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Abstract

We investigate the effect of a mirror-symmetry plane in multiple-scattering media under

plane-wave illumination along the symmetry plane. Designed and fabricated samples’ opti-

cal transport properties are compared quantitatively with three-dimensional modeling. Strong

polarization-dependent deviations of the bulk speckle-averaged intensity distribution at the sym-

metry plane are observed, showing either up to a factor two enhancement or complete suppres-

sion of the ensemble-averaged intensities. We derive analytical expressions for the ensemble-

averaged intensity profiles near the symmetry plane. Apart from their interest to fundamental

light propagation studies, applications of mirror-symmetric scattering media are envisioned in

anti-counterfeiting.

Symmetry is a fundamental concept in describing the physical laws of the universe [1]. The intricate

geometrical symmetries found in many living organisms have inspired researchers to explore the use

of symmetries in nanophotonic media for controlling light propagation [2]. At first glance, it seems

that symmetry and randomness are mutually exclusive concepts. Indeed, random materials created

by nature lack global symmetries like point or mirror symmetry. However, man-made structures

may be designed to exhibit both local randomness and global symmetry, providing an opportunity

to study and alter light transport in new ways. Naturally occurring or man-made random photonic

structures have been investigated from the light localization perspective, with possible applications

in random lasers and photovoltaic devices, where they can enhance light trapping [3-8]. These stud-

ies have largely relied on the statistical properties of light transport, as the structures form through

some sort of self-assembly process. Lately, it has been shown that it is possible to deliberately

engineer the spatial correlation and the degree of disorder within the sample to produce intriguing

interference effects [9,10]. Some studies emphasized controlling light transport using bio-inspired
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spatially correlated photonic structures, which allows controlling the propagation of light [11-13].

Recent theoretical work has shown that constructive interference between mirror-symmetric classical

electron paths significantly increases conductance through an opaque barrier placed within a sym-

metric quantum dot [14,15]. In the microwave regime, it has been demonstrated numerically and

experimentally that mirror symmetry can cause a broadband improvement of transmission across an

opaque barrier when illuminated perpendicular to the symmetry plane [16,17]. However, we are not

aware of any exploration of mirror-symmetric three-dimensional (3D) scattering media illuminated

in a symmetry or antisymmetric way in the optical wavelength range. Remarkable progress has

been made in the field of nanofabrication techniques, such as electron-beam lithography and direct

laser writing, which have enabled the production of pre-designed scattering media with submicron

accuracy [18,19]. Consequently, deterministic scattering media with features on the length scale of

the optical wavelength can now be fabricated. In this work, we investigate the striking behavior of

polarized light in a mirror-symmetric disordered multiple-scattering medium. We fabricate mirror-

symmetric samples by direct laser writing, show optical transport data obtained with them, and

compare them with theoretical and numerical modeling. To numerically investigate the wave propa-

gation in our mirror-symmetric dielectric multiple-scattering media, we employ modified-Born-series

[20] and finite-difference time-domain methods. Our investigation, combining numerical simulations,

theoretical analysis based on field-field correlation functions, and experimental measurements, re-

vealed consistent polarization-dependent behavior of the ensemble-averaged intensity distribution

of a bulk system near its symmetry plane. Moreover, we find that the ensemble-averaged intensity

as a function of the distance to the symmetry plane can also be predicted by the analogy to the

situation studied by Drexhage, namely a dipole emitter close to a mirror. To illustrate our system,

we present a mirror-symmetric two-dimensional (2D) configuration in Fig. 1. The model consists of

point scatterers distributed randomly in the y-z plane. The random scatterers are mirrored in the

x-z plane, at y = 0. They are illuminated by an incident plane wave with propagation direction z,

parallel to the symmetry plane, preserving the symmetry of the system. For each path from the light

source to a point on the symmetry line there is a mirror-symmetric copy with an equal path length.

At the symmetry plane, this ray and its mirror copy will interfere. Since the path lengths are equal,

their phases will be identical, causing constructive interference and an intensity at the symmetry

plane that is higher than the average value on either side. Naturally, to observe this constructive in-

terference experimentally, optical pathways from illumination to and through the sample must have

the same length to better than a quarter of the wavelength to achieve the expected interference.

Since light has a vector nature, one also needs to consider the polarization of the incident light.

Figs. 1(a) and 1(b) show our mirror symmetric configuration visualizing the polarization degree

of freedom: The sample is illuminated with a polarized plane wave propagating in the positive z-

direction. The polarization of the incident field is chosen parallel (EX) and perpendicular (EY )

with respect to the symmetry plane in Figs. 1(a) and 1(b), respectively. In the XX polarization

situation the system’s overall symmetry is preserved and we expect a factor 2 higher intensity
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Figure 1: Illustration of a mirror-symmetric medium with point scatterers illuminated by a plane
wave. Every pathway from a point in the illumination to a point on the symmetry line (dashed line)
has a mirror-symmetric counterpart, whereas for points away from the symmetry plane there is no
such counterpart. The scatterers are illuminated parallel to the symmetry plane by light linearly
polarized (a) parallel (EX , red circle) and (b) perpendicular (EY , blue line) to the symmetry plane.
However, at the output, only the parallel x-polarization is observed.

on average due to constructive interference on the symmetry line. Contrarily, changing the input

polarization to perpendicular, along the y-axis creates an antisymmetric input state, leading to

destructive interference in the x-polarization at the symmetry plane and to a distinct dark line on

the symmetry plane, as predicted by our theory. Qualitatively this cancellation is also expected for

the scenario in which the incident polarization is along the x-axis but the perpendicular polarization

(along Y) is measured. Likewise, constructive interference at the symmetry line is expected in the

YY case. Further we compute the ensemble-averaged intensity distribution at the sample’s rear

surface. We have constructed an analytical model for our mirror-symmetric system (using field-field

correlation functions, see supporting information section I). We examined scalar waves first, followed

by vector waves. The scalar-wave theory always predicts intensity enhancement at the symmetry

plane. Only the full vector theory predicts the dark interference line at the symmetry plane for some

polarization configurations. Remarkably, the vector theory predicts much richer behavior absent in

3



the scalar theory. It can be noted that the scalar predictions cannot be understood as an average

over the different polarization cases. We divide the phenomenon into four categories based on the

polarization of the incident light and the observation polarization at the sample’s exit surface in

order to thoroughly analyze the phenomenon. The observed intensities are for the four cases

IXX(d) = 1 +
3 sin(d)

2d
+

3 cos(d)

2d2
− 3 sin(d)

2d3
(1)

IXY (d) = 1 +
3 cos(d)

d2
− 3 sin(d)

d3
(2)

IY Y (d) = 1− 3 cos(d)

d2
+

3 sin(d)

d3
(3)

IY X(d) = 1− 3 sin(d)

2d
− 3 cos(d)

2d2
+

3 sin(d)

2d3
(4)

where d = 4πneffy/λ, neff is the effective refractive index of the medium, y is the distance to the

symmetry plane, and λ is the wavelength of the incident light.

To validate the above predictions in 3D, we do a numerical simulation of light propagating along the

positive z-axis (see supporting information section II). Figure 2 shows the simulation results of a 3D

mirror-symmetric sample consisting of randomly filled voxels (0.125 µm × 0.125 µm × 0.125 µm)

with a fill fraction of 50, acting as scatters. The sample has a symmetry plane parallel to the x-z-

plane, positioned at y = 0. A parallelly polarized plane wave is injected along the positive z-axis. The

scattered intensity is recorded at the sample’s x-y plane. Figures 2(a) and 2(b) show 2D maps of the

symmetric speckle patterns averaged over the z-direction. As expected, a bright line appeared at the

symmetry plane for the IXX component of the transmitted light. In contrast, a minimum intensity

line is observed at the symmetry plane for the IXY component of the transmitted light. These results

corroborate the polarization-dependent interference effects as a consequence of the symmetry of the

sample. We have also observed a polarization-dependent intensity at the symmetry plane when the

input light is polarized perpendicular to the symmetry plane: IY X shows a dark line and IY Y a bright

line at the symmetry plane. The differences between the XX vs the YY cases and the XY vs YX

are small, but the numerical simulations again follow the analytic formulas. Figures 2(c) and 2(d)

show the intensity line profile (symbols) for the IXX and IXY components of the transmitted light

averaged over the x-direction, respectively. The IXX component peaks, whereas the IXY component

dips to a low value at the symmetry plane y = 0. Mainly around the peak in (2c) but also around the

dip in (2d) fringes can be seen. Figure 2(c) and 2(d) show the intensity line profile of simulated data

fitted using equations 1 and 2, respectively. Using neff as free parameter, a good fit is obtained for

neff = 1.25. This value matches the neff value calculated using scalar effective medium theory [13].

From this, we conclude that in our analytic theory (derived in the Supplement) is a good description

of our system. The theory results assume infinite slabs, whereas our samples are small and finite

so the analytic formulas are only an approximation. We notice the resemblance of our mirror-
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Figure 2: 3-Dimensional numerical simulation results of mirror-symmetric scattering media, with
the input wave polarized perpendicular to the symmetry plane. The 2D maps of the 3D symmetric
speckle patterns averaged over the z-direction show (a) a maximum intensity line at the symmetry
plane for IXX and (b) a minimum-intensity line at the symmetry plane for the IXY component of the
transmitted light. The intensity profile obtained from the 2D maps by averaging over x-dimension
(symbols) are plotted in (c) for the IXX component and in (d) for the IXY component of the output
light. The curves are fitted (line) with our analytical model with neff as a fitting parameter. Note
that the intensity of the scattered light for the IXX component is 1.88 times higher than the IXY

component of the transmitted light.

symmetric system with the configuration of a single dipole emitter above a mirror as considered by

Drexhage [21,22]. Assuming the density of scatterers in the vicinity of the symmetry plane is low,

we can approximate the average field around the symmetry plane by taking the expressions from

Drexhage for a single emitter above a mirror without any additional phase at its surface. The results

reproduce the rigorous analytical results based on the field-field correlations. Since both theories are

an approximation to some point, we have also performed numerical simulations to gain more insight

into the intensity line profile variations of the mirror-symmetric scattering media as a function of

scattering mean free path (ls) (see Supporting information section III). From these simulations,

we learned that the sample dimensions should be large compared to the scattering length for the
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approximation to be good. In order to experimentally verify the predictions of our models, we have

fabricated deterministic mirror-symmetric scattering media using a direct laser writing method. We

have designed mirror-symmetric scattering media using an algorithm based on Jaynes’ solution to

Bertrand’s paradox, providing the random placement of rods in a cubic volume with an on-average-

homogeneous filling of the volume [23]. A set of random but on-average-homogeneously distributed

points is produced on a sphere using a random number generator, and line segments (“chords”) are

generated by connecting each pair of points. Finally, the structure with the desired dimension is

cut out from the sphere. Further, these designed structures are mirrored by flipping them in the

y-direction and making them mirror-symmetric random media. Figure 3(a) shows the design model

of a scattering medium with 200 randomly oriented rods filling a cube of 15 µm × 15 µm × 5 µm.

We can control the number of rods in a given volume, which provides control over the fill fraction

of polymer, leading to the desired scattering strength of the disordered medium. Using the direct

writing laser method, we have used the same design model to fabricate it on a micro-glass slide (see

Supporting information section IV). Figure 3(b) depicts a SEM image of a produced structure based

on the design model. In the top view, the symmetry is clearly visible. The estimated rod thickness

is 524 ± 60 nm. It is observed that the design and the actual structure are very similar, and the

features are in the same relative positions. It can be noticed, however, that the synthesized structure

has a few errors, such as missing rods and shrinkage artifacts, which emerge during the developing

process. The overall number of missing rods is minimal.

A home-built setup is used to measure the light transmission through the mirror-symmetric samples

(see Supporting Information section V). Figures 3(c) and 3(d) show the measured intensity patterns

from the fabricated cubes for the EX and EY components of the transmitted light, respectively. In

the case of the EX -component of the transmitted light, as expected, a high-intensity line from each

cube is observed at the symmetry plane when these structures are illuminated with perpendicular

polarized light to the symmetry plane. In contrast, a dark line is observed at the symmetry plane for

the EY -component of the transmitted light. Figures 3(e) and 3(f) show the intensity line profiles of

the output light’s EX -component and EY -component, respectively. These are obtained by summing

Figs. 3(c) and (d) over the x-direction. At the symmetry plane y=0, a peak for the EX -component

and a dip for the EY -component can be seen clearly. Clear periodic fringes around the peak, as

in the simulated Figs. 2, are absent in our measured images. We hypothesize that the lacking

fringes is due to the finite NA of the objective and the finite sample thickness. As per our numerical

calculations, we estimate that the ls within the presented structures spans a range of 2 to 4 µm.

This observation is in agreement with the scattering regime depicted in Fig. S1 (see Supporting

information section III), where only the central interference peak prevails, exhibiting a peak-to-

background ratio consistent with the reported values. It is also important to consider the potential

impact of fabrication imperfections on our analysis. Such errors may disrupt the mirror symmetry

of the structural features, thereby influencing the corresponding image and potentially altering the

observed scattering phenomena. It is important to highlight that the findings of this study can be
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Figure 3: (a) Design model of a mirror-symmetric scattering medium with randomly oriented rods
filling a cube. (b) SEM image showing fabrication result of the design model in (a), fabricated using
direct laser writing, scale bar 1 µm. Light transmission measurements through mirror-symmetric
scattering sample with input light polarized parallel (EX) to the symmetry plane are shown in (c-d).
The measured speckle patterns in (c) show the IXX component and in (d) the IXY component of
the output light. Intensity line profile summed over the x values are shown in (e) and (f) for the two
respective components, where the units are the summed grey values of the camera pixels normalized
to the average intensity of the speckle originating from the bulk of the structure.

extrapolated to any type of wave propagation, be it acoustic, matter, or electromagnetic waves, given

the appropriate length scales. Moreover, at the symmetry plane the optical density of states will

also be altered by the symmetry, presenting opportunities for the investigation of quantum electro-

dynamics phenomena, such as controlled emission through single emitters. In the field of metrology,
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mirror-symmetric systems may be established as proficient mechanisms for aligning masks in multi-

layer lithography procedures and evaluating the manufacturing quality of the associated instrument.

In conclusion, we have demonstrated the effect of mirror symmetry on light propagation in dielectric

multiple-scattering media. Analytic modelling predicts the ensemble-averaged intensity distribution

around the symmetry line. The modeling, the numerical simulations and the optical characteri-

zation results establish large polarization-dependent deviations at the symmetry plane of the bulk

ensemble-averaged intensity distribution. The current investigation has unveiled novel avenues for

exploring fundamental principles of light propagation, devising anti-counterfeiting measures, detect-

ing manufacturing defects through wave-based techniques, and implementing non-destructive testing

methodologies.
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Supporting Information

This Supplementary Information discusses details of the numerical modelling as well as a rigorous

derivation of the average intensity distribution of light scattering in mirror-symmetric media. Fur-

ther, we discuss the similarities of our model with the Drexhage model for a point emitter close to

a mirror. At the end we describe sample fabrication and the optical measurement setup.

I Rigorous derivation of the intensity distributions

We consider transmission of light through a slab of scattering material extending infinitely in the

x and y directions. The structure has a mirror symmetry with symmetry plane y = 0. The slab is

illuminated by a plane wave travelling in the positive z direction, i.e. normal to the surface, and

we are interested to compute the ensemble-averaged intensity distribution at the back surface of the

sample.

We start analyzing the problem for scalar waves and then modify the approach for vector waves.

Surprisingly, the vector waves’ behavior is quantitatively and qualitatively very different from that

of the scalar waves.

I.I Scalar waves

Let E(x, y) be the field at the back surface of the structure. We separate the field into two contri-

butions: let EL(x, y) be the transmitted field resulting from illuminating only the left half of the

sample (y < 0), and let ER(x, y) be the transmitted field resulting from illuminating only the right

half of the sample.

Because of the mirror symmetry in the y = 0 plane, we have

ER(x, y) = EL(x,−y) (5)

Illuminating both halves at the same time gives the intensity distribution

I(x, y) = |EL(x, y) + ER(x, y)|2 (6)

= |EL(x, y)|2 + |EL(x,−y)|2

+ 2ℜ [EL(x, y)
∗EL(x,−y)] (7)

We proceed to compute the ensemble average of this expression. Assuming that x, y ≪ L, where L

is the thickness of the slab, we can approximate
〈
|EL(x, y)|2

〉
≈

〈
|EL(0, 0)|2

〉
≡ I0/2 and find

⟨I(x, y)⟩ = I0 [1 + ℜ C(2∆y)] , (8)
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with C the (ensemble averaged) field correlation function. This function is invariant along x. Since

x, y ≪ L, we can approximate it as

C(∆y) ≡ ⟨E∗
L(0,−∆y/2)EL(0, 0 + ∆y/2)⟩√

⟨|EL(0, 0−∆y/2)|2⟩ ⟨|EL(0, 0 + ∆y/2⟩ |2
(9)

We further assume that the symmetry plane does not affect the correlations in EL or ER separately,

so we can just use the correlation function C as computed for a scattering medium without a

symmetry plane. Since C(0) ≡ 1, Eq. (8) predicts that the average intensity at the mirror plane will

be twice that of the average intensity elsewhere.

To compute C, we consider a plane-wave decomposition of the field E. Denote by ξ(k) the random

complex amplitude of a plane wave leaving the sample in direction k, so that the transmitted field

is given by:

E(r) =

∫∫
dkξ(k)eik·r (10)

with r = (x, y, z), and the integral is taken over all wave vectors leaving the sample (2π solid

angle). For a fully developed speckle pattern in the far field, we have the properties ⟨ξ(k)⟩ = 0 and

⟨ξ∗(k1)ξ(k2)⟩ = δ(k2 −k1)I(k1), with I(k1) the intensity distribution (i.e., the radiant intensity) of

light propagating in direction k. The correlation function at the z = 0 plane can be computed as

C(∆y) =
1

I0
⟨E∗(0,−∆y/2)E(0,∆y/2)⟩ =

1

I0

∫∫
dk1

∫∫
dk2 ⟨ξ∗(k1)ξ(k2)⟩ ei[k1y∆y/2+k2y∆y/2)]

=
1

I0

∫∫
dkI(k)eiky∆y (11)

which is a form of the van Cittert-Zernike theorem. We now choose spherical coordinates, with θ = 0

corresponding to the y axis, and consider a Lambertian surface (I(k) = I0/(2π) = constant).

C(∆y) =
1

2π

∫ π

0

dϕ

∫ π

0

sin(θ)dθeik∆y cos(θ) (12)

=
sin(k∆y)

k∆y
(13)

where k = ∥k∥ = 2πn
λ with n the effective refractive index of the medium and λ the wavelength of

the light.
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out=x out=y out=z out=x-camera out=y-camera

in = x 1 + Cx(2∆y) 1− Cy(2∆y) 1 + Cz(2∆y)
1 + 2

3Cx(2∆y) +
1
3Cz(2∆y)

1 − 2
3Cy(2∆y) +

1
3Cz(2∆y)

in = y 1− Cx(2∆y) 1 + Cy(2∆y) 1− Cz(2∆y)
1 − 2

3Cx(2∆y) −
1
3Cz(2∆y)

1 + 2
3Cy(2∆y) −

1
3Cz(2∆y)

in = z n/a n/a n/a n/a n/a

Table 1: Theoretical intensity profiles of the average transmission through a scattering structure
with mirror symmetry in y = 0, for all combinations of incident and transmitted light. All profiles
are relative to the transmission through a non-symmetric structure. Correlation functions Cy, and
Cx = Cz are given by equations (21) and (19), respectively.

I.II Vector waves

For vector waves, the situation is somewhat different since the field has three vector components.

The situation is still symmetric if we illuminate with x, or z-polarized light and observe transmitted x

or z-polarized light. However, if either the incident or the observed light is y polarized, the situation

is different since mirroring the field in the y = 0 plane introduces a sign change. Therefore, for those

situations, we have ER(x, y) = −EL(x, y). If both incident and observed light is y-polarized, the

two minus signs cancel and again we have ER(x, y) = EL(x, y)

A second difference is that the radiant intensity coming from the surface will depend both on the

angle and on the polarization. Therefore, the associated correlation functions will be different

for different polarizations. The theoretical intensity profiles for all combinations of incident and

transmitted light are summarized in Table 1, where Cx, Cy, and Cz are the correlation functions of

the field at the back surface of the sample for a non-symmetric structure. Note that there cannot

be a z-polarized incident beam since we assume propagation by a plane wave propagating in the

z-direction. With a high numerical aperture microscope objective, however, it will be possible to

collect some of the light that is z-polarized (i.e. axially polarized) at the sample surface. This

light will split evenly over the x and y polarization detection channels (see columns x-camera and

y-camera in Table 1 for the case of a numerical aperture of 1).

We now proceed to compute Cx, Cy and Cz, i.e. the correlation functions of the transmitted light in

the non-symmetric case. To compute the correlation functions, we assume that the field is generated

by a set of randomly oriented dipole emitters, emitting at random amplitude and phase. Each dipole

can be decomposed into (statistically independent) x, y, and z components.

Like in the scalar case, denote by ξi(k) the complex amplitude of a plane wave originating from a

dipole oriented in direction i ∈ x, y, z. Again, we can define the propagating field as

E(r) =

∫∫
dkξi(k)e

ik·r, (14)
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giving the correlation function z = 0 plane

C(∆y) =
1

I0
⟨E∗(0,−∆y/2)E(0,∆y/2)⟩ =

1

I0

∫∫
dk1

∫∫
dk2 ⟨ξ∗i (k1)ξi(k2)⟩ ei[k2y∆y/2+k1y∆y/2]

=
1

I0

∫∫
dkIi(k)e

iky∆y (15)

For dipole radiation, the radiant intensity Ii(k) depends both on the polarization and the propagation

angle. We start by computing Cz and choose spherical coordinates, with θ = 0 corresponding to the

z-axis and θ = π/2, ϕ = 0 corresponding to the y-axis. In these coordinates, the dipole radiation

pattern for a z-polarized source is given by Iz(θ) =
3I0
4π sin2 θ, giving

Cz(∆y) =
3

4π

∫ 2π

0

dϕ

∫ π/2

0

sin(θ)dθ sin2(θ)eik∆y sin(θ) cos(ϕ) (16)

=
3

2

(
sin(k∆y)

k∆y
+

cos(k∆y)

k2∆y2
− sin(k∆y)

k3∆y3

)
(17)

where I0 = 3/(4π) is a normalization factor such that Cz(0) = 1.

For the x polarization, we rotate the coordinate system to align with the x-axis (placing the y-axis at

θ = π/2, ϕ = 0), and adjust the integration limits to still correspond to the 2π steradian of outgoing

angles.

Cx(∆y) = I0

∫ π

0

dϕ

∫ π

0

sin(θ)dθ sin2(θ)eik∆y sin(θ) cosϕ (18)

=
3

2

(
sin(k∆y)

k∆y
+

cos(k∆y)

k2∆y2
− sin(k∆y)

k3∆y3

)
(19)

which is exactly the same as for z-polarization.

Finally, for y-polarization, we align the coordinate system so that θ = 0 corresponds to the y-axis.

Cy(∆y) = I0

∫ π

0

dϕ

∫ π

0

sin(θ)dθ sin2(θ)eik∆y cos(θ) (20)

= 3

(
−cos(k∆y)

k2∆y2
+

sin(k∆y)

k3∆y3

)
(21)

These correlation functions, when used with the equations in Table 1, exactly reproduce the functions

for the emission rate of a fluorescent molecule in the vicinity of a mirror, as derived by Drexhage et

al. [3, 4]. This is not surprising, since those functions also describe a phenomenon that is directly

the result of interference of a dipole with its mirror image.
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To take into account the effect of far-field detection when measuring the light escaping from a sample,

we have added two columns to Table 1 where the effect of an objective with an NA=1 is assumed.

Such an objective collects 50% of the escaping light, independent of the polarisation (x,y,z). Because

of the symmetry of the system, x (y) polarization at the sample surface will lead to x (y) polarization

in the camera. The z polarization will be distributed 50% - 50% over both channels. Assuming every

polarization has the same Lambertian intensity, you get, after normalisation, the factors 1/3 and

2/3 from the table.

I.III Correction for ballistic transmission

In the above, we used a random distribution ξ with the properties ⟨ξ(k)⟩ = 0 and ⟨ξ∗(k1)ξ(k2)⟩ =
δ(k2 − k1)I(k1). The earlier assumptions that

〈
|EL(x, y)|2

〉
≈

〈
|EL(0, 0)|2

〉
and C(x, y,∆y) ≈

C(0, 0,∆y) follow directly from the use of this distribution.

This distribution corresponds to a fully developed speckle pattern. For thin or weakly scattering

structures, however, part of the light is not scattered. To account for this so-called ballistic light,

we need to modify this distribution. Define Eb as the field of the ballistically transmitted light. We

can now modify the distribution to have the properties

⟨ξ∗i (k)⟩ = Ebδ(k− ez)δij (22)

⟨ξ∗i (k1)ξi(k2)⟩ = δ(k2 − k1)I(k1)+

|Eb|2 δ(k1 − ez)δ(k2 − ez)δij (23)

with ez the unit vector in the z-direction, and j ∈ x, y, z the polarization of the incident beam, and

δij is the Kronecker delta. The additional term gives a constant offset in the correlation functions.

After normalizing the total average transmission, we find that two of the equations in Table 1 need

to be modified to

1 + (1− β)Cx(2∆y) in = x, out = x (24)

1 + (1− β)Cy(2∆y) in = y, out = y (25)

with β = |Eb|2 /(|Eb|2 + I0) the relative transmission coefficient of the ballistic component. Unsur-

prisingly, we find that the interference effect due to mirror symmetry vanishes as β tends to 0, i.e.

when the sample becomes infinitely thin or fully transparent.

II Numerical simulations

A freely available numerical Maxwell solver (WaveSim) is used to simulate optical wave propagation

in our designed structures [1, ?]. We have designed two structural models; the first model consists
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of point-like scatterers and the second consists of randomly positioned rods. The main reason to use

two different model designs in the simulation is that the point-like scatterers model is appropriate

and quick to implement, while the random rods model has more resemblance to our fabricated

samples. Since the random rods model is more complex, it requires a more powerful computational

system for the simulation. In our models, the structures are mirror symmetric with the symmetry

plane the x -z -plane at y = 0. Periodic boundary (PB) conditions are applied in x - and y-directions,

while an anti-reflection boundary layer (ARL), in addition, acyclic convolution (ACC) boundary

condition is used in the source injection direction [2]. The plane-wave source below the structure

injects light with a wavelength of 633 nm along the positive z -axis. Furthermore, we have used a

commercially available finite-difference time-domain (FDTD) solver, Ansys Lumerical, to validate

our WaveSim simulation results. In the simulation, we imported the structural model design used in

WaveSim and kept all the parameters similar to those used in WaveSim. Again, periodic boundary

conditions are applied in x - and y-directions, while a perfectly matched layer boundary condition

is used in the source injection direction. The polarized plane wave with a wavelength of 633 nm

is placed below the structure and injects the wave along the positive z -axis. The scattered light

intensity data is recorded using a 3D frequency-domain field profile monitor.

III Drexhage Analogy

Drexhage calculated the change in the decay rate of an emitter above a mirror as a consequence of

the varying local density of states caused by the interference of the wave emitted by the emitter with

the reflection of that wave from the mirror [3, 4]. For this calculation, we have calculated the angle-

dependent and polarization-dependent emitted field and, for each point on a large far-field sphere,

added the fraction of that wave reflected by a virtual zero-phase-shift mirror. Integrating over the

sphere resulted in analytic expressions Eqs. 1 and 2 of the main text, yielding the dependence of

the intensity on the distance between the emitter and the symmetry plane.

The analytic expressions derived in the way of Drexhage assumes an infinitely wide sample and

ignores any scattering in the space between the emitter and the mirror or symmetry surface. To

investigate the limitations of the simple model we now numerically calculate the intensity for finite-

sized samples. We consider a mirror-symmetric scattering slab having 5 µmwidth and 6 µm thickness.

In the simulation, the positions of the sherical scatterers are fixed, while their refractive index values

are varied to get different ls values. For the ensemble average, ten distinct arrangements of the

scatterers are considered; in each arrangement, the scatterers’ refractive index is constant, but their

placements are altered randomly. We have recorded the transmitted light at the exiting plane of

the sample and estimated the ballistic light component. We have evaluated the ls values using the

Lambert Beer law Ib = Ioe
−L/ls , where Ib is ballistic light intensity, Io source intensity, and L is the

thickness of the sample. Figure S1(a) shows the intensity line profile variation as a function of ls. It

is evident that as the ls value is reduced, the intensity profile changes. The simulated sample having
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Figure S4: Numerical simulation results: (a) Intensity line profile variation as a function of ls. The
symmetry plane is at y=0. Periodic boundary conditions create similar symmetry-induced features
at the edges. Intensity enhancement at the symmetry plane versus the diffusion strength (b) the
ratio of peak intensity (Ipk) to the average background intensity (Ibg) as a function of the ratio of
sample thickness and scattering mean free path (ls). The data points in (b) are averaged over 10
configurations.

ls = 52±3 µm indicates that the light is escaping without interacting with the structure since ls ≫ L,

and oscillating fringes around the peak are visible, which we attribute to standing waves because of

the periodic boundary conditions. The sample having ls = 5± 0.5 µm suggests weak light scattering

caused by structure as ls ≈ L. Fringes are still visible around the peak. We hypothesize that

they are a combination of the Drexhage-like fringes near the center and some boundary-condition

induced Fabry-Perot fringes. For the structures with ls ≪ L, the fringes begin to diminish near

the peak position. It indicates that only light scattered from scatterers near the symmetry line still

constructively interferes at the symmetry plane. From these simulations, we can also determine the

ratio of peak intensity (Ipk) to the average background intensity (Ibg). Figure S1(b) shows the ratio

of Ipk/Ibg as a function of the ratio of the sample thickness and ls. As the scattering strength of

the sample increases, the ratio of Ipk/Ibg increases, but never reaches the factor 2 predicted by the

analytic approximation based on Drexhage’s theory.

16



IV Sample fabrication

Following the procedure of [5], a commercial direct laser writing system (Nanoscribe Professional

GT) was used to synthesize the structures. A cleaned glass micro slide is taken and a polymer

photoresist Nanoscribe IP-G (refractive index of 1.51 for a wavelength of 633 nm) is drop-cast on

it and baked at 120 °C. The polymer photoresist is a gel, and its high viscosity ensures that the

structures’ features do not wander during the writing operations, resulting in only minor structural

deformation. The coated photoresist is scanned using the focused laser according to the structure

coordinates, resulting in solidifying the polymer by 2-photon polymerization. After that, a developer

is used to wash away the unsolidified polymer photoresist, leaving just the desired structure.

V Optical setup

The samples are characterized in both transmission and reflection mode using the experimental

setup as shown in Fig. S2. The setup is built using two different sources: a linearly polarized He–Ne

laser (λ = 633 nm) and a LED (λ = 628 nm). The laser beam is expanded using a combination of

two lenses as a beam expander to reduce beam divergence, achieving near-plane-wave illumination

of the sample. The sample substrate is placed in a dedicated sample holder and placed into a tilt

mount, which is attached to an x-y-z -translation stage. Light that is scattered through the sample

is collected by an objective with NA = 0.55 and focused onto a CCD camera (Stingray F145 B).

The focal length of the objective is: fobj = 4mm and the focal lens of the tube lens is: f2 = 200mm.

This yields a magnification of 50. The camera has a resolution of 1388 x 1038 pixels a pixel size

of 6.45µm × 6.45 µm. A magnification of 50x leads to roughly 5 pixels per wavelength, which is

adequate for recording clear images.

Figure S5: Optical Imaging setup: Schematic of the optical setup used to characterize the
fabricated samples, where M-Mirror, FM-Flip mirror, BE-Beam expander, P-Linear polarizer I- Iris,
L-lens, and O-Objective.
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