during the preliminary evaluation. In these workshops,
domain experts are requested to roughly estimate how
designed artifacts might influence the key figures for
evaluation compared to the support of current DSSs.
To make it as easy as possible for experts to provide
assessments of these influences, the workshops will
build on use cases designed to simulate the behavior
of designed artifacts. Designs that experts expect to be
beneficial towards their key figures will be considered
in the main design-evaluation cycle, where they will be
implemented to extend a DSS for medical emergency
calls. In the following main evaluation, the resulting
prototypical system will be applied to simulated
emergency calls while relevant key figures will be
collected. Following the evaluation of collected key
figures, the whole procedure can be executed again in
case critical weaknesses have been identified. Since we
expect that multiple main design-evaluation cycles will
be required and measuring mental workload precisely
implies enormous efforts, earlier iterations will focus
solely on providing participants with a questionnaire.
Later iterations of the design-evaluation cycle, however,
will include the full described measuring procedure.
Thereby, a between-subject approach is used, in which
each call-taker works on each case only once – either
with or without AI support.

A major advantage of the proposed development
procedure is that it enables lightweight
design-evaluation cycles through the preliminary
evaluation. However, we expect that gains in terms of
quickness come at the cost of precision compared to a
full evaluation in the main cycle. Due to an incorrect
assessment during a preliminary evaluation workshop,
it could happen that a design will be discarded that
would have led to solid results in the main evaluation.
Therefore, when applying the procedure, vigilance
should be exercised towards the risk of discarding a
design mistakenly and should only be done with a
reasonable explanation.

7. Conclusion and Outlook

In this paper, we outlined the required artifacts for
human-AI interaction in hybrid intelligent emergency
call handling and defined a procedure for their design
and evaluation. By applying the Guidelines for
Human-AI Interaction (Amershi et al., 2019), we
were able to identify artifacts to initiate, execute,
and evolve human-AI interactions. To design and

evaluate identified artifacts, we proposed an iterative
development procedure that integrates a lightweight
preliminary evaluation step. This preliminary evaluation
aims to gather expert assessments about the influence of
designed artifacts on relevant key figures. In comparison
to the full evaluation that is executed subsequently
for promising artifacts and aims at measuring these
influences, we expect the preliminary evaluation to
enable quicker design-evaluation cycles in earlier
iterations of the procedure. Despite the benefits of
this approach, it comes with the risk of wrong expert
assessments that can lead to the dismissal of designs that
would achieve good results in the full evaluation. This
risk must be kept in mind when executing the procedure.

Future work will be concerned about designing the
identified artifacts while potentially applying the design
science research (DSR) methodology. Then, we will
first derive a set of design requirements, followed by
design principles and leading to design features and a
matching prototype as a conceptual model.

This work has a strong focus on medical emergency
calls – future work will also consider the transferability
to other related domains, such as firefighting-related
emergency calls.

Furthermore, in relation to the aim of DSR to
generate new design knowledge, we aim to further
extend our research to the more general issue of decision
support and human-computer interaction, inside and
outside of emergency coordination centers.
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