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Ransomware attacks have evolved with criminals using double extortion schemes, where they signal data 
exfiltration to inflate ransom demands. This development is further complicated by information asymmetry, 
where victims are compelled to respond to ambiguous and often deceptive signals from attackers. This study 
explores the complex interactions between criminals and victims during ransomware attacks, especially focusing 
on how data exfiltration is communicated. We use a signaling game to understand the strategies both parties 
use when dealing with uncertain information. We identify five distinct equilibria, each characterized by the 
criminals’ varied approaches to signaling data exfiltration, influenced by the strategic parameters inherent in 
each attack scenario. Calibrating the game parameters with real-world like values, we identify the most probable 
equilibrium, offering insights into anticipated ransom amounts and corresponding payoffs for both victims and 
criminals. Our findings suggest criminals are likely to claim data exfiltration, true or not, highlighting a strategic 
advantage for intensifying attack efforts. The study underscores the need for victims’ caution towards criminals’ 
claims and highlights the unintended consequences of policies making false claims costlier for criminals.
1. Introduction

Crypto-ransomware attacks globally are a growing concern for our 
society. In the United States alone, an estimated 1,981 schools, 290 
hospitals, 105 local governments and 44 universities and colleges were 
hit by crypto-ransomware attacks in 2022 (Palmer, 2023). Crypto-

ransomware (or ransomware) is a malicious software that aims to en-

crypt the files of victims (Gonzalez and Hayajneh, 2017). Typically, if 
victims lack adequate backups, they can only regain access to those 
files after paying a ransom to the criminals (Laszka et al., 2017). Given 
that many victims are willing to pay a ransom, these malicious soft-

ware have proved highly lucrative for criminals and provide a viable 
‘business model’.

In recent years, criminals have complemented file encryption with 
the stealing of sensitive data. This sensitive data might contain per-

sonally identifiable information of employees and/or customers, intel-

lectual property or legal information. The criminals then threaten to 
publish the sensitive data or sell it to competitors if the victim does not 
pay the ransom. This is referred to as a double extortion scheme (Tuttle, 

* Corresponding author.

E-mail addresses: t.w.a.meurs@utwente.nl (T. Meurs), edward.cartwright@dmu.ac.uk (E. Cartwright), a.cartwright@brookes.ac.uk (A. Cartwright), 

2021; Payne and Mienie, 2021; Kerns et al., 2022). Evidence suggests 
the double extortion scheme leads to larger ransom requests and/or a 
higher willingness to pay, and therefore to more profits for the criminals 
compared to encryption-only-attacks (Li and Liao, 2021; Meurs et al., 
2022). Hence, it is important to investigate how double extortion schemes 
may evolve, and how law enforcement can disrupt the business model of 
these criminals.

During a ransomware attack, victims struggle with the critical is-
sue of determining whether their data has been exfiltrated (Meurs and 
Holterman, 2022; Nyakomitta and Abeka, 2020). While some may pos-

sess logs that facilitate the identification of accessed files, others are 
not as fortunate. Although irregularities in data flow on the affected 
network during an attack can be identified, it does not always confirm 
the theft of confidential information. This ambiguity creates a window 
of opportunity for criminals. Those engaged in encryption-only attacks 
can exploit this uncertainty, asserting that data exfiltration occurred to 
demand a higher ransom. Criminals may proactively offer, or victims 
may request, ‘evidence’ of data exfiltration. This exchange, termed as a 
‘signal’ in our study, forms the core of the strategic dynamics between 
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the attacker and the victim. It is a ‘game’, where the criminal’s choice 
to provide evidence of exfiltration intersects with the victim’s decision 
on whether or not to pay the ransom demand.

In 2020, Coveware reported that 70% of ransomware attacks were 
combined with data exfiltration (Tuttle, 2021). (Meurs et al., 2022) 
found that between 2019 and 2022, from 124 ransomware attacks, 
forensic analysis suggested there were traces of data exfiltration in 
43% of the attacks. This resulted in a slightly larger portion of pay-

ments: 26% of the victims paid with likely data exfiltration, whereas 
24% paid without data exfiltration. The ambiguity around data exfiltra-

tion complicates the victims’ response, with criminals sometimes falsely 
claiming data theft to inflate ransoms (Meurs et al., 2022). The Maze 
group initiated the double extortion scheme in November 2019, expos-

ing non-paying victims on a leak site and claiming data deletion for 
those who paid, though without conclusive proof (Greengard, 2021; 
Kerns et al., 2022; Ecrime, 2023; Cymru, 2022).

Criminals can use various strategies to signal that data was exfil-

trated (Meurs and Holterman, 2022; Hack and Wu, 2021). One ap-

proach is to publish a small fraction of the exfiltrated data on a leak 
site. However, it is worth noting that this strategy carries a potential 
drawback, as the extent of the reputational harm incurred might be 
independent of the magnitude of the published data. Moreover, pub-

lishing some data still leaves open the question of how much additional 
data was exfiltrated. Another approach is to send a picture of the file 
tree to the victim. A potential drawback of this approach is that it gives 
the possibility to victims to determine the importance of the stolen files. 
It is also relatively easy to obtain without actually exfiltrating the files 
and so is not a particularly credible signal. Criminals may, therefore, 
decide not to signal even if data was exfiltrated. It could be they want 
to sell the data on darknet forums (Li and Liao, 2021) or to conceal at-

tacks where data exfiltration was unsuccessful. In such cases the past 
reputation of the ransomware group may inform on the likelihood of 
data exfiltration.

In this study, we employ a game-theoretic framework to evaluate the 
dynamics between criminals and victims in the context of ransomware 
attacks, focusing on the signaling of data exfiltration (Kreps and So-

bel, 1994). We are particularly interested in the criminals’ decision to 
signal data theft and how victims respond to such signals. Signaling 
games, a well-explored concept in game theory, offer valuable insights 
into these complex interactions characterized by information asymme-

try. Our analysis unveils five distinct equilibria, shaped by the criminals’ 
varied approaches to signaling data exfiltration—from consistent sig-

naling, no signaling at all, to conditional signaling based on actual data 
theft. These equilibria are not arbitrary but are influenced by the strate-

gic parameters inherent in each ransomware attack scenario. We further 
calibrate the game with parameters that mirror real-world conditions. 
This calibration facilitates the identification of the most realistic equi-

librium, enabling us to anticipate the likely ransom amounts and the 
corresponding payoffs for both parties involved. Based on our findings, 
we propose tangible strategies to dismantle the ransomware business 
model. These strategies are aimed at reducing the ransom amounts and 
undermining the criminals’ payoffs, marking a significant step towards 
mitigating the impacts of these cyber-attacks.

Our article makes three contributions; First, it is, to the best of our 
knowledge, the first study to analyse the important signaling compo-

nent of double extortion ransomware schemes. We draw on data from 
negotiations between criminals and victims to motivate this issue as 
being an important area of study. Second, we provide a theoretical 
analysis of the strategic consideration criminals face when signaling 
data exfiltration and the consequences for the payoffs of criminals and 
victims. Third, by understanding the incentives of criminals we can 
identify the optimal strategy of victims and examine defensive mea-

sures for victims and policy makers to decrease the negative welfare 
consequences of double extortion ransomware.

The paper is organized as follows. In Section 2 we motivate our 
2

signaling game approach through empirical observations of double ex-
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tortion ransomware attacks and negotiations. In Section 3 we briefly 
overview the previous literature on the economic and game-theoretic 
modeling of ransomware. In Section 4 we introduce the signaling game. 
In Section 5 we state the main results. In Section 6 we conclude and 
provide policy recommendations. Proofs of propositions are provided 
in Appendix A.

2. Motivation

The foundation of our game-theoretic model is based upon empirical 
observations that will be expanded upon in the following section, pro-

viding context and motivation for our theoretical model. In Section 5.2

we will calibrate the parameters in our model using this dataset. For 
a more detailed analysis we refer to our previous work (Meurs et al., 
2022).

We draw on empirical data from two datasets compiled by the lead 
author: 1) 525 ransomware attacks reported to the Dutch Police and 2) 
117 ransomware attacks reported to an incident response company (IR 
company). Some general insights from the Dutch Police data have pre-

viously been reported in (Meurs et al., 2022). In that paper, the authors 
study how the criminal’s effort, victim characteristics and context influ-

ence the ransom requested, payment and financial loss. A key finding of 
the study is that data exfiltration has a highly significant, positive im-

pact on the ransom requested, proportion of victims who pay, and the 
victim’s financial loss. This demonstrates the critical role that exfiltra-

tion plays in ransomware.

The foundation of our game-theoretic model is established upon em-

pirical observations that will be expanded upon in the ensuing section, 
providing necessary context. For an in-depth analysis of the dataset, we 
point readers to our prior work (Meurs et al., 2022).

In motivating the game theoretic approach used in this study we 
analysed the extended datasets introduced above. From the overall 
datasets we excluded attempted attacks, no encryption and attacks on 
individuals. This resulted in 1) 354 ransomware attacks reported to the 
Dutch Police and 2) 98 ransomware attacks reported to the IR company. 
In total we, therefore, analysed 452 ransomware attacks. For each at-

tack a range of variables were coded based on the case logs provided 
by the Police and IR company. For this study we use the following vari-

ables: whether data is exfiltrated (yes/no/unknown), what the ransom 
requested was before and after negotiations (in euro) and whether the 
victim paid (yes/no/unknown). Furthermore, we looked at the negotia-

tion text to understand the exchange of information of data exfiltration 
between the victim and criminals. We remark that the classification of 
data exfiltration (yes/no/unknown) is somewhat subjective for the very 
reasons that motivate this paper (namely, data exfiltration is hard to 
verify). Our classification benefits, however, from information that be-

came available over time, and may not have been available at the time 
of the attack, e.g. whether data was subsequently published on a leak 
site.

2.1. Criminal profits of double extortion ransomware

Here we state our main findings from the data analysis in terms of 
data exfiltration in relationship with payment, and ransom requested.

1. Data exfiltration: Overall, we find that in 50.4% of cases it was 
unknown whether data was exfiltrated, and in 49.6% of cases we 
believe that data was exfiltrated. Data exfiltration is assumed in 
43% of cases in the Dutch Police, based on 134 cases, and in 53%
of cases of the IR company, based on 98 cases. Commonly, the basis 
for assuming that data was exfiltrated is because: (1) log files show 
specifically that files have been exfiltrated, or (2) data was pub-

lished on the leak site of the criminals. We see, therefore, that data 
exfiltration is common but not universal. We also see that whether 
data exfiltration took place remains unknown in many cases, even 

with the benefit of hindsight (e.g. data appearing on leak sites).
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Table 1

Claims of the criminal of data exfiltration (raw text and anonymized), additional signals send by the criminal and the victim’s decision-making whether to pay or 
not.

Case Criminal claim (anonymized raw text) Additional signals Victim decision-making

1. “We gathered highly confidential/personal data. These data are currently stored on a private 
server.

This server will be immediately destroyed after your payment.

If you decide to not pay, we will release your data to public or re-seller.

So you can expect your data to be publicly available in the near future.

We only seek money and our goal is not to damage your reputation or prevent your business from 
running”

No Although the victim did not 
believe data was exfiltrated, they 
did decide to pay because backups 
were inadequate to recover 
without payment.

2. “For the ransom you get:

Full decryption

Fixing your network vulnerabilities and securing your network

Removal of all your data from our servers.”

No Victim was not confident data was 
exfiltrated and did not pay.

3. “If we don’t hear back from you within 24 hours.

I can sell them on the darknet and send the information to regulatory agencies, in your area I will 
send out offers to competitors to buy your data.

In this case you will have the following problems:

1. Your customers will become victims of fraudsters (who will buy your data on the darknet).

2. Regulatory authorities (responsible for enforcing data protection laws) will start investigating 
your company for leaking your customers’ personal data (leading to huge fines and loss of 
reputation).

3. Your competitors could easily get hold of your information.”

No Victim was not confident data was 
exfiltrated. However, due to the 
lack of adequate backups they did 
pay. During the negotiations no 
other claim of data exfiltration was 
made by the criminal

4. “All your important files have been encrypted.

Any attempts to restore your files with third-party software will be fatal for your files!

Restore your data possible only buying private key from us.

We have also downloaded a lot of private data from your network.

If you do not contact us in a 5 days, we will post information about your breach on our public 
news webs.”

No Victim was not confident data was 
exfiltrated and did not pay.

5. “Your data is stolen and encrypted. If you don’t pay the ransom, the data will be published on our 
TOR darknet sites.

Keep in mind that once your data appears on our leak site, it could be bought by your competitors 
at any second, so don’t hesitate for a long time. The sooner you pay the ransom, the sooner your 
company will be safe.”

List of .rar files of alleged 
exfiltrated data provided by 
criminal

Victim paid, because data of 
customers was stolen. They had 
backups, but decided to pay just 
for prevent the publication of 
exfiltrated data.

6. “Price for you is X btc. You need to pay this amount and we will give you decrypt tool for all your 
machines, security report on how you were hacked, file tree on what we have downloaded a lot of 
data from your network that in case of not payment will be published on public news website and 
sold on the black-markets. We remove it after payment and wiping log is provided as well. To start 
a business we offer you to make payment in two stages. What amount you can pay today?”

A list of exfiltrated files was 
provided by criminals

Victim got the file tree of the 
exfiltrated data and decided that 
the data was not important. 
Furthermore, they did have 
backups. Therefore, they decided 
not to pay.
2. Paid: From the 452 ransomware attacks, 130 victims negotiated. 
In total, 119 victims paid the ransom (27.8%). Of these, 78.5% vic-

tims paid after negotiations and 21.5% paid without negotiations. 
If we focus on those subset of payments where we are relatively 
confident if data exfiltration took place, we find that data exfil-

tration leads more often to payment: 37.5% versus 28.9%. This 
difference is statistically significant, based on a chi-squared test 
(𝜒2 = 5.42, 𝑑𝑓 = 1, 𝑝 = 0.02). The reason why both payment per-

centages are above the total average of 27.8% is because, relatively, 
it is more often unknown whether data was exfiltrated for the vic-

tims who did not pay. So, these results show that data exfiltration 
leads to larger proportion of victims paying than no data exfiltra-

tion.

3. Ransom requested: The average ransom request before negotia-

tion is 1,029,320 euro (sd=3.0 million euro). After negotiation the 
average ransom request is 578,956 euro (sd=1.9 million euro), 
a decrease of 44%. When data is exfiltrated, the ransom before 
negotiation is 2,960,281 euro (sd=4.7 million euro) and after ne-

gotiation 1,771,216 euro (sd=3.2 million euro), a decrease of 40%. 
Without data exfiltration the ransom before negotiation is 466,924 
euro (sd=2.0 million euro) and after negotiation 135,346 euro 
(sd=0.2 million euro), a decrease of 70%. Tests that there is a 
difference in ransom requested with and without data exfiltration 
using a t-test is significant for both ransom requested before ne-
3

gotiations (𝑡 = 63.17, 𝑑𝑓 = 232, 𝑝 < 0.001) and after negotiations 
(𝑡 = 66.05, 𝑑𝑓 = 232, 𝑝 < 0.001).1 It appears that data exfiltration is 
highly profitable for the criminals. Furthermore, it seems that data 
exfiltration leads to less discount after negotiations than when data 
is not exfiltrated.

In conclusion, double extortion ransomware seems to lead to a larger 
proportion of victims paying the ransom and a larger ransom requested, 
and, therefore, to more profits for criminals.

2.2. Exploration of victim’s decision to pay

If victims are more likely to pay a ransom, and pay a larger ransom, 
because of data exfiltration, it is naturally in their interests to ascertain 
whether data exfiltration has indeed taken place. As we discussed in 
the introduction this is difficult to do in the immediate aftermath of 
an attack. Hence criminals may want to signal data exfiltration, and 
victims may seek for information about data exfiltration. In Table 1 we 
provide six illustrative examples of criminals attempting to signal that 
data is exfiltrated. As you can see, data exfiltration was claimed in the 
ransom note. In two cases supplementary evidence was provided during 
negotiations. We also summarise the victims’ decision-making process 
regarding ransom payment. Note that we display the anonymized text 
used by criminals, which includes grammar and style mistakes.

In the first four cases the victims were not convinced by the crim-

inal’s claim that data has been exfiltrated. The signal in this case was, 

1 In line with (Meurs et al., 2022) we have taken the logarithm of the ransom 
to approximately normalize the data, which is required to validly perform a 

t-test. Not taking the logarithm also results in highly significant t statistics.
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therefore, seen as non-credible. Furthermore, in none of the four cases 
was data published on the leak site after the victim did not pay. This 
may suggest the victims were probably correct to infer no data had been 
exfiltrated. The absence of data being published on a leak site does not, 
however, serve as conclusive evidence that no data has been compro-

mised. In informal discussions, law enforcement officers have disclosed 
to the authors that criminals are occasionally selective in their choice of 
which victim’s data they publish. By exclusively publishing data of large 
organizations, criminals can cultivate a reputation as a group focusing 
on prominent victims.

In the fifth and sixth cases the criminal showed a list of files which 
were exfiltrated. In the fifth case this led the victim to believe that 
data was exfiltrated and they made the decision to pay the ransom to 
prevent the publishing of the data on a leak site. The criminals, thus, 
benefited from sending a more credible signal. In the sixth case the 
victim decided, based on the list of exfiltrated files provided by the 
criminal, that data publication would be less costly than paying the 
ransom. As a consequence, the data of the victim was published on the 
leak page. In this example sending a signal appears to have backfired 
for the criminals, because it gave the victim the opportunity to estimate 
the reputational damage of data exfiltration.

Considering our dataset as a whole, we have examples of all possi-

ble combinations: (a) The criminals signaling data exfiltration when we 
believe there was data exfiltration, (b) not signaling data exfiltration 
when we believe there was data exfiltration, (c) signaling data exfil-

tration when we believe there was no data exfiltration, and (d) not 
signaling data exfiltration when we believe there was no data exfiltra-

tion. This makes it difficult for victims, law enforcement and policy 
makers to understand the optimal response when claims of data exfil-

tration are made. Given the large ransom amounts at stake it is of value 
to better understand the trade-offs that victims face.

It is reasonable to hypothesize that criminals engage in strategic 
considerations when deciding to signal data exfiltration or refrain from 
doing so, taking into account the potential impact on victims’ willing-

ness to pay. Indeed, the history of ransomware shows that criminals 
rapidly evolve their economic strategy to ones that make more money. 
Consequently, we develop a decision model to capture this behavior, 
using a game-theoretic framework of signaling. In the subsequent sec-

tion, we provide a rationale for utilizing game-theoretic models in the 
context of ransomware and overview prior research on this subject.

3. Related works

The goal of this section is to give a brief overview of past research 
on the economic and game-theoretic approach to ransomware attacks. 
Traditionally, ransomware research takes a more technical approach 
(Brewer, 2016; Richardson and North, 2017). However, recently the 
application of economic theory to analyse decision-making of crimi-

nals and victims of ransomware attacks have increased (Cartwright et 
al., 2019; Li and Liao, 2021; Laszka et al., 2017; Galinkin, 2021). This 
might be the result of ransomware criminals running there attacks as 
a business, where many decisions are made using economic reasoning 
(Huang et al., 2018).

Most ransomware criminals are financially motivated and conduct 
multiple attacks (Meurs et al., 2022; Connolly et al., 2021). Therefore it 
is important for them to optimize profits over multiple ransomware at-

tacks. One important aspect is the use of different price discrimination 
strategies (Hack and Wu, 2021). For example, the criminals change the 
ransom requested on victim characteristics, like yearly revenue (Meurs 
et al., 2022). Another aspect is the use of data exfiltration: as concluded 
in Section 2, this increases the willingness to pay of victims, which 
leads to more profits for criminals. (Connolly et al., 2021) identify four 
distinct fears of victims which might explain the increased willingness 
to pay: (1) incrimination (e.g. exposure to data protection authorities), 
(2) reputational damage/lost revenue (e.g. exposure of sensitive data 
4

which could cause loss of customers), (3) exposure of intellectual prop-
Computers & Security 138 (2024) 103670

erty, and (4) humiliation (e.g. exposing embarrassing information about 
customers or a particular employee in an executive role). These fears 
increase the willingness to pay and give an incentive for criminals to 
perform data exfiltration, or pretend that data is exfiltrated.

In addition to the previously mentioned empirical studies, game-

theoretic models have been employed to explore the dynamics be-

tween criminals and victims within the context of ransomware attacks 
(Cartwright et al., 2019; Laszka et al., 2017; Galinkin, 2021) and dou-

ble extortion ransomware schemes (Li and Liao, 2022, 2021, 2020). 
Game theory provides a valuable theoretical framework for examin-

ing the strategic decision-making process of different actors, making 
it highly applicable in the context of ransomware attacks (Cartwright 
et al., 2019). This suitability arises from the well-defined roles of the 
actors involved, namely the criminal and victim, and clear decision 
options available to the victim, such as paying or not paying the ran-

som. Furthermore, the payoffs are mostly monetary and therefore easily 
quantified. From the game-theoretic framework we could infer whether 
there is a stable equilibrium and possible interventions to change that 
equilibrium to increase social welfare.

Several studies have applied a game-theoretic framework to double 
extortion ransomware (Li and Liao, 2021; Laszka et al., 2018; Li and 
Liao, 2020). (Li and Liao, 2021) demonstrate that when criminals em-

ploy a strategy involving both data encryption and data exfiltration, it 
consistently results in higher profits as opposed to solely relying on data 
encryption. Furthermore, the act of selling the exfiltrated data has been 
found to further increase the profitability for criminals, surpassing the 
potential reputation gains achieved by simply deleting the data upon 
receiving payment from victims.

One possible critique of using game-theoretic models in the ran-

somware context is the assumption of rational decision-making by both 
criminals and victims. Both criminals and victims may make impulsive, 
irrational decisions (Cartwright et al., 2019). Rationality, in this con-

text, however, does not imply a cold and unemotional decision-making 
process, but rather an understanding that criminal and victim need to 
take account of each other’s strategic incentives, and have incentives 
to maximize their financial payoff. This aligns with the Rational Choice 
Model proposed by (Cornish and Clarke, 1987). The Rational Choice 
Model (RCM) of crime states that criminals, or offenders, are rational 
decision-makers. Crime is purpose behaviour designed to meet the of-

fender’s commonplace needs for such things as money, status, sex and 
excitement. Offenders are reasoning actors who weigh means and ends, 
costs and benefits, and make a rough rational choice for the course of 
action that seems to yield the most benefit (Cornish and Clarke, 1987, 
2014).

Research supports the Rational Choice Model of crime, for offline 
crime (Wortley and Townsley, 2016; Clarke, 2016) and online crime 
(Allodi et al., 2017; Xu and Hu, 2018). Most relevant, experiments show 
that policy measures that influence the costs and benefits of crime, by 
increasing the effort and the risks, and decreasing the potential benefits, 
generally prevent crime offline (Clarke, 2016) and online (Beebe and 
Rao, 2005). Taken together, we could conclude that the assumption 
of rationality, which is crucial for the application of a game-theoretic 
framework, can yield valuable insight in the context of double extortion 
ransomware schemes.

So far, we considered studies which focus on the profitability of data 
exfiltration, applying game-theoretical models to ransomware and data 
exfiltration. These papers abstract away from a key aspect of the strate-

gic environment: victims are often unsure whether data is exfiltrated. 
Information asymmetry between victim and criminal can be modeled 
with signaling games (Osborne et al., 2004). Signaling games are a 
widely used framework in economics and evolutionary biology to model 
a range of applied settings. They have been used, for instance, to model 
job seekers signaling their productivity to potential employers (Spence, 
1974). In this setting the signal could be years of schooling or high 
grades (even if that does not directly add to productivity). Signaling 

games have also been used to understand non-anonymous donations to 
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Fig. 1. A schematic representation of set-up of the signaling game of data exfiltration.
charity (Glazer and Konrad, 1996). In this case the donation can be a 
signal the donor is a pro-social, generous individual. In all these settings 
there is one party that has more information than the other (whether 
they are productive, pro-social etc.) and have incentives to signal a ‘de-

sirable’ property. In our setting the criminal may want to signal data 
exfiltration.

The analysis of signaling games has produced some profound re-

sults. For instance, it has been shown that ‘costly signaling’ can result 
in which the actor with the most desirable attributes must incur large 
costs to signal their desirability. There is, for instance, evidence that 
university education is a costly signal of ability (Bedard, 2001). In our 
setting, this suggests that data exfiltration need not be unambiguously 
beneficial for the criminals. Another seminal finding is due to (Akerlof, 
1970). He set up a framework to analyse the information asymmetry 
between the buyer and seller of used cars. The seller knows the quality 
of the car, but the buyer does not. (Akerlof, 1970) shows that this in-

formation asymmetry can lead to a breakdown in trade. In short, sellers 
of good cars do not want to sell them cheap, but buyers are reluctant 
to pay a high price for a car that may be no good. We observe, there-

fore, an adverse selection market failure. The framework of (Akerlof, 
1970) has also been used to study other use cases (Laszka et al., 2018). 
In our setting, it again suggests that data exfiltration need not be un-

ambiguously beneficial for the criminals. In the following section we 
will formally apply the theory of signaling games to the case of double 
extortion ransomware attacks.

4. Model

4.1. Signaling game

In this section we introduce a signaling game of double extortion 
ransomware. The game involves two players, a criminal and a victim. It 
has three stages, which can be explained as follows. The variables are 
summarized in Table 2 and the signaling game is depicted in Fig. 1.

Stage 1: We assume that the criminal attempts to exfiltrate data. 
However, this attempt may not succeed. We denote with 𝛼 the prob-

ability the criminal exfiltrates data (DE) and denote with probability 
1 − 𝛼 the probability the criminal does not succeed in exfiltrating data 
(NDE). In game-theoretic terminology, this process is formulated as ‘na-

ture’ determining with a probability 𝛼 the state is DE and 1 −𝛼 the state 
is NDE (Akerlof, 1970; Osborne et al., 2004; Spence, 1974). The crim-

inal learns in Stage 1 whether they are in state DE or NDE. The victim 
remains uninformed, although the probability of data exfiltration 𝛼 is 
common knowledge.

Stage 2: The criminal chooses a ransom demand and whether to 
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send a signal to the victim that data was exfiltrated (S) or not (NS). 
Table 2

Variables used in the data exfiltration signaling game.

Variable Description

Criminal 𝑅𝑆 Ransom when signaling

𝑅𝑁𝑆 Ransom when not signaling

c Cost of attack

𝑘𝐷 Cost of signal with data exfiltration

𝑘𝑁 Cost of signal no data exfiltration

𝜏 The state or type of the criminal: data exfiltrated or not

Victim T Reputation cost

V Recovery cost without decryption key

L Legal fees of paying ransom

𝛼 Probability of data exfiltration

𝜇 Probability the victim believes data is exfiltrated

𝜖 Smallest gain that would induce victim to pay

The signal could consist of sending a file tree or pictures of the file tree 
structure. Another possibility is sending a few exfiltrated files. Let 𝑅𝑆

denote the ransom demand of the criminal if they send a signal and 
𝑅𝑁𝑆 the demand if no signal is sent. Thus, the criminal either sends 
signal S and ransom demand 𝑅𝑆 or chooses NS and ransom demand 
𝑅𝑁𝑆 .2

The cost of sending a signal is 𝑘𝐷 when data is exfiltrated and 𝑘𝑁
when no data is exfiltrated. One interpretation of the cost of a signal is 
opportunity costs. For instance, the effort and time could have been 
used for another attack. Crucially, we assume that sending a signal 
when data is exfiltrated is less costly than when data is not exfiltrated, 
so 𝑘𝐷 < 𝑘𝑁 . This assumption arises from the notion that it might be 
harder to send a signal in state NDE than DE. Indeed, it could be that 
𝑘𝑁 is very large meaning that it is essentially impossible to send a signal 
if data is not exfiltrated.

Stage 3: Having seen whether the criminal sends a signal (S) or 
no signal (NS) and seen the ransom demand 𝑅𝑆 or 𝑅𝑁𝑆 , the victim 
decides to pay or not. We assume that this is a binary yes/no decision 

2 The criminal could choose any ransom above 0 for any combination 
of both own type and signal. So, suppose, more generally, we denote by 
𝑅𝑆

𝐷𝐸
, 𝑅𝑆

𝑁𝐷𝐸
, 𝑅𝑁𝑆

𝐷𝐸
and 𝑅𝑁𝑆

𝑁𝐷𝐸
the ransom of a type DE or NDE if they signal or do 

not signal. There cannot be an equilibrium in which a criminal of type DE and 
NDE signal and 𝑅𝑆

𝑁𝐷𝐸
≠ 𝑅𝑆

𝐷𝐸
; this would reveal the criminal if type NDE and, 

thus, make their signal ineffective. Similarly, there cannot be an equilibrium in 
which a criminal of type DE and NDE would not signal and 𝑅𝑁𝑆

𝑁𝐷𝐸
≠𝑅𝑁𝑆

𝐷𝐸
; this 

would again reveal the criminal if type NDE and lower the ransom the victim 

would rationally pay.
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with no possibility for negotiation.3 Final payoffs are now determined 
as depicted in Fig. 1, which shows criminal payoff, victim payoff for 
each potential outcome.

In explaining the respective payoffs of criminal and victim we re-

mark that game theoretic equilibria depend on the relative payoff dif-

ferences across actions, rather than the absolute payoff. For the victim 
we are, thus, interested in the relative payoff difference from paying 
the ransom versus not paying the ransom. We assume that if the vic-

tim pays the ransom then they lose the ransom amount, 𝑅𝑆 or 𝑅𝑁𝑆 , 
as well as ‘legal fees’, 𝐿 ≥ 0, which can include legal and other asso-

ciated costs (including psychological and moral) of paying the ransom. 
We assume that if the ransom is paid the criminal returns access to, at 
least some, files and is reduced the amount of sensitive data published. 
If, therefore, the victim does not pay the ransom they lose 𝑉 ≥ 0 from 
higher recovery costs as well as 𝑇 ≥ 0 (if data was exfiltrated) from in-

creased reputational costs resulting from publication of sensitive data. 
This motivates the payoff function in Fig. 1.

In analysing the incentives of the criminal we need to consider the 
relative payoff differences from signalling or not signalling. We assume 
that the attack costs the criminal 𝑐. If the victim pays then the criminal 
receives ransom 𝑅𝑆 or 𝑅𝑁𝑆 . If the criminal signals then they pay the 
cost 𝑘𝐷 or 𝑘𝑁 , as stated previously.

The victim will have legal fees, recovery costs (like buying new 
hardware and software) and reputation costs under any scenario. We re-

iterate, however, that since we consider these costs to be constant across 
all outcomes, we do not include them in our analysis. Furthermore, we 
would like to stress that our model implicitly takes into account fac-

tors such as the importance of backups. For instance, if a victim has 
good backups then the recovery costs 𝑉 would be low, and therefore 
the victim, as we will show, would not pay a large ransom. Similarly, 
if sensitive data is not exfiltrated then 𝑇 would be low and the victim 
would again not pay a large ransom.

A (pure) strategy for the criminal involves the following conditional 
choices: (a) decide whether to signal or not if data is exfiltrated, (b) 
decide whether to signal or not if data is not exfiltrated, and (c) deter-

mine ransom demands 𝑅𝑆 or 𝑅𝑁𝑆 as appropriate. A (pure) strategy for 
the victim compromises conditional choices: (a) decide to pay or not to 
pay if the criminal signals, and (b) decide to pay or not to pay if the 
criminal does not signal.

4.2. Bayesian equilibria of the signaling game

In the following we identify (pure strategy) Bayesian equilibria of 
the signalling game. A Bayesian equilibrium takes into account that 
the victim starts with prior belief 𝛼 that data was exfiltrated but can 
potentially update their beliefs once they observe the strategy of the 
criminal. We denote by 𝜇 the updated belief of the victim the criminal 
is type DE. A Bayesian equilibrium has the following basic properties: 
(a) The criminal maximizes their expected payoff given the strategy of 
the victim, (b) the victim updates their beliefs about state DE and NDE 
using Bayes rule, and (c) the victim maximizes their expected payoff 
given the strategy of the criminal and their own beliefs (Fudenberg and 
Tirole, 1991).

Where relevant it may be necessary to tie down beliefs for ‘surprise 
events’ or outcomes that are ‘off the equilibrium path’. For instance, if 
the candidate equilibrium says that the criminal will signal, we need 
to specify the victim’s beliefs if the criminal is observed to not signal. 
In this case we invoke the D1 Criterion which says that any deviation 
from the equilibrium path is assumed to be done by the type with the 
most incentive to deviate (Banks and Sobel, 1987). In this case (see the 
formal analysis for more details) it means the choice to not signal is 
seen as evidence that there was no data exfiltration.

3 Alternatively, 𝑅𝑆 or 𝑅𝑁𝑆 could be seen as the final ransom demands that 
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will result from negotiation.
Computers & Security 138 (2024) 103670

As is standard in the analysis of signalling games, we distinguish 
between separating and pooling equilibria. A separating equilibrium 
has the property that the victim can distinguish the type of the criminal 
(DE or NDE) from their actions. A pooling equilibrium has the property 
that the criminal will act the same whether type DE or NDE and so the 
victim can not distinguish type. We identified two separating equilibria 
(we will call A1 and A2) and three pooled equilibria (we will call B1, 
C1 and C2). We first characterize the five equilibria. We then provide 
conditions on the parameters of the game under which the different 
equilibria exist. We would argue that all five types of equilibria can 
potentially be seen in the field.

A1. Separating equilibrium. Victim pays whether signal or not.

The victim believes 𝜇 = 0 when she receives no signal and 𝜇 = 1
when they receive a signal. The victim is, thus, willing to pay the 
ransom when she gets the signal that data is exfiltrated if and only 
if 𝑅𝑆 < 𝑇 + 𝑉 −𝐿. Set 𝑅𝑆 = 𝑇 + 𝑉 −𝐿 − 𝜖, where 𝜖 is arbitrarily 
close to 0. Likewise, the victim is willing to pay the ransom when 
there is no signal if and only if 𝑅𝑁𝑆 < 𝑉 −𝐿. Set 𝑅𝑁𝑆 = 𝑉 −𝐿 > 0. 
Combined, the criminal has payoff 𝑈 = 𝑇 + 𝑉 −𝐿 − 𝑘𝐷 − 𝑐 − 𝜖 in 
state DE and 𝑈 = 𝑉 − 𝐿 − 𝑐 − 𝜖 in state NDE. The criminal has 
no incentive to deviate from the equilibrium strategy in state DE 
if 𝑘𝐷 < 𝑇 . In interpretation, the extra revenue the criminal can de-

mand from signalling data is exfiltrated compensates for the cost of 
sending the signal. Similarly, the criminal has no incentive to de-

viate from the equilibrium strategy in state NDE when 𝑘𝑁 > 𝑇 . In 
interpretation, the cost of sending a signal (when data is not exfil-

trated) is higher than the extra revenue from the ransom.

A2. Separating equilibrium. Victim only pays when receiving sig-

nal. As with equilibrium A1, the victim believes 𝜇 = 0 when they 
receive no signal and 𝜇 = 1 when she receives a signal. Following, 
the same logic as equilibrium A1 the victim is willing to pay ransom 
𝑅𝑆 = 𝑇 +𝑉 −𝐿 − 𝜖 if there is a signal. The maximum ransom they 
are willing to pay if there is no signal is 𝑅𝑁𝑆 < 𝑉 −𝐿. If, therefore, 
𝑉 < 𝐿 the victim is not willing to pay a (positive) ransom. The pay-

off for the criminal in state DE is 𝑈 = 𝑇 + 𝑉 −𝐿 − 𝑐 − 𝑘𝑁 − 𝜖 and 
their payoff in state NDE is 𝑈 = −𝑐. The criminal in state NDE has 
no incentive to signal if 𝑇 +𝑉 −𝐿 <𝐾𝑁 . In interpretation the cost 
of signaling in state NDE is higher than the maximum ransom the 
victim is willing to pay.

B1. Pooled equilibrium: The criminal signal and the victim pays.

The criminal sends a signal in both states DE and NDE. The victim 
should maintain the belief 𝜇 = 𝛼 when they receive a signal that 
data is exfiltrated. If they do not receive a signal than beliefs are 
set 𝜇 = 0 (invoking the D1 Criterion). The maximum ransom a vic-

tim is willing to pay if a signal is sent is 𝑅𝑆 = 𝑉 + 𝛼𝑇 −𝐿 − 𝜖. The 
maximum ransom they are willing to pay if no ransom is sent is 
𝑅𝑁𝑆 = 𝑉 − 𝐿 − 𝜖. Thus, the criminal has no incentive to deviate 
from the equilibrium path in state NDE if 𝛼𝑇 > 𝑘𝐷 . In interpreta-

tion, the cost to the NDE type of signaling is sufficiently low that 
they signal even though no data was exfiltrated. This lowers the 
ransom a type DE can demand because their signal is less credible.

C1. Pooled equilibrium: The criminal does not send a signal and 
the victim pays. The criminal sends no signal in both state DE 
and NDE. The victim should maintain the belief 𝜇 = 𝛼 when they 
receive no signal that data is exfiltrated. If they do receive a signal 
than beliefs are set 𝜇 = 1 (invoking the D1 Criterion). The victim 
is willing to pay ransom 𝑅𝑁𝑆 = 𝑉 + 𝛼𝑇 −𝐿 − 𝜖 when she does not 
receive a signal and 𝑅𝑆 = 𝑉 + 𝑇 − 𝐿 − 𝜖 when she does receive a 
signal. The criminal has no incentive to deviate when type DE if 
(1 − 𝛼)𝑇 < 𝑘𝐷 . In interpretation, the extra ransom is insufficient to 
cover the cost of sending a signal (even when data is exfiltrated). 
This equilibrium also requires 𝑉 + 𝛼𝑇 > 𝐿 so that the victim is 
willing to pay a positive ransom.

C2. Pooled equilibrium: No signal and victim does not pay. We 

follow the same logic as equilibrium C1 but now consider the case 



Computers & Security 138 (2024) 103670T. Meurs, E. Cartwright, A. Cartwright et al.

Table 3

Stable equilibria and conditions in signaling game.

Case Type equilibrium Condition

A1 Separating - victims pays 𝐿 < 𝑉 & 𝑘𝐷 < 𝑇 < 𝑘𝑁

A2 Separating - Only pay when signal 𝑉 < 𝐿 < 𝑉 + 𝑇 & 𝑘𝐷 < 𝑇 + 𝑉 −−𝐿 < 𝑘𝑁

B1 Pooling - Signal and pay 𝑉 + 𝛼𝑇 > 𝐿 & 𝛼𝑇 > 𝑘𝑁

C1 Pooling - No signal and pay 𝑉 + 𝛼𝑇 > 𝐿 & (1 − −𝛼)𝑇 < 𝑘𝐷

C2 Pooling - No signal and no pay 𝑉 + 𝛼𝑇 > 𝐿 & 𝑉 + 𝑇 −−𝐿< 𝑘𝐷

Table 4

The ransom and payoffs of criminals and victims in the different equilibria depending on the type 
of the criminal.

Case DE NDE

𝑅𝑆 Criminal Victim 𝑅𝑁𝑆 Criminal Victim

A1 𝑇 + 𝑉 −𝐿− 𝜖 𝑅𝑆 − 𝑐 − 𝑘𝐷 −𝑅𝑆 −𝐿 𝑉 −𝐿− 𝜖 𝑅𝑁𝑆 − 𝑐 𝑅𝑁𝑆 −𝐿

A2 𝑇 + 𝑉 −𝐿− 𝜖 𝑅𝑆 − 𝑐 − 𝑘𝐷 −𝑅𝑆 −𝐿 0 −𝑐 −𝑉
B1 𝑉 + 𝛼𝑇 −𝐿− 𝜖 𝑅𝑆 − 𝑐 − 𝑘𝐷 −𝑅𝑆 −𝐿 𝑉 + 𝛼𝑇 −𝐿− 𝜖 𝑅𝑁𝑆 − 𝑐 − 𝑘𝑁 −𝑅𝑁𝑆 −𝐿

C1 𝑉 + 𝛼𝑇 −𝐿− 𝜖 𝑅𝑆 − 𝑐 −𝑅𝑆 −𝐿 𝑉 + 𝛼𝑇 −𝐿− 𝜖 𝑅𝑁𝑆 − 𝑐 −𝑅𝑁𝑆 −𝐿

C2 0 −𝑐 −𝑉 − 𝑇 0 −𝑐 −𝑉
where 𝑉 + 𝛼𝑇 < 𝐿. In this case the victim is not willing to pay 
a positive ransom if a signal is not sent. Moreover, the criminal 
has no incentive to deviate when type DE if 𝑉 + 𝑇 −𝐿 <𝐾𝐷 . The 
interpretation of this equilibrium is that it is too costly to pay for 
the victim and too costly for the criminal to send a credible signal. 
Clearly there would be no incentive for the criminal to attack in 
this scenario because they incur the cost 𝑐.

The Bayesian equilibria that exist in the game will depend on the 
specific parameters of the game, 𝑉 , 𝐿, 𝑇 , 𝛼, 𝐾𝐷 and 𝐾𝑁 . In the fol-

lowing three Propositions we characterise the set of conditions under 
which there exists separating equilibria A1 and A2 (Proposition 1), 
pooling equilibria B1 (Proposition 2), and pooling equilibria C1 and C2 
(Proposition 3). Proof of propositions can be found in the Appendix.

Proposition 1. If 𝑉 > 𝐿 and 𝑘𝐷 < 𝑇 < 𝑘𝑁 there is a Bayesian equilibrium 
satisfying the D1 Criterion of the type A1. If 𝑉 < 𝐿 and 𝑘𝐷 < 𝑇 + 𝑉 −𝐿 <
𝑘𝑁 there is a Bayesian equilibrium satisfying the D1 Criterion of the type 
A2.

Our first proposition shows that there exists a separating equilibrium 
if the cost of signalling is sufficiently low when the criminal is type DE 
and high when they are type NDE. Thus, the criminal only signals if data 
has been exfiltrated. The criteria for sufficiently low and high depends 
on the reputational costs 𝑇 , recovery costs 𝑉 and legal fees 𝐿. The 
victim pays if data is exfiltrated and pays if data is exfiltrated if and 
only if 𝑉 > 𝐿.

Proposition 2. If (a) 𝑉 > 𝐿 and 𝛼𝑇 > 𝑘𝑁 , or (b) 𝑉 + 𝛼𝑇 > 𝐿 > 𝑉 and 
𝛼𝑇 +𝑉 −𝐿 > 𝑘𝑁 there is a signaling equilibrium satisfying the D1 Criterion 
of the type B1.

Our second proposition shows conditions under which there exists 
a pooling equilibrium where the criminal signals data is exfiltrated, ir-
respective of whether data is exfiltrated or not. This equilibrium exists 
if it is sufficiently low cost for the criminal to signal data exfiltration. 
The notion of sufficiently low depends on the ex-ante probability of 
data exfiltration 𝛼 and the reputation cost 𝑇 . The higher is 𝛼𝑇 then the 
more likely to obtain a pooling equilibrium with signalling. In interpre-

tation, the victim is willing to pay a larger ransom if data exfiltration 
is signaled and so it is in the interests of the criminal to signal data 
exfiltration when type NDE (if 𝑘𝐷 is sufficiently low).

Proposition 3. If 𝑉 + 𝛼𝑇 > 𝐿 and (1 − 𝛼)𝑇 < 𝑘𝐷 there exists a signaling 
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equilibrium satisfying the D1 Criterion of the type C1. If 𝑉 + 𝛼𝑇 > 𝐿 > 𝑉
and 𝑇 + 𝑉 − 𝐿 < 𝑘𝐷 there exists a signaling equilibrium satisfying the D1 
Criterion of the type C2

Our final proposition shows conditions under which there exists 
a pooling equilibrium where the criminal does not signal data is ex-

filtrated, even if it is. This type of equilibrium exists if the cost of 
signaling is sufficiently high for type DE. Again, the reputation costs 
𝑇 are an important determinant of the meaning of sufficiently high. If 
the reputation costs are low then we are more likely to obtain a pool-

ing equilibrium with no signalling. In interpretation, the victim is not 
willing to pay a larger ransom if data is exfiltrated and so there is less in-

centive for the criminal to signal exfiltration (if 𝑘𝐷 is sufficiently high).

The five type of equilibria we have identified and conditions under 
which they exist are summarized in Table 3.

5. Theoretical insights from the game

5.1. Expected payoffs

In the previous section we derived five types of Bayesian equilibria 
of the signaling game. In this section we perform simulations to better 
understand the interaction between different parameter values and the 
resultant payoffs of the criminal and victim. A summary of the equilib-

rium ransom amount and corresponding payoff of criminal and victim 
conditionally on the type of the criminal is depicted in Table 4.

If the criminal is type DE then they would prefer a separating equi-

librium (A1 or A2) to a pooling equilibrium because they can charge 
a higher ransom and obtain a higher payoff. By contrast, if the crim-

inal is type NDE they would prefer a pooling equilibrium (B1 or C1) 
because they can charge a higher ransom and obtain a higher payoff. 
As is standard in signalling games we, thus, obtain a complex interac-

tion in which one type, DE in our game, has incentives to signal their 
type, while the other type, NDE, has an incentive to hide their type. 
The equilibrium outcome obtained will depend on the parameters of 
the game.

Having looked at expected payoffs for each type of criminal we can 
consider the ex-ante expected payoffs for both criminal and victim. The 
expected utility hypothesis of Von Neumann-Morgenstern states that 
the choice involving uncertainty of a decision-maker can be represented 
by the expected value of the cardinal utility functions (Ng, 1984; Von 
Neumann and Morgenstern, 1944). In other words, the total expected 
utility can be represented as the expected value of the separate utility 
functions multiplied by the probability of every state. In the current 

context this results in:
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Fig. 2. Total expected utility for the criminal when changing (a) 𝛼, (b) 𝑘𝑁 , (c) 𝐿. (For interpretation of the colours in the figure(s), the reader is referred to the web 

version of this article.)

Table 5

Ex-ante expected payoff of criminal and victim before crimi-

nal type is determined.

Case Criminal Victim

A1 𝛼(𝑇 − 𝑘𝐷) + 𝑉 −𝐿− 𝑐 − 𝜖 𝛼𝑇 − 𝑉 + 𝜖

A2 𝛼(𝑇 + 𝑉 −𝐿− 𝑘𝐷 − 𝜖) − 𝑐 𝛼𝑇 − 𝑉 + 𝛼𝜖

B1 𝛼(𝑇 − 𝑘𝐷) − (1 − 𝛼)𝑘𝑁 + 𝑉 −𝐿− 𝑐 − 𝜖 𝛼𝑇 − 𝑉 + 𝜖

C1 𝛼𝑇 + 𝑉 −𝐿− 𝑐 − 𝜖 𝛼𝑇 − 𝑉 + 𝜖

C2 −𝑐 𝛼𝑇 − 𝑉

𝑈 (Θ) = 𝛼𝑈𝐷𝐸 (Θ) + (1 − 𝛼)𝑈𝑁𝐷𝐸 (Θ) (1)

Where U(⋅) represents the (cardinal) utility function or payoffs, 𝛼 the 
probability of data exfiltration and Θ the parameters 𝑉 , 𝐿, 𝑇 , 𝐾𝐷, 𝑘𝑁 .

Expected payoffs in the signaling game for each possible type of 
equilibrium are shown in Table 5. You can see that the victim has es-

sentially the same payoff irrespective of the type of equilibrium. This is 
because the criminal is able to extract the maximum surplus from the 
victim. To explain, consider equilibrium C2 in which the victim does 
not pay. In this case they suffer the recovery loss 𝑉 and, with probabil-

ity 𝛼 reputational damage 𝑇 . This, ex-ante, is the most the victim can 
lose from the attack. In the other types of equilibria the victim pays the 
ransom (with positive probability) and gains up to 𝜖 from doing so. We, 
thus, see that 𝜖 can be interpreted as the smallest financial gain that 
would induce the victim to pay a ransom.

As we would intuitively expect, the victim’s payoff loss from the at-

tack is lower if the victim has active ready back-ups (which lowers 𝑉 ), 
less sensitive data (which lowers 𝑇 ), and measures in place to stop ex-

filtration (which lowers 𝛼). Crucially, these factors are beneficial to the 
victim irrespective of the type of equilibrium, and, thus, whether the 
victim pays the ransom or not, because they lower the ransom the crim-

inal can demand. Preventive measures are, therefore, beneficial even if 
the victim pays the ransom.

While the victim’s expected payoff does not depend on the type of 
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equilibria, we can see in Table 5 that the criminal’s payoff is highly de-
pendent on the type of equilibria. To illustrate, in panels (a-c) of Fig. 2

we plot the expected payoff of the criminal under each equilibrium type 
(assuming for now the equilibria exist) for fixed parameter values. We 
vary 𝛼, 𝑘𝑁 and 𝐿 in panels (a-c) respectively. We see that, for most 
parameter values, equilibria of type A2 or C1 maximize the criminal’s 
payoff. By contrast, equilibria B1 never maximize the criminal’s pay-

off. This is noteworthy because equilibrium B1, in which the criminal 
signals data exfiltration, may appear a natural outcome. This type of 
equilibrium is not optimal for the criminal because they incur the costs 
of signaling exfiltration but cannot extract a higher ransom from sig-

naling. Better for them to have equilibrium C1, in which they do not 
incur costs of signaling, or equilibrium A2, in which signaling enables 
a higher ransom.

Fig. 2(a) shows that increasing 𝛼 leads to a larger expected payoff for 
the criminal (except for case C2). Thus, the criminal’s payoff is higher if 
they have a higher ex-ante probability of data exfiltration. This suggests 
criminals have an incentive to improve their ability to exfiltrated data.

Fig. 2(c) shows that a higher 𝐿 will lead to a lower expected pay-

off for the criminal. This is because the higher 𝐿 is reflected in a lower 
ransom paid. In interpretation, the legal fees are transferred from the 
victim to a third party (e.g. lawyers or insurers) rather than the crim-

inals. This may be viewed as desirable from a societal perspective, 
although it does not materially benefit the victim.

Fig. 2(b) shows that increasing 𝑘𝑁 only impacts the criminal’s profit 
in equilibrium B1. This is interesting, because increasing 𝑘𝑁 , the cost of 
signaling data exfiltration when no data is exfiltrated, may seem a natu-

ral lever that victims could use to disrupt the criminal’s business model. 
Our analysis suggests that increasing 𝑘𝑁 may have limited impact. To 
explore this further we need to investigate which type of equilibria are 
most likely to exist in the field.

5.2. Overlapping equilibria

As we have already demonstrated (see Propositions 1-3 and Table 3) 

each of the five equilibria we have identified will only exist under par-
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Fig. 3. Overlap of different equilibria for different parameters.
ticular parameter values. Moreover, for a given set of parameters we 
may obtain multiple equilibria, a unique equilibrium, or no equilibria. 
To illustrate, we provide three examples depicted in Fig. 3. We indicate 
the existence of equilibria for combinations of 𝑘𝑁 and 𝑘𝐷 .

The first example, see Fig. 2(a), has 𝑇 = 6, 𝛼 = 0.6, 𝐿 = 5 and 𝑉 = 7. 
Here we see parameters for which the separating equilibrium A1 and 
the pooling equilibrium C1 exist. This occurs when 𝑘𝑁 is large and 𝑘𝐷
is ‘intermediate’. In both equilibria the criminal does not signal if type 
NDE (because 𝑘𝑁 is large). The equilibria differ in whether the criminal 
signals if type DE. Both equilibria are possible because 𝑘𝐷 is an ‘inter-

mediate’ range. If 𝑘𝐷 is higher then only the pooling C1 equilibrium 
exists, while if it is lower only the separating A1 equilibrium exists.

We also see parameters for which both the pooling equilibrium B1, 
with signalling, and the pooling equilibrium C1, with no signalling, both 
exist. This happens for lower values of 𝑘𝑁 and 𝑘𝐷 . In interpretation, the 
criminal of type NDE will want to copy the equilibrium behavior of the 
type DE and it is too costly for the type DE to differentiate themselves. 
There are also parameter values for which there is no equilibrium. This 
happens for a small 𝑘𝐷 and ‘intermediate’ 𝑘𝑁 . In this case the type 
NDE wants to copy the type DE, but the type DE will want to differen-

tiate themselves. There is, therefore, no stable (pure strategy) pooling 
equilibrium.

In our second example we set 𝑇 = 6, 𝛼 = 0.6, 𝐿 = 7 and 𝑉 = 5. Thus, 
the legal fees are now larger than the recovery cost. See Fig. 3(b). The 
high legal fees mean that the victim will not pay unless they have suf-

ficiently high belief that data was exfiltrated. We, thus, see equilibrium 
A2. Otherwise, the types of equilibria we observe in our second exam-

ple, as a function of 𝑘𝑁 and 𝑘𝐷 , are similar to those in our first example.

There are two interesting findings we will highlight from these ex-

amples. Consider our first example with 𝑘𝐷 = 2.4 and 𝑘𝑁 = 2.5. As we 
9

have discussed, there are two types of pooling equilibria for these pa-
rameters: B1 with signaling and C1 with no signaling. The criminal’s 
expected payoff is 3.11 with equilibrium B1 and 5.55 with equilib-

rium C1. Clearly, therefore, the criminal would prefer equilibrium C1 
over B1. This is because they avoid the cost of signaling data exfiltra-

tion. Criminals, however, have limited influence over which type of 
equilibria will emerge because it will depend on norms and histori-

cal precedence. It is possible, therefore, that a B1 equilibrium could 
emerge, in which criminals signal data exfiltration, even though this 
equilibrium is not the one they would prefer.

The second finding we would highlight is that an increase in 𝑘𝑁
can, perhaps counter-intuitively, lead to an increased expected payoff 
for the criminal. To illustrate, consider the first example with 𝑘𝐷 = 1
and 𝑘𝑁 = 2.5. In our example this leads to equilibrium B1 with expected 
payoff for the criminal of 3.95. The low cost to signal data exfiltration 
(even if data is not exfiltrated) results in a pooling equilibrium where 
the criminal signals irrespective of type. Now suppose 𝑘𝑁 = 7.5. In this 
case we obtain equilibrium A1 with an expected payoff for the criminal 
of 4.95. The increase in 𝑘𝑁 increases the expected payoff of the criminal 
because it makes it easier for them to send a credible signal of data ex-

filtration. Hence, they are able to extract a higher ransom when of type 
DE. Also, the type NDE criminal no longer incurs the cost of signaling.

For different parameter ranges and increase in 𝑘𝑁 can lower the ex-

pected payoff of the criminal. The general point, therefore, is that care 
is needed in evaluating interventions aimed at disrupting the criminal’s 
business model. An increase in the costs of signaling data exfiltration 
can benefit the criminals by either making signals more credible and/or 

removing the incentives to send costly signals of data exfiltration.
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5.3. Calibrating parameter values

For our third example we look to calibrate the parameters of the 
game, drawing on the data described in Section 2 with the objective to 
identify the most likely equilibria we would observe in the field.

1. Probability of data exfiltration 𝛼: Most criminals in our dataset 
try to exfiltrate data (Meurs et al., 2022). This seems in line with 
a Dutch whitepaper where 7 IR companies mentioned that in most 
ransomware attacks of these clients, data was exfiltrated (Meurs 
and Holterman, 2022). This points to a high value of 𝛼. Data from 
Coveware in 2022 suggests that around 80% of ransomware attacks 
involve data exfiltration (Culafi, 2022). This, however, will include 
cases where the data exfiltrated could be deemed non-sensitive and 
of little value. The appropriate value of 𝛼 in our model will, thus, 
be lower than such upper bounds. We suggest that setting 𝛼 = 0.6
strikes a reasonable balance.

2. Recovery cost 𝑉 versus legal fees 𝐿: A key determinant of the 
type of equilibrium we obtain in our model is the relationship be-

tween 𝑉 and 𝐿 (see Table 3). There are various costs to paying 
a ransom that would contribute to 𝐿. These include prohibition 
and checks that payments are consistent with sanction legislation.4

There are also costs to ransom negotiation and sourcing crypto-

currency. Furthermore, there is evidence of negative psychological 
and moral consequences of paying (Cartwright et al., 2019; Corbet 
and Goodell, 2022). The simple reality, however, during the rapid 
rise of ransomware, is that a large proportion of victims pay the 
ransom. This trend predates the emergence of double extortion and 
so is strong evidence that 𝑉 > 𝐿 for most organisations. In other 
words, the financial gain from recovering access to encrypted files 
exceeds the costs of paying a ransom. This may be the case even if 
a business has back-ups, given that return of the files may allow a 
more rapid return to normal operations.

To give some perspective, The average financial loss reported by 
victims in our dataset is 555,820 euro (sd=3 million euro). The av-

erage loss when a ransom is paid is 399,098 euro (sd=0.8 million 
euro) while the average loss when a ransom is not paid is 674,672 
euro (sd=3.9 million euro); a difference of around 275,000 euros. 
Furthermore, the average ransom paid is 330,326 euro (sd=0.8 
million euro). Combining these two pieces of evidence, we might 
infer that 𝑉 − 𝐿 is around 300,000 euro on average. In our cali-

bration we, therefore, assume the recovery costs V are relatively 
large.

3. Reputation cost 𝑇 : Another key determinant of the type of equi-

librium in our model is the relationship between 𝑇 and 𝐿 and 𝑉 . 
It is acknowledged that double extortion has resulted in increased 
incentives to pay ransoms (Payne and Mienie, 2021; Mott et al., 
2023). Indeed, analysis of our data revealed the ransom requested 
with data exfiltration is roughly 3 million euro and after negotia-

tion roughly 1,7 million euro. Without data exfiltration the ransom 
was roughly 460,000 euro before negotiation and 135,000 euro 
without data exfiltration. This points to significant concerns about 
reputational costs (Pattnaik et al., 2023). Payment of a ransom does 
not, however, guarantee that data will not be leaked; nor does it 
protect the business against reputation damage or regulatory fines 
from the data breach (Hodge, 2023). We suggest, therefore, that 
the reputational ‘savings’ from paying a ransom are of secondary 
importance compared to recovery costs. Reputation costs are likely 
to be similar to legal fees in order of magnitude. Specifically, we 
set 𝑉 > 𝑇 and 𝑇 =𝐿.

4 To the best of our knowledge only the United States of America state North-

Carolina prohibited ransom payments by public entities. However, it is unclear 
what the penalty is and whether this also applies to double extortion ran-

somware (Lewis, 2022). More generally, it is not clear that sanctions are a 
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strong deterrent for payment (Abely, 2022).
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4. 𝑘𝐷 versus 𝑘𝑁 : The negotiations of the attacks analysed in Section 2

showed that some criminals did not send proof of data exfiltration 
even though analysis of logs established that data was exfiltrated. 
Likewise, in some cases where it was show that data was most 
likely not exfiltrated, the criminals said that data was exfiltrated. 
In most cases where it was considered likely data was exfiltrated 
the criminal sent proof by means of a file tree. Taken together, 
we will interpret evidence of signals being sent, as evidence that 
the costs 𝑘𝐷 and 𝑘𝑁 are relatively low compared to 𝐿, 𝑉 and 𝑇 . 
However, we will assume 𝑘𝑁 is relatively large compared to 𝑘𝐷 , 
because it is harder to, for example, make a file tree if no data is 
exfiltrated.

5. Costs of attack 𝑐: It is hard to quantify the costs criminals in-

cur during an attack. (Galinkin, 2021) estimate the cost of a ran-

somware attack to be around 4,200 dollars. However, the cost of 
an attack seems to be related to so many variables that it is hard 
to give a complete estimate. For example, when the criminal is af-

filiated with a ransomware strain which is part of RaaS, then most 
probably they have to pay a part of the profits to the ransomware 
developers. On the other hand, the RaaS group helps with setting 
up the infrastructure and tooling for data exfiltration. In our sam-

ple, RaaS is more often associated with data exfiltration. This might 
indicate that the costs of setting up a leak site and performing data 
exfiltration are too much effort for an individual criminal. We elab-

orate on this case in the following subsection. Here we assume the 
costs of the attack being relatively low compared to 𝑉 , 𝑇 and 𝐿, 
based on (Galinkin, 2021).

Based on our calibration exercise we performed a simulation with 
𝛼 = 0.6, 𝑇 = 𝐿 = 10 and 𝑉 = 20. This takes into account that 𝑉 > 𝑇 , 𝐿. 
See Fig. 3(c) for the set of equilibria. Since we expect signaling costs 
to be relatively low compared with the other parameters, we would ex-

pect the lower-left quadrant of the graph to be most likely in real-life. 
This suggests equilibrium B1. Therefore, we would expect an equilib-

rium where (in the ‘average’ attack) the criminals signal that data is 
exfiltrated, whether data is exfiltrated or not, and the victim pays. This 
means criminals incur the costs of signaling. It also, as we now discuss, 
raises interesting questions about whether the criminals have an incen-

tive to exfiltrate data.

5.4. Increasing the probability of data exfiltration

We consider B1 to be the most likely equilibrium in the field. In this 
case the criminal can obtain ransom 𝑉 + 𝛼𝑇 −𝐿 − 𝜖. And the expected 
payoff of the criminal is 𝛼(𝑇 −𝑘𝐷) −(1 −𝛼)𝑘𝑁 +𝑉 −𝐿 −𝑐+𝜖. Since (with 
equilibrium B1) 𝛼𝑇 > 𝐾𝑁 and 𝑘𝐷 < 𝑘𝑁 it holds that expected payoff is 
an increasing function of 𝛼. That is, increasing 𝛼 will increase the total 
expected payoff of the criminal. We highlight, therefore, that while the 
criminals cannot extract a higher ransom from a particular attack if they 
exfiltrate data, they can gain across many attacks from a reputation 
for data exfiltration. We found cases where IR companies mentioned 
the reputation of the ransomware group as a possible indicator of data 
exfiltration: “Although no evidence of data exfiltration is found during 
the forensic analysis, this group is well known for exfiltrating data.” 
Reputation will be positively correlated with the value of 𝛼.5

We extend our model to consider the case where the criminals can 
influence 𝛼 by putting effort and/or investments into the attack, de-

noted as investment cost 𝐼 . In this case the cost of an attack becomes 
a function of 𝐼 : 𝑐(𝐼). The higher is 𝐼 then the higher is 𝛼. Our signal-

ing game is based on the assumption that investment cost 𝐼 and 𝛼 must 
be known, or common knowledge, before the game begins. The intu-

ition is that the victim must have an idea how much the criminal has 

5 For game theoretic analysis of ransomware and reputation we refer to (Li 

and Liao, 2021; Cartwright and Cartwright, 2019).
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Fig. 4. (a) Relationship between investment and alpha. (b) Relationship between investment and total expected utility criminal.
invested into data exfiltration and how that influences the probability 
of data exfiltration, 𝛼.

We assume that the relationship between investment I and 𝛼 to 
be concave: initially the criminal has large investment cost. However, 
when the criminal decides to invest in the attack, we argue that once the 
right tooling and infrastructure is bought, additional investments would 
not increase the probability of data exfiltration substantially. Therefore 
the relationship between investment cost I and 𝛼 is concave. While it is 
possible to utilize any concave function for our purposes, we have cho-

sen to employ the Cumulative Distribution Function of the exponential 
distribution as an illustrative example (see Fig. 4(a), 𝜆 = 1.5).

𝛼(𝐼) = 1 − 𝑒𝜆𝐼 (2)

Consequently, the expected payoff for the criminal in equilibrium B1 is:

𝑈𝑇𝑜𝑡𝑎𝑙 = 𝛼(𝐼)(𝑇 − 𝑘𝑑 ) − (1 − 𝛼(𝐼))𝑘𝑁 + 𝑉 −𝐿− 𝑐 − 𝐼 + 𝜖 (3)

Plotting the total expected payoff of the criminal against investment, 
there seems an optimal investment which yield largest total expected 
payoff, see Fig. 4(b).6 You can see that this results in an optimum value 
of 𝛼 around 0.9. This is higher than we assumed in our calibration 
(𝛼 = 0.6) but consistent with a relatively high 𝛼. If we increase the in-

vestment costs of data exfiltration then the optimal value of 𝛼 is smaller. 
There are two other effects, however, we would highlight as likely to 
result in a smaller 𝛼 in practice:

(a) Law Enforcement officers have informally disclosed that there 
are case studies where data exfiltration alerted the victim so that data 
encryption and exfiltration was not possible. In our model this sug-

gests that increasing 𝐼 could alert the victim so that they could quickly 
take action to stop the attack. Hence, increasing 𝐼 does not necessarily 
increase 𝛼, and so the optimal value of 𝛼 for the criminal may be cor-

respondingly lower. In other words, the criminal may accept a lower 
probability of exfiltration 𝛼 in order to increase the likelihood of the 
attack succeeding.

(b) If data exfiltration is costly the criminals might decide before-

hand that they will not exfiltrate data. They might consider that the 
effort and costs of investments in infrastructure, and tooling might not 
be sufficient to cover the profits from data exfiltration. The criminal 
could then randomize between zero investment on some attacks and 
high investment on other attacks, to maximize their overall payoff. 
Given that a victim would not know if the criminals invested in data 
exfiltration in their particular attack, this again has the effect of lower-

ing the value of 𝛼 from that seen in Fig. 4.

Endogenizing variables of our model, such as 𝛼 might be an inter-

esting way to generalize our model and could be the focus of further 
research.
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6 With parameters set to: T=10, 𝑘𝐷=1, 𝑘𝑁=3, L=0, V=0, c=0, 𝜖=0.
6. Conclusion

6.1. Main findings and limitations

Our paper contributes to an understanding of the ransomware busi-

ness model in a setting with data exfiltration and double extortion. It 
is often the case (maybe typically the case) that the victim of a ran-

somware attack cannot know for sure whether data has been exfiltrated, 
particularly in the initial aftermath of the attack. If victims are willing 
to pay higher ransoms in the event of data exfiltration then it could 
be in the criminal’s interests to signal data exfiltration. Drawing on a 
dataset provided by the Dutch Police and an incident response firm, 
we explored the issue of how credible victims find the claims of data 
exfiltration by attackers. Our findings indicate that victims display vary-

ing levels of confidence in whether data has actually been exfiltrated. 
Generally, the data suggests a greater willingness-to-pay on the part of 
victims when they believe their data has been compromised, incentiviz-

ing criminals to falsely claim that data has been exfiltrated.

We applied a signaling game model to analyse this information 
asymmetry, focusing on the interaction between a victim and criminal 
and Bayesian equilibrium strategies. Depending on various factors like 
the cost of sending signals and the reputation cost of actual data exfiltra-

tion, we identified five stable equilibria of the game. These range from 
scenarios where the attacker only signals when data is truly exfiltrated, 
to those where signals are sent or payments are made irrespective of the 
actual data exfiltration, to those where no signals are sent even if data 
is exfiltrated. Our analysis and calibration exercise suggests that the 
most likely real-world equilibrium outcome involves criminals signal-

ing data exfiltration, whether or not exfiltration has actually occurred. 
Additionally, our study indicates that it could be strategically advanta-

geous for criminals to invest more in attacks to enhance their chances 
of successful data exfiltration.

There are limitations in applying a game-theoretic framework to 
real-life situations. For instance, an assumption of common knowl-

edge of game parameters is strong; given that ransomware remains 
fluid there is little opportunity for either victim or criminal to learn 
about each other through repeated interaction. Moreover, quantifying 
signaling costs and determining the extent of falsely generated credi-

ble signals pose challenges in real-life settings. Additionally, our model 
does not account for certain externalities, such as ethical considerations 
of the victim when deciding to pay the ransom, regardless of the costs 
or bankruptcy risks. Furthermore, the model does not account for mul-

tiple attacks by the criminal or the security behaviors of other potential 
victims, suggesting possible avenues for further research.

Another limitation of our analysis is that it does not explicitly differ-

entiate between companies with and without recoverable data backups. 
Having recoverable backups does significantly influence the decision-

making process of paying the ransom (Meurs et al., 2023b). Therefore, 
our presented model misses an important factor influencing the deci-
sion to pay. Although the focus of the current study is only on the 
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data-exfiltration during ransomware attacks, the proposed game the-

oretical models could be extended by differentiating situations with 
and without recoverable backups. A further way to extend our current 
game theoretic analysis is to consider the private information of the vic-

tim. Attackers may not know the value of the information in exfiltrated 
documents (Meurs and Holterman, 2022). For instance, the documents 
could be in a foreign language (from the criminals perspective) or there 
are to many documents for the criminal to assess. In a companion paper 
we analyse the value of private information of the victim and concluded 
that private information decreases the payoff of the criminal and in-

creases the payoff of the victim (Meurs et al., 2023a).

A final limitation to consider is the applicability of Nash equilib-

rium. While Bayesian Nash Equilibrium describes an outcome in which 
no one wants to change their strategy, caution should be used in in-

terpreting it as a prediction of behavior (Brandts and Holt, 1992). We 
may observe systematic deviations from Nash equilibrium or conver-

gence on non-intuitive equilibria. Despite these limitations, we believe 
that a game theoretic analysis can still give useful insight on the incen-

tives that ransomware criminals face. In our model we have seen the 
incentives for criminals to signal data exfiltration even if no exfiltration 
exists. This suggests that victims should be cautious of claims made by 
criminals, even if those claims seem credible. Importantly, there may 
be a ‘ripple effect’; the more businesses believe data exfiltration has oc-

curred when it did not, the more criminals have an incentive to falsely 
claim they have exfiltrated data. At face value, this would suggest it is 
in the victims interest to make it more costly for a ransomware criminal 
to falsely claim that data has been exfiltrated. We have seen, however, 
that this can have the perverse effect of benefiting the criminal (on av-

erage) because it can increase ransom demands if data is exfiltrated. It 
is important, therefore, to carefully consider the policy implications of 
our findings.

6.2. Recommendations for policy makers and potential victims

Our signaling game analysis yields several potential implications for 
policy makers and victims:

1. Lowering the Probability of Data Exfiltration: Victims should 
employ measures to decrease the likelihood of data exfiltration. In 
our model, this decreases 𝛼, which was one of the most important 
factors in determining the profitability of ransomware. The follow-

ing strategies can be implemented to help achieve this:

1. Canary-files: Victims can introduce “canary-files” throughout 
their network that generate alerts when copied or moved, 
thereby reducing the likelihood of successful data exfiltration 
(Meurs and Holterman, 2022).

2. Server take-down: Engaging Law Enforcement to take down the 
server to which data is exfiltrated can disrupt the criminal’s 
operations and possibly prevent successful data exfiltration. Al-

though the criminal may have replicated the data on other 
servers, this action could leave a trace for investigation.

3. Spiking data: Incorporating substantial amounts of fake data or 
deliberately contaminating the dataset can decrease the proba-

bility of valuable data being stolen (Li and Liao, 2022).

2. Modifying Signal Credibility: Interventions aimed at altering the 
cost of signaling data exfiltration should be considered. In our mod-

els, these were variables 𝑘𝐷 and 𝑘𝑁 for when criminals did or did 
not exfiltrate data respectively.

1. Increasing costs 𝑘𝑁 : Raising the costs associated with signaling 
data exfiltration can lead to a separating equilibrium, poten-

tially resulting in higher payoffs for criminals. Paradoxically, 
investing in robust monitoring and logging systems may in-

advertently increase the profitability of ransomware attacks. 
Criminals become more credible when they can provide a 
reliable signal, potentially justifying larger ransom demands. 
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Therefore, increasing the costs of 𝑘𝑁 does not seem an effi-
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cient defensive strategy on its own. To be effective it needs to 
be coupled with lowering the probability of data exfiltration 𝛼. 
If the probability of data exfiltration is low then an increase 
in signaling costs can disrupt the criminals profits because it 
becomes more readily apparent that data exfiltration has not 
taken place.

2. Increasing costs 𝑘𝐷 : The criminals profit can be disrupted by ef-

forts to increase the costs of signaling actual data exfiltration. 
However, implementing this approach may prove challenging. 
In our model, 𝑘𝐷 represents the cost of analysing the data to 
provide a credible signal, and the opportunity costs of pursuing 
subsequent attacks. Extending the negotiation process or de-

manding extensive amount or time consuming evidence of data 
exfiltration might increase the costs of signaling. This strategy 
aligns with empirical evidence suggesting that prolonging ne-

gotiations can result in reduced ransom demands (Meurs et al., 
2022). However, it remains unclear whether criminals will eas-

ily accept additional demands for evidence of data exfiltration.

3. Spillover Effects of Defensive Measures: It is crucial to recog-

nize the externality effect resulting from victims defending their 
sensitive data. The results of this study indicate that increased data 
protection measures benefit not only individual businesses but also 
other organizations possessing vulnerable data. In particular, the 
more businesses invest in preventing data exfiltration the lower 
will be the population probability of data exfiltration 𝛼. As we have 
said, a decrease in 𝛼 is an effective way to disrupt the criminal 
business model. Policy makers should acknowledge this positive 
externality effect and consider providing government support for 
cyber security investments. Neglecting this aspect may result in 
suboptimal levels of cyber security prevention and recovery invest-

ments by businesses compared to the social optimum.

4. Prohibition of Ransom Payments or tighter regulation: Our 
framework does not directly capture the different pros and cons 
of banning ransom payments. It can, however, give insight if we 
think of the legal fees parameter, 𝐿, in our model. The higher is 𝐿
then the lower the ransom the criminal can extract. Thus, banning 
ransom payments, to the extent it increases legal fees and fines, 
could be seen as beneficial, because it lowers the criminal’s profit. 
However, a legal prohibition could drive ransom payments under-

ground, and inadvertently lower the legal fees 𝐿 because victims 
no longer seek the advice of lawyers and negotiators. Exploring the 
effect of secret ransom payment on social welfare could be a valu-

able direction for future research.

As we have just argued, an increase in legal fees, which could in-

clude legal costs, but also negotiation costs and psychological costs, 
decreases the size of ransom. High legal fees, thus, disrupt the crim-

inals profit. They do not, however, benefit the victim because they 
merely mean the victim is paying fees rather than ransom. One 
way to think of this from a societal perspective is in terms of regu-

lation (short of banning payments). Higher levels of regulation (e.g. 
carefully enforced sanctions lists or requirements to alert law en-

forcement) would have the consequence of increasing 𝐿. The ideal 
would be to do this in a way that decreases ransom payments with-

out driving ransom payments ‘underground’.

In conclusion, our analysis provides valuable policy insights for ad-

dressing the challenges posed by double extortion ransomware attacks. 
Implementing measures to lower the probability of data exfiltration and 
manipulating signal credibility can help mitigate the impact of such at-

tacks. Additionally, policymakers should consider the externality effect 
of increased data protection efforts and explore avenues for supporting 

cyber security investments to ensure social welfare is maximized.
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6.3. Ethics

In conducting our research, we strictly adhere to the ethical princi-

ples outlined in the Menlo report (Bailey et al., 2012), which includes 
the following criteria: respect for persons, beneficence, justice, and re-

spect for law and public interest.

Respect for Persons: We prioritize the autonomy and agency of 
individuals involved in our research. Cases were anonymized and no 
personal identifiable information is disclosed in this study. Our aim 
is to equip victims with effective methods to enhance their defensive 
mechanisms against cyber attacks.

Beneficence: Our research is guided by the principle of “do no har-

m” and aims to maximize probable benefits while minimizing potential 
harms. We conduct a thorough assessment of the risks and benefits 
associated with our research. Although the study of criminal decision-

making risks of educating the criminal, we base our research on the 
principle of full-disclosure. Considering the entire study, we estimate 
that our model better informs victims and policy makers how to take 
preventive measures to prevent further harm than it educates criminals.

Justice: We uphold principles of fairness and equal consideration 
throughout our research. We strive to ensure that each individual is 
treated equitably and that the benefits resulting from our research are 
distributed to (potential) victims, companies and policy makers to pre-

vent further harm of double extortion ransomware.

Respect for Law and Public Interest: We conduct our research 
with a strong commitment to legal compliance and transparency. We 
engage in legal due diligence with the Dutch Police and IR company 
to ensure that our research adheres to applicable laws and regulations. 
Permission was granted to use their data after anonymizing victims and 
showing that no personal identifiable information is used in this paper.
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Appendix A. Proof of propositions

Proposition 1. If 𝑉 > 𝐿 and 𝑘𝐷 < 𝑇 < 𝑘𝑁 there is a Bayesian equilibrium 
satisfying the D1 Criterion of the type A1. If 𝑉 < 𝐿 and 𝑘𝐷 < 𝑇 + 𝑉 −𝐿 <
𝑘𝑁 there is a Bayesian equilibrium satisfying the D1 Criterion of the type 
A2.

Proof of Proposition 1. Equilibrium A1 can formally be written as fol-

lows: The criminal chooses to (i) Signal and set 𝑅𝑆 = 𝑇 + 𝑉 −𝐿 − 𝜖 if 
type DE, and (ii) No Signal and set 𝑅𝑁𝑆 = 𝑉 −𝐿 − 𝜖 if type NDE. The 
victim chooses (i) Pay if the criminal chooses Signal and asks ransom 
𝑅 ≤ 𝑅𝑆 , (ii) No Pay if Signal and 𝑅 > 𝑅𝑆 , (iii) Pay if No Signal and 
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𝑅 ≤𝑅𝑁𝑆 , and (iv) No Pay if No Signal and 𝑅 > 𝑅𝑁𝑆 .
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Consider the victim. Suppose the criminal has chosen signal and 
ransom 𝑅𝑆 . The Bayesian updated belief of the victim should be 
𝜇(𝐷𝐸|𝑆) = 1. The expected payoff of the victim if they Pay is 𝑈 =
−𝑅𝑆 − 𝐿 = −𝑇 − 𝑉 + 𝜖. The expected payoff if they choose No Pay is 
𝑈 = −𝑇 − 𝑉 . It is, thus, optimal to pay.

Suppose the Criminal has chosen No Signal. The Bayesian updated 
belief of the victim in this case is 𝜇(𝑁𝐷𝐸|𝑁𝑆) = 0. The expected payoff 
of the victim if they Pay is 𝑈 = −𝑅𝑁𝑆 − 𝐿 = −𝑉 + 𝜖. The expected 
payoff if they choose to No Pay is 𝑈 = −𝑉 + 𝜖. This implies that it is 
optimal for the victim to pay if 𝐿 < 𝑉 and optimal to Not Pay if 𝐿 ≤ 𝑉 .

Consider now the incentive of the criminal. Suppose the criminal is 
type 𝜏 =𝐷𝐸. On the equilibrium path they receive payoff 𝑈 = 𝑇 + 𝑉 −
𝐿 − 𝜖 − 𝑐 − 𝑘𝐷 . We argue that, if the criminal chooses Signal, then they 
cannot gain from choosing 𝑅 ≠ 𝑅𝑆 , provided 𝑅𝑆 > 0: If they choose a 
ransom 𝑅 < 𝑅𝑆 then the victim pays a smaller ransom, and if 𝑅 > 𝑅𝑆

then the victim does not pay and the criminal has payoff 𝑈 = −𝑐 − 𝑘𝐷 . 
We have 𝑅𝑆 > 0 if 𝑇 + 𝑉 > 𝐿. We also argue the criminal cannot gain 
from choosing No signal. In doing so, we distinguish two cases 𝐿 > 𝑉

and 𝑉 > 𝐿. If 𝐿 > 𝑉 then the maximum ransom the victim is willing to 
pay is negative. Hence, the victim will choose No Pay and the criminal 
has payoff 𝑈 = −𝑐. It is, thus, optimal to Signal if 𝑇 + 𝑉 − 𝐿 > 𝑘𝐷 . If 
𝐿 < 𝑉 then the victim will pay a ransom up to 𝑅 = 𝑉 − 𝐿 − 𝜖. The 
criminal can do no better than set ransom 𝑅 = 𝑉 − 𝐿 − 𝜖. Thus, the 
criminals payoff is 𝑈 = 𝑉 − 𝐿 − 𝜖 − 𝑐. It is, thus, optimal to Signal if 
𝑇 > 𝑘𝐷 .

Suppose the criminal is type 𝜏 =𝑁𝐷𝐸. The argument above natu-

rally extends to this case, except we now derive, respective, conditions 
𝑇 > 𝑘𝑁 > 𝑘𝐷 and 𝑇 + 𝑉 − 𝐿 > 𝑘𝑁 > 𝑘𝐷 . Proving 𝜇(𝑁𝐷𝐸|𝑁𝑆) = 0 is 
trivial: in the separating equilibrium the strategy of the Criminal is type 
𝜏 = 𝑁𝐷𝐸 is to not signal and for type 𝜏 = 𝐷𝐸 to signal. Therefore 
𝜇(𝑁𝐷𝐸|𝑁𝑆) = 0 and 𝜇(𝐷𝐸|𝑆) = 1 is consistent with the strategy of 
the criminal in the equilibrium.

Equilibrium A2 can formally be written as follows: The criminal 
chooses to (i) Signal and set 𝑅𝑆 = 𝑇 + 𝑉 − 𝐿 − 𝜖 if type DE, and (ii) 
No Signal and set 𝑅𝑁𝑆 = 0 if type NDE. The victim chooses (i) Pay if 
the criminal chooses Signal and asks ransom 𝑅 ≤𝑅𝑆 , (ii) No Pay if Sig-

nal and 𝑅 >𝑅𝑆 , (iii) No Pay if No Signal and 𝑅 ≥𝑅𝑁𝑆 . The arguments 
for the proof of existence of equilibrium A1 can naturally be applied to 
show proof of the existence of equilibrium A2. □

Proposition 2. If (a) 𝑉 > 𝐿 and 𝛼𝑇 > 𝑘𝑁 , or (b) 𝑉 + 𝛼𝑇 > 𝐿 > 𝑉 and 
𝛼𝑇 +𝑉 −𝐿 > 𝑘𝑁 there is a signaling equilibrium satisfying the D1 Criterion 
of the type B1.

Proof of Proposition 2. The equilibrium has the following properties: 
The criminal chooses Signal and 𝑅𝑆 = 𝛼𝑇 + 𝑉 −𝐿 − 𝜖 if 𝜏 =𝑁𝐷𝐸 and 
𝜏 =𝐷𝐸. The victim chooses (i) Pay if Signal and 𝑅 ≤𝑅𝑆 , (ii) No Pay if 
Signal and 𝑅 > 𝑅𝑆 , (iii) Pay if No Signal and 𝑅 ≤ 𝑉 − 𝐿 − 𝜖, and (iv) 
No Pay if No Signal and 𝑅 ≥ 𝑉 −𝐿.

Consider the victim. Suppose the Criminal has chosen Signal and 
ransom 𝑅𝑆 . The Bayesian updated belief of the victim should be 
𝜇(𝐷𝐸|𝑆) = 𝛼. So, the expected payoff of the victim if they Pay is 
𝑈 = −𝑅𝑆 − 𝐿 = −𝛼𝑇 − 𝑉 + 𝜖. The expected payoff if they choose No 
Pay is 𝑈 = −𝛼𝑇 − 𝑉 . It is, thus, optimal to pay.

Suppose the Criminal has chosen No Signal. For now we assume 
the belief of the victim is 𝜇(𝐷𝐸|𝑁𝑆) = 0. Suppose the ransom is 𝑅 =
𝑉 −𝐿 − 𝜖. The expected payoff of the victim if they Pay the ransom is 
𝑈 = −𝑉 + 𝜖. The expected payoff if they choose No Pay is 𝑈 = −𝑉 . It 
is, thus, optimal for the victim to Pay.

Consider now the incentive of the criminal. Suppose the criminal is 
type 𝜏 =𝐷𝐸. On the equilibrium path they receive payoff 𝑈 = 𝛼𝑇 +𝑉 −
𝐿 − 𝜖 − 𝑐 − 𝑘𝐷 . We argue that, if the criminal chooses Signal, then they 
cannot gain from choosing 𝑅 ≠ 𝑅𝑆 , provided 𝑅𝑆 > 0: If they choose a 
ransom 𝑅 < 𝑅𝑆 then the victim pays a smaller ransom, and if 𝑅 > 𝑅𝑆

then the victim does not pay and the criminal has payoff 𝑈 = −𝑐 − 𝑘𝐷 . 

We have 𝑅𝑆 > 0 if 𝛼𝑇 + 𝑉 > 𝐿. We also argue the criminal cannot gain 
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from choosing No signal. In doing so, we distinguish two cases 𝐿 > 𝑉

and 𝑉 > 𝐿. If 𝐿 > 𝑉 then the maximum ransom the victim is willing to 
pay is negative. Hence, the victim will choose No Pay and the criminal 
has payoff 𝑈 = −𝑐. It is, thus, optimal to Signal if 𝛼𝑇 + 𝑉 − 𝐿 > 𝑘𝐷 . 
If 𝐿 < 𝑉 then the victim will pay a ransom up to 𝑅 = 𝑉 − 𝐿 − 𝜖. The 
criminal can do no better than set ransom 𝑅 = 𝑉 − 𝐿 − 𝜖. Thus, the 
criminals payoff is 𝑈 = 𝑉 − 𝐿 − 𝜖 − 𝑐. It is, thus, optimal to Signal if 
𝛼𝑇 > 𝑘𝐷 .

Suppose the criminal is type 𝜏 =𝑁𝐷𝐸. The argument above natu-

rally extends to this case, except we now derive, respective, conditions 
𝛼𝑇 > 𝑘𝑁 > 𝑘𝐷 and 𝛼𝑇 + 𝑉 −𝐿 > 𝑘𝑁 > 𝑘𝐷 .

It remains to show that 𝜇(𝐷𝐸|𝑁𝑆) = 0. Here, we invoke the D1 
Criterion. Consider 𝑉 > 𝐿. Suppose that the criminal chooses No Signal 
and ransom demand 𝑅 > 0. Let 𝑝 be the probability that the victim 
will pay. The type 𝜏 =𝐷𝐸 will receive a weakly higher payoff than in 
equilibrium if

𝑝𝐷𝐸 ≥
𝛼𝑇 + 𝑉 −𝐿− 𝑘𝐷

𝑅
.

The type 𝜏 =𝑁𝐷𝐸 will receive a strictly higher payoff than in equilib-

rium if

𝑝𝑁𝐷𝐸 >
𝛼𝑇 + 𝑉 −𝐿− 𝑘𝑁

𝑅
.

Given that 𝑘𝑁 > 𝑘𝐷 we have 𝑝𝑁𝐷𝐸 < 𝑝𝐷𝐸 . Thus, type 𝜏 = 𝐷𝐸 can be 
eliminated using the D1 Criterion. It follows that 𝜇(𝐷𝐸|𝑁𝑆) = 0 is 
consistent with the D1 Criterion. □

Proposition 3. If 𝑉 + 𝛼𝑇 > 𝐿 and (1 − 𝛼)𝑇 < 𝑘𝐷 there exists a signaling 
equilibrium satisfying the D1 Criterion of the type C1. If 𝑉 + 𝛼𝑇 > 𝐿 > 𝑉

and 𝑇 + 𝑉 − 𝐿 < 𝑘𝐷 there exists a signaling equilibrium satisfying the D1 
Criterion of the type C2

Proof of Proposition 3. Equilibrium C1 has the property: The criminal 
chooses Signal and 𝑅𝑁𝑆 = 𝛼𝑇 + 𝑉 − 𝐿 − 𝜖 if 𝜏 = 𝑁𝐷𝐸 and 𝜏 = 𝐷𝐸. 
The victim chooses (i) Pay if Signal and 𝑅 ≤ 𝑅𝑆 , (ii) No Pay if Signal 
and 𝑅 > 𝑅𝑆 , (iii) Pay if No Signal and 𝑅 < 𝑅𝑁𝑆 , and (iv) No Pay if No 
Signal and 𝑅 >𝑅𝑁𝑆 .

Consider the victim. Suppose the Criminal has chosen Signal and 
ransom 𝑅𝑆 . The Bayesian updated belief of the victim should be 
𝜇(𝐷𝐸|𝑆) = 1. So, the expected payoff of the victim if they Pay is 
𝑈 = −𝑅𝐵 − 𝐿 = −𝑇 − 𝑉 + 𝜖. The expected payoff if they choose No 
Pay is 𝑈 = −𝑇 − 𝑉 . It is, thus, optimal to pay.

Suppose the Criminal has chosen No Signal. For now we assume the 
belief of the victim is 𝜇(𝐷𝐸|𝑁𝑆) = 𝛼. Suppose the ransom is 𝑅𝑁𝑆 =
𝛼𝑇 +𝑉 −𝐿 −𝜖. The expected payoff of the victim if they Pay the ransom 
is 𝑈 = −𝛼𝑇 − 𝑉 + 𝜖. The expected payoff if they choose No Pay is 𝑈 =
−𝑉 . It is, thus, optimal for the victim to Pay if (1 − 𝛼)𝑇 < 𝑘𝐷 .

Consider now the incentive of the criminal. Suppose the criminal is 
type 𝜏 = 𝐷𝐸. On the equilibrium path they receive payoff 𝑈 = 𝛼𝑇 +
𝑉 −𝐿 − 𝜖 − 𝑐. We argue that, if the criminal chooses Signal, then they 
cannot gain from choosing 𝑅 ≠𝑅𝑁𝑆 , provided 𝑅𝑁𝑆 > 0: If they choose 
a ransom 𝑅 < 𝑅𝑁𝑆 then the victim pays a smaller ransom, and if 𝑅 >
𝑅𝑁𝑆 then the victim does not pay and the criminal has payoff 𝑈 = −𝑐−
𝑘𝐷 . We have 𝑅𝑁𝑆 > 0 if 𝛼𝑇 +𝑉 > 𝐿. We also argue the criminal cannot 
gain from choosing No signal. In doing so, we distinguish two cases 
𝐿 > 𝑉 and 𝑉 > 𝐿. If 𝐿 > 𝑉 then the maximum ransom the victim is 
willing to pay is negative. Hence, the victim will choose No Pay and the 
criminal has payoff 𝑈 = −𝑐. It is, thus, optimal to Signal if 𝛼𝑇 +𝑉 −𝐿 >
𝑘𝐷 . If 𝐿 < 𝑉 then the victim will pay a ransom up to 𝑅 = 𝛼𝑇 +𝑉 −𝐿 −𝜖. 
The criminal can do no better than set ransom 𝑅 = 𝛼𝑇 +𝑉 −𝐿 −𝜖. Thus, 
the criminals payoff is 𝑈 = 𝛼𝑇 + 𝑉 − 𝐿 − 𝜖 − 𝑐. It is, thus, optimal to 
Not Signal if (1 − 𝛼𝑇 ) < 𝑘𝐷 or 𝑉 + 𝑇 −𝐿 < 𝑘𝐷 .

Suppose the criminal is type 𝜏 =𝑁𝐷𝐸. The argument above natu-

rally extends to this case, except we now derive, respective, conditions 
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(1 − 𝛼𝑇 ) < 𝑘𝐷 < 𝑘𝑁 and 𝑇 + 𝑉 −𝐿 < 𝑘𝐷 < 𝑘𝑁 .
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It remains to show that 𝜇(𝐷𝐸|𝑆) = 1. Here, we invoke the D1 Cri-

terion. Consider 𝑉 > 𝐿. Suppose that the criminal chooses Signal and 
ransom demand 𝑅 > 0. Let 𝑝 be the probability that the victim will pay. 
The type 𝜏 = 𝐷𝐸 will receive a weakly higher payoff than in equilib-

rium if

𝑝𝐷𝐸 ≥
𝑇 + 𝑉 −𝐿− 𝑘𝐷

𝑅
.

The type 𝜏 =𝑁𝐷𝐸 will receive a strictly higher payoff than in equilib-

rium if

𝑝𝑁𝐷𝐸 >
𝑇 + 𝑉 −𝐿− 𝑘𝑁

𝑅
.

Given that 𝑘𝑁 > 𝑘𝐷 we have 𝑝𝑁𝐷𝐸 < 𝑝𝐷𝐸 . Thus, type 𝜏 =𝑁𝐷𝐸 can be 
eliminated using the D1 Criterion. It follows that 𝜇(𝑁𝐷𝐸|𝑆) = 0 is con-

sistent with the D1 Criterion. It follows that 𝜇(𝐷𝐸|𝑆) = 1 is consistent 
with the D1 Criterion. □
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