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A test battery with two different levels of adaptation is presented: a within-

subtest level for the selection of the items in the subtests and a between-subtest

level to move from one subtest to the next. The battery runs on a two-level model

consisting of a regular response model for each of the subtests extended with a

second level for the joint distribution of their abilities. The presentation of the

model is followed by an optimized MCMC algorithm to update the posterior

distribution of each of its ability parameters, select the items to Bayesian

optimality, and adaptively move from one subtest to the next. Thanks to

extremely rapid convergence of the Markov chain and simple posterior calcu-

lations, the algorithm can be used in real-world applications without any

noticeable latency. Finally, an empirical study with a battery of short diagnostic

subtests is shown to yield score accuracies close to traditional one-level

adaptive testing with subtests of double lengths.

Keywords: ability estimation; adaptive testing; Bayesian optimality; Gibbs sampler; item

response models; MCMC algorithm

Introduction

Most educational and psychological testing programs are organized as a coherent

battery of subtests. For example, for programs of diagnostic testing for instructional

purposes, admission or vocational guidance decisions, and large-scale assessments

of educational progress, reporting profiles of scores to stakeholders is much more

informative than single scores summarizing an instructional need, a recommended

decision, or progress made in a school district or country. A recent example from

neurocognitive assessment is reported in Moore et al. (2023).

There also exist valuable psychometric benefits related to the use of test

batteries. Obviously, a unidimensional response model is much more likely to

fit each of a set of homogeneous subdomains of test items than the more
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heterogeneous pool resulting from their aggregation. In addition, as scores

inferred from subtests of a battery typically correlate highly, when dealing with

one of the subtests, we have the opportunity to import data collected for the other

subtests as powerful collateral information. The test batteries in this article are

assumed to be such batteries of homogenous, unidimensional tests. As our focus

is on adaptive testing, the assumption implies an item pool with the items for

each subtest selected from a unique subset in the pool.

Test batteries are typically administered in fixed times slots, the presence of

which imposes a difficult dilemma with respect to the number of subtests and their

length. Generally, the greater the number, the richer the score profile. At the same

time though, a greater number of subtests means fewer items per subtest and/or

greater degree of speededness for some of them, the former implying lower accu-

racy of the score profile, the latter introducing bias with respect to its intended

underlying abilities. No wonder the earliest applications of adaptive testing were

attempts to use its efficiency to improve the design of test batteries. Since Lord’s

(1980, sect. 10.7) discovery of an adaptive version of the PSAT being at least twice

as informative at almost all ability levels as a conventional version of the same

length, his result has served as a rule of thumb for the efficiency of adaptive testing

in the testing industry. By the same rule, adaptive testing could be used to increase

the number of subtests in a battery by a factor of two without sacrificing any

accuracy of the test scores, reduce the administration time by the same factor, or

for a combination of both. Early pioneers exploring these new opportunities

include Brown and Weiss (1977) and Giallucca and Weiss (1979).

The previous rule refers to the typical adaptive test starting with the selection

of an item somewhere in the middle of the ability scale. However, the dilemma

between the number of subtests and their score accuracy can be further relaxed if,

instead, we initialize each next subtest using collateral information from other

subtests in the battery. As already noted, as test batteries tend to have high

intercorrelation between their subtests, we could do so with high precision. In

fact, we could go even one step further and select the subtests for each test taker

adaptively: That is, rather than administering all subtests in a fixed, arbitrary

order, each with a fixed choice of the initial ability estimate, choose the next

subtest with the currently best initialization of the test taker’s ability among all

remaining subtests. The process then implies two distinct levels of adaptation: a

within-subtest level for the selection of the items from each subpool and a

between-subtest level when moving from one subpool to the next.

The additional level of adaptation can be used to develop large batteries of short

diagnostic subtests (each of 5–7 items, say), for instance, to monitor learning prog-

ress in education. As their improved initialization immediately brings the selected

items close to the true abilities of the test takers, only a few more items are required

to finish each subtest. The current research was motivated by the desire to replace

current diagnostic testing with its typical subscoring of long heterogenous fixed tests

with such batteries of a large number of short adaptive tests.
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The idea of a two-level adaptive test battery was already proposed in van der

Linden (2010). The proposal consisted of a battery run on a regular response

model for each of the subtests extended with a second level for the joint distri-

bution of their abilities. However, its statistical treatment was rather ad hoc. All

item parameters and second-level ability parameters were assumed to be equal to

point estimates obtained during earlier item pool calibration. But as known for

traditional one-level adaptive testing, the treatment of point estimates as known

parameters results in overoptimistic estimates of the test taker’s ability parameter

together with less than optimal item selection due to capitalization on item

parameter error (e.g., Cheng et al, 2015; Patton et al, 2013; van der Linden &

Glas, 2000). In the context of two-level adaptive testing, not only the within-

subtest level of item selection is impacted by item parameter error, but the same

can be expected to happen during the transition from one subtest to the next. The

overestimation of the information about the first-level ability parameters from

the preceding subtests and the second-level parameters for the ability structure is

then likely to result in less than optimal selection of the next subtest as well.

Another necessary improvement is with respect to the final subtest scores

reported in van der Linden (2000). As each next subtest profited from a greater

number of responses already collected from the test taker and thus began with

more information about the next ability parameter, the gains of score accuracy

for a subtest were higher, the later it was administered to the test taker.

Finally, the earlier proposal was based on an ad hoc procedure to compute all

necessary integrals using a single random sample of ability values drawn from

the multivariate ability distribution with its means and (co)variances set equal to

points estimates collected prior to the test. As the integrals were with respect to

the conditional distributions of the current ability parameter given all possible

combinations of the ability parameters for the preceding subtests, the necessary

sample size to produce the accurate estimates of these continuous distributions

quickly becomes prohibitive for test batteries with larger numbers of subtests.

The current proposal is based on a fully Bayesian approach. All first- and

second-level parameters are assumed to be known only through their posterior

distributions. The subpools and items are selected based on posterior distribu-

tions of the ability parameters permanently updated during testing, avoiding the

danger of capitalization on parameter error inherent in adaptive testing based on

point estimates. Also, computationally, rather than a large single sample from the

second-level ability distribution, the updates are obtained locally from a rapidly

converging Gibbs sampler. In addition, the new approach is extended with an

adjustment that removes the unbalance between the scores on the earlier and later

subtests in the battery scores, making each final score for an earlier subtest as

informative as the score for the final subtest. Finally, as discussed at the end of

this article, the combination of a two-level adaptive testing model with the fully

Bayesian approach allows for several extensions and generalizations of adaptive

testing, including such practical options as continued updating of the model
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parameters during operational testing or even continuous field testing and cali-

bration of new items.

In the next sections, we first review the two-level response model for the

adaptive test battery and then introduce our Bayesian approach to ability para-

meter updating, item selection, and the transition from one subpool to the next.

Using the output from the proposed Gibbs sampler, the computational expres-

sions for the optimization of each of these steps are presented. The practical

feasibility of the approach is demonstrated for an extensive study with simulated

test takers for a pool of items for a real-world adaptive test battery.

Two-Level Model

Each of the subpools of items h ¼ 1, . . . , H is assumed to measure a distinct

ability. In addition, we use ih¼ 1h; :::; Ih to denote the ith item in subpool h. The

size of subpool h is thus equal to Ih. The necessary model equations are at two

levels: a lower level for the adaptive selection of the items within the subtests and

a higher level for the adaptive sequencing of the subtests.

The lower level equations define the well-known three-parameter logistic

(3PL) response functions:

PrfUih ¼ 1g � cih þ ð1� cih
Þ exp½aihðyh � bihÞ�

1þ exp½aihðyh � bihÞ�
; h ¼ 1; :::;H ; ð1Þ

where bih 2 R and aih 2 Rþ can be interpreted as parameters for the difficulty

and discriminating power of item i from subpool h, respectively, and cih 2 ð0; 1�
as the probability of a correct response to the item resulting from random gues-

sing. For convenience, we will use vector notation ξih
�(aih , bih , cih ) to denote the

parameters of item ih. The choice of the 3PL model is because of its popularity

only. Any other response model with separate item and test taker parameter

suitable for adaptive testing could has been chosen instead.

At the higher level, the ability structure in the population of the test takers is

supposed to follow a multivariate normal density

f ðy1 ; :::; yH Þ � MVNð�;ΣÞ; ð2Þ

with mean vector � and H � H covariance matrix Σ. The multivariate structure

will be needed for its marginal distributions to select the first subtest as well as

each of its possible conditional distributions to continue with the selection of the

subsequent subtests. As for these conditional distributions, let c denote the vector

of indices of the abilities already tested and yh the ability of current interest.

From the general theory of multivariate normal distributions (e.g., Eaton, 1983,

pp. 116–117), we know that f ðyhjθcÞ is normal with conditional mean and

variance

�hjc ¼ mh þ ΣhcΣ�1
cc ðθc � �cÞ; ð3Þ
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and

s2
hjc ¼ s2

h � ΣhcΣ�1
cc Σ

0

hc; ð4Þ

where �c and Σcc are the mean vector and covariance matrix of conditioning

abilities yc, Σhc is the vector with the covariances between yh and yc, and mh and

s2
h are the marginal mean and variance of yh.

The items in each subpool are assumed to have been calibrated prior to

operational adaptive testing. The details of the Bayesian procedure used by the

authors in their empirical example are provided in the following section. For

applications unlikely to have the multivariate normal structure in Equation 2, it is

possible to introduce transformations of the abilities deviating from normality

with back transformation of the final scores. Another straightforward option,

seamlessly fitting the approach below but less attractive from a statistical point

of view, is discussed at the end of this article.

Our goal for the test battery is optimal estimation of the score profiles

(y1; :::; yH ) for the each of the test takers. If the interest would be in a summary

of these profiles only, a linear combination of the scores with policy weights

specified by the owner/stakeholders of the program could be used. If so, alter-

natively, the third-level model by de la Torre and Song (2009) with a latent

overall ability parameter for each test taker and each of the abilities yh regressed

on the overall parameter is available. However, our current goal requires the

assumption of the two levels in Equations 1 and 2 only.

Bayesian Approach

The approach is fully Bayesian accounting for the uncertainty about all para-

meters in Equations 1 and 2. At each step in the approach, all prior distributions

are empirical distributions.

The initial prior distributions for the ability parameters used for the selection

of the first subpool are the marginal distributions of Equation 2 saved from item

calibration. The distributions are updated in a sequential fashion during testing

using a generalization of the Gibbs sampler introduced in van der Linden (2018)

and further optimized by van der Linden and Ren (2020), Ren et al. (2020), and

Niu and Choi (2022). The prior distributions for the ability parameters used for

the selection of the later subpools are the posterior predictive distributions imme-

diately available upon termination of the preceding subtest, whereas the prior

distributions for the item and second-level model parameters are the posterior

distributions obtained from their calibration prior to operational testing. As

demonstrated by our examples in the following, though quite efficient, this

Bayesian approach is computationally not more intensive than traditional one-

level adaptive testing with point estimation of all parameters.

van der Linden et al.
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The proposed Gibbs sampler is introduced first allowing its output to be used

in the presentation of the necessary computational expressions for subpool and

item selection.

Gibbs Sampler

The algorithm for the updates of the ability parameters is based on the fol-

lowing ideas:

1. Rather than the usual point estimates of the item parameters, ability parameters,

and means and covariances in Equations 1 and 2, short vectors of random draws

from their last posterior distributions are stored in the testing system.

2. At each of the posterior updates of an ability parameter, a Gibbs sampler is used

which cycles between

a. resampling the vector of draws saved for the item, mean, and covariance

parameters; and

b. a Metropolis–Hastings (MH) step to sample the test taker’s ability parameter.

3. The MH steps for the ability parameter capitalize on the sequential nature of

adaptive testing in the following way:

a. the proposal distribution is a normal centered at the value drawn at the pre-

ceding iteration step, and as variance, a rescaled version of the posterior

variance saved from the previous update of the ability parameter and

b. the prior distribution is a normal with both the mean and variance saved from

the previous update.

4. Upon termination of the MH steps, the existing vector of draws for the ability

parameter in the system is overwritten by an appropriate selection from the current

draws.

For the rescaling in Step 3a, Niu and Choi (2022) recommended a factor of 2.4

times the posterior standard deviation found to be most effective by them. As the

posterior distributions of the item and second-level ability parameters do not

depend on the data used to update the test taker’s ability parameter, their resam-

pling replaces the sampling of the complete conditional distributions generally

required for a Gibbs sampler. In fact, because of posterior independence, the

sampler reduces to something known as an independence sampler (Gilks,

Richardson & Spiegelhalter, 1996). Also, as the posterior distributions for these

parameters are narrow and already converged, the Markov chain needs to con-

verge for one ability parameter only, which occurs almost immediately.

The last posterior mean and variance of the ability parameter are always our

best summary of the information about the parameter collected so far. Their use

as prior distribution at each next update thus remains empirical. Besides, the

proposal distribution used in the MH steps adapts itself in the sense of having a

mean automatically converging to the true parameter value during testing and

variance converging to zero. As the proposal distribution is symmetric, the

acceptance probability for the candidate value drawn from it reduces to the

A Two-Level Adaptive Test Battery
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simple calculation of the product of the prior and model probability of the test

taker’s response given the current proposal for the value of the ability parameter.

No other computational steps are required.

More formally, the MH step for the update of the posterior distribution of yh

after the test taker’s response to the ðk � 1Þth item in subtest h is as follows: Let

f ðyhjuk�1Þ denotes the posterior density of yh given response vector

uk�1� ðu1; :::; uk�1Þ and f(ξik�1
) the posterior density of the parameters of item

ik�1, where the dependency of f ðξik�1
Þ on the data used for item calibration is

omitted for convenience. The prior distribution at this step is N(yh; mk�2;s
2
k�2),

with mk�2 and s2
k�2 the posterior mean and variance of yh from the previous

update directly calculated from its Markov chain.

Using t ¼ 1; 2; ::: to denote the iterations of the sampler and yðt�1Þ
h for the

draw at iteration t � 1, the necessary steps at iteration t are

1. Drawing a value from the posterior samples of item parameters aik�1
, bik�1

, and

cik�1
stored in the system.

2. Drawing a candidate value y�h from the proposal density N(yðt�1Þ
h , s2

k�2).

3. Calculating the probability of acceptance

r ¼
Nðy�h; mk�2;s

2
k�2ÞPrfUik�1

¼ uik�1
jy�h; ξðtÞik�1

g
Nðyðt�1Þ

h ; mk�2;s
2
k�2ÞPrfUik�1

¼ uik�1
jyðt�1Þ

h ; ξðt�1Þ
ik�1
g
: ð5Þ

4. Accepting yðtÞh ¼ y�h with probability minfr,1g but keeping yðtÞh ¼ yðt�1Þ
h otherwise.

5. Returning to Step 1.

As already hinted, the calculation of Equation 5 requires only the calculation

of the product of the current prior density and the probability of the last observed

response at candidate value y�h in the numerator; the denominator was already

calculated during the previous iteration. For applications in single-level adaptive

testing, the Markov Monte Carlo chain (MCMC) chain produced by the algo-

rithm has been shown to converge in less than a few hundred iterations. In

addition, for autocorrelation negligible at lags larger than a small critical value

l*, the chain needs to be continued for no more than 100l* iterations to save S ¼
100 independent draws for use in operational testing. At this point, the Monte

Carlo error in the estimate of the posterior standard deviation of the ability

parameter is not greater than 0.5% (Gelman et al., 2014, sect. 11.4-5). Continuing

the chain to meet this criterion requires only a few extra milliseconds on a

standard PC. For these and other details, the reader is referred to van der Linden

and Ren (2020).

Fisher’s Information

A crucial quantity in adaptive testing is Fisher’s information in response Ui to

item i about ability parameter yh, which is defined as

van der Linden et al.
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Iiðyh; ξiÞ � �E
q2

qy2
h

lnlðyh; Ui; ξiÞ
" #

; ð6Þ

¼ ½pi
0ðyh; ξiÞ�

2

piðyh; ξiÞ½1� piðyh; ξiÞ�
; ð7Þ

where l(yh; Ui; ξi) is the likelihood statistic associated with response Ui and

pi
0ðyh; ξiÞ the first-order derivative of the probability function in Equation 1 with

respect to yh while the expectation is taken across the distribution of the

response. For the 3PL model, the expression is known to simplify to

Iiðyh; ξiÞ ¼ a2
i

1� piðyh; ξiÞ
piðyh; ξiÞ

piðyh; ξiÞ � ci

1� ci

� �2

: ð8Þ

The criterion for item selection is maximum posterior expected information,

which, for a given response vector u, is defined asZ Z
Iiðyu; ξiÞf ðyhjuÞf ðξiÞdyhd ξi; ð9Þ

where f ðyhjuÞ and f ( ξi) are the posterior densities of yh and the parameters of

item i, respectively.

We use superscripts s ¼ 1; :::; S to denote draws from the posterior samples

currently stored in the system. The criterion for the selection of item i in subtest h

is simply calculated as

S�1
XS

s¼1

IiðyðsÞh ; ξðsÞi Þ: ð10Þ

The use of equal numbers of draws is for notational convenience only. In case

of unequal sample sizes, the average is efficiently calculated recycling smaller

samples against the larger.

Selection of First Subpool

It may seem advantageous to administer the first test from the subpool with

the item that has the greatest value of Equation 10 across all subpools, where the

draws for yh are from the marginal distribution of Equation 2 stored in the

system. However, this criterion has a serious disadvantage: A subpool may have

only a limited number of excellent items, whereas the rest of them is inferior to

larger numbers of items in some of the other subpools. The use of the criterion is

then bound to lead to suboptimal selection of later items.

A solution that avoids this pitfall of capitalization on a few good items is to

select the best full-size subtest from each subpool and pick the subpool with the

best result among all of them. Let nh denotes the size of subtest h and Vnh
a set of

A Two-Level Adaptive Test Battery
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items of this size from subpool h. The appropriate criterion is the subpool with

the greatest value of

ðnhSÞ�1
X

ih2Vnh

XS

s¼1

IiðyðsÞh ; ξðsÞi Þ

8<
:

9=
;; ð11Þ

among all possible sets Vnh
, where yðsÞh are random draws from the marginal

distribution of yh in Equation 2. The draws are obtained in two steps by first

drawing mðsÞh and sðsÞh from the samples from their posterior distribution saved

during item calibration followed by a draw from the normal distribution given the

sampled values; that is, as

yðsÞh *NðmðsÞh ;sðsÞh Þ: ð12Þ

As indicated earlier, this article is based on research operating on the assump-

tion of a larger battery of short subtests each from a homogenous subpool of

items. But if the same methodology is applied to a battery with more hetero-

genous subpools, a second pitfall is possible. It may then be necessary to impose

constraints on the selection of the items to balance the content of the subtest

across all test takers. If so, just beginning a subtest with items that are statistically

best for the test taker is likely to lead to later suboptimal selection because of the

necessity to satisfy each of the constraints at the end of the test.

A solution that efficiently avoids both pitfalls is to use a shadow-test approach

(STA) both for the selection of subpools and items. The first subtest is then the

one with the best solution for the shadow-test model with Equation 11 as objec-

tive and a constraint set that controls both the length of the subtest and the content

distribution of the items. For a brief review of the approach, see the Appendix.

Selection of Items From First Subpool

We relabel the subpools assigning h ¼ 1 to the subpool from which the first

test in the battery is administered. The first item in Subtest 1 is the one with the

greatest value for the criterion in Equation 10, still with the draws from the

marginal distribution of y1 substituted into it.

After each new response uik�1
, the Gibbs sampler with the acceptance prob-

ability in Equation 5 is run to update the posterior distribution of y1. The next

item is selected using Equation 10 again, but this time with the draws yðsÞ1 from

the ðk � 1Þth posterior update of y1 substituted into it. The draws from the update

after the last item are saved for the selection of the second subpool.

Selection of Second Subpool

The second subtest is administered from one of the subpools h ¼ 2; :::;H . The

posterior expected information in a response to item i from subpool h is

van der Linden et al.
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Z Z
Iiðyh; ξiÞf ðyhju1Þf ðξiÞdyhd ξi; ð13Þ

that is, the version of Equation 9 with f ðyhju1Þ replacing the marginal distribu-

tion of yh used as initial prior distribution when the first subpool was selected.

Observe that

f ðyhju1Þ ¼
Z

f ðyhjy1Þf ðy1ju1Þdy1; ð14Þ

which defines f ðyhju1Þ as the predictive posterior density of yh given the

responses from the first subtest.

Analogous to Equation 10, Equation 13 is calculated as

S�1
XS

s¼1

IiðyðsÞh ju
ðsÞ
1 ; ξ

ðsÞ
i Þ; ð15Þ

where yðsÞh ju1 are random draws from the distribution in Equation 14. The draws

are also obtained in two steps, by first drawing a value yðsÞ1 from f ðy1ju1Þ and

then following with a draw from f ðyhjy1Þ given y1 ¼ yðsÞ1 . The former are present

in the system as draws saved from the last update of y1. As for the latter, from

Equations 3 and 4, we know that f ðyhjy1Þ is

Nðmh þ
sh1

shs1

ðy1 � m1Þ; 1� ð
sh1

shs1

Þ2Þ; h ¼ 2; :::;H : ð16Þ

Thus, the draws required for Equation 15 are obtained from

yðsÞh ju1*NðmðsÞh þ
sðsÞh1

sðsÞh sðsÞ1

ðyðsÞ1 � mðsÞ1 Þ; 1� ð
sðsÞh1

sðsÞh sðsÞ1

Þ2Þ; s ¼ 1; :::; S; ð17Þ

with the second-level parameters resampled from their posterior distributions

saved from the calibration of the item pool.

The second item pool is selected according to the criterion in Equation 11 with

the conditional draws yðsÞh ju1 replacing the draws from the marginal distribution

used to select the first subpool. Both the improved location and smaller variance

of the conditional relative to the marginal distribution are indicative of the

increase in efficiency of the test battery due to the responses collected from the

first subtest when selecting the second.

Selection of Items From Second Subpool

We now use h ¼ 2 to denote the subpool used for the second subtest. The

first item from this pool is the one with the greatest value for the criterion in

Equation 10, still with yðsÞh replaced by yðsÞ2 ju1. The next items from the subpool

are selected using the Gibbs sampler to update the test taker’s posterior

A Two-Level Adaptive Test Battery

10



distribution of y2, given the full response vector u1 and partial vector u2.

However, it is no longer necessary to condition explicitly on u1, as was

required when selecting the second subpool. Each posterior distribution

used as prior when selecting the next item already contains the accumulated

information from the responses to all previous items administered to the test

taker.

Selection of Subsequent Subpools and Items

The same procedure is continued to select subsequent subpools and items. The

only necessary change for the selection of the next subpool is the extension of

Equations 13 through 17 with an additional conditioning ability parameter rep-

resenting the last subtest administered. To illustrate one more step, it is easy to

verify from the general result in Equations 3 and 4 that, using correlations rather

than covariances for notational convenience, for the selection of the third sub-

pool, f ðyhjy1; y2Þ has conditional mean and variance

mhj1;2 ¼ mh þ
1

1� r2
12

ðrh1 � rh2r12Þy1 þ ðrh2 � rh1r12Þy2; ð18Þ

and

s2
hj1;2 ¼ s2

h �
1

1� r2
12

ðr2
h1 þ r2

h2 � 2rh1rh2r12Þ; ð19Þ

respectively. Thus, analogous to Equation 17, we combine the draws yðsÞ1 and yðsÞ2

saved upon the completion of the first and second subtests along with rðsÞh1 , rðsÞh2 ,

and rðsÞ12 , s ¼ 1; :::; S; to obtain the draws from the normal distribution of

f ðyhjy1; y2Þ necessary for the application of the next version of the criterion in

Equation 11.

For larger numbers of subpools, the use of analytic expressions for the con-

ditional means and variances derived directly from Equations 3 and 4 becomes

less convenient. A more practical approach is then to use the fact that conditional

variance s2
hjc is the Schur complement of Σcc in the submatrix of Σ with the

covariances between yh and the conditioning abilities y1; :::; yh�1. The required

s2
hjc is the reciprocal of the hth diagonal element of the inverse of the submatrix,

which is easily obtained using one of the standard routines for matrix inversion.

The conditional mean should be calculated directly from Equation 3. The selec-

tion of the items from each of the subsequent subpools still amounts just to

another application of the Gibbs sampler with the common mean and variance

in the denominator of Equation 5 saved from the immediately preceding update

of the ability parameter.

van der Linden et al.
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Final Subtest Scores

The procedure presented so far suggests a serious unbalance in the sense of

earlier subtests necessarily profiting from a smaller number of preceding subtests

and hence producing less accurate final scores than later subtests. The proposed

correction for the unbalance is to recalculate the final scores for the subtests from

the posterior distribution of each ability parameter given the test taker’s complete

set of responses to all subtests; that is,

f ðyhju1 ; ; :::; uH Þ; h ¼ 1; :::;H : ð20Þ

A straightforward way to sample Equation 20 for each yh is to rerun the

complete battery reseeding the responses collected for each of the items admi-

nistered to the test taker into the system. The only requirement is that subtest h

should be in the last position; otherwise, the order of the other subtests is arbi-

trary. The approach is pragmatic in that it does not require any new computer

code, only the code for the current Gibbs sampler to draw from the update of the

posterior ability distribution after each of the reseeded responses.

An alternative approach is to redesign the Gibbs sampler to update the poster-

ior distribution of each yh directly from the complete collection of responses by

the test taker. This approach, recommended for application in large-scale opera-

tional testing, does require new code though along with a separate study to find

the required burn-in, estimate the autocorrelation, and so on for the extended

sampler.

The means and SDs of the draws from this final update of yh can be used to

report the profile with all subtest scores along with their accuracies to the test

taker.

Empirical Example

The goal of the empirical example was to demonstrate the practical feasibility

of the current approach to two-level adaptive testing and give an impression of

the gain in relative efficiency created by the introduction of the second level of

adaptation under operational conditions.

Item Pool Calibration

The real-world test battery used in the example had four different subtests

labeled here as Subtests 1 through 4. The item pool consisted of 150 items

randomly sampled from an inventory of retired operational items for each of the

subtests. The items had been extensively pretested and shown to have satisfac-

tory fit to the 3PL model in Equation 1. Also, the ability parameters for the four

subpools had been estimated to have empirical mean vector

� ¼ ð�0:92;�1:04;�0:62;�0:96Þ; ð21Þ
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and covariance matrix

Σ ¼

1:02 0:63 0:85 0:78

0:63 0:80 0:64 0:71

0:85 0:64 1:21 0:89

0:78 0:71 0:89 1:18

2
6664

3
7775; ð22Þ

for a typical population of test takers. The estimates of all these parameters were

used as their true values for the generation of response data, both for item pool

calibration and during simulated adaptive testing.

The items had been calibrated previously using one of the standard computer

programs from the maximum-likelihood tradition. But as samples from the pos-

terior distributions for all parameters in the two-level model in Equations 1 and 2

were needed to simulate the adaptive testing administrations, it was decided to

re-estimate all parameters in a fully Bayesian version. (An alternative would

have been to take the maximum-likelihood estimates (MLEs) together with their

estimated standard error and sample the parameters assuming asymptotic nor-

mality. But Bayesian estimation was preferred because of the small-sample

validity of its posterior distributions.) All parameters were estimated jointly in

a Bayesian fashion from the response data of N ¼ 1;000 test takers generated for

each item, using a Gibbs sampler implemented for the two level-model in JAGS

(Plummer, 2017). The prior distributions for the items parameters were chosen to

be ai*Nð1; :52ÞIðai > 0Þ, bi*Nð0; 22Þ, and ci*Betað2; 5Þ. The prior distribu-

tion for the second-level parameters was the conjugate normal-inverse-Wishart,

with as hyperparameters the empirical mean vector and covariance matrix in

Equations 21 and 22 and k ¼ 20 degrees of freedom. The other settings for the

sampler were a burn-in of 5,000 iterations and thinning of the remaining portion

of the chain by a factor of 500. The posterior samples saved for each of the

parameters for use in adaptive testing consisted of 500 independent draws. Each

of these choices was made based on the results from an extensive study of the

sampler to optimize its use for more general two-level IRT applications.

Figure 1 shows the scatterplots of the posterior means (expected a posteriori or

EAP estimates) against the true values of the item parameters for the four subpools.

The average root mean squared errors (RMSEs) for the item parameters are shown in

Table 1. For second-level parameters � and Σ, the average RMSE was equal to

0:011 and 0:129, respectively. These results reveal enough remaining parameter

uncertainty to motivate the current Bayesian approach to adaptive testing.

Simulation Conditions

The main conditions in the simulation study were:

1. subtest length of 5 versus 10 items;

2. two-level versus one-level adaptive testing.
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Each of the four combinations of conditions was simulated for a total of 5,000

test takers with ability parameters yh sampled from the multivariate normal

distribution with the mean vector and correlation matrix in Equations 21 and

22. To be able to report accurate results for the tails of the ability distribution in

FIGURE 1. Scatterplots of the posterior means of the ai, bi, and ci parameters against their

simulated true values for each of the four subpools.
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Figures 2 and 3, the distribution was actually oversampled to have at least 500

draws for each of the 10 intervals �2.5(0.5)2.5. The results are reported for 500

cases randomly selected from each of the intervals for each of the simulated

conditions though.

For the condition of two-level adaptive testing, subpool and item selection

were entirely according to the Bayesian approach presented in this article. The

first subpool was selected averaging the marginal distributions of each yh across

10 draws from the posterior samples of � and Σ saved from calibration. For the

one-level condition, the subtests were simulated separately with the Gibbs sam-

pler resampling the posterior distributions of the parameters for the selected item

TABLE 1.

Average Root Mean Squared Errors for the ai, bi, and ci Parameters for Each of the Four

Subpools

Subpool ai bi ci

1 .250 .275 .056

2 .350 .291 .049

3 .341 .291 .061

4 .358 .265 .450

FIGURE 2. Average bias functions for the estimated ability parameters for the four

simulated conditions.
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from the current subpool only. Observe that the comparison in this study is thus

with a fully Bayesian version of one-level adaptive testing, not the less efficient

case of traditional adaptive testing with point estimates of all of its parameters.

As already indicated, the sampler was set to have a burn-in of 5,000 iterations

and thinning by a factor of 500. For both conditions, resampling of the para-

meters was from 500 independent posterior draws saved in the system from the

calibration. For security reasons, the authors had access only to the parameter

estimates for the items in the pool, not to their content or any of their other

attributes. The simulations were therefore run without any content constraints

on the selection of the items. At the end of the simulations, the final scores for the

simulated test takers were recalculated using the posterior distributions given

their complete set of responses in Equation 20.

Results

Figure 2 and 3 show the average bias and RMSE functions for the final scores

for each of the four combinations in the simulation. The two-level battery clearly

outperformed the one-level version both as for bias and RMSE. Obviously, the

same was true for the longer relative to the shorter version of the subtests.

The relatively larger bias and RMSE for the one-level approach at the upper

end of the ability scale for the case of four 5-item subtests are due to local

FIGURE 3. Average root mean squared error functions for the estimated ability para-

meters for the four simulated conditions.
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scarcity of the items in the pool. As demonstrated by the mean vector in Equation

21, the population had a relatively low ability distribution for each of the subt-

ests, and the item pool matched the population. The 10-item subtests suffered less

from the match though.

The most significant result, however, was the performance of the two-level

battery with the subtest length of five items relative to the one-level battery with

the length of 10. Both the bias and RMSE functions for the two cases were

relatively close to each other each, especially at the lower end of the scale. The

introduction of the second level of adaptation in the battery thus had the same

general effect on the bias and accuracy of the scores as lengthening the subtests

by a factor close to two. Alternatively, returning to the dilemma discussed in the

Introduction to this article, the results can thus be taken to support the option of

increasing the number of subtests in the battery by the same factor without any

noticeable loss of quality of scoring while keeping the total testing time constant.

It is also informative to check the different paths through the test battery

followed by the test takers. Table 2 shows the counts for each of these paths for

the two different subtest lengths collected during the simulation. The first path

follows the fixed order, in which the subtests of the battery had been adminis-

tered during operational testing. However, for both lengths of the subtests, nearly

every test takers did profit from the presence of an alternative, more informative

path thanks to the second-level of adaptation added to the test battery.

TABLE 2.

Counts of the Paths Through the Two-Level Battery by the Test Takers

Possible Path Subtests of 5 Items Subtests of 10 Items

1234 355 326

1243 1,045 1,193

1423 0 1

2314 1,949 131

2341 1,959 2,647

2413 9,637 9,029

2431 1,735 2,673

3124 0 24

3142 0 15

3214 77 13

3241 603 873

3412 0 11

3421 0 104

4213 1,734 1,877

4231 864 1,032

4312 2 36

4321 40 15
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Runtimes

The simulations were run on a computer with a Hexa-core CPU (Intel I7-

8700) and 16-GB RAM. The simulation was programmed using R, Version 4.2.2

(R Core Team 2022), with the computationally intensive parts (i.e., Gibbs sam-

pling and item selection) coded in Rcpp and RcppArmadillo (Eddelbuettel &

Sanderson, 2014).

The runtimes for the simulated test takers to update their ability parameters

and select the next item ranged from 0.030 to 0.040 second/item. For the selec-

tion of the next subtest, the range was 0.214 to 0.243 second/subtest. For the

computation of the final scores for each of the subtests according to the procedure

discussed directly below Equation 20, the runtimes ranged from 0.821 to 0.892

and 1.096 to 1.170 seconds for the 5-item and 10-item subtests, respectively. The

times are small enough for real-world application of the two-level type of adap-

tive testing proposed in this article.

Discussion

As already hinted at, the combination of a two-level adaptive testing model

with the proposed Bayesian algorithm for all parameter updates enables several

practical extensions and generalizations of current adaptive testing. One of the

options is online calibration of new items. The only thing required is the insertion

of an adaptively selected item from a section of field-test items added to the pool

toward the end of the subtest. To update the posterior distributions of the field-

test parameters, the same Gibbs sampler can be used, but now with an MH step

for the parameters of the item and resampling of the current posterior distribution

of the test taker’s ability parameter. In addition to the advantages of calibration

under the actual conditions of testing with optimized sample sizes, the items are

immediately available for testing with their parameters directly on the opera-

tional scales along with the samples from their final posterior distributions

required for the version of adaptive testing proposed in this article. Examples

of these options have already been illustrated for traditional one-level adaptive

testing by Ren et al. (2017), van der Linden (2018), and van der Linden and Jiang

(2020). Another extension is the introduction of response times as a source of

collateral information on the test takers’ abilities. The Bayesian way of doing so

is to replace the second-level ability distribution in the model with the joint

distribution of the test takers’ ability and speed. For a more traditional approach

to the additional use of response times with point estimates for all parameters, see

van der Linden (2008). A third option is continued updating of the posterior

distributions for the first-level item and second-level parameters for the ability

distribution during operational testing. This choice would have both advantages

and disadvantages. The greatest advantage would be use of information about

these parameters from operational data that so far has been ignored. The dis-

advantage would be loss of the current posterior independence between the test
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taker’s ability parameter and the other model parameters given the data, which

allowed the Gibbs sampler to just resample the posterior distributions of all

model parameters other than the one for the test taker’s ability. Further research

of the option is necessary to see whether the additional complexity due to loss of

posterior independence is worth the effort. Along the same lines, once the fit of a

field-test item has shown to be satisfactory, the response to the item can be used

to update the test taker’s ability parameter as well. The necessity to distinguish

between operational and field-test items then disappears completely. The only

thing that counts would be the distinction between items with more and less

informative priors for their parameters, something a Bayesian approach automat-

ically deals with.

If the assumption of a second-level multivariate normal distribution for the

ability parameters in their original metric appears to be untenable and temporary

transformation to normality does not work, an alternative is to sample an empiri-

cal multivariate distribution of the ability parameter estimates for the population

of test takers, for example, a distribution collected during initial use of the

traditional one-level version of the test battery. The use of an empirical distri-

bution has the advantage of avoiding any assumption about the shape of the

ability distribution for the battery. However, distributions of estimated ability

parameters generally have larger variability than an estimate of the distribution

of their true values. In addition, extremely large samples of test takers are

required to stabilize empirical distributions for larger test batteries, especially

the conditional distributions required when the sequence of subtests progresses.

More generally, the dilemma faced when choosing between a modeled and an

empirical second-level ability distribution is between possible bias in the former

and inaccuracy inherent in the latter. However, for the current application, bias as

a consequence of a misfitting distribution manifests itself only in the form of a

less than optimal order of the subtests for the test takers, not as bias in the

estimates in their ability parameters. For small test batteries, the alternative may

work. But for larger batteries, given the improvement of the estimates already

demonstrated in the simulation study above, the authors are therefore in favor of

the assumption of a parametric second-level distribution, be it the multivariate

normal assumed in the current study or a distribution from any other multivariate

family that shows reasonable fit.

Appendix

Shadow-Test Approach

The STA treats adaptive testing as a sequence of full-size tests assembled to

be optimal at each new update of the ability parameter while satisfying the

complete set of constraints in force for the adaptive test. Each item administered

is the best free item in the next shadow test; the rest of the free items is returned to
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the pool. As both optimality and constraint satisfaction hold for each of the

shadow tests, the same automatically holds for the completed adaptive test.

In the current context, the approach does not only support within-subtest item

selection but also adaptive transition from one subpool to the next. The criterion

for the transition is the selection of the next subpool as the one with the first

shadow test that has the best value of the objective function among all remaining

subpools. The criterion automatically avoids the pitfall of running into the neces-

sity to violate any of the constraints during testing.

The approach is possible through the use of mixed integer programming

(MIP) for the assembly of the shadow tests. The application of the MIP metho-

dology includes the introduction of binary decision variables for the selection of

the items, modeling of the objective function and constraints to be imposed on

the selection in terms of these variables, and a call to software with a standard

mathematical solver to calculate the solution to the model prior to the selection of

the next item. Let xih denotes the binary variable for the selection of item i from

subpool h, where xih¼ 1 represents the decision to select the item and xih¼ 0 not

to select it. In the current context, the shadow-test model has as objective max-

imization of the sum of the posterior expected information in Equation 11 across

the items. For the constraints, we only specify the general nature of two formally

different types of them. Content constraints are typically categorical in the sense

that they impose lower or upper bounds on the number of items to be selected

from each of a set of content categories. Let Vch
denotes the sets of items in

subpool h that belong to category ch ¼ 1; 2; :::;Ch and nch
an upper or lower

bound to be imposed on the category. The other type of constraint controls

quantitative attributes as word counts, readability indices, expected response

times on the items, and so on. Let qih denotes the value of an arbitrary quanti-

tative attribute for item i in subpool h and bqh
the upper or lower bound to be

imposed on the sum of these attributes across the items in the test.

The core of the shadow-test model for the selection of the kth item in the

adaptive test from subpool h is then

maximize ðnhSÞ�1
XIh

ih¼1

XS

s¼1

Iih ðy
ðk�1;sÞ
h ; ξðsÞih

Þxih ; ð23Þ

subject to

XIh

ih¼1

xih ¼ nh; ð24Þ

X
i2Sk�1

xih ¼ k � 1; ð25Þ

X
ih2Vch

xih
��nch

; ch ¼ 1; :::;Ch; ð26Þ
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XIh

ih¼1

qih xih
��bqh

; ð27Þ

xih ¼ 0; ih ¼ 1; :::; Ih; ð28Þ

where ��denotes the choice of a (strict) inequality. In addition to the categorical

and content constraints in Equations 26 and 27, the constraints in Equations 24

and 25 are necessary to control the length of the test and guarantee the presence

of the set of items Sk�1 already administered in the shadow test when selecting

the kth item in the adaptive test. For a more comprehensive introduction to the

STA as well as technical details of its implementation, see van der Linden (2005,

chap. 9; 2022).
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