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Abstract. Human pluripotent stem cell-derived Cardiomyocytes
(hPSC-CMs) become increasingly popular in recent years for disease
modeling and drug screening. NKX2.5 gene is a key transcription factor
that regulates cardiomyocyte differentiation. A human embryonic stem
cell (hESC) reporter line with NKX2.5 in GFP signal allows us to mon-
itor the specificity and efficiency of human cardiac differentiation. We
intend to develop an automatic analysis pipeline for the NKX2.5 signal.
However, the NKX2.5 signal captured from fluorescence microscopy is
highly heterogeneous. It is not possible to be properly segmented using
traditional thresholding methods. Therefore, in this paper, one machine
learning method: enhanced Fuzzy C-Means clustering (EnFCM) and
two deep learning models: U-Net and DeepLabV3+, are evaluated on
the segmentation performance. Parameters have been tuned for each
method so as to reach to the optimal segmentation performance. The
results show that EnFCM reaches the performance of 0.85. U-Net and
DeepLabV3+ have a superior performance. Their performances are 0.86
and 0.89 respectively.

Keywords: pluripotent stem cell derived cardiomyocyte ·
segmentation · machine learning · deep learning

1 Introduction

Stem cell technology is a rapidly developing field that potentially offers effec-
tive treatment for various diseases [11]. It provides a more faithful representa-
tion of the actual human diseases so that underlying mechanisms can be better
understood. Stem cells can be used for the effective validation of safe medicines
which could facilitate more predictive drug discovery and toxicity studies [28].
In addition, stem cells have the potential to replace animal experimentation in
predictive toxicology [16].
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Human pluripotent stem cell-derived Cardiomyocytes (hPSC-CMs) are valu-
able tools for disease modeling, assessing cardiotoxicity of drugs as well as iden-
tifying novel therapeutic compounds [19]. In recent years, tremendous efforts
have been taken to integrate hPSC-CMs into high-throughput screening systems.
Phenotypic analysis has been carried out and varied phenotypic readouts have
been quantified including morphological changes [6,7], contractile properties
[18,25],calcium transients [22,23] and electrophysiological parameters [20,32].

NKX2.5 is an essential transcription factor for activation and maintenance
of the cardiac regulatory network. This transcription factor can be detected in
cardiac progenitor cells, their progeny, and mature cardiomyocytes [17]. There-
fore, genetically engineered NKX2.5 reporter cell line was developed to monitor
cardiac cell populations during differentiation [10]. Recently, the hPSC NKX2.5
reporter line has been used for developmental toxicity testing [17].

Measuring NKX2.5 fluorescent signal from hPSC-CMs in a high-throughput
manner is, however, challenging. We observed big variation of the green fluores-
cent protein (GFP) signal of NKX2.5 between batches and treatments as shown
in Fig. 1 and 6. It can be caused by batch variation, differentiation efficiency as
well as varied effect of treatments. The performance of traditional thresholding
methods are not satisfactory, since a large amount of the methods can only seg-
ment part of the signal and cannot capture weak GFP signal in the fluorescent
images. In this study, we are going to explore machine learning and deep learning
methods for segmentation of NKX2.5 signal in hPSC-CMs.

2 Related Work

Image segmentation is a task in computer science that involves the delineation
of regions of interest in an image. Segmentation is often used in medical or bio-
molecular imaging to automate or facilitate the division or recognition of specific
structures in the images that are generated in the research [21].

There are many machine learning-based and deep learning-based methods
which give superior performance for segmentation. For example, Fuzzy C-Means
clustering is an unsupervised machine learning method which has been used
for segmentation. It firstly assigns a degree of “belonging to foreground” for
each pixel and sets the cut-off between foreground and background based on the
minimization of intra-cluster variance [6].

In addition, a large number of deep learning models are successfully used in
the research field of semantic segmentation. Semantic segmentation labels pixels
in the image to the corresponding regions. One of the most widely used models
in the field is U-Net. U-Net is a fully convolutional neural network that was
first proposed in 2015 [27]. It is featured by its light weighted structure which
makes it possible to train a deep learning model with a small training dataset
such as thousands or even hundreds of images. It is extremely useful in the
segmentation of a biological image dataset in which the number of training data
is always limited.

There are several deep learning models which are commonly used as alterna-
tives for U-Net [13] such as DeepLabV3+ [8] and Tiramisu [2]. From two studies
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in which DeepLabV3+ is used for similar segmentation tasks and directly com-
pared to U-Net, it is concluded that DeepLabV3+ achieves slightly better perfor-
mance than U-Net [9,14]. It is also found that U-Net does have a slightly better
performance than DeepLabV3, which is the previous version of DeepLabV3+
[1]. In addition, it has been shown that DeepLabV3+ has a better performance
than DeepLabV3 [31]. From two studies in which the performance of U-Net is
compared to Tiramisu, it is concluded that Tiramisu has similar performance
[12,15].

3 Methods

3.1 Preparation of the Cells

Double Reporter mRubyII-ACTN2 and GFP-NKX2.5 (DRRAGN) hPSCs were
differentiated to hPSC-CMs as described in [26]. Around day 14 of differenti-
ation, cells were dissociated and were FACS sorted for α-ActininmRybyII/w-
Nkx2.5eGFP/w. Double positive CMs were seeded into 96 well special optics
plates (PerkinElmer) at a density of 50,000 cells per well. The hPSC-CMs were
maintained in a humidified incubator and were refreshed with CM-TDI medium
twice a week [3]. 10–12 days after seeding, the hPSC-CMs were treated with
dimethylsulfoxide (DMSO 4.23 mM) as control or with 1 µM of the anticancer
drug Doxorubicin for 5 days.

3.2 Imaging

Images of NKX2.5 signal of hPSC-CMs were acquired using the high-throughput
automated EVOS FL Auto 2 (Thermo Fisher) microscope equipped with a 40x
Super-apochromat Olympus objective (NA 0.95) (Thermo Fisher, AMEP4754).
The whole monolayer cell culture was scanned by automatically acquiring 55
images per well every 24 h for 5 days. During the 5 days, cells were maintained
on the EVOS Onstage incubator.

3.3 Preparation of Ground Truth Data

The dataset, that is used in this study, consists of 1450 images from the hPSC-
CMs research. The 1450 images are from 18 different batches. The size of the
images is 1328 × 1048 and they are provided in a 8-bit gray scale format. The
signal that is present in the images originates from the GFP signal representing
the expression of NKX2.5 protein.

In order to train the deep learning models using these images, ground truths
have to be created first. The ground truths, which is approved by the domain
specialist, have to be manually created from the original images by converting
it to a binary mask using the correct gray value threshold. This is done in the
Fiji application [29] using a macro. By running the macro, the images in the
selected directory are loaded one by one. A Gaussian blur is applied to suppress
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the noise in the image. Then, a threshold can be selected manually from which
the binary mask is generated and saved. In Fig. 1, two examples are given for the
original image and corresponding ground truth. In order to have a consistent set
of ground truths, the annotator discussed with the biologists beforehand and did
several trials together with the domain expert for quality control. Subsequently,
all images were processed and were ready to feed into deep learning models for
training.

Fig. 1. Two examples of images from the dataset including the manually created
ground truth binary mask.

3.4 Evaluation

An evaluation measure is used to assess the performance of the deep learning
models. The metric that is used is Intersection over Union (IoU). For the calcu-
lation of the IoU metric, the intersection of the foregrounds of a ground truth
image and a segmentation result is divided by the union of the same foregrounds,
which can be seen in Fig. 2.

Fig. 2. Visual representation of Intersection over Union performance metric.
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The implementation of the IoU metric is done using the MeanIoU function
in the Python Keras library.

3.5 Fuzzy C-Means Clustering

The Fuzzy C-Means Clustering (FCM) is an unsupervised clustering method
setting the threshold based on the minimization of intra-cluster variance. This
method can successfully capture both strong and weak signals which is ideal
to segment NKX2.5 signal. However, due to the high resolution of our images
(1328 × 1048 pixels per image), it takes minutes (in a system with 2.80GHz
processing speed and 8 GB RAM) to extract the signal from a single image. It
is not optimal for a high throughput setup. In order to improve the processing
speed, several improved versions based on FCM have been explored [5]. An
accelerated version of the FCM Algorithm called EnFCM [30] was chosen to
solve the speed problem. EnFCM treats each gray value from the histogram as
a clustering candidate instead of each pixel from the image. Its energy function
for minimization is expressed in Eq. 1:

J =
c∑

i=1

q∑

l=1

nlu
m
il ‖l − vi‖2 m > 1. (1)

where c stands for the number of clusters, q represents the number of gray levels
in the histogram, nl is the number of pixels whose gray value equals to l. m is
the fuzzyfication parameter. um

il is the degree of membership of gray level l. vi
is the center of the cluster. The iterative minimization of the objective function
is realized by updating the membership uil and the cluster centers vi:

uil =
(vi − l)−2/(m−1)

∑c
j=1(vj − l)−2/(m−1)

∀i = 1...c, ∀l = 1....q,

vi =
∑q

l=1 nlu
m
il l∑q

l=1 nlum
il

∀i = 1...c.

In this way, the processing time is drastically reduced to 1–2 s per image using
the same PC.

3.6 U-Net

The U-Net is a model that is built upon the architecture of the fully convolu-
tional neural network [27]. The network consists of two parts: the contracting
path and the expansive path. In the contracting path, the usual structure of a
convolutional network is followed. This means that unpadded convolutions are
applied, followed by a generic ReLU activation operator and a max pooling oper-
ation. Max pooling operations are applied for the downsampling of the image.
In the expansive path, upsampling is performed first for every layer. Afterwards,
up-convolution is done, followed by concatenation with the corresponding fea-
ture map that was acquired in the contracting path. As the last step, for every



Segmentation of NKX2.5 Signal in Cardiomyocytes 175

layer in the expansive path, ReLU activation is performed. The output is created
by applying a sigmoid activation to acquire the correct range of values in the
prediction.

3.7 DeepLabV3+

DeepLabV3+ (DLV3+) is a model that was proposed as an extension of the
DeepLabV3 model. The structure of DLV3+ is similar to that of the U-Net.
However, there are some important differences between the structure of U-Net
and DLV3+. In DLV3+ a combination of atrous convolution and depthwise con-
volution is used, called atrous separable convolution. In this type of convolution
the computational complexity is reduced, while still capturing multi-scale infor-
mation [8]. ResNet is used as the backbone of the model for feature extraction in
the encoder part [24]. Between the encoder and the decoder part, atrous spatial
pyramid pooling is performed. This attempts to handle different object scales of
a class in the image for better accuracy. The decoder part is comparable to the
expansive path of the U-Net where the image is restored to its original size. The
number of parameters of DLV3+ is considerably larger than for U-Net, so it is
computationally more expensive to run.

3.8 Implementation and Experiments

The EnFCM is implemented as a Java plugin in ImageJ software [6]. We set
the fuzzyfication parameter to 2. The parameter that we tuned is the prior
probability of assigning pixels to foreground. We observed that the set [0.6, 0.7,
0.8] fits best to the actual signal coverage the best. A prior probability of 0.6
means that the chance of assigning the pixels to foreground is 60%.

The U-Net model is implemented in Python 3 using the Tensorflow
Keras library. The implementation is based on the U-Net coding tutorial on
GitHub (https://github.com/decouples/Unet/blob/master/unet.py). The plat-
form Google Colaboratory (Colab) [4] is used to run the model and experiments.
Colab has computational resources which can be used for running the code in a
Python notebook on an online server. There are several hyperparameters which
can be tuned in the U-Net model. An overview of the hyperparameters are given
in Table 1. In addition, Xavier uniform initializer is used to initialize the weights
in the layers. Adam optimization is used with a learning rate of 0.001.

Table 1. The parameters that are studied for the U-Net.

Parameter Range that is studied

Number of images [100, 200, 400, 500, 1000]

Number of epochs [5, 10, 20, 25, 40]

Number of filter layers [5, 8, 12, 16]

Batch size [10, 20]

https://github.com/decouples/Unet/blob/master/unet.py
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The set of images used is split into a training set and validation set by a
ratio of 80/20 respectively. Several combinations of parameter values are tested
to see which parameters have an effect on the performance of the model. Struc-
tured experiments are done for 100, 200 and 400 input images and an increasing
number of training epochs. These small subsets were created from the total 1450
images by combining sets of images from all the different batches. Subsequently,
the model is tested for 1000 input images.

The DLV3+ model is implemented in Python 3 using the Tensorflow Keras
library, based on the implementation by Soumik Rakshit [24]. The model is
adjusted to work for the binary segmentation task of this project. A pre-trained
ResNet50 model (pre-trained on ImageNet) is used as backbone for the DLV3+
model for low-level features. Because the ResNet50 model is trained for use with
images of size 512×512, the input images are resized to be this size. The output
image has a size of 512 × 512 as well. This has to be taken into account when
comparing the performance results of U-Net and DLV3+. He normal initializer
is used to initialize the weights of layers. Again, Colab is used to run the code
and carry out the experiments.

The testing procedure is carried out similarly to U-Net. Several combinations
of values of parameters, as shown in Table 2, are tested. Evaluation is done using
the same set of evaluation images as is used for U-Net for fair comparison between
the two models.

Table 2. The parameters that are studied for the DLV3+.

Parameter Range that is studied

Number of images [100, 200, 300, 400, 1000]

Number of epochs [10, 20, 30, 45]

Learning rate [0.001, 0.01]

4 Results

4.1 EnFCM

In order to make EnFCM comparable to U-Net and DeepLabV3+, we evaluate
the performance using the same testing dataset containing 50 images repre-
senting the total dataset distribution with ground truth. The three best results
is shown in Table 3. As we can observe, when the prior probability is set to
0.70, the mean IoU performance reaches the highest score of 0.85. Reducing or
increasing the prior probability does not help improve the segmentation perfor-
mance. Therefore, 0.70 is the optimal prior probability for our image dataset
with NKX2.5 signal.
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Table 3. The top 3 prior probabilities that are studied for EnFCM.

Prior Probability mIoU

0.60 0.822

0.70 0.850

0.80 0.773

4.2 U-Net

At first, various configurations of the parameter settings for the U-Net were
tested. We observed that a larger training set does not necessarily result in a
higher performance. An increased value for the number of filter layers resulted in
a higher performance, but values for 8, 12 or 16 layers are comparable. A larger
number of training epochs results in a higher performance. However, there is a
plateau in performance improvement.

Based on the primary results stated above, a more structured experiment
was carried out for the U-Net model using image sets of 100, 200 and 400 images
to study the effect of the number of images and the number of training epochs.
The parameters were kept constant at the following values: filter layers = 8,
batch size = 10. The configurations are run three times to obtain an average of
the performance.

The mean IoU results for 100 images are shown in Fig. 3(a). The average,
lowest and highest values of the three runs are shown in the plot. It can be
seen that for 5 and 10 training epochs the performance is very variable. For 15
training epochs and more, the performance is more stable and average mean
IoUs above 0.80 are achieved. An increased number of training epochs above 15
does not considerably increase the performance further.

The results for 200 images are shown in Fig. 3(b). For 5 training epochs
there is a larger variability in mean IoU values compare to the other numbers
of training epochs. The average is also lower for 5 training epochs than for the
other numbers of training epochs. The averages for 10, 15 and 20 training epochs
differ slightly and the variability between the runs is comparable as well. Overall,
an average mean IoU score of around 0.80 is achieved.

The mean IoU results for 400 images are shown in Fig. 3(c). The results of
5 training epochs give the highest performance and smallest variability between
the runs. The average performance decreases for increasing numbers of training
epochs. For 10 training epochs there is the largest variability between the runs.
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Fig. 3. Average mean IoU results for U-Net trained with a data set of 100, 200 and 400
images for increasing numbers of training epochs. The average is taken over three runs.
The range of mean IoU score for the three runs is given using the bars and connected
lines.

When the results for the three different numbers of training images are com-
pared, the performance of the model does not increase when more training images
are used. The average performance remains slightly above 0.80. A training set of
1000 images was tested as well to see if using almost all of the available images
would improve the performance. However, this gave an average result of 0.794,
which is lower than the results gotten from training using a lower number of
images.

Final Model. A data set of 400 training images is created from the total 1450
images by combining sets of images from all the different batches. As a result, the
created data set is the most representative of all the images that were gathered
for this research. This general data set is used to train a final model using the
parameter settings that is the most optimal from the previous experiments. The
used parameters are: number of training epochs = 10, filter layers = 8, batch size
= 10. ReLu is used as activation function. The mean IoU score of this model is
0.860. This model will be used to do a more detailed comparison between the U-
Net and DLV3+ performance. The learning curve of the training of this model
is shown in Fig. 4. In the curve it can be seen that the model has converged
for both the training accuracy and the validation accuracy at around the third
training epoch.
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Fig. 4. Learning curve for the U-Net model. The model is trained for 10 epochs using
a training set of 400 images.

4.3 DeepLabV3+

The DeepLabV3+ model is tested on performance for several configurations.
First small sets of 100 and 200 images were used for the training with a small
number of training epochs. This resulted in low performance scores. Then, the
model was trained using 1000 images to determine if this improved the perfor-
mance. It achieved a performance of above 0.75 when trained using 1000 images
for 30 total training epochs. This value increased to 0.873 when the model was
trained for 45 epochs. When the model was trained again for 45 epochs, but
with a smaller number of training images (300 and 400), similar performance is
achieved. The results indicate that if the model is trained for a larger number
of epochs, a large set of training images is not essential for a high performance.
Increasing the learning rate from 0.001 to 0.01 caused the model to converge
faster, but the performance is less stable, and therefore lower, than for a learn-
ing rate of 0.001.

Final Model. The same general data set of 400 images is used to train a
final model for DLV3+ as for U-Net. The model was created using the following
parameter settings: number of training epochs = 45, batch size = 10, filter layers
= 8 and learning rate = 0.001. The mean IoU score of this model is 0.890. This
model will be used to do a more detailed comparison between the U-Net and
DLV3+ performance. The learning curve of the training of this model is shown
in Fig. 5. In the curve it can be seen that the validation loss is relatively high
at the start of the training. It takes more than 30 epochs for the validation
loss to decrease to a low value. The validation accuracy remains relatively low
compared to the training accuracy for the first 33 epochs. This could indicate
that the model is over-trained on the training data. However, after 33 epochs the
validation accuracy increases to the same level as the training accuracy, which
indicates that the model is generalized and is able to do proper predictions.
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Fig. 5. Learning curve for the DLV3+ model. The model is trained for 45 epochs using
a training set of 400 images.

4.4 Comparison

The prediction results on the evaluation set for three methods are visualized
(mIoU EnFCM = 0.850, U-Net = 0.860, mIoU DLV3+ = 0.890). Two examples
are shown in Fig. 6(a). In these examples it can be seen that all three models did
not give an accurate prediction when compared to the ground truth. EnFCM
predicted too much foreground signal and both deep learning models predicted
too much background instead of foreground signal. In Fig. 6(b), two examples
are shown in which U-Net predicted more accurately when compared to the
ground truth. In both examples the prediction by U-Net is very similar to the
ground truth, but the prediction of EnFCM and DLV3+ contain more back-
ground region. In Fig. 6(c), two examples are shown in which DLV3+ predicted
more accurately. In both examples DLV3+ showed a more correct amount of
background signal compared to the EnFCM and U-Net predictions.

5 Discussion and Conclusion

In order to find a best method for segmentation of NKX2.5 signal for hPSC-
CMs in a high throughput setup, three methods, including one machine learning
method and two deep learning models, have been implemented, trained and eval-
uated. The first method that was evaluated, is EnFCM. It segments the NKX2.5
signal with a reasonable mean IoU of 0.85 when the prior probability parameter
is set to 0.70. The speed of processing, which is within 1–2 s, is preferred for
a high throughput setup. However, the segmentation performance is relatively
lower than the other two deep learning models.

The second model is U-net. Several parameters were tuned for the U-Net
model. The results showed that the U-Net model does not need a high number
of training images and does not need to be trained for a high number of epochs
to achieve a good performance, which was also stated in previous research [27]. A
higher number of filter layers seems to improve the performance and the speed
of convergence of the model slightly based on the number of training images.
However, the model rapidly increases in size when the filter layers are increased,
which causes the model to be very computationally expensive to run.
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Fig. 6. Example prediction results.

Based on the results for the DeeplabV3+ model (Sect. 4.3), it can be con-
cluded that the model is less efficient than the U-Net model. From the learning
curves (Fig. 4 & 5) it can be seen that DLV3+ needs more training epochs to
converge. The size of the DLV3+ model is also considerably larger than the size
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of the U-Net model (approx. 10 million parameters versus approx. 0.5 million
parameters), which causes the model to be much less computationally efficient
to train. Because of the ResNet50 backbone that is used for the implementation
of the model in the encoder part, the sizes of the input and output images are
set to 512 × 512. This limits the resolution of the output binary masks. This
limitation could be solved by using a backbone that is trained using images of
a larger size, but these were not available in the Keras library used at the time
of the experiment. Increasing the learning rate in the DLV3+ model results in
faster convergence of the model. The resulting model, however, is less stable and
has, on average, a lower performance.

In Sect. 4.4, the prediction results of the three methods are visualized and
compared. Based on visual inspection of the results, we observed that the pre-
dictions by U-Net are more accurate compare to the predictions by DLV3+ with
respect to the ground truths. This is contradictory to the mean IoU performance
scores of the models. This could be caused by that the images for the DLV3+
model are a smaller size and therefore the mean IoU score could give a slightly
inaccurate indication when used to compare the models. Overall, we concluded
that EnFCM predicts sometimes too much foreground signal and sometimes too
much background region. It is due to the fact that there is a constant prior prob-
ability setting. In this study, we used 0.70. If the NKX2.5 signal in the image
is less than 0.70, more foreground signal would be captured. If the signal in the
image is more than 0.70, less foreground signal would be detected. In addition,
we observed that DLV3+ predicts too much background signal. For the examples
in which DLV3+ seemed to be more accurate, U-Net and EnFCM predicted too
less background signal. The two examples, for which all three methods did not
have an accurate prediction (Fig. 6(a)), have low NKX2.5 signal in the original
image. This signal was not picked up, which could be explained by the large
variance in the intensity of the signal in the image. However, for most images
in the evaluation set the methods are able to distinguish most of the signal, so
these are exceptions to the overall performance.

In conclusion, EnFCM provides reasonable predictions using the original size
with a fast processing speed. the U-Net model is able to do the segmentation of
images with a size of 1024 × 1024. The mean IoU performance of the U-Net is
around 0.860. The model can converge to this score by training for at least 10
epochs using a train set of 100–400 images (batch size = 10 and filter layers = 8).
The DeepLabV3+ model is able to do the segmentation of images with a size of
512×512. The mean IoU performance of this model is around 0.890. Convergence
of this score can be achieved using a train set of 400 images for at least 35 epochs.
The DeepLabV3+ model is computationally more expensive, needs more training
epochs to converge and operates on images with a lower resolution. Adaptive
learning rate could be tested in the future for faster convergence. Based on
visual inspection, the prediction seems to be less accurate than U-Net.

This study has resulted in finding and validating a plausible segmentation
method that can be integrated in the high throughput image analysis pipeline;
i.e. U-Net. It enables automated monitoring of differentiation efficiency of hPSC-
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CMs and facilitates screening of drugs for the toxicity and safety study. In the
future, this work will be included in a high throughput analysis of phenotyp-
ical readouts for hPSC-CMs. The image-based phenotypical readouts can be
combined with other high-throughput assays using functional and biochemical
parameters to form a unique fingerprint for each drug under testing using hPSC-
CMs as a cell model. It will further facilitate toxicity/safety screening and disease
modeling, as well as drug discovery.
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