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Power purchase agreements (PPAs) have become an important corporate procurement

vehicle for renewable power, especially among companies that have committed to targets

requiring a certain fraction of their power demand be met by renewables. PPAs are long-

term contracts that provide renewable energy certificates (RECs) to the corporate buyer

and take two main forms: Physical vs Virtual. Physical PPAs deliver power in addition

to RECs, while virtual PPAs are financial contracts that hedge (at least partially) power

price uncertainty. We compare procurement portfolios that sign physical PPAs with ones

that sign virtual PPAs, focusing on fixed-volume contracts and emphasizing uncertainties

in power demand and the prices of power and RECs. In particular, we first analyze a two-

stage stochastic model to understand the behavior of procurement quantities and costs

when using physical and virtual PPAs as well as variants that limit risk. We subsequently

formulate a Markov decision process (MDP) that optimizes the multi-stage procurement

of power to reach and sustain a renewable procurement target. By leveraging state-of-the-

art reoptimization techniques, we solve this MDP on realistic instances to near optimality,

and highlight the relative benefits of using PPA types to meet a renewable target.

Keywords: Decision analysis; renewable energy targets; procurement; power purchase agree-

ments; Markov decision processes.

1. Introduction

Power purchase agreements (PPAs) are long-term contracts that facilitate the procurement of

renewable electricity by corporations directly from generators to meet load. PPAs are used by

corporations to protect against power price volatility, reduce their environmental footprint, and

enhance brand image. They have been signed at an increasing pace over the last decade; for

instance, the renewable capacity contracted via these contracts has increased from 0.9 GW in 2013

to 5.8 GW in 2017, and to 32.2 GW in 2021 (IEA 2021). Corporate PPAs are either physical

or virtual in nature. Physical PPAs, which we refer to as physical contracts (PCs), involve the

delivery of power from the producer to the consumer. In contrast, virtual PPAs (also known as

“synthetic” contracts and henceforth abbreviated SCs) are financial agreements where the producer
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sells power to the grid, the firm buys power from the grid, and payments for differences relative to

a reference strike price are made to ensure a price hedge. Although SCs account for the majority of

PPA contracts signed by corporations, there is also significant demand for direct delivery, especially

when the producer is located near the offtaker (Baker McKenzie 2018).

In addition to the classification into physical and virtual, different PPAs pricing structures exist.

For instance, PPAs typically have a fixed strike price, which helps stabilize procurement costs but

some variants use a inflation indexed strike price or apply caps, floors, and interval structures to

this price (WBCSD 2021). Furthermore, the amount of supply guaranteed in the contract can take

different terms in practice. Among them, fixed-volume PPAs operate on a pre-agreed quantity

of electricity, regardless of generation intermittency. They are favorable to the offtaker as they

transfer supply risk to the generator. At the other extreme, are as-generated PPAs that consider

only the electricity that is generated. These PPAs thus transfer supply risk to the buyer and are

favorable to the generator (Greenmatch 2020).

We focus on fixed-volume PPAs for firms with uncertain energy demand, which captures tech-

nology firms with a growing demand base as more customers move to the cloud, firms that are

exhibiting market growth, and firms that are investing in energy efficiency. The firms we consider

have also committed to a renewable procurement target (henceforth target). Such targets require

validating by a future date that a specified percentage of annual electricity demand is met by re-

newable electricity and this level of renewable procurement is sustained thereafter. There are cur-

rently over 400 companies with a target of 100% (RE100 2023), and over 5500 companies that have

set broader goals (Science Based Targets Initiative 2023).

Both PCs and SCs also provide the buyer with renewable energy certificates (RECs), where

each REC allows its owner to validate the use of one megawatt hour (MWh) of renewable power.

Meeting a target requires procuring RECs equal to the specified percentage of annual electricity de-

mand. Thus, PPAs have become a popular procurement vehicle of choice for companies with such

a target. Although RECs can also be procured from a voluntary market, using this practice as the

sole source of RECs has been criticized as green washing because voluntary REC prices are very

low and do not necessarily support the addition of renewable power capacity (S&P Global 2021).

In contrast, PPAs transfer RECs to the offtaker and provide revenue guarantees that can be used

to finance new capacity.

In this paper, we provide (i) analytical results to better understand the effectiveness of PCs and

SCs, including fixed and interval strike price structures, and the impact of target levels on procure-

ment costs, and (ii) test state-of-the-art decision heuristics to help companies construct dynamic
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PPA policies to meet a target. In addition to the long-term purchase option presented by a PPA,

we assume that the company also has access to short-term options to buy power from the grid and

purchase RECs from a secondary market1.

Our analysis considers a two-stage setting where the long-term power purchase option involves

a single PPA. We characterize how the optimal expected procurement cost varies with the target

when using PCs and SCs, and establish that this cost under the latter contract is lower than with

the former contract. Nevertheless, a drawback cited in the practitioner literature is that using SCs,

as opposed to PCs, leads to increased variability in procurement costs (Green Power Partnership

2016). We find that this drawback is indeed true when the same quantity of power is purchased

via a PC and an SC. However, contrary to this sentiment, an optimized portfolio containing an SC

reduces the quantity of short-term power and RECs purchased relative to a comparable portfolio

with a PC, which in turn can decrease the variability of procurement costs under the former

portfolio. In the same spirit, specifying a target as a percentage of known past demand (i.e., 80%

of 2020 demand) is easier to track and would seem preferable to the target being a fraction of

uncertain future demand. However, we find that the latter stochastic target can reduce procurement

costs when demand exhibits a negative drift, which is likely for firms that are investing in energy

efficiency initiatives. Finally, some companies have also opted to use a variant of the fixed strike

price, known as the interval strike price, that allows the strike price to vary within a predefined

interval similar to a collar option (WBCSD 2021). We show that interval strike prices employed

in industry can reduce the procurement cost relative to a fixed strike price only in a market where

power prices are skewed. Hence, interval strike prices must be used with caution since the behavior

of power prices in several markets change over time.

To compute dynamic procurement decisions in a multi-stage setting, we formulate a Markov

decision process (MDP) that minimizes the expected procurement cost to reach and sustain a tar-

get. Specifically, the target does not need to be met in the first part of the planning horizon (i.e.,

the reach period, typically a few years), while it must be satisfied in all the subsequent stages

(i.e., the sustain period). The firm decides whether to enter into new PPAs of different length and

size at each stage of the MDP. The strike prices of PPAs are specified by a model that factors

the effects of the expected power price and the return on investment required by the generator in

a manner that is consistent with publicly available software from the National Renewable Energy

Laboratory (NREL; NREL 2017). The set of available PPAs depends on the contracts offered by

1A short-term power purchase is akin to a spot purchase. The actual nature of a short-term purchase could vary
by region. For instance, in the United States, such a purchase could represent power from an index-based pricing
program (DirectEnergy 2018).
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generators, which is unpredictable over time. Approximate methods to solve our MDP are limited

because it has a non-convex action set and its state space is high dimensional. We thus leverage

both a forecast based primal reoptimization technique (Chand et al. 2002) and a state-of-the-art

dual reoptimization technique (Trivella et al. 2023) to obtain procurement policies.

We perform a numerical study on realistic instances based on a planning horizon of 40 years

and where PPAs with length spanning from 5 to 25 years can be signed each year. We use mar-

ket data to calibrate stochastic processes for the evolution of uncertain quantities. We compare

the dual reoptimization policy against the one based on primal reoptimization and two additional

problem-specific benchmarks. The first heuristic relies on short-term purchases of power and RECs

alone, that is, it does not consider PPAs. The second uses a single PPA and renews this contract

each time it expires, also allowing for short-term power purchases. The procurement policies com-

puted via dual reoptimization are near-optimal and result in lower procurement costs compared to

the remaining benchmarks. In particular, the average dual and primal reoptimization optimality

gaps are 2.6% and 5.6%, respectively, for PCs, and 4.1% and 6.5% for SCs. The remaining bench-

marks have average optimal gaps of 7.8–16.7% for PCs and 11.2–21.5% for SCs. Thus, dual reopti-

mization outperforms traditional rolling-planning methods (akin to primal reoptimization) used in

practice and its near-optimal performance further strengthens existing results that rolling-planning

approaches can be extended to effectively compute dynamic procurement portfolios.

Our numerical experiments also provide procurement insights. Portfolios that include multiple

PPAs can reduce procurement costs by 10–17% compared to short-term purchases alone. These

savings are significant and especially relevant for energy-intensive industries where electricity is a

major cost component, such as data centers (Koot and Wijnhoven 2021) (which we focus on in

our numerical study), metal production assets (He and Wang 2017, Trivella et al. 2021), and water

treatment plants (Lam et al. 2017). The cost reduction from optimized PPA portfolios increases

with the target and ranges from 10–12% for a 60% target to 14–17% under a 100% target, suggesting

that PPAs are particularly relevant for companies with aggressive targets. PPA portfolios also lead

to procurement costs that are stable when contract availability and the market dynamics of REC

prices change, while other policies are significantly more exposed to these changes. Overall, our

results support the role of PPAs as useful corporate procurement instruments that help tie the knot

between climate oriented targets and financial performance. Finally, our numerical study highlights

that SCs lead to lower procurement costs than PCs and their difference can reach up to 4.1% under

a 100% target, which is substantial.

To summarize, the main contributions of this paper are the following:
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� In a two-stage setting, we analytically characterize optimal procurement decisions and costs

under PCs and SCs as well as other contract variants to provide insights to the structuring

of PPAs. These results suggest that SCs and PCs yield significantly different procurement

quantities and costs when included in a procurement portfolio – they are thus not merely

physical and financial versions of PPAs. Moreover, these findings provide insights relevant to

structuring portfolios with PPAs, in some cases, contrary to the intuition in practice.

� In a multi-stage setting, we formulate an MDP to meet a target at minimum procurement

cost using PCs or SCs, and leverage reoptimization heuristics to compute dynamic policies.

� We compare reoptimization-based policies and simpler benchmarks on realistic instances and

find that dual reoptimization is an effective approach to compute dynamic PPA based pro-

curement policies. We shed slight on the behavior of these policies to market parameters and

on the use of physical vs virtual PPA portfolios.

These contributions add to the limited research on using PPAs for the procurement of renewable

power. Focusing on a single PPA, Mendicino et al. (2019) proposes a levelized cost of energy

model to determine the contract price and length. In a similar spirit, Parlane and Ryan (2020)

characterize the contract that minimizes the cost of procuring a given amount of electricity from

risk-averse renewable energy generators. A few papers consider dynamic procurement of power.

Pedrini et al. (2020) considers the power procurement of a large consumer that can either invest in

a renewable asset or sign bilateral contracts with a duration of 1 to 3 years. Gabrielli et al. (2022)

and Arellano and Carrión (2023) consider the dynamic procurement of power using PPAs. The

former paper studies the risk-reward trade-off of using multi-location and multi-technology PPA

portfolios. The latter paper considers a portfolio of PCs and SCs. None of the papers on dynamic

power procurement above consider RECs as they do not model targets and also assume that future

PPA prices are given, as opposed to being uncertain, which is a reality that we model. Trivella

et al. (2023) studies the corporate PPA-based procurement to meet a target considering uncertainty

in REC and PPA prices by solving an MDP formulation. They consider as-generated SCs for a

firm with fixed demand, while we study fixed-volume PPAs for a firm with stochastic demand and

compare physical and synthetic variants. Our MDP embeds a well-known PPA pricing approach

developed by NREL, which to our knowledge has not been used in a dynamic procurement context.

Our analytical study of PCs and SCs and the impact of targets and strike price structure is new

to the literature.

Most literature on dynamic optimization of energy procurement has adopted approaches based
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multi-stage stochastic programming (Rocha and Kuhn 2012, Gilbert et al. 2015, Pedrini et al. 2020,

Gabrielli et al. 2022, Arellano and Carrión 2023). Rocha and Kuhn (2012), an early paper in this

literature, studies the value of using a electricity procurement portfolio containing spot purchases,

forward contracts, and options over pure spot procurement but does not consider PPAs. As alluded

to above, Pedrini et al. (2020) use a small number of periods. They highlight in their procurement

context that scaling to more periods and scenarios is challenging without using scenario reduction

and decomposition techniques. Gilbert et al. (2015) support their choice of stochastic program-

ming by highlighting that alternatives such as approximate dynamic programming (Bertsekas 2011,

Powell 2011) will find it difficult to account for non-anticipativity constraints along with the combi-

natorial aspects of tracking contracts over time. We adapt the dual reoptimization approach intro-

duced in Trivella et al. (2023) that is based on approximate dynamic programming principles but

ultimately leverages deterministic optimization as do efficient stochastic programming approaches.

It is capable of handling a large number of stages and high-dimensional state spaces, as well as non-

convexities. Dual reoptimization relaxes the non-anticipativity constraints within the information

relaxation and duality framework (Andersen and Broadie 2004, Haugh and Kogan 2004, Brown et al.

2010) and solves multiple deterministic optimization models to account for the effect of uncertainty

on decisions. We show that the dual reoptimization policy is near optimal in our setting, which fa-

cilitates subsequent numerical experimentation to obtain novel procurement insights. We also test

a forecast-based primal reoptimization heuristic that replaces uncertain factors by their respective

forecasts at each stage (Chand et al. 2002, Bertsekas 2005, Weber et al. 2009). Others have used

reoptimization together with stochastic programming (see, e.g., Guigues and Sagastizábal 2012) or

to more efficiently handle time structured deterministic problems (see, e.g., Glomb et al. 2022).

The rest of the paper is organized as follows. In §2, we analyze procurement quantities and

costs of different PPA structures in a two-stage procurement setting. In §3, we formulate a multi-

stage MDP to reach and sustain a target, and present reoptimization methods to obtain policies

and lower bounds for this MDP. We conduct an extensive numerical study and discuss our findings

in §4. We conclude in §5. All proofs can be found in an online supplement.

2. Corporate power purchase agreement structures

In this section, we analyze different PPA structures using simplified models that capture key trade-

offs. In §2.1, we characterize the behavior of procurement quantities and costs as functions of the

target. In §2.2, we examine targets defined as a percentage of known past demand rather than

uncertain future demand. In §2.3, we study the impact of moving from a fixed strike price to one
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that varies within an interval.

2.1 Procurement costs and targets

We model a two-stage procurement problem with stages 0 (now) and 1 (future), where a company

has committed to satisfy a target at stage 1. Thus, the reach and sustain periods are each one stage.

To fulfill the target, the company can (i) enter into a PPA at stage 0 to receive power and RECs

from a renewable generator at stage 1, and (ii) procure in stage 1 any unmet power demand and

shortfall in the target, after accounting for the stage 0 PPA purchase, using grid power purchases

and unbundled RECs, respectively. These procurement decisions depend on the power price, the

REC price, and the power demand at stage i P t0, 1u, which we denote by Pi (USD/MWh), Ri

(USD/MWh), and Di (MWh), respectively. To simplify notation we define wi :� pPi, Ri, Diq.

Indeed, at stage 0, the vector w1 is stochastic. We represent the target as a fraction α P r0, 1s of

the stage-1 firm’s power demand D1; given that D1 is stochastic at stage 0, the target αD1 is also

stochastic. In this setting, the firm determines a stage 0 PPA quantity to minimize the expected

cost of procuring long-term and short-term power to satisfy its power demand and the target at

stage 1. We formulate models considering physical and synthetic PPA variants.

Signing a (fixed-volume) PC for z MWh results in the physical delivery of this power at stage 1

and a payment of K USD/MWh. Given a target α and a strike price K, the stage-1 procurement

cost as a function of z and w1 is

rCPCpz, w1;α,Kq :� K z � P1pD1 � zq+ �R1pαD1 � zq+, (1)

where the first term represents the stage-1 cost of procuring z MWh of power through a PC signed

at stage 0, and the second and third terms represent the expected cost of fulfilling stage-1 shortfalls

in meeting total demand and the target, respectively, using the short-term market. The optimal

expected procurement cost of a firm using a PC at stage 0 is thus

CPCpα,Kq :� min
z¥0

E0r rCPCpz, w1;α,Kqs, (2)

where we use E0r�s � Er�|w0s and p�q+ � max t�, 0u for notational convenience2.

In contrast to a PC, an SC does not require the physical delivery of power. Instead, the

generator sells z MWh to the grid and the company purchases the same amount of power from the

grid. If the grid price P1 is greater than the fixed strike price K, the generator pays the company

for each MWh the positive difference P1 �K; otherwise, the company pays the generator K � P1.

Formally, the firm’s stage-1 cost function is

rCSCpz, w1;α,Kq :� P1D1 � pK � P1qz �R1pαD1 � zq+, (3)

2The short-term procurement cost at stage 0 is excluded because it is a constant and does not affect the choice of z.
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where the first term is the cost of purchasing the stage-1 power demand from the grid, the second

is the cash flow resulting from difference payments between the generator and the company on the

z MWh contracted via the SC when the grid price deviates from the strike price, and the third is

the cost of procuring RECs to meet the target shortfall. The optimal expected procurement cost

when using an SC is

CSCpα,Kq :� min
z¥0

E0r rCSCpz, w1;α,Kqs, (4)

Next we compare models (2) and (4) under the following assumption.

Assumption 1. It holds that (i) the strike price K belongs to the interval
�
E0rP1s,E0rP1 �R1s

�
;

(ii) the power demand D1 is uniformly distributed in the interval ra, bs, where a and b are positive

scalars satisfying b ¡ a; (iii) the power price P1 follows a log-normal distribution; (iv) the expected

REC price E0rR1s is positive; and (v) the power demand D1 is independent of the prices P1 and R1.

The domain of the strike price captures practically relevant values for the parameter K. The lower

bound of E0rP1s avoids cases where the generator is better off selling its power directly to the grid

as opposed to the company via a PPA, while the upper bound of E0rP1 � R1s removes situations

where the company would save money from procuring power and RECs directly from the short-

term market instead of using a PPA. The log-normal assumption on the stage-1 power price is

consistent with the long-term components of common electricity price models such as one-factor

and two-factor mean-reverting stochastic processes used in the literature, which consider the evo-

lution of the logarithm of the power price3 (Lucia and Schwartz 2002, Cartea and Figueroa 2005).

We do not assume any specific disitrbutional form for the REC price but requires its mean to be

positive, which is consistent with the behavior of REC prices across markets in the United States.

The uniformly distributed power demand can be viewed as adding variability around a long-term

demand forecast. Finally, our assumption of independence between the power price and the power

demand stems from the power demand of an individual company not being large enough to affect

the market price and companies in several sectors (e.g., high-tech and education) having limited

flexibility to adjust their power consumption to fluctuations in the power price. The independence

of demand and REC prices follows similar justification.

Proposition 1 characterizes the optimal PPA procurement quantity. Let z�PC and z�SC denote

the optimal solutions of models (2) and (4), respectively. Further, we define a target threshold

ᾱ :� aE0rR1s{pbE0rR1s � pK � E0rP1sqpb� aqq.

3Unlike short-term power prices, the long-term power prices that we model do not take negative values, which
justifies considering the evolution of the logarithm of the power price.
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Proposition 1. Under Assumption 1, we have

z�PC �

$'&'%
α
�
b� K�E0rP1s

E0rR1s
pb� aq

	
, if α ¤ ᾱ,

�Kpb�aq�pE0rR1s�E0rP1sqpbq
1
α
E0rR1s�E0rP1s

, if α ¡ ᾱ;
and z�SC � α

�
b�

K � ErP1s

ErR1s
pb� aq



.

Both the optimal PC and SC procurement quantities are equal and vary linearly with α within

the interval r0, ᾱs. However, for α greater than ᾱ, z�PC and z�SC diverge. Specifically, z�SC continues

to vary linearly with α while z�PC is an increasing concave function of the target. Example 1 and

Figure 1(a) illustrate this behavior and show that the optimal PC procurement quantity can be

substantially smaller than the SC optimal procurement quantity.

Example 1. Suppose D1 is uniformly distributed in the interval r100, 350s, P1 is lognormal with

E0rP1s � 20.5 USD/MWh, and E0rR1s � 8 USD/MWh. Moreover, the strike price K is 22

USD/MWh. In this setting, the target threshold ᾱ equals 0.32. Figure 1(a) displays the optimal

procurement quantities z�PC and z�SC as functions of α. For α equal to 1, z�SC (= 157 MWh) is

roughly 93% smaller than z�PC (= 303 MWh).

Figure 1: Optimal procurement quantities and costs as a function of the target.

(a) Optimal PPA procurement quantity
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(b) Optimal procurement cost
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For α ¡ ᾱ, the conservative long-term procurement using a PC can be attributed to over-procurement

risk, that is, the event when z is greater than the stage-1 demand. Such over-procurement risk is

significant for large α in a PC because one needs to pay for the contracted power even when all

of it is not needed4. In contrast, this risk is mitigated when using an SC by the fact that the cor-

4Results analogous to the assumed Take-and-pay PC also hold when comparing the optimal procurement quantities
of an SC and a Take-or-pay PC. However, here one would need to factor in the penalty a company pays for not taking
delivery of the contracted power in the Take-or-pay PC when z ¡ D1. We omit this analysis as it does not provide
sufficiently new insights but complicates the exposition of the key differences between a PC and an SC.
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poration purchases only the required power from the grid. Over-procurement risk has important

practical implications on the procurement cost and its variance, which we study below.

Proposition 2 characterizes optimal expected procurement costs when using a PC and an SC.

Proposition 2. Suppose Assumption 1 is true. The following hold:

(a) CPCpα,Kq is linear in α for α P r0, ᾱs, and strictly convex in α for α P pᾱ, 1s;

(b) CSCpα,Kq is linear in α for all α P r0, 1s;

(c) CSCpα,Kq � CPCpα,Kq for α P r0, ᾱs, and CSCpα,Kq   CPCpα,Kq for α P pᾱ, 1s.

The behavior of the optimal procurement costs as a function of α are driven by the structure of the

optimal procurement quantities in Proposition 1. Specifically, within the interval r0, ᾱs, the pro-

curement costs when using a PC and an SC are both equal and linear in α. For α ¡ ᾱ, the former

cost is increasing convex while the latter remains linear. This difference can be attributed to an

interplay between over-procurement (i.e., z ¥ D1) and under-procurement (i.e., z   D1) risks. To

elaborate, a PC procures less long-term power than an SC for large α due to over-procurement risk

as already discussed above. The resulting smaller z exposes PC to procuring more power and RECs

from the short-term market, an expensive option, when an under-procurement event occurs, which

amounts to higher expected costs. This finding suggests that an SC allows a company to man-

age expected procurement costs more efficiently for high targets than a PC. Example 2 illustrates

the preceding discussion by considering under- and over-procurement components of the expected

stage-1 cost. Formally, we have

E0r rCPCpz
�
PC, w1;α,Kqs � E0r rCPCpz

�
PC, w1;α,Kq|z�PC ¥ D1sPrpz

�
PC ¥ D1q

� E0r rCPCpz
�
PC , w1;α,Kq|z�PC   D1sPrpz

�
PC   D1q,

where we refer to the first and second terms in the right-hand-side of the equality as the over- and

under-procurement components of the PC expected cost, respectively. Analogous definitions hold

for the SC expected cost.

Example 2. For the setting considered in Example 1, Figure 1(b) displays the expected procurement

costs CPCpα,Kq and CSCpα,Kq as functions of α. The procurement cost when using a PC (= 5,570

USD) is roughly 9% greater than the analogous cost under an SC (= 5,102 USD) for α equals 1.

The over- and under-procurement components of the PC procurement costs are 800 USD and 4,770

USD, respectively. The analogous cost components corresponding to SC equal 3720 and 1,382 USD,

respectively. Therefore, z�SC being greater than z�PC leads to higher expected procurement costs when

there is over-procurement but reduces the exposure of SC to the short-term market. This reduced
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exposure leads to a much smaller expected cost when there is under-procurement, which leads to

CSCp1,Kq being strictly smaller than CPCp1,Kq.

The expected procurement cost measure discussed above does not consider an important mo-

tivation for companies entering into long-term contracts, which is to reduce or eliminate the vari-

ability of future costs – stable costs facilitate budgeting. A related sentiment in the practitioner

literature is that using an SC could increase the cash flow variability compared to a PC. Proposi-

tion 3 shows that this sentiment is in fact true when procuring the same quantity of power using

both PPA types. We use Varr�s to represent the variance of a random variable.

Proposition 3. Under Assumption 1, we have Varr rCSCpz, w1;α,Kqs � Varr rCPCpz, w1;α,Kqs, if

Prpz ¡ D1q � 0, and Varr rCSCpz, w1;α,Kqs ¡ Varr rCPCpz, w1;α,Kqs, if Prpz ¡ D1q ¡ 0.

To gain some intuition on this result, note that rCPCpz, w1;α,Kq and rCSCpz, w1;α,Kq are equal if

z ¤ D1, that is, when there is under-procurement. Therefore, if the over-procurement risk is zero,

we have the same variance of cash flows under a PC and an SC. Instead, if the over-procurement

risk is positive, the comparison of cash flow variance becomes more involved but we can establish

that the variance under an SC is greater than with a PC. Nevertheless, Proposition 3 may not hold

for the optimized and unequal power procurement quantities computed by solving (2) and (4) for

α ¡ ᾱ. Example 3 provides an instance where the variance of an optimized portfolio with an SC is

smaller than an optimized portfolio containing a PC for large α. This example suggests that opti-

mizing PPA purchases is important because a suboptimal SC portfolio may lead to high variance

in procurement costs but optimizing this portfolio can mitigate this effect.

Example 3. Consider an instance with α � 0.9, uniformly distributed demand D1 in the interval

r100, 200s, and strike price K equal to 22 USD/MWh. For simplicity, we assume a deterministic

power price P1 equal to 20.5 USD/MWh and a deterministic REC price R1 of 3.5 USD/MWh.

Invoking Proposition 1, we find z�PC and z�SC to be 107 MWh and 141 MWh, respectively. Moreover,

we have Varr rCPCpz
�
PC, w1;α,Kqs (i.e., optimal PC cost variance), Varr rCSCpz

�
PC, w1;α,Kqs (i.e.,

variance of suboptimal SC cost evaluated at z�PC), and Varr rCSCpz
�
SC, w1;α,Kqs (i.e., optimal SC

cost variance) equal to 445,840; 455,160; and 394,330, respectively. These values show that the

suboptimal SC portfolio that procures long-term power equal to z�PC has higher variance than the

optimal PC portfolio, which is consistent with Proposition 3. In contrast, in this example, the

variance of an optimized SC portfolio is lower than that of an optimal PC portfolio.
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2.2 Deterministic renewable target

Thus far, we have assumed a “stochastic” target, that is, a procurement target defined as a per-

centage of uncertain future demand. Companies also define a “deterministic” target with respect

to known past demand as this is easier to track (CDP et al. 2017). Thus, there are two possible

choices for reference demand used in practice when specifying a target.

In this section, we analyze procurement costs for a PC and an SC under a deterministic target

and compare it with analogous costs under the stochastic target discussed in §2.1. A deterministic

target involves satisfying a fraction α of known demand sD, that is, the target is α sD. Choosing a

deterministic target only affects the term corresponding to the shortfall in meeting the renewable

target in the cost functions of PCs and SCs, i.e. equations (1) and (3), respectively. Specifically,

the expression ErRpαD � zq�s in both functions is replaced by ErRspαD̄ � zq�.

An analogous result to Proposition 2 holds for the expected procurement cost of PCs and SCs

in the presence of a deterministic target (we omit this result for brevity). However, the value of

setting a deterministic target instead of a stochastic target is unclear and depends on both future

and past power demands. Proposition 4 characterizes a region for D̄ in which PCs and SCs with

deterministic targets can lead to higher procurement costs than with stochastic targets. In (5a)

and (5b) we define the optimal procurement cost, respectively, in PCs and SCs when the target is

deterministic.

CPC,Dpα,Kq :�min
z¥0

 
Kz � E rP pD � zq�s � ErRspαD̄ � zq�

(
; (5a)

CSC,Dpα,Kq :�min
z¥0

 
ErPDs � ErpK � P qzs � ErRspα sD � zq�

(
. (5b)

Proposition 4. Suppose Assumption 1 holds. Then, for each α P p0, 1s, CSCpα,Kq   CSC,Dpα,Kq

if and only if sD ¡ 1
2αz

�
SC � b

2 . Moreover, assuming ErRs ¤ ErP s, there exists an α P p0, 1s such

that CPCpα,Kq   CPC,Dpα,Kq if sD ¡ ErDs � pb�aq
2

ErP s
ErRs�ErP s .

This proposition provides support to the fact that deterministic targets are not always cost-

beneficial and companies with such targets might incur higher procurement costs compared to a

stochastic target. In particular, using a stochastic target can lower expected procurement costs

when future power is smaller than past demand, for instance, due to investments in energy efficiency

improvements (see, e.g., the supplement of CDP et al. 2017 for more details on companies with

both a renewable power target and energy efficiency initiatives). In this case, specifying an α%

deterministic target can lead to procuring more MWh of renewable power than specifying this

percentage with respect to uncertain future demand that is unlikely to exceed its historic value.
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Our findings bode well for the use of stochastic targets given recent efforts by companies to reduce

their power consumption, in spite of adding uncertainty to their target fulfillment.

2.3 Interval strike price

An interval strike price is defined by a pair pK, δq, whereK is the baseline strike price and δ the half-

length of the interval rK � δ,K � δs in which the strike price is allowed to fluctuate. In particular,

if the power price P exceeds the upper bound K � δ, then the generator pays the company the

difference P �K � δ between the power price and this upper bound. Similarly, if the power price

P is less than the lower bound K � δ, then the company has to pay the generator the difference

K � δ � P . Instead, when P belongs to the interval rK � δ,K � δs no payment between parties

occurs. Therefore, unlike the standard PPA in which the cost of procuring a unit of power is fixed,

the interval strike price has the following partially variable cost per unit:

KINTpP ;K, δq �

$'''&'''%
K � δ if P ¡ K � δ;

P if P P rK � δ,K � δs ;

K � δ if P   K � δ.

(6)

We are only aware of SC with interval strike prices and thus focus on this case here, although our

results can be easily adapted to the PC setting. The analogue of the procurement problem (4)

when using an interval strike price is

CINT
SC pα,K, δq :� min

z¥0

!
E0r rCSCpz, w1;α,K

INTpP1;K, δqqs
)
. (7)

When δ � 0, the interval strike price defined in (6) becomes KINTpP ;K, 0q � K and the optimiza-

tion model (7) satisfies CINT
SC pα,K, 0q � CSCpα,Kq. Proposition 5 compares the procurement cost

function of interval versus fixed strike prices in SCs that share the same baseline strike price K,

but where the former contract can be optimized by choosing the interval length δ. Consistent with

Assumption 1, we assume that the power price is log-normally distributed. The mean and stan-

dard deviation of power price are E0rP1s and E0rP1s
b
exppσ2

P q � 1, respectively, where σ2
P denotes

the variance of the natural logarithm of the stochastic power price P1.

Proposition 5. There exists a value δ ¡ 0 such that CINT
SC pα,K, δq   CSCpα,Kq if and only

if K ¡ E0rP1s expp�σ2
P {2q. Moreover, if K ¡ E0rP1s expp�σ2

P {2q, then CINT
SC pα,K, �q attains its

global minimum at δ equal to
b
K2 � E0rP1s2 expp�σ2

P q.

This proposition shows that an interval strike price can reduce the procurement cost relative

to a fixed strike price when K exceeds E0rP1s expp�σ2
P {2q. This threshold is a decreasing function

of the variance of the power price distribution. Thus, as σP increases sufficiently, it holds that
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expp�σ2
P {2q   1 implying that the interval strike price can reduce the cost even when the strike

price is less than the expected power price. This behavior can be attributed to the positive skew-

ness of the log-normal power price distribution, which is exppσ2
P q
b
exppσ2

P q � 1. As σP increases,

the distribution becomes right-skewed, that is, lower power prices become more probable and an

interval strike price contract with an appropriately defined half-length δ can benefit from it. Propo-

sition 5 also characterizes the optimal interval length that minimizes the procurement cost.

Overall, our analysis unveils a potential advantage of interval strike price in SCs, but suggests

some caution as this benefit is tied to the skewness of power prices, which can change over time

due to changes in mean-reversion among other factors. Empirical evidence from the literature also

suggests that the skewness of power prices could be both positive and negative (Lucia and Schwartz

2002, Geman and Roncoroni 2006, Cartea et al. 2009).

3. Dynamic procurement model

In this section, we discuss a dynamic procurement model to assist a firm in meeting a renewable

power target in a multi-period setting. In §3.1, we describe the PPA strike price structure. In §3.2,

we formulate an MDP that defines an optimal dynamic procurement policy. Since computing this

policy is intractable, in §3.3 we describe procurement heuristics that approximate our MDP.

3.1 PPA strike price

A renewable power generator typically sets a PPA strike price to recoup its project investment and

maintenance costs as well as a return on investment (NREL 2017). In addition, historical data

and models from NREL show that the PPA strike price is affected by several factors including the

average quantity of power produced as a fraction of installed capacity (i.e., capacity factor), tax

credits, improvements in technology, the contract duration, and the expected power price over the

tenor of the contract (NREL 2010, DOE 2016, Wiser and Bolinger 2017). We describe below a

model that accounts for these factors and determines a PPA strike price for a given generator and

contract. This model provides the strike prices of PPAs used as input to the procurement model

that we describe in §3.2.

Consider a renewable power generator that begins production at year i, where i belongs to a

discrete set I :� t0, . . . , I � 1u containing the years in our planning horizon. The generator has

an expected lifetime of LP years, a capacity factor equal to θi P p0, 1s, and incurs a cost of CINV
i

capturing the one-time installation and estimated maintenance costs associated with a MW of

production capacity as well as any applicable investment tax credit5. We assume that there is a

5An investment tax credit represents a one-time federal tax deduction equal to a pre-specified percentage of the
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production tax credit6 of Ti USD per MWh for the next LT
i years and that future cash flows are

discounted at rate r P p0, 1s, which can be chosen to also account for the generator’s target return

on investment. We begin by computing the fixed strike price K̂i of a PPA that spans the lifetime

of the generator using the net present value (NPV) of the contract’s cash flows. This approach is

consistent with the System Advisor Model7 (SAM; NREL 2017). The NPV of 1 MW of installed

capacity contracted via such a PPA is

NPVi �
LP¸
l�1

rlθi K̂i �

LT
i̧

l�1

rlθi Ti � CINV
i .

Setting NPVi to zero, we obtain the following strike price formula:

K̂i �
1°LP

l�1 rl

��CINV
i

θi
�

LT
i̧

l�1

rlTi

�� . (8)

Expression (8) captures the dependence of the strike price on generator vintage (i.e., the year

that production begins) by treating the production tax credit Ti, investment cost CINV
i , and capacity

factor θi as time-dependent quantities. Currently, renewable power generators in the U.S. that start

construction before 2025 are eligible for productions tax credits for 10 years from the date the facility

starts production (EPA 2023) but this status-quo is likely to change with government regulation.

Investment costs and capacity factors typically decrease and increase, respectively, over time due

to improvements in technology. The capacity factor, in addition, exhibits significant inter-region

variation. For instance, in the case of wind power, capacity factors in the “internal” regions of the

United States are significantly higher than those of coastal regions (Wiser and Bolinger 2017).

Next, we describe how the strike price K̂i in (8) can be modified to account for shorter contract

lengths and the expected power price over the tenure of the contract. Consider a PPA with a

duration of m years that is less than the lifetime LP of the generator. Shorter contracts result

in additional cash flow risk over the period of the generator’s life time for which they do not

generate revenue (ACORE 2016). We thus define a risk-adjusted strike price K̂i,m :� K̂i � K
�
m,

where K�
m ¥ 1 is a risk factor that inflates the strike price if m   LP and equals 1 otherwise,

that is, K̂i,m � K̂i when the contract spans the life of the generator. The PPA strike price is not

solely determined by NPV but is also tied to the long-term expected power price because higher

expected (future) power prices give the generator leverage to increase the PPA price since the

company’s outside option is expensive (Wiser and Bolinger 2017). To account for this effect, we

installation cost of a renewable power project.
6A production tax credit provides a per-kilowatt-hour tax credit for power generation for a fixed number of future

years from the installation of a renewable power project.
7SAM is an open source performance and financial tool designed by NREL to access the feasibility of renewable

energy projects (e.g., wind, solar, or biomass).
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lower bound the PPA strike price by the average power price over the tenure of the contract, which

is Ki,m :�
�°m

l�1 γl E
�
Pi�l

��Pi

� �
{
�°m

l�1 γl
�
, where Pi (USD/MWh) is the power price in year i

and γ P p0, 1s a yearly discount factor. Our final strike price expression for a contract delivering

power for m years starting in year i is

Ki,m :� max
 
K̂i,m, Ki,m

(
. (9)

3.2 Markov decision process

We assume the firm can enter into PPAs at each year in the planning horizon represented by I

and/or purchase power and RECs from the short-term market. A stochastic target α P p0, 1s is

enforced from year IR. This means that the target does not need to be fulfilled in the first years

IR :� t0, . . . , IR�1u but must be met in the rest of the planning horizon i P IS :� tIR, . . . , I � 1u.

We refer to sets IR and IS, respectively, as the reach and sustain periods, with I � IR Y IS.

We call M the set of potentially available PPAs, where m P M identifies the duration in years

of contract m. Signing a contract m at stage i implies a power delivery from stage i� 1 to i�m

at strike price Ki,m given by (9)8. PPA availability is modeled with binary vectors ai :� pai,m P

t0, 1u,m P Mq, where ai,m � 0 and ai,m � 1 mean that contract m is unavailable and available,

respectively, at stage i. Based on availability, the firm determines a power procurement quantity

zi,m (MWh)9. Specifically, if ai � 1, then zi,m � 0, and if ai � 0, then zi,m P t0uYrzmin
m , zmax

m s, where

zmin
m and zmax

m are minimum and maximum procurement limits. Thus, a decision is a continuous-

valued vector Zipaiq � R|M|
� that specifies procurement quantities for each PPA type m P M.

The MDP state at a stage i is composed by an endogenous and an exogenous state component

pxi, wiq P Xi �Wi. The former component xi :� pxi,l, l P t0, . . . ,M � 1uq tracks the on-hold PPA

inventory, where xi,l is the power in MWh delivered in year i� l by all PPAs, and evolves according

to the vector transition function fipxi, ziq when a procurement decision zi P Zipaiq is made

xi�1,l � fipxi, ziql �

$''&''%
xi,l�1 �

¸
mPM:m¡l

zi,m, if l P t0, . . . ,M � 2u;

zi,M , if l � M � 1.

The latter component wi :� pwi,k, k P Kq contains the stochastic factors, indexed by K, that drive

the dynamics of power price Pi (USD/MWh), REC price Ri (USD/MWh), and electricity demand

Di (MWh/year). This component evolves according to a Markovian process independently of zi.

Signing a PPA of length m has an associated procurement cost
°Li,m

l�1 γlKi,m zi,m over the tenure

8Our MDP formulation and solution methodology are flexible to handle other strike price definitions.
9The MWh quantity is the product of the contracted capacity in MW, the duration of a period in hours, and the

capacity factor of the generator. This is reasonable for long-term procurement planning.
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of the PPA, where Li,m :� mintm, I � iu equals the number of periods of power delivery within

the planning horizon and γ P r0, 1q is the discount factor. Demand not met by power from PPAs at

stage i, that is ui :� maxtDi � xi,0, 0u, is procured from the short-term market in both the reach

and sustain periods at a price Pi USD per MWh. In addition, any shortfall vi :� maxtαDi� xi,0, 0u

in meeting the target during the sustain period requires additional REC purchases at Ri USD per

MWh. For each stage i P I, the cost accrued when entering into PCs is shown below.

PCs: cipxi, wi, ziq �
¸

mPM

Li,m̧

l�1

γlKi,m zi,m �

$'&'%
Pi ui, if i P IR;

Pi ui �Ri vi, if i P IS.

(10)

When using SCs, the cost incurred at stage i is instead:

SCs: cipxi, wi, ziq �
¸

mPM

Li,m̧

l�1

γlKi,m zi,m �

$'&'%
Pi pDi � xi,0q, if i P IR;

Pi pDi � xi,0q �Ri vi, if i P IS.

(11)

Comparing (10) and (11) shows that the procurement cost at stage i is the same for PCs and SCs

if the on-hand contracts delivering power at i do not exceed demand, i.e. xi,0 ¤ Di. On the other

hand, if xi,0 ¡ Di, SCs allow the firm to purchase from the grid only the power that is needed to

meet demand. In this case, the term pDi�xi,0q is negative. We assume that the terminal costs when

employing PCs and SCs are cIpxI , wIq :� PI uI � RI vI and cIpxI , wIq :� PIpDI � xI,0q � RI vI ,

respectively. In other words, only short-term procurement of power and RECs is possible.

A stage i procurement policy πi is a collection of stage-dependent functions tZπi
j , j P Iiu map-

ping states to actions, with Ii :� ti, . . . , I � 1u. Policy πi is feasible if any state pxj , wjq P Xj �Wj

is associated with a feasible action zjpxj , wjq P Zjpajq for j ¥ i. An optimal policy then solves

Vipxi, wiq :� min
πiPΠi

E

�¸
jPIi

γj�icjpx
πi
j , wj , Z

πi
j pxπi

j , wjqq � γI�icIpx
πi
I , wIq

�����xi, wi

�
, (12)

where Πi the set of feasible policies, Vipxi, wiq is the MDP value function at stage i and state

pxi, wiq, E is the expectation with respect to the future exogenous states, and xπi
j is the endogenous

state reached in stage j when following the policy πi starting from the initial state pxi, wiq.

MDP (12) is challenging to solve due to well-known curses of dimensionality (Bertsekas 2011,

Powell 2011). Specifically, the endogenous state xi and decision zi are M - and |M|-dimensional

continuous vectors, respectively, and the exogenous state wi may also be high dimensional when

using a multi-factor stochastic model for the evolution of uncertainty. Moreover, it can be easily

shown that the value function of (12) is non-convex in general. Thus, using ADP methods that

rely on convexity to handle high-dimensional endogenous states is not viable. Instead, we employ

reoptimization approaches.
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3.3 Procurement heuristics

We consider four procurement heuristics of increasing complexity from Trivella et al. (2023). The

simplest heuristic involves only short-term procurement, that is, the entire power demand Di is

purchased on a short-term basis in each stage i P I Y tIu. A portion αDi of unbundled RECs is

also procured in the sustain period IS Y tIu to meet the target. This policy has no demand risk

but is fully exposed to volatile power and REC prices. Since stages correspond to years in our

numerical setting, hereafter we refer to short-term power purchase as a yearly average purchase10,

as opposed to the long-term (i.e. multi-year) power delivery from PPAs.

The second policy, denoted forecast-based block heuristic (FBHm), uses a single PPA of length

m and renews it every m years, that is, each time a contract expires a new one of the same length

is signed. To elaborate, the first contract is entered at the last year of the reach period, IR�1, and

delivers renewable power during the first m years of the sustain period. The second contract is

ordered one year before the first contract expires to ensure the continuous delivery of power from

PPAs. This process is repeated until the end of the planning horizon. The quantity zi,m P Zipaiq

associated with a new contract signed at stage i is obtained by solving a deterministic model that

minimizes the procurement cost given forecasts of demand, PPA availability, and power and REC

prices over the delivery period of m years11. Any shortfall in meeting demand or the target using

the incumbent PPA is addressed via purchases of short-term power and/or unbundled RECs.

The third policy, called forecast-based reoptimization heuristic (FRH), can sign PPAs at any

period, thus allowing for the use of a portfolio of PPAs of different lengths. At stage i and state

pxi, wiq, FRH computes procurement decisions as an optimal solution of a math program obtained

by replacing random quantities in MDP (12) by their respective forecasts.

min
¸
jPIi

γj�icj
�
yj ,Erwj |wis, zj

�
� γI�icI

�
yI ,ErwI |wis

�
(13a)

s.t.: yi � xi, (13b)

yj�1 � fjpyj , zjq, @ j P Ii, (13c)

yj P Xj , @ j P Ii Y tIu, (13d)

zj P Zjpāi,jq, @ j P Ii. (13e)

The objective function (13a) is the sum of discounted procurement costs when using forecasts

of random quantities. Constraint (13b) initializes the current state. Constraints (13c), (13d),

10Our MDP/methods can handle multiple settlements in a year, e.g. monthly, but will require higher simulation
time to estimate costs.

11Forecasts are conditional expectations of random prices and demand. For contract availability, a stage-j forecast
for contract m P M made at stage i, with j ¥ i, is defined as āi,j,m � 1, if Eraj,m|wis ¡ 0.5, and āi,j,m � 0 otherwise.
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and (13e) ensure the feasibility of state transitions, endogenous states, and actions, respectively.

Although (13) computes procurement decisions zj for stages j from i to I, we only implement z�i

corresponding to the current stage. Then, an analogue of (13) starting from the updated endogenous

state pxi�1 � fipxi, z
�
i q, wi�1q and revised forecasts is formulated, and the procedure is repeated

until the end of the planning horizon.

Finally, we consider the information-relaxation based reoptimization heuristic (IRH), which em-

ploys a rolling horizon framework as FRH but relies on the information relaxation and duality theory

(Andersen and Broadie 2004, Haugh and Kogan 2004, Brown et al. 2010) to compute procurement

decisions. Specifically, a stage i and state pxi, wiq, the IRH decision is based on the following steps:

(i) Generate H Monte Carlo sample paths of uncertainty tW h
i � pwi, w

h
i�1, . . . , w

h
I q, h � 1, . . . ,Hu.

(ii) For each sample path h � 1, . . . ,H, solve the deterministic math program (14)

min
¸
jPIi

γj�i
�
cj
�
yj , w

h
j , zj

�
� qj

�
yj , zj ,W

h
j

��
� γI�icIpyI , w

h
I q (14a)

s.t.: yi � xi, (14b)

yj�1 � fjpyj , zjq, @ j P Ii, (14c)

yj P Xj , @ j P Ii Y tIu, (14d)

zj P Zjpajq, @ j P Ii, (14e)

which is similar in structure to (13) but uses perfect information over sample path h and a dual

penalty qi
�
xi, zi,Wi

�
to correct the costs for this knowledge, where Erqi

�
xi, zi,Wi

���wis ¥ 0.

(iii) Consider the stage i optimal sample-dependent decisions tz�i,h, h � 1, . . . , hu and extract a single

non-anticipative decision from this distribution, e.g., the mean or the component-wise median. See

Trivella et al. (2023) for related theory and details.

Since dual penalties based on MDP value function approximations are difficult to compute in

our setting, we consider a dual penalty that is linear in the procurement decision, which is

qipxi, zi,Wiq :�
¸

mPM
zi,m

m̧

l�1

¸
kPK

γlθ
�
wi�l,k � Erwi�l,k|wis

�
. (15)

We implement IRH using both zero and linear dual penalties in math program (14). These two

variants, dubbed IRH0 and IRH�, deliver policies but also dual bounds. We consider hereafter the

mean decision in step (iii), as we found its performance to be similar to the median decision.

Table 1 summarizes the policies considered in our numerical study. Estimating the value of

any of these policies provides an upper bound on the optimal policy cost. This estimation involves

Monte Carlo simulation of this policy and averaging the resulting sum of discounted costs across

sample paths.
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Table 1: Summary of procurement policies.

Policy Description�
Simple

heuristics



Short-term Short-term purchase of power and RECs
FBHm Forecast-based block heuristic with single PPA m�

Reoptimization
heuristics


 FRH Forecast-based reoptimization heuristic
IRH0 Information-relaxation reoptimization with zero dual penalty
IRH� Information-relaxation reoptimization with linear dual penalty

4. Numerical study

In this section, we assess the cost of meeting a target when using PCs and SCs on realistic instances.

We describe our instance sets and computational setup in §4.1. In §4.2, we discuss the performance

of PCs and SCs to meet a target under different procurement strategies and market conditions. In

§4.3, we present the procurement insights resulting from the numerical study.

4.1 Instances and computational setup

We consider a planning horizon of 40 years (I) and a stochastic target of 90% pα) to be attained by

year 5 pIRq. We use a contract set M � t5, 10, 15, 20, 25u with minimum procurement quantities

zmin
m � 20 θi MWh for all m P M based on the portfolio of Google (Google 2016b) following Trivella

et al. (2023), and set a very loose upper bound on these quantities (zmax
m � 1000 θi MWh). We

choose an annual discount factor (γ) of 0.97 so that the corresponding risk-free rate is equal to the

10-year United States treasury rate in May 2018 (Bloomberg 2018).

Table 2: Parameters defining the PPA strike price.

Name Value Unit Name Value Unit

CINV
0 1.7� 106 USD/MW LT

i 10 years
LP 30 years ξ 1% -
θi 3,066 hours/year r 0.94 -
Ti 23 USD/MWh K5

� 1.1 -

Table 2 defines the parameters of the PPA strike price of §3.1. Following NREL (2010), we use

a functional form for CINV
i that decreases over time by a fixed percentage ξ; specifically, it evolves

according to a learning model CINV
i � CINV

0 p1 � ξqi. We chose the initial cost (CINV
0 ) based on

2015–2016 wind projects in the U.S. (EIA 2018b) and the learning rate (ξ) based on the range of

values in NREL (2010). Wind turbines are usually designed to operate for 20–25 years but many

remain operational for a longer period of time (Ziegler et al. 2018), thus we select the lifetime

(LP) to be 30 years also to account for improving technology. The capacity factor (θi) of 35%
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is representative of the observed average for wind farms in the U.S. (EIA 2018a) and is assumed

to be fixed throughout the planning horizon. The duration of the production tax credit (LT
i ) is

based on United States policy in 2023, and its amount (Ti) within the range of values offered to

wind energy projects (EPA 2023). Moreover, we assume the tax credit expires in 5 years, i.e., it

is only granted to renewable energy facilities commencing construction at stages i   5. We set

the generator discount factor prq such that its respective return on investment is roughly twice the

risk-free interest rate. We use a maximum risk factor Km
� � 1.1 for m � 5, i.e. a 10% premium for

the 5-year PPAs, which decreases linearly as m is increased.

Next, we briefly introduce the stochastic processes we employed to model the evolution of

uncertain quantities. We model the power price with a mean-reverting stochastic process with

seasonality and jumps and the REC price with a Jacobi diffusion process, as done in Trivella et al.

(2023) (see Online Supplement D in that paper for details on the stochastic differential equations,

the market data used for calibration, and the fitted parameters). The PPA availability follows

Bernoulli random variables, where probabilities pm P r0, 1s that contracts are available are set to

t0.4, 0.5, 0.6, 0.7, 0.4u for m P M based on Baker McKenzie (2015) and Wiser and Bolinger (2017).

Additionally, the electricity demand of a company is treated as uncertain due to various factors

including technology change, company expansion programs, energy efficiency programs, and envi-

ronmental conditions. We model this uncertainty using a geometric Brownian motion, which is a

common choice in the procurement literature to describe demand uncertainty (Berling and Rosling

2005, Kouvelis et al. 2013, Secomandi and Kekre 2014). The process is defined by

dDt � µDDt dt� σDDt dWt, (16)

where µD, σD, and Wt represent drift, volatility, and a standard Brownian motion, respectively. To

estimate the parameters of (16), we use as reference the approximate power consumption of Google

data centers in the United States (Google 2016a) and estimate the consumption of a facility with

two data centers as 600,000 MWh/year, and use this value as D0. We assume µD � 0, that is zero

demand drift because of two opposing factors: (i) the increasing size and demand for such centers,

which would suggest a positive drift; (ii) improving technology and energy efficiency initiatives

implying a negative drift. We chose σD � 0.05 based on Secomandi and Kekre (2014).

In Table 3, we perturb the parameters defining our baseline instance to obtain instance sets

S1–S5, comprising of 17 instances in total. These instances allow us to analyze the behavior of

procurement policies and the robustness of methods as market parameters change. We describe

how these perturbed instances were obtained in §4.2.

All procurement heuristics discussed in §3.3 were coded using C++ and Gurobi as the math
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Table 3: Extended instance sets with the baseline instance parameter superscripted by B.

Set Modified parameter Values

S1 Renewable energy target α t0.6, 0.7, 0.8, 0.9B, 1.0u
S2 PPA availability pm for all m P M t�0.2, �0.1, 0B, �0.1, �0.2u
S3 Long-term mean of power price t20, 30, 39.7Bu USD/MWh
S4 Long-term mean of RECs price t5, 9.4B, 20u USD/MWh
S5 Generator discount factor r t0.9, 0.91, 0.92, 0.93, 0.94Bu

programming solver. We use 1000 Monte Carlo sample paths to estimate the value of heuristic

procurement policies (i.e., upper bounds on the optimal policy value), as this choice resulted in

standard errors below 1% of the mean. For the IRH upper bound estimation process, we use 30

inner sample paths at each stage of an evaluation sample path and then computed the mean to

back out a non-anticipative control as discussed in §3.3. In this setting, the time taken to compute

a decision at a given stage and state is always less than 1 second under each policy. Computing the

upper bound of a policy (i.e., applying it over the entire planning horizon in Monte Carlo simulation)

takes on average 10 seconds for FBHm, and 28 and 216 minutes for FRH and IRH (each variant),

respectively. Thus, the computational burden of IRH is higher because this method solves at each

stage 30 math programs. Finally, estimating the lower bound with IRH takes 10 minutes on average.

4.2 Comparison of physical and virtual contracts

Below we compare the methods in Table 1 on the instance sets S1–S5 considering both PC and

SC variants of MDP (12). For each instance, we report the procurement cost (i.e., the expected

discounted total cost over the planning horizon) and the optimality gap with respect to the IRH�

lower bound, labeled LB�. We omit showing the IRH0 lower bound because it is worse than LB�

on average by 5% and 50% for the PC and SC variants, respectively. In the remaining text, when

discussing the performance of a method, we are referring to the quality of its procurement policy.

We begin by discussing the results for the instance set S1, which was obtained by varying the

target α from 60% to 100%. The corresponding results are displayed in Figure 2. IRH� performs

best on all the S1 instances and has average optimality gaps of 2.1% and 4.2% in the PC and SC

contract settings, respectively. The IRH0 optimality gap is similar to IRH� when using PCs (2.6%

on average) but substantially worse under SCs (11% on average). While FRH optimality gaps are

smaller than analogous IRH0 gaps by 3.6% on average when using SCs, the former method is on

average 3.2% worse than the latter method under PCs. The performance of short-term and block

heuristics is largely inferior to reoptimization methods.

The S2 instances vary the probability pm of each contract m P M from its base value between
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Figure 2: Procurement costs and optimality gaps for the S1 instance set.

�20% and �20% to understand the effect of changing the contract availability on methods. The

results corresponding to these instances are reported in Figure 3.

Figure 3: Procurement costs and optimality gaps for the S2 instance set.

The relative ranking of methods is similar to the S1 instances: IRH� achieves the smallest

optimality gaps across instances (2.4% and 4.3% on average for PCs and SCs, respectively). How-

ever, contract availability impacts single-contract methods (i.e., FBHm) and multi-contract meth-

ods (FRH and IRH) in a markedly different manner. In particular, both the procurement cost and

optimality gap of FBHm increase substantially in the presence of contract shortage. For instance,

the BH20 procurement cost increases by more than 5% when decreasing contract availability from

�20% to �20% relative to the baseline. In contrast, the costs associated with both FRH and IRH,

which consider multiple PPAs, are fairly stable under such availability changes (the maximum cost
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increase is less than 0.8%).

The instance sets S3–S4 are created by varying the long-term mean of power and REC prices.

Specifically, the calibrated price model has long-term mean of power and RECs of 39.7 USD/MWh

and 9.4 USD/MWh, respectively. Despite the spike in power prices observed in 2022, which is

linked to specific geopolitical events, the increasing penetration of renewable energy suggests that

in the long-term (e.g., 40 years) prices will decrease (Mills et al. 2017). To understand this effect,

we consider the instances S3 in which the long-term mean power price is reduced to 30 USD/MWh

and further to 20 USD/MWh. In contrast to the power price, the average REC price can increase or

decrease in the long-term due to regulatory changes (EPA 2018). To account for this effect, the long-

term mean of the REC price is decreased to 5 USD/MWh and increased to 20 USD/MWh in the

instance set S4. Results for the S3 and S4 instance sets are displayed in Figures 4 and 5, respectively

Figure 4: Procurement costs and optimality gaps for the S3 instance set.

The relative performance of methods on these sets are consistent with our prior observations

on the S1–S2 instances. If the long-term mean power price decreases, then the procurement cost

decreases substantially under all policies. In contrast, when the long-term mean of the REC

price changes, the procurement costs and optimality gaps of the spot and BH policies are affected

substantially, while the reoptimization methods, FRH and IRH, are stable across instances. This

behavior is due to FRH/IRH purchasing a considerable amount of PCs/SCs even when the REC

prices are low, which insulates their procurement policies to REC price increases.

The instance set S5 considers changes in the PPA strike price as a result of the generator varying

r from 0.94 to 0.9, which models the return on investment changing between 6.4% and 11.1%. The

corresponding results displayed in Figure 6 show that the procurement cost increases under all
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Figure 5: Procurement costs and optimality gaps for the S4 instance set.

methods when r decreases, except for the short-term policy. Equation (9) helps understand this

behavior. From this equation it follows that reducing r raises the NPV component of the PPA

strike price and potentially the PPA strike price itself. Therefore, FBHm, FRH, and IRH� use less

PPAs and rely more on short-term purchases as r decreases, which results in the performances of

different methods becoming closer to each other.

Figure 6: Procurement costs and optimality gaps for the S5 instance set.

Overall, using simple procurement heuristics, such as short-term and FBHm, on our instances

results in higher procurement costs, whereas reoptimization methods work well, with IRH� out-

performing FRH. Consistent with the literature, this superior performance of IRH confirms that

obtaining non-anticipative decisions by averaging away future information from anticipative ac-

tions is better than computing decisions based on a single (non-anticipative) forecast, as done in
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FRH. The near-optimal and stable performance of IRH� across instance sets also indicates that

the mean, a simple and inexpensive decision measure, is effective for use with IRH. Similarly, sim-

ple linear dual penalties appear sufficient to obtain high quality procurement decisions using IRH,

in addition to good lower bounds.

4.3 Procurement insights

Figure 2 shows that the procurement cost increases as expected with the target α. Specifically, the

procurement costs under PCs and SCs both vary linearly for α ¤ 0.8 and in a strictly convex and

linear manner, respectively, for α ¡ 0.8. The procurement costs under SCs are in general lower than

analogous costs under PCs (especially for high α values), which provides a cost incentive for using

SCs in addition to their well-known advantage of being free from the physical delivery constraints

associated with PCs. For instance, the procurement cost incurred under SCs is on average 2.5%

lower than under PCs when using IRH�. This comes at the expense of increased cash flow volatility

under SCs as the coefficient of variation is on average 3.5% higher than PCs. These findings are

largely in sync with our analytical results in §2.

Consistent with the extant procurement literature, we find that the inclusion of long-term

contracts (i.e., PPAs in our case) in procurement portfolios helps hedge against price uncertainty

and reduces procurement costs. In addition, our results indicate that the use of PPAs is more

valuable to companies that have committed to a renewable power purchase target. This is seen,

for instance in Figure 2, where the difference between the procurement costs of the short-term and

IRH� policies increases with the target. Therefore, as corporations become more aggressive with

procuring renewable power, the use of PPAs, in particular SCs, is likely to be higher, which is

consistent with trends observed in practice (BNEF 2018). Constructing portfolios with PPAs is

non-trivial as shown by the poor performance of the block heuristics that use a single contract type.

The fairly flat procurement cost of the IRH� policy to changes in contract availability suggests that

dynamically constructed portfolios containing multiple PPAs are robust to such variability, which is

a useful property. This observation suggests some level of substitutability between different subsets

of PPA contracts. However, individual contracts are not fully substitutable for another; if they

were, the procurement costs of the block heuristics and IRH� would be similar.

Portfolios computed by IRH� on our baseline instance contain PCs with lengths 5, 10, 15, 20,

and 25 years in the proportions 8.7%, 17.8%, 23.1%, 29.2%, and 21.2%, respectively, on average

across the evaluation samples and stages. Analogous proportions when using IRH� with SCs are

3.4%, 10.8%, 15.2%, 31.4%, and 39.2%, which shows that longer contracts are used more often
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due to SCs having lower over-procurement risk than PCs as also discussed in §2.1. We observed

that the stage-averaged mix of PPAs did not change significantly across instances. For example,

on the S1 instances, the proportion of PPAs of different lengths varied by at most 4%. However,

this mix does change substantially over time, in a manner that is more pronounced in the reach

period, with these changes remaining significant in the rest of the planning horizon. For example,

the proportion of 5, 10, 15, 20, and 25 year PPA contracts under IRH� in the baseline instance

fluctuates by as much as 11.8%, 18.4%, 17.6%, 22.8%, 13.9%, respectively, between years 10 and

40. Thus, the near-optimal portfolios computed by IRH� indeed change dynamically over time.

Finally, using PPAs for procurement is not always beneficial. For instance, if these contracts

become expensive due to generators expecting a higher rate of return (see Figure 6) then spot

procurement would displace signing PPAs and the multi-stage procurement problem will reduce

to procuring power and RECs as needed from the short-term market. This seems unlikely given

the increasing use of PPAs (IEA 2021) and decreasing production costs associated with renewable

power (IRENA 2021). Under low production costs, the strike price that a generator charges is

likely to be highly correlated with the spot market, in particular, the expected spot price over the

tenor of the contract, a feature that we try to capture in the strike price model of §3.1. In such an

environment, generators would remain profitable even after current production tax credits expire

resulting in PPAs continuing to play an important role in a firm’s renewable power procurement

strategy. We find support for this statement in additional experiments that we conducted, where

we removed the production tax credit in our base instance and found procurement costs to increase

by only 1.3% when using PCs and by 1.7% with SCs.

5. Conclusion

In this paper, we studied the corporate procurement of renewable power to meet a renewable

target using physical and virtual fixed-volume PPAs when demand and (REC and power) prices

are uncertain. By analyzing a two-stage stochastic model, we characterized optimal procurement

quantities and costs in closed form when using SCs and PCs and different strike price structures

following the practitioner literature. In particular, we showed that an SC lowers the procurement

cost compared to a PC without necessarily increasing volatility. We also established the conditions

under which adopting an interval strike price and/or a deterministic target is advantageous. Overall,

our analysis provided strategic insights into favorable PPA structures and procurement behavior.

To facilitate tactical power procurement planning, we formulated a multi-period MDP model

with short-term and long-term procurement options, which is challenging to solve. Heuristic pro-
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curement decisions can nevertheless be obtained by leveraging an easy-to-implement reoptimization

method, FRH, and a state-of-the-art scheme that combines reoptimization and the information re-

laxation and duality approach, IRH, which also provides a lower bound on the optimal cost. Our

numerical findings showed that IRH procurement decisions are near-optimal on realistic instances

and outperform FRH and problem-specific heuristics. Moreover, procurement portfolios with mul-

tiple PPAs reduce power purchase costs significantly in the presence of a target compared to using

a single PPA. In addition, such portfolios are effective at hedging against uncertainty in contract

availability and REC prices. Finally, consistent with our two-stage analysis, the results from our

multi-period planning model underscored the benefit of using SCs over PCs, as the former contract

type leads to procurement costs that are 2.5% lower on average across the 17 instances we tested.
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Proofs

To ease notation, in this appendix we represent E0 by E and the random variables D1, P1, and R1

by D, P , and R, respectively. Furthermore, we denote by N pµ, σ2q a normal distribution with mean

µ and variance σ2, and by ϕ and Φ the probability distribution function (PDF) and cumulative

distribution function (CDF), respectively, of a standard normal distribution N p0, 1q.
Lemma 1 is used in the proof of Proposition 1. Define QPCpz;α,Kq :� Er rCPCpz, w1;α,Kqs and

QSCpz;α,Kq :� Er rCSCpz, w1;α,Kqs as the expected procurement costs under a PC and an SC,

respectively.

Lemma 1. Under Assumption 1, there exist optimal procurement decisions z�PC and z�SC minimiz-

ing, respectively, QPCpz;α,Kq and QSCpz;α,Kq, that belong to the interval rαa, αbs.
Proof. We start by considering PCs, and then move to SCs. In both cases, we will show that no

unique optimal solution exists in Ω :� r0, αaq Y pαb, bs, which establishes the desired result. Recall

that the power demand D follows a uniform distribution in the interval ra, bs, and its CDF is equal

to 0 for z   a, pz � aq{pb� aq for z P ra, bs, and 1 for z ¡ b.

The derivative of QPCpz;α,Kq with respect to z exists in the interval r0, αas and is equal to

dQPCpz;α,Kq
dz

���
zPr0,αas

� K � E rP sPr pD ¥ zq � E rRsPr pαD ¥ zq � K � E rP s � E rRs ¤ 0,

where the second equality holds since Pr pD ¥ zq � Pr pαD ¥ zq � 1 for z P r0, αas, and the

inequality follows from the strike price upper bound (i.e., K ¤ ErP s � ErRs) in Assumption 1.

Therefore, QPCpz;α,Kq is non-increasing in r0, αaq, has no unique optimal solution in this half-

open interval, and we can focus on z ¥ αa to search for an optimal solution. Similarly, the derivative

exists in rαb, bs and is equal to

dQPCpz;α,Kq
dz

���
zPrαb,bs

� K � E rP sPr pD ¥ zq ¥ K � E rP s ¥ 0,

where the last inequality follows from the strike price lower bound (i.e., K ¥ ErP s) under Assump-

tion 1. Therefore, QPCpz;α,Kq is non-decreasing in pαb, bs, has no unique optimal solution in this

interval, and an optimal solution satisfies z ¤ αb. We thus can conclude that z�PC belongs to the

interval rαa, αbs.
We proceed to show that an analogous result holds for the solution z�SC of minz¥0QSCpz;α,Kq.

The derivative of QSCpz;α,Kq with respect to z exists in the two intervals r0, αas and rαb, bs with
values, respectively, equal to

dQSCpz;α,Kq
dz

���
zPr0,αas

� ErK � P s � E rRsPr pαD ¥ zq � K � E rP s � E rRs ¤ 0,
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dQSCpz;α,Kq
dz

���
zPrαb,bs

� ErK � P s � K � E rP s ¥ 0,

where both inequalities follow from Assumption 1. Following the same argument used above in the

case of PCs, we can conclude that z�SC belongs to the interval rαa, αbs.

Proof of Proposition 1. We start by determining the optimal procurement quantity under PCs,

and then move to SCs.

From Lemma 1, we know that there exists an optimal solution to minz¥0QPCp�;α,Kq in

the interval rαa, αbs, thus we can limit the search to this interval. The expected cost function

QPCpz;α,Kq is convex in the procurement size z in the interval rαa, αbs since the second-order

derivative is positive:

d2QPCpz;α,Kq
dz2

���
zPrαa,αbs

� ErP s1tz¥au

b� a
� ErRs 1

αb� αa
¡ 0.

Therefore, the optimal quantity z�PC can be calculated using the first-order condition

dQPCpz;α,Kq
dz

� K � E rRsPr pαD ¥ zq � E rP sPr pD ¥ zq � 0. (E.1)

We proceed by considering two cases.

Case 1 : PrpD ¥ zq � 1. Hence we have z�PC ¤ a in this case. The first-order condition (E.1)

simplifies to

K � ErRs b�
z
α

b� a
� ErP s � 0 ðñ z�PC � α

�
b� K � ErP s

ErRs pb� aq
	
. (E.2)

Enforcing z�PC ¤ a using solution (E.2) results in an upper bound on α equal to

ᾱ � aErRs
bErRs � pK � ErP sqpb� aq . (E.3)

Case 2 : PrpD ¥ zq   1. Using PrpD ¥ zq � pb� zq{pb� aq, we obtain z�PC ¡ a in this case.

Moreover, solving the first order condition (E.1) gives

z�PC �
�Kpb� aq � pErRs � ErP sq b

1
αErRs � ErP s .

Note that z�PC ¡ a is satisfied when α ¡ ᾱ. In conclusion, the optimal PC procurement z�PC is

given by

z�PC �
$&
%

α
�
b� K�ErP s

ErRs pb� aq
	
, if α ¤ ᾱ,

�Kpb�aq�pErRs�ErP sqb
1
α
ErRs�ErP s , if α ¡ ᾱ.

Next, consider an SC. As in the PC case, by Lemma 1, there exists an optimal solution to

minz¥0QSCpz;α,Kq in the interval rαa, αbs, thus we can limit our search space. This function is
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strictly convex in z because its second derivative is positive by Assumption 1:

d2QSCpz;α,Kq
dz2

���
zPrαa,αbs

� ErRs 1

αb� αa
¡ 0.

Thus, the optimal SC quantity z�SC can be calculated by applying the first-order condition:

dQSCpz;α,Kq
dz

���
zPrαa, αbs

� 0

ðñ K � ErP s � E rRsPr pαD ¥ zq � 0

ðñ z�SC � α
�
b� K � ErP s

ErRs pb� aq
	
.

Proof of Proposition 2. We characterize the behavior of CPCpα,Kq and CSCpα,Kq as functions
of α, respectively, in part (a) and part (b) of the proof, and compare them in part (c).

(a) When α P r0, ᾱs, we have z�PC P rαa, as, which implies PrpD ¥ z�PCq � 1, and the optimal cost

becomes

CPCpα,Kq � K z�PC � ErP pD � z�PCqs � ErRpαD � z�PCq�s.

Using the characterization of z�PC from Proposition 1, the derivative of this function with respect

to α is

dCPCpα,Kq
dα

���
αPr0,sαs

� K
z�PC
α

� ErP s
�
� z�PC

α

	
� E

�
R
�
D � z�PC

α

	
�

�
� pK � ErP sqz

�
PC

α
� E

�
R
�
D � z�PC

α

	
�

�
.

Since z�PC is linear in α within the interval r0, ᾱs, z�PC{α and thus dCPCpα,Kq{dα are independent

of α. Moreover, dCPCpα,Kq{dα is non-negative because K ¥ ErP s by Assumption 1. Therefore,

CPCp.,Kq is a linear function of α in the interval r0, ᾱs.
We show next that CPCp�,Kq is convex increasing with the target when α P pᾱ, 1s. In this case,

z�PC P pa, αbs and PrpD ¥ z�PCq   1. Expanding the definition of CPCpα,Kq gives

CPCpα,Kq � K z�PC � ErP pD � z�PCq�s � ErRpαD � z�PCq�s

� K z�PC � ErP s
» b

z�PC

D � z�PC
b� a

dD � ErRs
» b

z�PC{α

αD � z�PC
b� a

dD

� K z�PC �
ErP s
b� a

�b2
2
� z�2PC

2
� z�PCpb� z�PCq

	
� ErRs

b� a

�
α
�b2
2
� z�2PC

2α2

	
� z�2

�
b� z�PC

α

	�
� K z�PC � ErP s 1

2 pb� aqpz
�
PC � bq2 � ErRs 1

2αpb� aqpz
�
PC � αbq2.

The first derivative of CPCpα,Kq is

dCPCpα,Kq
dα

���
αPpsα,1s

� ErRs p�aK � b pK � ErP spα� 1qqq paK � b p�K � ErP s � 2ErRs � αErP sqq
2 pb� aqpErRs � αErP sq2 .
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The denominator as well as the third term of the product in the numerator are strictly positive due

to the bounds on the strike price in Assumption 1. We show that the second term in the numerator

is also strictly positive using the following chain of inequalities:

�aK � b pK � ErP spα� 1qq ¥ �aK � b pK � ErP spᾱ� 1qq

� pb� aq ppbK � bErP sqpErRs �K � ErP sq � aKpK � ErP sqq
bErRs � pK � ErP sqpb� aq

¡ 0.

The first inequality follows by lower bounding α by ᾱ, the first equality by replacing ᾱ with its

full expression given in (E.3) and simplifying the resulting terms, and the second inequality results

from both the numerator and denominator being positive under the bounds on the strike price

in Assumption 1. In addition to the first derivative being positive, the second derivative is also

positive as it is equal to

d2CPCpα,Kq
dα2

���
αPpsα,1s

� ErP sErRspaK � b p�K � ErP s � ErRsqq2
pb� aqpErRs � αErP sq3 ¡ 0,

where the strict inequality holds due to Assumption 1. Thus, the procurement cost is a strictly

convex increasing function in the target level for α P rsα, 1s.
(b) From Proposition 1 we know that z�SC is linear in α. The slope of CSCpα,Kq with respect to α is

dCSCpα,Kq
dα

���
αPr0,1s

� pK � ErP sqz
�
SC

α
� E

�
R
�
D � z�SC

α

	
�

�
,

which is independent of α. This implies that CSCpα,Kq is linear in α.

(c) From the proofs of parts (a) and (b) it follows that dCSCpα,Kq{dα equals dCPCpα,Kq{dα when

α ¤ ᾱ. Therefore, since CPCpα,Kq and CSCpα,Kq coincide when α � 0, these two costs are the

same for α P p0, ᾱs. Furthermore, CPCpα,Kq is strictly convex increasing in α for α P pᾱ, 1s, while
CSCpα,Kq remains linear with the same slope, which implies that the former cost is higher than

the latter cost in this interval.

Proof of Proposition 3. Recall that rCPCpz, w1;α,Kq � Kz�P pD�zq��RpαD�zq�. Defining

Y pzq � �P pz�Dq�, we have rCSCpz, w1;α,Kq � rCPCpz, w1;α,Kq�Y pzq. We start by showing that

Varr rCSCpz, w1;α,Kqs ¥ Varr rCPCpz, w1;α,Kqs. Since Varr rCSCpz, w1;α,Kqs � Varr rCPCpz, w1;α,Kqs�
VarrY pzqs � 2Covr rCPCpz, w1;α,Kq, Y pzqs, and VarrY pzqs ¥ 0, the proof reduces to showing that

Covr rCPCpz, w1;α,Kq, Y pzqs ¥ 0, which we illustrate using the following chain of inequalities:

Covr rCPCpz, w1;α,Kq, Y pzqs
�CovrKz � P pD � zq� �RpαD � zq�,�P pz �Dq�s (E.4a)

�CovrP pD � zq� �RpαD � zq�,�P pz �Dq�s (E.4b)

�� CovrP pD � zq�, P pz �Dq�s � CovrRpαD � zq�, P pz �Dq�s (E.4c)

�� ErP 2pD � zq�pz �Dq�s � ErP pD � zq�sErP pz �Dq�s
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� ErPRpz �Dq�pαD � zq�s � ErRpαD � zq�sErP pz �Dq�s (E.4d)

�ErP pD � zq�sErP pz �Dq�s � ErRpαD � zq�sErP pz �Dq�s (E.4e)

¥ 0, (E.4f)

where (E.4a) follows from the definition of rCPCpz, w1;α,Kq, (E.4b) is a consequence of Kz being

a constant, (E.4c) follows from the linearity of the covariance, and (E.4d) from the well-known

property that CovpA,Bq � ErABs �ErAsErBs if A and B are two random variables. The equality

in (E.4e) follows from pD � zq� � pz � Dq� � 0 and pz � Dq� � pαD � zq� � 0, and (E.4f) is a

consequence of all expectations involving only non-negative random variables.

If Prpz ¡ Dq ¡ 0, then VarrY pzqs ¡ 0, which combined with the non-negative covariance (E.4f)

gives Varr rCSCpz, w1;α,Kqs ¡ Varr rCPCpz, w1;α,Kqs. Instead, if Prpz ¡ Dq � 0, then Y pzq � 0,

which implies that Varr rCSCpz, w1;α,Kqs � Varr rCPCpz, w1;α,Kqs.

The proof of Proposition 4 relies on Lemma 2.

Lemma 2. Under Assumption 1, it holds that:

(a) The optimal PC procurement quantity z�PC,D with deterministic RPPT, αD̄, is given by

z�PC,D � min

"
αD̄, b�

�
K � ErRs

ErP s


pb� aq

*
;

(b) CPC,Dpα,Kq is linear and increasing in α for α � �
0, a{ sD�Y �

z1{ sD, 1
�
and strictly convex and

increasing in α for α P �a{ sD,mintz1{ sD, 1u�, where z1 :� b� K�ErRs
ErP s pb� aq.

Proof. (a) The expected procurement cost for a PC with deterministic RPPT is

QPC,Dpα,K, zq � Kz � E
�
P pD � zq�

�� E
�
R
�
αD̄ � z

�
�

�
. (E.5)

Similar to QPCpα,K, zq, (E.5) is also convex in the procurement quantity z. Therefore, the optimal

quantity z�PC,D minimizing (E.5) can be determined by considering its first derivative:

dQPC,Dpα,K, zq
dz

�K � E rP sPr pD ¥ zq � E rRs1tαD̄¥zu.

If z ¥ αD̄, then the indicator function in the last term is zero and the derivative is non-negative

since K ¥ ErP s. Thus, the quantity z�PC,D minimizing (E.5) lies in the interval r0, αD̄s. In this

interval, the indicator function is equal to 1 and the solution to dQP,Dpα,K, zq{dz � 0 is

z1 � b�
�
K � ErRs

ErP s


pb� aq.

This quantity is independent of α. Moreover, z1 is greater than a because the strike price K is

upper bounded by ErP s � ErRs in Assumption 1. Since the optimal procurement quantity z�PC,D

must lie in the interval r0, αD̄s, we conclude that z�PC,D � min tz1, αD̄u.

(b) We distinguish three cases for the expected cost (E.5) depending on the value of α.
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Case I ): αD̄   a. Since a   z1, then αD̄   z1 and z�PC,D � min tz1, αD̄u � αD̄. The optimal cost is

CI
PC,Dpα,Kq : � QPC,Dpα,K, z�PC,D � αD̄q

� KαD̄ � E
�
P pD � αD̄q�

�
� KαD̄ � E

�
P pD � αD̄q� ,

where the last equality is due to α sD   a. CI
PC,Dpα,Kq is linear in α because its first derivative is

independent of α:
dCI

PC,Dpα,Kq
dα

� pK � ErP sqD̄.

Case II ): a ¤ αD̄   z1. In this case again it holds that z�PC,D � mintz1, αD̄u � αD̄, and the

optimal procurement cost is

CII
PC,Dpα,Kq : � QPC,Dpα,K, z�PC,D � αD̄q

� KαD̄ � E
�
P
�
D � αD̄

�
�

�
.

The first and second derivative of this expression with respect to α are

dCII
PC,Dpα,Kq

dα
�
�
K � ErP sb� αD̄

b� a

�
D̄ ¡ 0,

dCII2

PC,Dpα,Kq
d2α

� ErP s D̄
2

b� a
¡ 0.

Therefore, the optimal procurement cost is convex increasing in α.

Case III ): z1   αD̄. In this case, z�PC,D � min tz1, αD̄u � z1 and the optimal cost is

CIII
PC,Dpα,Kq : � QPC,Dpα,K, z�PC,D � z1q

� Kz1 � ErP spz
1 � bq2

2pb� aq � ErRspαD̄ � z1q.

Since the first derivative
dCIII

PC,Dpα,Kq
dα

� ErRsD̄

does not depend on α, the procurement cost CIII
PC,Dpα,Kq increases linearly in the target level.

Finally, the following relations hold between the slopes of the procurement costs in the aforemen-

tioned three cases.
dCI

PC,Dpα,Kq
dα

  dCII
PC,Dpα,Kq

dα
  dCIII

PC,Dpα,Kq
dα

.

Proof of Proposition 4. (a) The expected SC procurement cost with deterministic RPPT is

QSC,Dpα,K, zq �ErPDs � ErpK � P qzs � ErRpα sD � zq�s.
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This function is continuous for z P R�, and is differentiable for z P R�ztα sDu with derivative

dQSC,Dpα,K, zq
dz

� K � E rP s � E rRs1tα sD¥zu.

This expression as a function of z is a non-positive constant if z ¤ α sD, and a non-negative constant

otherwise. In fact, in the former case the indicator function is 1 and it holds thatK�ErP s�ErRs ¤ 0

due to Assumption 1, whereas in the latter case the indicator function is zero and it holds that

K � ErP s ¥ 0 also due to Assumption 1. It follows that z�SC,D � α sD is an optimal procurement

quantity, and the associated optimal cost is

CSC,Dpα,Kq � QSC,Dpα,K, z�SC,D � α sDq �ErPDs � ErpK � P qsα sD.

The slope of the optimal cost function with respect to the target is

dCSC,Dpα,Kq
dα

� pK � ErP sq sD.

Given that both functions CSCpα,Kq and CSC,Dpα,Kq are linear increasing in α (see also Propo-

sition 2) and are equal at α � 0, it follows that CSCpα,Kq   CSC,Dpα,Kq in α P p0, 1s if and only

if the analogous condition on their slope holds, i.e., dCSCpα,Kq{dα   dCSC,Dpα,Kq{dα. Below we

establish a necessary and sufficient condition for this relation to be true.

dCSCpα,Kq
dα

  dCSC,Dpα,Kq
dα

ðñ pK � ErP sqz
�
SC

α
� E

�
R

�
D � z�SC

α



�

�
  pK � ErP sq sD

ðñ sD ¡ pa� bqpK � ErP sq
2ErRs � b � 1

2α
z�SC �

b

2
.

where the second implication is obtained by replacing z�SC with its expression given in Proposition 1

and simplifying the resulting term.

(b) The functions CPCpα,Kq and CPC,Dpα,Kq have been characterized in Proposition 2 and Lemma

2, respectively. Both CPC,Dpα,Kq and CPCpα,Kq are convex and increasing functions of α, and it

holds that CPC,Dp1,Kq � CPCp1,Kq for

sD � D1 :� pb� aq
�
K � pErRs � ErP sq�2 � ErRspErP s � ErRsq � pErP s � ErRsq2

2ErP spErRs � ErP sq � b.

This expression for D1 belongs to the interval ra, bs and can be derived as follows:

CPCp1,Kq � CPC,Dp1,Kq

ðñ Kz�PC � ErP spz
�
PC � bq2
2pb� aq � ErRspz

�
PC � bq2
2pb� aq � Kz1 � ErP spz

1 � bq2
2pb� aq � ErRsp sD � z1q

ðñ ErRs sD � Kpz�PC � z1q � ErP spz
�
PC � bq2 � pz1 � bq2

2pb� aq � ErRs
�pz�PC � bq2

2pb� aq � z1



ðñ sD � z�PC � z1

ErRs
�
K � ErP spz�PC � z1 � 2bq

2 pb� aq


� pz�PC � bq2

2pb� aq � z1

SM-7

Electronic copy available at: https://ssrn.com/abstract=4520684



� pb� aq
�
K � pErRs � ErP sq�2 � ErRspErP s � ErRsq � pErP s � ErRsq2

2ErP spErRs � ErP sq � b (E.6)

� D1,

where (E.6) is obtained by replacing z�PC and z1 by their expressions based on Proposition 1 and

Lemma 2, respectively, and simplifying. Since CPC,Dpα,Kq is strictly increasing in the value of sD,

we can claim that if sD ¡ D1, CPC,Dp1,Kq ¡ CPCp1,Kq. Therefore, there exists α P p0, 1s that
satisfies CPC,Dpα,Kq ¡ CPCpα,Kq.

Finally, the value of D1 can be bounded from above as follows:

D1 ¤ pb� aq�ErP s
�
ErP s � ErRs�� ErRs2

2ErP spErRs � ErP sq � b

¤ �pb� aq ErRs
2pErRs � ErP sq � b

� ErDs � pb� aq
2

ErP s
ErRs � ErP s ,

where the first inequality holds by replacing K with ErP s since K ¥ ErP s, and simplifying, and

the second inequality results from the assumption ErP s ¥ ErRs. Therefore, there exists α P p0, 1s
such that CPC,Dpα,Kq ¡ CPCpα,Kq if sD ¡ ErDs � pb�aq

2
ErP s

ErRs�ErP s .

Lemmas 3, 4, and 5 are used in the proof of Proposition 5.

Lemma 3. Let P be a log-normal random variable with parameters µ and σ2, and denote with

fpP ;µ, σ2q its PDF. Moreover, consider Y � logpP q, i.e. Y �N pµ, σ2q, and a scalar B ¡ 0. It

holds that:

E
�
P1tP Bu

� � eµ�
σ2

2 Φ

�
lnpBq � pµ� σ2q

σ




Proof. Using the relationship between P and Y , we establish the following equalities:

E
�
P1tP Bu

� � » B

�8
PfpP ;µ, σ2qdP �

» B

�8
elnP fpP ;µ, σ2qdP

�
» lnpBq

�8
eY ϕpY ;µ, σ2qdY �

» lnpBq

�8
eY

1

σ
?
2π

e
�pY�µq2

2σ2 dY.

By adding and subtracting σ4� 2σ2µ to the numerator of the second exponential term, we obtain:

» lnpBq

�8
eY

1

σ
?
2π

e
�pY�µq2

2σ2 dY � eµ�
σ2

2 Φ

�
lnpBq � µ� σ2

σ



,

which proves the desired result.

Lemma 4. Given three scalars B ¡ 0, µ ¥ 0, and σ ¡ 0, it holds that:

exppµ� σ2{2q
σ

�
1

B
ϕ

�
lnpBq � pµ� σ2q

σ


�
� 1

σ

�
ϕ

�
lnpBq � µ

σ


�
.
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Proof.
exppµ� σ2{2q

σ

�
1

B
ϕ

�
lnpBq � pµ� σ2q

σ


�

� exppµ� σ2{2q
σ

�
1

B
?
2π

exp

��plnpBqq2 � pµ� σ2q2 � 2 lnpBqpµ� σ2q
2σ2


�

� exppµ� σ2{2q
σ

�
1

B
ϕ

�
lnpBq � µ

σ



exp

�� σ2{2� µ� lnpBq��

� exppµ� σ2{2q
σ

�
1

B
ϕ

�
lnpBq � µ

σ



exp

�� σ2{2� µ
�
B

�

� 1

σ
ϕ

�
lnpBq � µ

σ



.

Lemma 5. Given α ¡ 0 and δ, δ1 ¡ 0, if ErKINTpP ;K, δqs   ErKINTpP ;K, δ1qs, then it holds

that CINT
SC pα,K, δq   CINT

SC pα,K, δ1q.

Proof. Let z�SCpα,K, δq be an optimal solution to the expected procurement cost QINT
SC pz;α,K, δq,

which is defined by

QINT
SC pz;α,K, δq :� Er rCSCpz, w1;α,K

INTpP ;K, δqqs
� ErKINTpP ;K, δq � P sz � ErPDs � ErRpαD � zq�s.

From the hypothesis it follows that

QINT
SC pz�Spα,K, δ1q;α,K, δq �QINT

SC pz�Spα,K, δ1q;α,K, δ1q
� �

ErKINTpP ;K, δqs � ErKINTpP ;K, δ1qs� � z�Spα,K, δ1q   0.

As a consequence, the following relation between optimal procurement costs hold

CINT
SC pα,K, δq � min

z¥0
QINT

SC pz;α,K, δq ¤ QINT
SC pz�Spα,K, δ1q;α,K, δq

  QINT
SC pz�Spα,K, δ1q;α,K, δ1q � CINT

SC pα,K, δ1q,

which proves the lemma.

Proof of Proposition 5. Recall that the power price P follows a log-normal distribution and that

its natural logarithm follows lnpP q�N pµP , σ
2
P q, i.e., it is a normal random variable with mean µP

and standard deviation σP . Note that consequently plnpP q�µP q{σP �N p0, 1q. The expected unit

cost with the interval strike price is defined for δ P r0,Kq and can be expressed using Lemma 3 as

ErKINTpP ;K, δqs � pK � δqPrpP ¡ K � δq � pK � δqPrpP   K � δq � E
�
P1tK�δ¤P¤K�δu

�
� pK � δq

�
1� Φ

�
lnpK � δq � µP

σP


�
� pK � δqΦ

�
lnpK � δq � µP

σP




� exp

�
µP � σ2

P

2


�
Φ

�
lnpK � δq � µP � σ2

P

σP



� Φ

�
lnpK � δq � µP � σ2

P

σP


�
.
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The first derivative of ErKINTpP ;K, δqs with respect to δ is

BErKINTpP ;K, δqs
Bδ � 1� Φ

�
lnpK � δq � µP

σP



� 1

σP
ϕ

�
lnpK � δq � µP

σP



� Φ

�
lnpK � δq � µP

σP




� 1

σP
ϕ

�
lnpK � δq � µP

σP



� exppµP � σ2

P {2q
σP

�
1

K � δ
ϕ

�
lnpK � δq � pµP � σ2

P q
σP




� 1

K � δ
ϕ

�
lnpK � δq � pµP � σ2

P q
σP


�
.

By reformulating the last term in this derivative using Lemma 4 and canceling opposite terms out,

we obtain a simpler expression:

BErKINTpP ;K, δqs
Bδ � 1� Φ

�
lnpK � δq � µP

σP



� Φ

�
lnpK � δq � µP

σP



. (E.7)

We structure the rest of proof as follows. We first show that Dδ ¡ 0 such that ErKINTpP ;K, δqs  
ErKINTpP ;K, 0qs � K if and only if K ¡ ErP s expp�σ2

P {2q. By Lemma 5, this implies the validity

of the first claim of the proposition, i.e., that Dδ ¡ 0 such that CINT
SC pα,K, δq   CINT

SC pα,K, 0q �
CSCpα,Kq if and only if K ¡ ErP s expp�σ2

P {2q. We subsequently prove that ErKINTpP ;K, �qs, and
thus CINT

SC pα,K, �q, attain global minimum at δ� �
a
K2 � expp2µP q ¡ 0 if K ¡ ErP s expp�σ2

P {2q.
Suppose ErKINTpP ;K, δqs   K for some δ. Then Dδ̄ ¡ 0 such that the derivative (E.7) is neg-

ative at δ̄ because ErKINTs � K at δ � 0 and is a continuous function. The following implications

hold.

BErKINTpP ;K, δqs
Bδ

���
δ�δ̄

  0 ùñ 1� Φ

�
lnpK � δ̄q � µP

σP



  Φ

�
lnpK � δ̄q � µP

σP



ùñ lnpK � δ̄q � µP ¡ µP � lnpK � δ̄q
ùñ K2 ¡ δ̄2 � expp2µP q
ùñ K ¡ exppµP q � ErP s expp�σ2

P {2q.

To prove the reverse direction of the iff result, suppose K ¡ ErP s expp�σ2
P {2q � exppµP q. The

derivative (E.7) evaluated in δ � 0 is negative because

BErKINTpP ;K, δqs
Bδ

���
δ�0

� 1� 2Φ

�
lnpKq � µP

σP



  1� 2Φ

�
lnpexppµP qq � µP

σP



� 0,

where the last equality is a consequence of Φp0q � 0.5. Therefore, the expected unit cost is lower

than K in the proximity of 0. In other words, there exists a sufficiently small δ ¡ 0 such that

ErKINTpP ;K, δqs   K. The first claim of the proposition is thus proven by invoking Lemma 5.

Next, we want to determine the global minimum δ� of ErKINTpP ;K, δqs when K ¡ exppµP q. To
this end, we provide a characterization of ErKINTpP ;K, δqs as a function of δ. First, we characterize

a region for δ in which the function is convex as follows.

B2ErKINTpP ;K, δqs
Bδ2 � �1

pK � δqσP ϕ

�
lnpK � δq � µP

σP



� 1

pK � δqσP ϕ

�
lnpK � δq � µP

σP



¥ 0

(E.8)
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ðñ 1b
2π σ2

P

� �1
pK � δq exp

��plnpK � δq � µP q2
2σ2

P



� 1

pK � δq exp
��plnpK � δq � µP q2

2σ2
P


�
¥ 0

ðñ � 1

pK � δq exp
��plnpK � δq � µP q2

2σ2
P



� 1

pK � δq exp
��plnpK � δq � µP q2

2σ2
P



¥ 0

ðñ exp

�� lnpK � δq2 � lnpK � δq2 � 2µP lnpK � δq � 2µP lnpK � δq
2σ2

P



¤ K � δ

K � δ

ðñ exp

�� lnpK2 � δ2q � 2µP

2σ2
P

ln
�K � δ

K � δ

	

¤ K � δ

K � δ

ðñ � ln
�
K2 � δ2

�� 2µP ¤ 2σ2
P

ðñ δ ¤
b
K2 � expp2µP � 2σ2

P q �: pδ.
Therefore, the function ErKINTpP ;K, �qs is convex for δ P r0, pδs. Moreover, since 2µP � 2σ2

P ¡ �8
and expp�q is a strictly increasing function, we have pδ   K. Hence, ErKINTpP ;K, �qs is concave for

δ P rpδ,Kq. We further characterize ErKINTpP ;K, δqs by showing that it is increasing in δ when

δ ¡ pδ. Since the second derivative (E.8) is negative in the interval rpδ,Kq, then the first derivative

(E.7) is a decreasing function in rpδ,Kq. As a result, (E.7) attains its infimum for δ Ñ K and the

following inequalities hold:

BErKINTpP ;K, δqs
Bδ

���
rpδ,Kq

¥ inf
δPrpδ,Kq

BErKINTpP ;K, δqs
Bδ

� lim
δÑK

1� Φ

�
lnpK � δq � µP

σP



� Φ

�
lnpK � δq � µP

σP




� 1� Φ

�
lnp2Kq � µP

σP



¡ 0,

where the last inequality is strict because Φ pplnp2Kq � µP q{σP q   1. Since ErKINTpP ;K, δqs is
strictly concave increasing for δ ¥ pδ and convex when δ ¤ pδ, its global minimum can be found

using the first-order condition.

BErKINTpP ;K, δqs
Bδ � 0 ðñ 1� Φ

�
lnpK � δq � µP

σP



� Φ

�
lnpK � δq � µP

σP



ðñ lnpK � δq � µP � µP � lnpK � δq
ðñ δ �

a
K2 � expp2µP q �

b
K2 � E0rP1s2 expp�σ2

P q �: δ�,

where the second implication is a consequence of the symmetric property of the normal distribu-

tion, i.e. lnpK � δq and lnpK � δq have equal distance from the mean of lnpP q. In conclusion,

ErKINTpP ;K, δqs has global minimum at δ � δ� if K ¡ ErP s expp�σ2
P {2q. From Lemma 5, δ� is

also global minimum of CINT
SC pα,K, .q in this case.

SM-11

Electronic copy available at: https://ssrn.com/abstract=4520684


	Introduction
	Corporate power purchase agreement structures
	Procurement costs and targets
	Deterministic renewable target
	Interval strike price

	Dynamic procurement model
	PPA strike price
	Markov decision process
	Procurement heuristics

	Numerical study
	Instances and computational setup
	Comparison of physical and virtual contracts
	Procurement insights

	Conclusion

