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A gas volume rising in a vertical tube is called a Taylor bubble when its equivalent
spherical diameter is greater than the diameter of the tube. Continuity dictates that the
rising velocity of such bullet-shaped bubbles must be such that the drainage flow in the
liquid film separating the gas from the tube wall equals the rate at which space is vacated
by the bubble tail on its rise. The numerical simulations presented here show that, if the
volume of the bubble is made to execute small-amplitude oscillations, this drainage flow
can be markedly decreased so that the bubble slows down so much as to very nearly
stop. The mechanism is a subtle nonlinear interplay between the upward flow imposed
by the bubble expansion and the inertia of the falling liquid. Two manners of excitation
are considered. In the first one the liquid column above the bubble is forced to oscillate
sinusoidally, e.g. by a piston. In the second one, an oscillating pressure is imposed on the
top liquid surface. With the first arrangement the bubble slows down during its entire
ascent by an amount depending on the oscillation frequency and amplitude. With the
second one, for a given frequency, the bubble slows down only in the neighbourhood
of a certain resonant depth at which the volume oscillations are maximized, but is little
affected at deeper and shallower depths.

Key words: gas/liquid flow, bubble dynamics, core-annular flow

1. Introduction

After the seminal study by Davies & Taylor (1950), volumes of gas rising in a vertical
tube are called Taylor bubbles when their equivalent spherical diameter is greater than the
tube diameter. The buoyant rise of Taylor bubbles longer than a few tube diameters has the
remarkable feature of occurring at a constant velocity independent of its length and, when
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viscous and surface tension effects can be neglected, only dependent on the acceleration
of gravity and the tube diameter. It has been recognized that the flow taking place in the
liquid film separating the gas from the tube wall, which D.D. Joseph called ‘drainage flow’
(Funada et al. 2005), has a crucial importance in the bubble ascent. Continuity requires
that the bubble rise at such a velocity that the volume flow rate of the drainage flow equals
the volume per unit time vacated by the base of the rising bubble. Awareness of this fairly
obvious fact is present in the earlier literature (see, e.g. Brown 1965; Clanet, Héraud &
Searby 2004) without, however, drawing the conclusion that, by manipulating the film
thickness so as to increase or decrease the drainage flow, it would be possible to affect the
rising velocity of the bubble. In our earlier paper (Zhou & Prosperetti 2021) we have shown
by numerical simulation that, by constraining the bubble inside a porous cylinder coaxial
with the tube, the drainage flow can be increased and the rising velocity correspondingly
increased. A qualitative confirmation of this prediction has recently been obtained by
Z. Zuo (personal communication 2023).

In this paper we demonstrate ways to decrease the drainage flow so as to markedly
reduce the rising velocity of a Taylor bubble. We show that, by a subtle nonlinear process,
a forced periodic variation of the bubble volume results in a thinning of the draining film
that leads to this effect (§ 3). The effect is quite strong, with a marked slow down of the
bubble occurring with volume pulsations of the order of a few percent.

As in our previous paper, our results are established by numerical means. We study a
Taylor bubble rising in a vertical tube of finite length and consider two ways in which
the bubble volume is caused to oscillate that we term kinematically and dynamically
controlled. In the kinematically controlled oscillations the bubble volume is caused to
pulsate by an imposed sinusoidal displacement of the top of the liquid column as could be
produced, e.g. by a piston. The position Ztop of the top of the column is prescribed as

Ztop(t) = −At cos ωt, (1.1)

in which At is the amplitude of the oscillations and ω their angular frequency. The z axis,
oriented upward, coincides with the axis of the tube and the top of the liquid column,
when undisturbed, is located at z = 0. With the dynamically controlled system, the liquid
column has a free surface with mean position z = 0 surmounted by a small gas space. The
pressure p(t) at the top of this gas region is prescribed by adding to the ambient pressure
pa a sinusoidal oscillation with an amplitude of �P according to

p(t) = pa + �P sin ωt. (1.2)

Due to their frequent occurrence in the chemical, energy and other industries, the
literature on Taylor bubbles is quite voluminous, even pre-dating the study by Davies &
Taylor (Dumitrescu 1943). Important references on the subject are the papers by Bretherton
(1961), Goldsmith & Mason (1962), Polonsky, Shemer & Barnea (1999), Viana et al.
(2003), Nogueira et al. (2006) and many others.

We can also point to a limited number of papers in which gravity-driven Taylor bubbles
are affected by forced oscillations, although under a very different excitation compared
with those considered here, namely by the forced vertical or horizontal oscillations of
the vertical tube in which they rise. Kubie (2000) studied horizontal oscillations of the
tube finding a marked increase of the rising velocity that he explained as a consequence
of the ‘effective acceleration’, given by the vector sum of gravity and the imposed
acceleration. Although he did not discuss in detail the strong deformations of the bubble
shape that he observed, it is evident from his images that they have the potential to greatly
increase the drainage flow. In a short note, Brannock & Kubie (1996) reported experiments
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Slowing down Taylor bubbles

demonstrating the slowing down of a Taylor bubble in a vertically oscillating tube. Their
work was continued and much extended by Madani, Caballina & Souhar (2009, 2012)
who, by gradually increasing the acceleration of the forced oscillations, documented an
initial slowing down of the bubble rising followed by an increase at larger accelerations.
Their attempt to explain these experimental results within the framework of an equation
developed by Clanet et al. (2004), who adapted Davies & Taylor’s original model based
on an approximation of the flow in the nose region of a fixed-shape bubble, was not
successful. In the end, they resorted to the development of correlations. Interestingly, both
Brannock & Kubie and Madani et al. noticed a deformation of the bubble nose and, the
latter, also waves propagating along the film surrounding the bubble but neither group
followed up on these potentially interesting observations. Madani et al. (2009) mention
an effect on the drainage flow as the bubble top expands and contracts without further
elaboration.

The mechanism of the velocity reduction observed by both Brannock & Kubie and
Madani et al. remains unexplained. An important difference with the situations studied
in the present paper is that, in an oscillating tube, the oscillations are equivalent to an
oscillating body force that permeates the entire liquid volume, above and below the bubble
and in the film. On the other hand, in neither situation that we consider can pressure
gradients develop along or under the bubble, a feature that will be seen to have a major
effect. Another potentially important difference is that, since Madani et al.’s tube was
closed (by releasing a stopper at the tube bottom, Brannock & Kubie, like Davies & Taylor,
actually studied the emptying of the tube), their bubble had to maintain a constant volume
while its volume is forced to oscillate in our study. It appears therefore that little can be
learned from our study that has a bearing on the physics of a Taylor bubble in an oscillating
tube without a separate investigation. For completeness, and in spite of the difference in
scale and in the physics involved, we may also mention the volume oscillations of vapour
Taylor bubbles in the pulsating heat pipes developed in recent decades (see, e.g. Nikolayev
2021; Su et al. 2023).

After a brief description of the numerical set-up and numerical method in § 2, we study
the behaviour of the Taylor bubble under kinematically controlled oscillations in § 3,
and under dynamically controlled oscillations in § 4. A summary and a few concluding
considerations are presented in § 5.

2. Numerical set-up

The simulation is carried out with the compressibleInterFlow solver in the TwoPhaseFlow
library developed by Scheufler & Roenby (2023) based on the OpenFOAM framework.
The solver directly simulates the Navier–Stokes equations allowing for compressibility
effects and uses the volume-of-fluid method to deal with the gas–liquid interface. The
plicRDF scheme is used for interface reconstruction; for more details, the reader can
refer to Scheufler & Roenby (2023). In the present paper we use the ideal-gas equation
of state for the gas inside the bubble. Since, for the frequencies considered in this study,
the wavelength of the pressure waves in the liquid far exceeds the length of the system we
investigate, we assume the liquid to be incompressible with a constant density.

The flow is assumed to remain axisymmetric, thanks to which it is possible to simulate
a thin wedge with two, rather than three, coordinates to reduce the computational burden.
The mesh used in the simulations is orthogonal in both radial and vertical directions. With
an aspect ratio close to 1, the cell size is gradually reduced towards the wall of the tube
to have a better resolution of the velocity profile in the liquid film region. For most cases,
we use 50 cells in the radial direction, although the terminal velocity of a normally rising
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Figure 1. Comparison of the bubble rising velocity in the absence of excitation of the present simulation
(purple crosses) with the experimental data collected in figure 9(c) of Viana et al. (2003) (blue diamonds). The
upper cross is obtained with a Galilei number Ga, defined in (2.3), of 73.71 used in the simulations presented
in this paper; for the lower cross Ga = 36.86. The range of Bond number (defined in (2.2a,b)) for the reference
data is 14 < Bo < 26 while, in the present simulations, the Bond number has the fixed value 17.78.

Taylor bubble is predicted with a difference of less than 0.2 % by the use of 25 or 50 cells.
The linearUpwind scheme is used for the convection terms of the momentum equation,
whereas the vanLeer scheme is used for the advection of the volume-fraction field, both
with second-order accuracy in space. We use the first-order implicit Euler scheme for the
time discretization, which, after tests with the present highly unsteady flow field, has been
found to be most stable among the available time stepping schemes.

The bubble is initially generated as a combination of a round cylinder and two
hemispherical caps on each end of it. The initial film thickness is estimated according
to the correlation provided in Llewellin et al. (2012). The no-slip condition is imposed
at the tube walls. Figure 1 shows a comparison of our simulations of the rising velocity
UB0 of a constant-volume, non-oscillating bubble (crosses) with some of the experimental
data collected by Viana et al. (2003) (diamonds). A comparison with the theory of Brown
(1965) is shown later in figure 11. The same computational tool has been used in several
of our earlier papers where its accuracy is documented in greater detail (see, e.g. Zhou &
Prosperetti 2021, 2022).

The excitation of either type mentioned in § 1 is imposed after a transient stage during
which the bubble reaches a steady shape and a constant rising velocity. Figure 2 shows
schematics of the simulations and boundary conditions. In principle, for the kinematically
controlled case, the displacement of the top of the liquid column renders the computational
domain time dependent. We avoid the need for frequent gridding by imposing, in place of
the displacement condition (1.1) at z = Ztop(t), the equivalent vertical velocity condition

u(z = 0, t) = ωAt sin ωt, (2.1)

where ωAt is seen to be the amplitude of the prescribed velocity oscillation. This condition
is imposed at z = 0 with a uniform profile over the tube cross-section. In order to avoid
a conflict with the no-slip condition, wall slip is allowed over a short section of the tube
close to the top boundary. The transition to a well-developed non-uniform velocity profile
at deeper depths is found to be smooth. Since the region of the flow on which we focus is
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Figure 2. Schematic of the simulations for kinematically controlled oscillations in (a) (shown as driven by an
oscillating piston) and dynamically controlled oscillations in (b).

far below the top of the tube, this treatment has no influence on the dynamics of the Taylor
bubble.

In the kinematically controlled case, before the oscillation starts, the velocity at the
top boundary is set to be zero to mimic a closed tube (or, as shown in figure 2(a), a
stationary piston at z = 0). After the bubble has reached its equilibrium shape, we first
slowly compress it by an amount At, then apply the velocity excitation (2.1) from this
minimum-volume configuration. In this way, a gradual, instead of a sudden, start-up of the
oscillation is achieved. The designation ‘kinematically controlled’ is motivated by the fact
that the volume change of the bubble is solely determined by how much liquid is added
or subtracted by the boundary condition (2.1), independently of the pressure in the bubble
that changes passively during the oscillation.

For the dynamically controlled excitation, the oscillating pressure (1.2) is applied at
the top of a small gas space occupying a height equal to two tube diameters above the
liquid free surface as shown in figure 2(b). Due to the gradual decrease of the hydrostatic
pressure, the bubble volume averaged over a period increases while it rises. For the
deepest bubbles we have simulated (those shown in figure 17), the total amount of bubble
expansion caused by this hydrostatic pressure change from its initial position to the free
surface does not exceed 5 %, and is orders smaller within the distance corresponding to
a single cycle of oscillation. Therefore, this effect is safely neglected in our subsequent
discussion.

There are five parameters that are involved in the Taylor bubble motion in the absence of
oscillations, i.e. the density ρ and viscosity μ of the liquid, the surface tension coefficient
σ , the diameter of the tube D and the gravitational acceleration g. The effect of the density
and viscosity of the gas phase can be neglected in view of their typically much smaller
values in comparison with those of ordinary liquids. According to dimensional analysis,
two independent dimensionless groups can be constructed from the five independent
parameters that we choose as the two commonly used ones in the study of the rise of
bubbles, namely the Morton and Bond numbers, defined by

Mo = μ4g
ρσ 3 , Bo = ρgD2

σ
. (2.2a,b)
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Alternatively, one can use the Galilei number to replace either one of the above, i.e.

Ga = ρD
√

gD
μ

=
(

Bo3

Mo

)1/4

. (2.3)

In the following we non-dimensionalize lengths by D, times by
√

D/g and pressures by
ρgD.

The code we have used also solves the energy equation in both phases that, in principle,
would introduce a dependence on their thermal properties and, in particular, those of
the gas. Since, as will be seen later, the bubble volume only executes small-amplitude
oscillations, it can be assumed that the bubble pressure-volume relation is adequately
described by a polytropic relation pbVκ � const., with pb the gas pressure in the bubble,
V its instantaneous volume and κ a polytropic index. As shown in Chen & Prosperetti
(1998), this last quantity depends on the thermal penetration length into the gas, of the
order of

√
Dth/ω, with Dth the gas thermal diffusivity. From the relations given in the

reference, it can be estimated that, with a diatomic gas having the physical properties
of nitrogen (which we used in the numerical simulation), in our case 1.3 < κ < γ with
γ = 7/5 = 1.4, the ratio of specific heats. Thus, in practice, in our simulations the gas
can be considered to behave adiabatically and consideration of its thermal diffusivity
becomes unnecessary. In other cases it may be necessary to account in greater detail for
the gas thermal properties that, however, can always be reduced to a frequency-dependent
polytropic index as shown in Chen & Prosperetti (1998). In view of the large differences
between the thermal capacities of the two phases, the liquid temperature changes by
extremely small amounts that can be neglected to an excellent approximation.

The simulation of Taylor bubbles in low-viscosity liquids such as water involves
problems such as unsteadiness of the bubble tail, loss of axisymmetry, small bubble
shedding and turbulence, all hindering a focused analysis of the fundamental physics that
we are interested in. For this reason, we use a Morton number of Mo = 1.90 × 10−4 that
would correspond, for example, to a glycerol–water solution with μ = 0.05076 Pa s, ρ =
1194.6 kg m−3 and σ = 0.0659 J m−2. For the Bond number, we have used Bo = 17.78
that, with the cited physical properties, would correspond to a tube diameter D = 10 mm,
very close to the 9.8 mm diameter one used by Madani et al. (2009, 2012). With these
physical properties and tube diameter, the Galilei number equals Ga = 73.71. The flow
remains laminar and the tail intact in most cases. In our simulations the bubble length
at equilibrium is L/D ≈ 4 with its volume V0/D3 ≈ 1.8, long enough for the liquid
film around the bubble to be fully developed. The ambient pressure that is involved
in the dynamically controlled case is pa/(ρgD) = 864.6, corresponding to the standard
atmospheric pressure with the above dimensional values of ρ and D.

3. Kinematically controlled excitation

We start with the kinematically controlled excitation in which the top of the liquid column
is forced to oscillate according to (1.1).

Figure 3(a) gives an overall picture of the shape of the bubble at different instants
equally spaced during one period after steady-state oscillations have been reached; the
dimensionless frequency is f

√
D/g = 1.28 with f = ω/2π, D the tube diameter and g the

acceleration of gravity. The oscillation amplitudes are, from left to right, At/D = 0.025,
0.05 and 0.09 and the corresponding variations of the bubble volume 1.1 %, 2.2 % and
4.0 %. There are several features worthy of notice. First, as expected, the amplitude of the
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t�g/D
Figure 3. (a) Evolution of shape and position of the rising Taylor bubble during one period for kinematically
controlled oscillations. The vertical black lines are the wall of the tube. The driving frequency is f

√
D/g = 1.28

corresponding to a period (2π/ω)
√

g/D ≈ 0.78. From left to right, the driving amplitude is At/D = 0.025,
0.05 and 0.09. For each panel, six snapshots are taken at equal intervals of about 1/6th of a period after steady
conditions have been reached. (b) Position versus time of the top and bottom of the middle bubble of panel (a).

nose oscillations increases as the driving amplitude increases. More interestingly, in spite
of appearances, the undisturbed bubble volumes are the same in all three cases. Indeed,
as the driving amplitude increases, a progressive thinning of the liquid film along the
side of the bubble takes place with the consequence that the cross-section of the tube
occupied by the gas increases and the bubble length shortens. Thirdly, the oscillations
of the tail are imperceptible: all that can be seen is that it just moves monotonically
upward. The amount of this upward motion during one period decreases with increasing
drive from left to right, indicating a decreasing bubble rise velocity in the same order.
Figure 3(b) shows the position versus time of the bubble nose (upper line) and tail (lower
line) for the middle bubble of panel (a) with At/D = 0.05. The relative insensitivity of
the tail ascent to the imposed volume oscillations compared with the nose is quite evident.
Because of this insensitivity, in the following we will use the period-averaged velocity
of the bubble bottom, UB = Ūbot, to quantify the bubble rising velocity when volume
oscillations are present. The response of the liquid film to the imposed oscillations is not
clear in figure 3(a). As will be shown presently, it is so small as to become noticeable only
with a strong magnification. These observations reveal that the oscillations happen mainly
in the bubble nose region, but can hardly penetrate the liquid film to reach the bubble tail.
This point will be made clearer later.

The rising velocity of the bubble tail versus time for an ordinary, undisturbed Taylor
bubble (dashed line) and the three cases of figure 3(a) are shown in figure 4. After steady
conditions are reached with no forcing, oscillations start at t

√
g/D ≈ 9.4. There is a

brief transient after which a steady regime is reached. The rising velocity then stabilizes
around a steady value that decreases as the drive increases from top to bottom. It is
quite remarkable that, for the largest amplitude At/D = 0.09, corresponding to volume
oscillations of about 4.0 %, the bubble slows down to a nearly vanishing velocity. This
phenomenon is due to the unexpected fact that the oscillations cause the liquid film to
become thinner than for an ordinary Taylor bubble with the consequence that the drainage
flow decreases and so does the bubble rising velocity.
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Figure 4. Bubble tail velocity UB, averaged over one oscillation period, as a function of time for the
kinematically driven case. The frequency is f

√
D/g = 1.28 and the solid lines, from top to bottom, are for

the oscillation amplitudes of At/D = 0.025, 0.05 and 0.09. The excitation starts at t
√

g/D ≈ 9.4. The dashed
horizontal line is the velocity in the absence of oscillations.

3.1. Thinning of the liquid film
The key to an understanding of these results is the transient process by which the liquid
film achieves the final thickness starting from the initial, larger undisturbed one. The
explanation must start with the recognition that, except near the bubble top, the drainage
flow in the film around the bubble is essentially governed by a balance of gravity and
viscous effects (possibly augmented by turbulent dissipation when viscous effects are
smaller) irrespective of the pressure imposed by the bubble on the film. Indeed, since
the gas pressure in the bubble is very nearly uniform, no pressure gradients can arise to
thin the film when the pressure rises or thicken it when it falls. Any such effect can only
originate near the top of the bubble, because it is only in this region that pressure gradients
can be developed to increase or decrease the film volume flow rate. The conclusion that,
in the fully developed region, the film flow cannot be influenced by the pressure in the
bubble can also be deduced from the very nearly parallel nature of the film flow in this
region (possibly in a time-average sense with turbulence) and (by an argument similar to
that of the boundary layer theory) from the separation of scales between the film thickness
and the bubble length that makes the pressure in the film equal to that outside it, i.e. in the
bubble. The fact that the film flow is purely gravity driven and not affected by the pressure
variation in the top region largely prevents the bubble nose oscillations from influencing
the flow in the tail region.

Let us focus in detail on the behaviour of the bubble shape in the initial stage of
oscillation shown in figure 5(a). In order to highlight the important features of this result
the image is highly distorted by a strong magnification of the horizontal scale. Note also
that the image focuses only on a small radial range: neither the region near the axis of
the tube, located at r = 0, nor that near the tube wall, located at r/D = 1

2 , are shown.
The vertical dashed line indicates the position of the film surface before the start of the
oscillations. The time ordering of the bubble outlines is the same as their ordering from
bottom to top at the bubble tail. The first profile (green) is taken at maximum compression,
the second and third ones (yellow and light blue) during the following expansion, the
fourth and fifth ones (orange and purple) during the subsequent compression and the last
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–16

–14

–12

0.38 0.39 0.40

r/D

z/D

(b)(a)

Figure 5. (a) Six snapshots of the bubble surface during the second oscillation cycle starting with the
expansion half-cycle (in order, the green, yellow, light blue lines) and concluding with the compression
half-cycle (orange, purple and dark blue lines). Here f

√
D/g = 1.28 and At/D = 0.05. The vertical dashed

line shows the steady position of the side bubble surface before the oscillations start. (b) Flow field near the
top of the bubble at the instant when the expansion rate reaches the maximum value and the bubble volume is
at equilibrium, between the second and third lines (yellow and light blue) in panel (a). The vertical dashed and
solid lines are the axis and the wall of the tube, respectively. The instantaneous streamlines and liquid velocity
vectors in the laboratory frame are shown by white lines and (red) arrows (the corresponding information in
the gas is irrelevant and is not shown for clarity). The small circle, located at the same depth as the horizontal
dashed line in panel (a), marks the position at which the sideways enlargement of the bubble surface is greatest.

one (dark blue) again at maximum compression. The bubble shape corresponding to the
maximum expansion rate is shown without distortion in figure 5(b) where the small circle
shows the position of the horizontal dashed line in panel (a).

Each line in figure 5(a) shows two sideways enlargements of the bubble shape, one near
the top and one near the bottom. The latter one is a standard feature of Taylor bubbles when
inertia is prevalent or, at any rate, not insignificant (see, e.g. Magnini et al. 2017) and is not
consequential for the present purposes. The important feature is the sideways enlargement
near the bubble top. Also visible are sets of downward-propagating and damped capillary
waves that would be expected to be induced by the strong deformation of the bubble top.

Consider the expansion half-cycle first (green, yellow and light blue lines). The bubble
expands pushing some of the liquid upward while the liquid in the uniform region of the
film continues to fall down under the action of gravity. Therefore, the vertical component
of the velocity changes sign near the bubble nose, as demonstrated by the divergence of the
streamlines in figure 5(b). A low-velocity region thus forms as indicated by the vanishing
length of the velocity vectors. But the liquid in the lower film (near the small circle in
figure 5b) drains continuously with its original downward velocity. As a result of volume
conservation, the bubble surface must expand sideways as shown by the green, yellow and
light blue lines in figure 5(a).

This mechanism can be better appreciated by comparing the streamlines shown in
figure 6 for a non-oscillating (a) and oscillating (b,c) bubbles depicted in a frame of
reference moving with the terminal velocity UB0 of the former. The snapshots for the
oscillating cases are taken at the instant at which the expansion rate reaches the maximum
and, therefore, the bubble length is the same as the equilibrium length. In this frame the
non-oscillating bubble has a stagnation point at the nose with the liquid in free fall (if
viscosity is disregarded) along the bubble surface as argued by Davies & Taylor (1950)
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(b) (c)(a)
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Figure 6. Instantaneous streamlines in the frame of reference moving with the terminal velocity UB0 of
an ordinary non-oscillating Taylor bubble. (a) At steady state without oscillation; (b,c) at the instant of
the maximum rate of expansion during the first cycle of oscillation. The frequency is f

√
D/g = 1.28. The

amplitude At/D is (b) 0.05 and (c) 0.025. The corresponding value of ωAt/
√

gD is 0.40 and 0.20, respectively.
The background colour shows the vertical component of the liquid velocity in the moving frame of reference
adopted for this figure, and the small circles mark the points with zero value of it. The section of the bubble
shown is about 1/6th of the entire length.

and as shown in figure 6(a). The flow in the film becomes fully developed (and the
downward velocity stabilizes) when viscosity has permeated the entire film thickness.
When the bubble expands as here, on the other hand, the nose must move upward so
that the point where the vertical component of the velocity vanishes must be located at
some distance under it (figure 6b,c). The liquid therefore has a shorter distance to fall and,
at the same depth under the nose, its velocity will therefore be less. Lower down, however,
the film flow rate cannot have changed for the reason explained before. Thus, the liquid
supply is insufficient to maintain the film volume flow rate with the consequence that
the film thins and the bubble enlarges sideways under the vertical velocity stagnation point
during the expansion half-cycle as shown in figure 5. The distance by which this stagnation
point descends is expected to be positively related to the strength of the expansion, which
is quantified by the maximum liquid velocity ωAt in (2.1). This correspondence can be
checked by comparing the last two panels in figure 6. The lowering of the stagnation point
decreases the velocity of the liquid by the time it reaches the uniform film region with the
consequence that the film thinning effect is more significant.

Owing to liquid inertia, at the end of the expansion, some time is needed for gravity
to restore the fully developed film velocity and, in fact, for the cases in which the
stagnation point is low enough, the low-velocity region can still be clearly observed in
the compression half-cycle that follows. The flow velocity deficit persists therefore during
at least a fraction of the compression in the course of which the film keeps thinning.
Actually, if the frequency is high enough, the next expansion half-cycle will begin while
the film thickness is still decreasing, as is the case in figure 5(a) (orange, purple and dark
blue lines).

By the mechanism discussed above, the thinning of the film accumulates and propagates
downward cycle after cycle until the film is so thin that the downward acceleration
below the stagnation point is sufficient to maintain the much diminished volume flow
rate (figure 7). The remarkable feature of the process is that the sideways enlargement
taking place during one half-cycle is not cancelled by an opposite contraction during the
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0 0.25

Time increases
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–16

r/D

z/D

Figure 7. The bubble surface every two periods (from bottom to top in time order) starting from the first instant
when the oscillatory motion starts. Note the downward progress of the thinning of the liquid film from the top
of the bubble. Here f

√
D/g = 1.28 and At/D = 0.05. The vertical dashed line shows the steady position of the

lateral surface of the bubble before the oscillations start.

5T/8 6T/8 7T/8 5T/8 6T/8 7T/8

0

–ωAt/�gD
u z

/�
gD

(a) (b)

Figure 8. Distribution of the vertical velocity component during compression in the first oscillation cycle;
T = 2π/ω is the oscillation period. The amplitude of the oscillation is At/D = 0.075 in (a) and 0.025 in (b).
For both cases, the frequency of the oscillation is f

√
D/g = 1.28. The arrows in panel (a) point to the area in

the liquid film that is effectively blocked by low-velocity liquid.

next half-cycle. Rather, the effects of both half-cycles have the same sign and it is this
circumstance that is responsible for the unexpected slowing down of the bubble.

The competition between inertia and velocity restoration is illustrated in figure 8(a),
which shows the vertical velocity near the top of the bubble at three successive
instants during the first compression half-cycle. The white arrows point to the region
of low-velocity liquid straddling the film near the bubble nose. The strong interaction
between the oscillation and the film flow shows the great potential for continuous film
thinning. In contrast, the case in figure 8(b) has a smaller ωAt. The stagnation point is
thus closer to its original position without oscillation and the film flow is less blocked. It
is seen that, with this lower amplitude, no appreciable low-velocity region can persist into
the compression half-cycle so that the final steady film thickness has almost been reached.
The same condition would also be seen for the case in figure 8(a), but only after a greater
number of oscillation cycles, by which time the film would have become significantly
thinner.
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Figure 9. Time dependence of (a) depth and (b) instantaneous velocity of the bubble tail. The solid lines,
from top to bottom, are for driving frequencies f

√
D/g = 0.32, 0.96, 1.28, 1.60 and 1.92, respectively. The

amplitude is At/D = 0.05 for all cases. The dashed lines show results without oscillations; excitation starts at
t
√

g/D ≈ 9.4.

The previous considerations suggest that a larger velocity oscillation amplitude ωAt
leads to a thinner film thickness and, thus, a smaller bubble rising velocity. The effect
of the driving amplitude At with a fixed frequency ω has been shown in figure 4. It is
expected that a similar effect would be observed if the frequency is varied with a fixed
oscillation amplitude. This expectation is supported by the numerical results as can be seen
in figure 9. In figure 9(a) the topmost straight line is the position versus time of the bottom
of a Taylor bubble in the absence of oscillations. The other lines, from top to bottom, show
the same quantity for progressively increasing frequency. These lines (except the straight
one without imposed oscillations) exhibit some very small-amplitude oscillations that are
all but invisible on the scale of the figure. The oscillations are somewhat clearer in panel
(b), which shows the instantaneous velocity of the bubble bottom versus time for the same
cases. Despite these oscillations, the decrease of the mean value of the bottom velocity
shows a clear correlation to the increase of the driving frequency.

The expected correspondence between decreased velocity and decreased film thickness
can be checked in figure 10 that shows the film thickness h as a function of time. Similar
to the bottom velocity shown in figure 9(b), the film thickness experiences oscillations
that are more pronounced for low-frequency cases and rapidly decrease as the frequency
is increased. These temporal oscillations correspond to a train of downward-propagating
surface waves that are induced by the periodic deformation of the bubble nose. The
variation of the film thickness caused by the waves is small (about 3 % for the blue line)
and exactly cancels during one period. In any case, these waves do not have a significant
effect on the phenomena we have described.

3.2. Further considerations
Brown (1965) gives the following expression for the velocity profile u(r) in the steady,
fully developed flow of a liquid film of thickness h falling along the inner surface of a
cylindrical tube of diameter D:

u(r) = −ρg
8μ

[
1
2
(D2 − 4r2) − (D − 2h)2 ln

D
2r

]
. (3.1)
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Figure 10. Time dependence of the film thickness measured close to the midpoint between the nose and tail
of the bubble. From top to bottom, the solid lines correspond to frequencies f

√
D/g = 0.32, 0.96, 1.28, 1.60

and 1.92; the oscillation amplitude is At/D = 0.05. The horizontal dashed line shows the film thickness in the
absence of oscillations. The excitation starts at t/

√
g/D ≈ 9.4.

Here r is the radial distance from the tube axis. This expression is obtained from the
steady Navier–Stokes equations with the assumption of parallel flow and the zero-stress
condition at the gas–liquid interface. Upon combining this result with the condition of
volume conservation, one can relate the bubble rising velocity UB0 to the film thickness.
The result accurate to the order of O[(2h/D)4] is (Brown 1965)

UB0 = ρgD2

6μ

(2h/D)3

1 − 2h/D
. (3.2)

We have found that, the expression (3.1) for u(r) well describes the velocity field in the
fully developed flow region of our film at every instant irrespective of the bubble volume
oscillations, which confirms that the drainage flow is in fact enslaved to the film thickness.
We can therefore expect that (3.2), with UB0 replaced by UB, should also apply to our
system. That this is indeed the case is shown in figure 11(a) in which the solid line
represents (3.2) while the small circles mark the film thicknesses and the corresponding
rising velocities obtained from the present simulations after the steady state is reached.

It is seen from figure 9 that the tail of the bubble is unaware of the oscillation (started
at t

√
g/D ≈ 9.4) until t

√
g/D ≈ 13. The time needed for the stabilization of the velocity

of the tail increases with the driving frequency. With the largest frequency (the lowest line
in figure 9b), the velocity reaches a constant value only after t

√
g/D ≈ 26. The duration

of the transient during which the film thins, and thus, the bubble rising velocity decreases,
can be estimated by noting that flow-rate perturbations in a falling vertical film propagate
with a velocity of the order of the Nusselt velocity, uNu ≈ h2g/ν with ν = μ/ρ the liquid
kinematic viscosity, a leading-order approximation of (3.1). If L is the length of the bubble,
the time taken for the film thickness variation at the top arriving at the tail of the bubble
can be expected to be of the order of L/uNu or

t
√

g
D

= Lν

h2√gD
= L∗

h2∗Ga
, (3.3)

with L∗ = L/D, h∗ = h/D and Ga the Galilei number defined in (2.3). The number of
oscillation cycles corresponding to (3.3) is Lων/(2πh2g).

978 A13-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1021


G. Zhou and A. Prosperetti

0.2 –12

Without oscillations
Driven from below
Driven from above

–14

–16

0.1

0
0.05 0.10 0.15 0.20 0.25 10 20 30

t�g/D

z/D

2h/D

U
B/

�g
D

(a) (b)

Figure 11. (a) The solid line is a graph of the Taylor bubble rising velocity as a function of the liquid film
thickness h according to the result (3.2) of Brown (1965). The circles are the results of the present numerical
simulations with driving frequencies, in decreasing order of h, f

√
D/g = 0 (no oscillation), 0.32, 0.64, 0.96,

1.28, 1.60 and 1.92; the oscillation amplitude is At/D = 0.05. The value of h shown is averaged over one period
of oscillation. (b) Position versus time of the bubble bottom when the oscillations are driven from below (wavy
line) or from above (tilted purple line) the bubble; the dashed black line is the result without oscillations.

For each driving frequency, the film thickness h changes from the original, undisturbed
value h0 to a terminal value at steady state h∞. Two different time scales can be obtained
by substituting the two values of h into (3.3). If h0 is used, we get an estimate of the
time within which the initial perturbation reaches the bubble tail, whereas the time within
which the film thinning process has completed should be estimated with h∞, whose value
depends on the driving frequency. With the data in figure 10 we find t

√
g/D = 4.3 by

using h0, and t
√

g/D = 17.8 by using h∞ for the slowest bubble (lowest line in figure 10).
Both results agree well with our earlier observations in figure 9.

A confirmation of the importance of the drainage flow is provided by simulations in
which the oscillations were driven from below the bubble while the top of the tube was
closed. Some illustrative results are shown in figure 11(b) in which the dashed black line is
the position of the bottom of a normal undisturbed Taylor bubble. The slightly oscillating
line following it is the position of the bottom of the bubble in the presence of imposed
oscillations from below. Since, with this arrangement, the drainage flow is not affected,
the only difference between the two is due to the slight compression and expansion of the
bubble caused by the imposed oscillations. The lowest, more inclined line is instead the
position of the bubble bottom versus time when the oscillations are driven from the top
at the same frequency. The huge difference between the rise velocity as obtained with the
two oscillation drivers is an eloquent illustration of the role of the drainage flow.

In the previous considerations no mention has been made of the bubble length except
for the derivation of (3.3). The reason is that, according to our explanation, the process of
progressive film thinning proceeds downward with no upstream influence from the bubble
tail back to the top. The difference to be expected with a longer bubble is only a longer
transient in accordance with (3.3).

It would be useful if a correlation could be found to predict the bubble rising velocity. In
the following we take a small step on this with fixed Mo and Bo, the definition and values
of which have been provided in § 2. In this case, what can be controlled are the oscillation
frequency ω = 2πf and the velocity amplitude ωAt, both appearing in the boundary
condition (2.1). Figure 12 shows the dependence of the steady-state bubble rising velocity
UB on ωAt. The former is normalized by the terminal rising velocity UB0 without volume
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Figure 12. Dependence of the steady-state bubble rising velocity on the oscillation amplitude of the liquid
velocity, the former normalized by the terminal velocity of a rising Taylor bubble without volume oscillations.
The data points connected by dashed lines are, from top to bottom, for oscillation frequencies f

√
D/g = 0.64,

0.96, 1.28, 1.60 and 1.92, respectively. The results for the three largest frequencies are close to each other and
nearly overlap. The solid line is a fitted curve, (3.4), of the data on the lowest dashed line that are expected to
be close to the asymptotic limit for large frequencies.

oscillations. For each ωAt, five cases are simulated with the oscillation frequency f
√

D/g
ranging from 0.64 to 1.92 with equal intervals. The data points obtained with the same
frequency are connected by dashed lines serving as guides to the eyes. The figure shows
that, in the investigated parameter range, ωAt plays a dominant role on the determination of
the film thickness, and thus, the rising velocity, agreeing with the earlier discussion in this
section. The oscillation frequency f itself has a relatively minor influence. For a fixed value
of ωAt, the rising velocity is smaller when f is larger. The reason is two fold. First, with
the same film thickness and position of the stagnation point, the low-frequency oscillation
allows longer time for the recovery of the liquid velocity in the low-velocity region during
the compression half-cycle. Therefore, the downward flow rate averaged over a period
is larger, i.e. the film flow is less hindered. Secondly, for a fixed ωAt, a lower frequency
f = ω/(2π) means a larger oscillation amplitude At. If At is so large as to be comparable to
the length of the bubble nose, it is possible that, during compression, the top of the bubble
is pushed much lower than the low-velocity region developed during expansion, whose
influence on the film flow is therefore considerably weakened. It is worth pointing out that
the data points would be significantly more scattered if the velocity ratio UB/UB0 were
plotted as a function of the maximum acceleration ω2At/g, as suggested by Brannock &
Kubie (1996) and others in their study of the Taylor bubble rising in a vertically oscillating
tube.

An intriguing feature of the numerical results shown in figure 12 is that, when
the driving velocity amplitude ωAt is held constant, they suggest the existence of
an asymptotic behaviour as f

√
D/g increases. In the parameter range that we have

investigated, the data for the largest value of this quantity, f
√

D/g = 1.92, appear to be
close to this asymptote that can be fitted very well by the expression

UB

UB0
= exp

[
−4.11

(
ωAt√

gD

)2

− 5.56
(

ωAt√
gD

)4
]
, (3.4)
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as is shown by the grey line in the figure. We emphasize again that (3.4) is obtained with
specific Morton and Bond numbers. A potentially interesting fact is that the constant 4.11
is close to

√
Bo = 4.22 or Ga/Bo = 4.15.

Equation (3.4) may shed some light on the nonlinear characteristics of the problem being
discussed. With fixed driving frequency ω, the Taylor expansion of (3.4) for small driving
amplitude At yields

�UB

UB0
= UB0 − UB

UB0
= 4.11

(
ωAt√

gD

)2

+ O

[(
ωAt√

gD

)4
]
, (3.5)

confirming that the velocity reduction �UB depends nonlinearly on At as stated before.
At first sight, figure 12, in which the results depend only weakly on f

√
D/g, appears

to be in contrast with figures 9(b) and 10, which exhibit a much stronger sensitivity to
the value of the same parameter. In reality there is no conflict because changing f and
keeping ωAt = 2πfAt constant in figure 12 requires changing At in inverse proportion at
the same time, while At is kept constant in figures 9(b) and 10 as f is changed. Thus, the
consequences of varying f

√
D/g in the two cases cannot be compared.

An obvious question is whether the slow down of the bubble that we have described
can be pushed so far as to stop it altogether. It is known that, in small tubes, surface
tension can have such a strong effect as to thin the film surrounding the bubble to the
point that it breaks by van der Waals effects and a three-phase contact line forms. In
this case the bubble cannot rise but remains frozen in place (Zukoski 1966; Lamstaes
& Eggers 2017). Perhaps this limit can be reached by the present method although the
matter cannot be pursued numerically because of difficulties with bubble stability and
multi-scale requirements. If a three-phase contact line forms and the tube is not so small
that one can rely on surface tension to stabilize the upper liquid surface that formed the
top of the Taylor bubble, it would be an interesting problem whether this surface can be
dynamically stabilized by the liquid column oscillation with a mechanism similar to that
demonstrated by Apffel et al. (2020), who were able to stabilize a suspended liquid mass
over a gas layer in a vertically oscillating container.

4. Dynamically controlled excitation

For the case of dynamically controlled excitation, illustrated in figure 2(b), the liquid
column above the Taylor bubble has a free surface at its top. The pressure of the
gas above this free surface oscillates sinusoidally according to (1.2). This configuration
imposes a boundary condition on the force acting on the liquid column rather than on its
displacement. Therefore, the dynamics of the liquid column as affected by its interaction
with the bubble is expected to play a role in the determination of the bubble oscillations
as well as its rising velocity.

The upper group of lines in the two panels of figure 13 show the time dependence of the
bubble nose depth for different pressure amplitudes and f

√
D/g = 1.28 in panel (a) and

1.52 in panel (b). The lower groups of lines convey the same information for the bubble
tail. The straight, inclined topmost line in each group is for a normal steadily rising Taylor
bubble with the same undisturbed volume but without pressure excitation. The simulation
starts at t = 0 with the simplified bubble shape described in § 2. The oscillations start at
t
√

g/D � 9.4, by which time the shape of the bubble has relaxed to steady conditions.
The slope of these lines decreases shortly after the start of the oscillations indicating

a slower rising velocity. For the weaker excitations, the slope eventually returns to the
original value, equal to that of an ordinary Taylor bubble. The same behaviour would be
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Figure 13. Time dependence of the depth of the bubble nose (top group of lines in each panel) and tail (bottom
group of lines) with a driving frequency f

√
D/g = 1.28 in (a) and 1.52 in (b) for dynamically controlled

oscillations. In (a) the driving pressure amplitudes are, from top to bottom, �p/pa = 0 (no oscillation), 0.004,
0.006 and 0.008 and in (b) �p/pa = 0, 0.004, 0.005 and 0.006. The horizontal dashed lines roughly mark the
position of the inflection points on the curves for the motion of the bubble top.

observed in all cases if the bubbles were to rise further. Therefore, an inflection point at
which the second-order derivative of the curves changes sign from negative to positive
can be found in each deceleration–acceleration process. In each panel of figure 13, the
inflection points are located at approximately the same depth of the bubble top, marked
by the dashed horizontal lines. The values of this critical depth, however, are different
for the two different driving frequencies. Thus, unlike the kinematically controlled case
of § 3, now the slowing down is temporary and occurs when the bubble nose is in the
neighbourhood of a well-defined, frequency-dependent depth. We show below that, at
this depth, the oscillations of the bubble volume reach a maximum amplitude for a given
driving frequency ω. We designate this depth as the resonant depth, although it should be
stressed that it does not necessarily coincide with conditions such that the oscillations of
the bubble are in resonance with the drive.

Appendix A describes a simplified theory for the oscillations of the bubble and the
resonant depth. The main simplification is that the bubble rising is neglected in the
development, which will be justified provided the oscillation period is sufficiently short;
a quantification of this statement will be provided shortly. It is shown in Appendix A that,
when viscous effects are unimportant, the resonant depth is given by

HR,inv = γ pa/(ρLe)

ω2 − ω2∞
with ω2

∞ = γ g
Le

. (4.1)

Here pa is the undisturbed pressure at the free surface and

Le = V0

πR2 (4.2)

is an effective equilibrium bubble length expressed in terms of the undisturbed bubble
volume V0 (see Appendix A). Since the inviscid resonance frequency ω0,inv of the bubble
at a depth of H is given by (see Appendix A)

ω2
0,inv = γ pa

ρHLe
+ ω2

∞, (4.3)

it is seen that, when H = HR,inv , ω = ω0,inv so that the bubble is driven at resonance. This
is the only case in which the bubble executes resonant oscillations at the resonant depth.
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It is also seen from both (4.1) and (4.3) that ω∞ is the natural frequency of a very deep
bubble. In (4.1) and in the rest of this section we have assumed that the bubble executes
adiabatic oscillations writing γ , the ratio of the gas specific heats, in place of a more
general polytropic index; we include some considerations on this point in Appendix A.

With viscosity, for a given ω, the bubble response reaches its maximum approximately
at the depth (see Appendix A)

HR = γ pa

ρLe

αω2 − ω2∞(
αω2 − ω2∞

)2 + β2ω4
, (4.4)

in which α and β are two parameters dependent on the combination ν/(ωR2); they are
defined in (A12) and graphed in figure 19. The parameter ν/(ωR2) is the inverse of the
square of the Womersley number Wo = R

√
ω/ν that is often used to characterize the

behaviour of pulsatile flows such as blood flow in arteries (see, e.g. Ku 1997). For small
values of ν/(ωR2), α and β are approximately given by

α � 1 +
√

2ν

ωR2 = 1 +
√

2
Wo

, β �
√

2ν

ωR2 =
√

2
Wo

, (4.5a,b)

and, over the entire range of ν/(ωR2), 1 � α < 4/3. It is evident that in the inviscid limit,
in which α = 1 and β = 0, (4.4) reduces to (4.1) given earlier.

Corresponding to the value HR of the resonant depth, the bubble oscillation amplitude
attains the value

|XM|
�P

=
√

(α − ω2∞/ω2)2 + β2 Le

βγ pa
. (4.6)

This is the maximum oscillation amplitude as a function of the bubble depth H for a fixed
ω, not as a function of the driving frequency ω for a fixed depth H. As can be seen from
(A16), when the bubble is much deeper than HR, the oscillation amplitude is small and
its rise velocity will be close to that of an ordinary Taylor bubble. Conversely, when the
bubble is much above HR and close to the surface, the slowing down of the ascent will
depend on the amplitude of the drive that, being close to that of the bubble pressure,
determines the film thickness.

Figure 14 shows the normalized resonant depth HR/( pa/ρg) as a function of ω/ω∞; the
curves are parametrized by the dissipation parameter

N = ν

ω∞R2 . (4.7)

It is evident from (4.4) that HR vanishes for ω2 = ω2∞/α, grows as ω increases from
this value, reaches a maximum (which becomes progressively smaller with increasing
dissipation), past which it starts to decrease with the eventual asymptotic trend

HR � α

α2 + β2
γ pa

ρω2Le
. (4.8)

For any value of N, below the maximum of HR, there are two values of the frequency
that result in the same resonance depth. If, in an application, there are specific reasons
to desire a particular value of HR, it is likely that the larger value would be of interest
as, in this way, the bubble would reside in the resonance region for a greater number of
periods, and with a larger oscillation amplitude as can be seen from (4.6), both allowing
for a greater decrease of the drainage flow along its side and, therefore, for a greater slow
down of its rising velocity.
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Figure 14. Normalized resonant depth as a function of ω/ω∞, with ω∞ the infinite-depth resonant frequency
defined in (4.1). From bottom to top, the solid lines correspond to the viscosity parameter defined in (4.7)
N = 2, 0.5, 0.1 and 0.01. The dashed line is the inviscid result (4.1).
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Figure 15. Velocity of the bubble top as a function of its depth, both averaged over one period. The residual
oscillations on the curves are due to the fact that the phase and amplitude of the bubble oscillations keep
changing with depth. The driving amplitudes are, from top to bottom, �p/pa = 0.004, 0.005 and 0.006. The
driving frequency is fixed at f

√
D/g = 1.52.

The relation between the bubble nose velocity and the bubble depth (both averaged over
a period) is depicted in figure 15 for three driving pressure amplitudes. For all amplitudes,
the shape of the curves is the same, with rapid oscillations (caused by a slight change of the
phase and amplitude at each depth) superimposed on a common trend that slowly decreases
as the resonant depth is approached and then increases as it is passed. The minimum of
the velocity gets smaller as the driving pressure is increased but its position (which is also
indicated by the horizontal dashed line in figure 13b) remains approximately the same
except for a small displacement to lower depths with increasing amplitude caused by weak
nonlinear effects.

The explanation of this behaviour is that the oscillation amplitude of the bubble
increases as the resonant depth HR is approached so that the film along its surface becomes
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Figure 16. Shape and position of the lateral surface of the rising Taylor bubble at successive instants separated
by 16 oscillation periods for dynamically controlled oscillations. The frequency of the pressure oscillations is
f
√

D/g = 1.28 and the amplitude �p/pa = 0.006.

thinner as we have explained in the previous section; the converse happens as the bubble
rises above HR. A direct illustration of this mechanism is provided in figure 16 that shows,
magnified in the same way as in earlier figures, the lateral surface of the bubble as it goes
through the resonant depth. The succession of lines from the lowest (purple) to the highest
(blue) corresponds to the successive positions of the bubble separated by 16 periods. As
the resonant depth is approached, the film thins (purple and yellow) reaching a minimum
thickness at the resonant depth (green). As the bubble rises further (orange and blue), the
film thickens again. The thickness of the liquid film increases from nose to tail when the
bubble approaches the resonant depth because the bubble never resides at the same depth
long enough for the analog of the transient depicted in figure 7(b) to reach completion. For
the converse reason, the film thickness decreases from nose to tail as the bubble leaves the
resonant depth.

The interval of depths over which one may expect the decrease and increase of the
rising velocity shown in figure 15 depends on the width of the bubble resonance that,
itself, depends on the degree of damping affecting the oscillations. The width �HR of the
resonance at half-height is given by

�HR = 2
√

3βω2∞ω2

(αω2 − ω2∞)2 + β2ω4
pa

ρg
, (4.9)

and is seen to be an increasing function of the damping parameter for β not too large.
On substitution of the parameters, (4.9) predicts �HR/D ≈ 2.0 for the case shown in
figure 15, in good agreement with the simulation results. With this result we can now
be more quantitative about the error introduced with the neglect of the bubble rise in
the theory developed in Appendix A: the error can be expected to be small when the
rise during one period, of the order of 2πUB/ω, with UB the bubble rise velocity, is
smaller than �HR. This condition is evidently satisfied in the examples of figure 15 with
2πUB0/(ω�HR) ≈ 0.06 (which would be smaller if the instantaneous UB is used instead
of UB0) and, since the rise velocity is slowed down as an effect of the oscillations, can be
expected to be satisfied in many situations.

The oscillation amplitudes of the bubble volume induced by the pressure oscillations
used in the previous examples are of the order of a few percent. This circumstance suggests
the slowing down of the bubble could be extended to a larger range of depths by the
simultaneous use of a combination of different frequencies. The results of this approach
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Figure 17. The top panel shows the dependence of the period-averaged bubble top velocity on its
period-averaged depth, obtained from the numerical simulation. The three single-peaked curves, from left
to right, correspond to pressure oscillation frequencies f

√
D/g = 0.6, 0.75 and 1; the driving amplitude is

�p/pa = 0.01. The multi-peaked curve is the result with the simultaneous application of the three pressure
oscillations. The horizontal grey line shows the rising velocity without oscillations. The black dashed line is
obtained by algebraically adding the velocity reduction (compared with the grey line) of the three single-peaked
results. The bottom panel, sharing the same horizontal axis with the top one, shows the theoretical result of the
bubble oscillation amplitude |X| calculated with the parameters corresponding to the three single-peaked cases
in the top panel. The sum of the three curves is also shown. In the theoretical calculation, the polytropic indices
are estimated with the method given by Chen & Prosperetti (1998) and range from 1.314 to 1.333.

are demonstrated in figure 17. Panel (a) shows the simulated bubble rising velocity with
dimensionless driving frequencies f

√
D/g = 0.6, 0.75 and 1. Also plotted is the result

obtained with all the three driving signals acting simultaneously. With the multi-frequency
drive, at every depth the rising velocity reduction approximately equals the sum of those
caused by the individual frequencies. In panel (b) the analytical oscillation amplitude of
the bubble predicted by (A16) is plotted against the depth. The predicted shape of all
the curves has a good agreement with those in panel (a), reflecting a strong correlation
between Ūtop and |X| as was demonstrated in figure 12. At the maximum amplitude in
panel (b), the volume variation is about 5 % of the equilibrium volume of the bubble
for the largest single-frequency oscillation (purple), within the linear oscillation regime,
reaching 8 % for the multi-frequency drive.

5. Summary and conclusions

A Taylor bubble rising in a tube slows down when it is subjected to small-amplitude forced
volume oscillations because they diminish the drainage flow along its surface. During the
expansion of the bubble, the film thickness decreases because of the imbalanced inflow
and outflow in the film region, which is the result of the upward motion of the bubble
nose. During contraction, it takes time for the drainage flow to re-establish itself, thus, the
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imbalance still exists and the film keeps thinning. As a consequence, the flow rate through
the film is reduced in both half-cycles. Since the rise of the bubble is predicated on the
ability of the drainage flow to replenish the space vacated by the rising bubble bottom, a
slowing down of the drainage flow inevitably results in a slowing down of the bubble.

We have considered two different ways in which the bubble oscillations can be forced
by acting on the liquid level at the top of the tube, an imposed displacement of the level
(kinematic control) and an imposed pressure variation (dynamic control). With the first
method, the bubble slow down persists over its entire ascent. With the second one, the
slowing down is noticeable only while the bubble traverses a section of the tube centred at
a depth at which the oscillations of the liquid column above the bubble are at a maximum.
An alternative possible implementation would be a flexible tube section the diameter of
which is made to vary periodically in time, with the top of the tube either open with a
constant ambient pressure or closed.

For practical applications the stability of the bubble is important, an aspect of the
problem that we have not examined in detail. However, we have found in our simulations
that, in the kinematically driven case, if the imposed oscillations are stronger, namely, ωAt
is larger than the data shown in figure 12, the shape of the bubble side surface may become
irregular and solitary waves similar to those reported in Madani et al. (2009) appear. With
even stronger oscillations, the nose of the bubble is destroyed by a combination of the
Rayleigh–Taylor and Faraday instabilities as shown in figure 18. The appearance of liquid
drops inside a Taylor bubble has been found before in other contexts (see, e.g. Andredaki
et al. 2021) but, in those cases, drops are formed by the folding of the bubble tail due
to the increased pressure at the rear stagnation point rather than at the nose as here. The
disruption of the bubble may go well beyond that shown in figure 18 as, depending on the
driving amplitude, it is quite possible that the bubble would not remain intact as it passes
through the resonant depth region. Conceivably, this might be a method to disrupt a bubble
at a given depth.

We have also carried out a few numerical simulations with two or more Taylor bubbles
finding that the varying pressure of the leading bubble operates on the trailing one similarly
to the pressure drive of § 4. In this way the oscillations of the bubbles become coupled and
the increased complexity of the situation does not permit a simple extrapolation of the
single-bubble results of this paper.
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Appendix A. The resonant depth

It can be seen in figure 15 that the period of the driving for the bubble oscillations is much
shorter than the time it takes the bubble to transit through the resonant depth region. This
justifies an approximate model in which the bubble is considered to be at a fixed depth.
Furthermore, in view of the smallness of the oscillations, the system composed by the
bubble and the liquid column above it can be treated as a linear spring-mass oscillator.
Beside the constant gravitational force, the liquid column is subjected to the pressure in
the bubble, pb, and the disturbed pressure at the free surface, which it is convenient to
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(a) (b) (c)

Figure 18. Shape of a Taylor bubble with kinematically controlled oscillations imposed at the top of the
tube. Three typical snapshots are selected in chronological order after the oscillation starts. The frequency
is f

√
D/g = 1.28 and the amplitude At/D = 0.2. In the third panel a droplet falls through the bubble. The

thickness of the liquid film around the bubble near the top is close to zero.

write as
p(t) = pa + �Pe−iωt, (A1)

where i is the imaginary unit. The motion of the liquid column is represented by the
displacement X of its mass centre. The governing equation for X reads

ρπR2HẌ = πR2( pb − p) − ρgπR2H + 2πRHτw, (A2)

where R is the tube radius, H is the depth of the bubble measured at its top. The
viscous shear stress at the wall, τw, imposes damping on the system by dissipating some
mechanical energy into heat.

It can be shown by elementary geometric considerations that with the assumption |X| �
H, the change δV of the bubble volume can be expressed in terms of X as

δV
πR2 = X

[
1 + O

(
X
H

)]
. (A3)

Assuming a pressure-volume relation for the gas governed by a polytropic index κ and
confining ourselves to the linear approximation, justified when |δV|/V0 � 1 with V0 the
undisturbed bubble volume, we write

pb =
(

V0

V0 + δV

)κ

p0
b =

(
1

1 + X/Le

)κ

p0
b �

(
1 − κX

Le

)
p0

b, (A4)

in which Le is the equivalent bubble length defined in (4.2) and p0
b is the pressure inside

the bubble at equilibrium, equal to the hydrostatic pressure at depth H, i.e.

p0
b = pa + ρgH. (A5)
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We have neglected the pressure difference across the bubble interface due to the surface
tension effect, which is at least an order smaller than the pressure variation caused by the
volume oscillation in all of our cases.

In the linear approximation, in order to account for thermal dissipation, one can give
an imaginary part to the polytropic index κ as explained in detail in Chen & Prosperetti
(1998). The effect is an augmentation of the damping coefficient β introduced later. For
simplicity, we assume that the bubble radius is much greater than the thermal penetration
depth in the gas, so that ωR2/Dth � 1, with Dth the gas thermal diffusivity. In this limit,
thermal damping is negligible and κ � γ , the ratio of the gas specific heats. On this
basis we have written γ in place of κ in the equations of § 4 although we write κ in
this Appendix A as a reminder to the reader.

Upon substituting (A1), (A4) and (A5) into the equation of motion (A2) and neglecting
for the moment τw, we find that

Ẍ + ω2
0,invX = −�P

ρH
e−iωt, (A6)

in which ω2
0,inv is the natural frequency in the absence of dissipation defined in (4.3)

(with γ replaced by κ). This expression for ω0,inv can be found in Baird (1963) who was
interested in the behaviour of a bubble in a vertically oscillating tube.

In order to account for τw, we note that the liquid column is ordinarily much longer than
the tube diameter. This circumstance allows us to make the approximation of parallel flow
for the entire liquid column, which leads to the Navier–Stokes momentum equation in the
simplified form

∂tu = − 1
ρ

∂xp − g + ν

(
∂2

r u + 1
r
∂ru

)
, (A7)

where x is the coordinate along the tube axis pointing upward. By assuming u ∼ e−iωt and
using ∂xp = ( p − pb)/H justified by the fact that, as follows from (A7), ∂2

x p = 0, noting
(A1), (A4) and (A5), this equation becomes

∂2
r u + 1

r
∂ru + i

ω

ν
u = F(t)

ν
, (A8)

in which

F(t) = �P
ρH

e−iωt + ω2
0,invX. (A9)

The solution regular at r = 0 and satisfying the no-slip boundary condition at r = R is

u = iF
ω

[
J0(s)
J0(S)

− 1
]

, with s = r

√
iω
ν

and S = R

√
iω
ν

=
√

iWo, (A10)

where Wo = R
√

ω/ν is the Womersley number. The wall shear stress readily follows as
τw = [μ∂ru]r=R and the momentum equation (A2) may then be written as

Ẍ = −
(

1 − 2
J1(S)

SJ0(S)

)(
ω2

0,invX + �P
ρH

e−iωt
)

. (A11)

It is now convenient to introduce two real parameters α and β by

α + iβ =
(

1 − 2
J1(S)

SJ0(S)

)−1

. (A12)
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Figure 19. Dependence of α (purple line) and β (green line) as defined in (A12) on the parameter ν/(ωR2).
The horizontal dashed lines mark the asymptotic limits of α and β.

The dependence of these parameters on the quantity ν/(ωR2) = 1/Wo2 is shown in
figure 19. The range of α is limited to the interval [1, 4/3); β, on the other hand, is large
for small frequency and radius and large viscosity, all situations that increase the damping,
and tends to zero as viscous effects become less significant. For the cases shown in this
paper, the value of Wo ranges from 6 to 15.

Since we are interested in steady solutions of the form X ∼ e−iωt, we have the identities
Ẋ = −iωX and Ẍ = −iωẊ from which the momentum equation (A11) can be recast into
the standard form for a damped driven oscillator with all real coefficients,

Ẍ + βωẊ +
[
ω2

0,inv − (α − 1)ω2
]

X = −�P
ρH

e−iωt, (A13)

from which the natural frequency ω0 and damping b of the oscillations can be read directly,
i.e.

ω2
0 = ω2

0,inv − (α − 1)ω2, b = 1
2βω. (A14a,b)

The steady solution to (A13) is

X = �P/(ρH)

αω2 − ω2
0,inv + iβω2

e−iωt, (A15)

from which the amplitude of the oscillations follows as

|X| = �P/(ρH)√(
αω2 − ω2

0,inv

)2 + β2ω4

. (A16)

The expression (4.4) for the resonance depth HR is now found upon calculating the
maximum of |X| as a function of H and the corresponding amplitude (4.6) upon
substituting the result into (A16).
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