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Abstract. Abdominal aortic aneurysms (AAAs) are progressive dilata-
tions of the abdominal aorta that, if left untreated, can rupture with
lethal consequences. Imaging-based patient monitoring is required to
select patients eligible for surgical repair. In this work, we present a
model based on implicit neural representations (INRs) to model AAA
progression. We represent the AAA wall over time as the zero-level set
of a signed distance function (SDF), estimated by a multilayer percep-
tion that operates on space and time. We optimize this INR using auto-
matically extracted segmentation masks in longitudinal CT data. This
network is conditioned on spatiotemporal coordinates and represents the
AAA surface at any desired resolution at any moment in time. Using
regularization on spatial and temporal gradients of the SDF, we ensure
proper interpolation of the AAA shape. We demonstrate the network’s
ability to produce AAA interpolations with average surface distances
ranging between 0.72 and 2.52 mm from images acquired at highly irreg-
ular intervals. The results indicate that our model can accurately inter-
polate AAA shapes over time, with potential clinical value for a more
personalised assessment of AAA progression.

Keywords: Abdominal aortic aneurysm - Implicit neural
representation - Deep learning + Aneurysm progression

1 Introduction

Abdominal aortic aneurysms (AAAs) are progressive local dilatations of the
abdominal aorta of at least 30 mm that most frequently occur below the renal

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-35302-4_37.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Bernard et al. (Eds.): FIMH 2023, LNCS 13958, pp. 356-365, 2023.
https://doi.org/10.1007/978-3-031-35302-4_37


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35302-4_37&domain=pdf
http://orcid.org/0000-0002-7754-7405
http://orcid.org/0000-0003-0145-5069
http://orcid.org/0000-0002-8455-286X
http://orcid.org/0000-0001-5505-475X
https://doi.org/10.1007/978-3-031-35302-4_37
https://doi.org/10.1007/978-3-031-35302-4_37

Implicit Neural Representations for Aneurysm Progression 357

arteries. AAAs are mostly asymptomatic, but rupture of an AAA has a mortality
rate of 70-80% [3]. To avert rupture, patients can undergo elective repair via
either open surgery or an endovascular procedure. Patients become eligible for
surgical repair if the diameter of the AAA exceeds a threshold (5.5 cm in men,
5.0cm in women) or if the AAA diameter has increased more than 1cm in a
year [16].

Prior to elective repair, patients are monitored via periodic outpatient clinic
visits and imaging with ultrasound or CT. Although these longitudinal images
are primarily used to measure the diameter of the aneurysm, they contain a
wealth of information that may be leveraged to better model AAA progression
in individual patients [6]. Detailed insight into personalised AAA progression
has the potential to aid the physician in clinical decision-making by filling in
the gaps in surveillance data. Previous efforts to model the progression of AAAs
based on longitudinal imaging include models based on Gaussian processes that
represent an underlying deformation field [4], Markov chains [21], deep belief
networks [9], or CNNs operating on the surface of the AAA [10].

Recently, implicit neural representations (INRs) have gained traction as nat-
ural representations for signals on a spatial or spatiotemporal domain [20]. INRs
are multilayer perceptrons that take continuous coordinates as input and output
the value of the signal or function at that point [14]. INRs are attractive repre-
sentation models as derivatives of the signal can be analytically computed using
automatic differentiation. In medical imaging, INRs have been used for, e.g.,
sparse-view CT reconstruction [13,15] and image registration [19]. Moreover,
INRs can be used to accurately represent shapes [12], which has led to appli-
cations in cell shape synthesis [18] statistical shape modeling [2,11] or surface
fitting based on point cloud annotations [1].

In this work, we propose to use INRs with a time coordinate to represent a
longitudinal 3D AAA model of a patient and investigate to what extent such a
model can be used to interpolate and extrapolate the AAA surface in time.

2 Methods

We represent the evolving AAA surface as the zero level set of its temporal
signed distance function (SDF). We parametrize this function by a neural net-
work f(x,t;6), with weights 6.

2.1 Signed Distance Function

A surface can be implicitly represented by the zero level set of its signed distance
function. We consider a manifold evolving over time, that we represent by a
temporal SDF: SDF(z,t) : R? x R — R. The value of the SDF(x,t) represents
the minimum distance to the surface at location « at time ¢. The temporal SDF
of an evolving 2D manifold M embedded in R? x R is defined as:

—d(x, M) x inside M at time ¢
SDFyp(2,t) =10 x on M at time t (1)
d(x, M)  « outside M at time ¢.
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The zero-level set of this function thus describes the manifold M. Moreover, the

signed distance function is a solution to the Eikonal equation at each instance
in time: ||VySDF (x,t)|| = 1,Va, .

2.2 Implicit Neural Representations
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Fig. 1. Schematic representation of our INR, taking spatiotemporal coordinates (x, t)

as an input, outputting SDF'(x,t) of the AAA surface. Note that a single INR repre-
sents the complete evolving AAA of a patient.

In previous work, it has been shown that an SDF of a manifold can be
represented by a neural network [1,7,12,18]. Similarly, we embed the remodeling
of the AAA over time in an implicit neural representation (INR). We use 4D
coordinates from the spatiotemporal domain (2 := [—1,1]3 x [—1, 1] as input to
the network f(, ¢;6). The output node of our INR approximates the SDF value
at the input coordinate. Figure 1 shows a schematic overview of our INR.

We aim to reconstruct SDFaaa(x,t) given a sequence of point clouds of the
AAA surface, representing the aneurysm shape of a single patient over J scans:
{X;};=1,..., where X; . C [—1,1]3. We denote individual points on the G AAA
surface mf . To optimise the INR, we sample points on and off the AAA surface
at multiple instances in time.

The loss function we use to optimize the INR consists of two terms: a term
Laata,; at each time point ¢; where we have ground-truth scan data, and a term
Lrcg that regularises the SDF at times the surface is unknown.

LO) =3 Laua,(0) + Lreg(8), 2)
1<5<T
Lania,0) = 3 1@ t5:0)] + NE(IVef (. 15:0)]| ~ 1)?
J 1<i<Ny
+ MBIV, f(x,t5:6)]) (3)
Lreg = ME (IV, f(2.50)]| — 1) + ME (V. f (2, 1;0)]). (4)

The first term of Lyata; Was introduced in [7]. It ensures SDF (z,t;) = 0 for all
points &/ in pointcloud Xj, i.e. that points that are known to be on the AAA

?
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Fig. 2. Timeline of the CT scans of the four patients with longitudinal data, showing
scan instances in days. Non-contrast scans are indicated with NC.

surface are indeed on the zero level set of the SDF. The remaining terms in both
parts of the loss function regularise the INR’s spatial and temporal gradient. As
these terms do not depend on pointcloud data, we evaluate them both at times
t; as well as times data is unavailable. Regularising the norm of the spatial
gradient was also introduced in [7] and enforces the INR to be a solution to the
Eikonal equNation. We evaluate this term at time ¢; in Edataj, and at an arbitrary
time point ¢ in L. The temporal regularisation term is introduced in this work
to restrict temporal changes of the INR. These are evaluated at time t; and at
multiple arbitrary time points in Lgata; and Lyeg respectively.

2.3 Data

We retrospectively included longitudinal CT data of four patients scanned at
Amsterdam AMC (Amsterdam, The Netherlands) between 2011 and 2020. Three
patients were scanned four times, and one patient was scanned five times (Fig. 2).
Scan dates were shifted so that the first scan date of each patient became day
0. Patient 1 was scanned three times between day 0 and day 103, followed by a
gap of almost three years. The first follow-up image of Patient 2 was after 851
days, after which two additional follow-up images were acquired relatively soon.
Patient 3 was scanned more regularly. The follow-up for Patient 4 is the longest,
with over 75 months of follow-up. CT scans were a mixture of non-contrast and
contrast-enhanced images.

We obtained automatic segmentations of the AAA and vertebra in each
of these patients. All CT scans were processed using TotalSegmentator [17],
a Python library based on nn-UNet [8] that segments >100 structures in 3D CT
images. This library segmented the vertebra with good accuracy in both non-
contrast and contrast-enhanced images and the AAA with high accuracy in all
non-contrast images. However, segmentation of the AAA in contrast-enhanced
images was unsatisfactory. Instead, we used an in-house dataset of 80 contrast-
enhanced CT images of AAA patients with annotations of the AAA ranging
between the top of the T12 vertebra and the iliac bifurcation to train an addi-
tional nn-UNet model. This model achieved a mean Dice similarity coefficient of
0.90 on a separate test set consisting of 13 contrast-enhanced CT scans.
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Fig. 3. An optimised INR can be used to extract shape interpolations at an arbitrary
number of time points, here we show results for Patient 4. Left: We show extracted
shapes at ten regularly spaced intervals in time. Right: Diameter plots along the cen-
terlines of the aorta, comparing the ground-truth segmentation mask (solid) to the
surface fitted by the network at five time points where reference CT scans are available
(dashed).
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2.4 Preprocessing

In order to evaluate local changes in shape over time, all shapes should be aligned
in the same coordinate system. For this, we used rigid registration in I'TK on the
vertebra segmentations [4]. Subsequently, the surface of each aorta was extracted
from the mask and represented as a point set. This resulted in aligned pointcloud
representations of the AAA surface for each scan. Finally, before serving as input
to the network, the spatial coordinates of the pointclouds of each patient were
jointly normalized to the [—1,1]* domain. Similarly, the time scale of each patient
was normalized to the [—1, 1] interval.

3 Experiments and Results

In all cases, we used an MLP with six fully connected layers containing 256 nodes
with Softplus (8 = 100) activations and a final node representing the estimated
SDF of the AAA surface. Like [1,7], we used a skip connection, connecting
the input to the third hidden layer. The regularization coefficients were set to
A1 = X2 = A3 = A\g = 0.1. We used an Adam optimizer with a learning rate of
0.0001 to train our network for 25,000 epochs on an NVIDIA Quadro RTX 6000
GPU. The batch sizes depended on the size of point clouds and ranged between
2877 and 6027.

3.1 Interpolation and Extrapolation

For each patient, we first optimised a single INR, (Fig. 1) based on point clouds
from all available scans. Because the spatiotemporal input coordinates to the
INR are continuous, we can retrieve a shape at any point in time at any res-
olution. We visualize this in Fig.3(left), where we show ten AAA shapes of
Patient 4 at regularly spaced intervals. In Fig. 3(right) we compare the diame-
ters along the AAA centerlines of the ground-truth segmentation masks to the
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Fig. 4. Left: Inter- and extrapolated AAA shapes for each scan. Surface colors indicate
distances to reference shapes, averages are indicated below each AAA. Colored dots
indicate the corresponding diameter profile in the graph on the right. Right: Diameter
profiles along each aorta. Solid lines represent reference diameters, dashed lines show
interpolated or extrapolated diameters. A complete set of diameter plots can be found
in the supplementary materials.
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AAA surfaces reconstructed by the network, represented by solid and dashed
lines respectively. We observe that the model accurately represents the AAA
shapes at scan instances and will thus be used to evaluate the next experiment.

Next, we performed a series of leave-one-out experiments in which we opti-
mised an INR for a patient but left out one of the time points. We used the
optimised INR to estimate what the surface would have been at that time point,
and compare it to the real reconstruction.

Figure4 shows the results of these leave-one-out experiments. Results for
individual patients are visualized per row. The left column in each row shows
the reconstructed AAA shapes at the scan instances when that scan was left out
of the training data. Colors indicate the minimal surface distance between the
interpolated AAA surface and the reference AAA surface, where lower is better.
The right column contains diameter plots for each aorta along its centerline
estimated based on an inscribed sphere method [5,9]. Solid lines represent the
diameters of the reference AAA surfaces, and the dashed line represents the
diameter of the AAA from the scan that was left out. Note that we here show
the diameter profile for one leave-one-out experiment per patient and that a full
set of diameter profiles can be found in the supplementary materials.

Figure 4 shows that the INR model can interpolate AAA shapes to a decent
extent. For example, in Patient 3, the interpolated surfaces at ¢ = 407 and
t = 573 had average surface distances of 1.23 and 1.01 mm, respectively, com-
pared to the ground-truth shapes. This is also reflected in the diameter plot for
Patient 3, where the interpolated (dashed) line for t = 407 days closely follows
the reference (solid) line. The results in Fig.4 also indicate that interpolation
might work better in cases where the interval between scans is shorter. For exam-
ple, interpolation results for Patient 1 at ¢ = 15, which is only 15 and 88 days
apart from two other scans, have an average surface distance of 0.91 mm. In con-
trast, interpolation results for Patient 4 at ¢ = 547, which is 547 and 707 days
apart from two other scans, show relatively large errors on the aneurysm sac.
However, this is not consistently the case. For Patient 2, the ASD is 1.47 mm
when interpolating at t = 900 days, which is larger than the ASD when inter-
polating for ¢t = 851 days. From the diameter plots shown for Patients 3 and 4,
we see that interpolations of the model consistently lie between the surrounding
two scans and are close to the diameters of the reference shape.

Results also indicate that extrapolation is challenging for the model. The
INR particularly struggles to extrapolate over bigger time gaps. For Patient 1,
we observe that the extrapolations at ¢t = 0 days and ¢ = 1022 days have worse
results than the interpolations. Moreover, the extrapolation at ¢ = 1022 days
differs more from the reference shape than at t = 0 days due to the difference
in time gaps. The diameter profiles for Patient 1 and Patient 2 reveal that the
model tends to reconstruct the surface of the last known shape. We hypothesize
that this might be due to the temporal regularization term in Eq. 4.

Finally, Fig.4 indicates that our INR model reacts strongly to small mis-
alignments of the original AAA shapes. Following [4], we register AAA shapes
based on segmentation masks of the vertebrae, but this alignment might lead
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to small local shifts of the AAA. For example, the result for Patient 2, ¢ = 0 in
Fig. 4 shows errors on the healthy part of the aorta, an area that, in principle,
should not show growth over time.

4 Discussion and Conclusion

In this work, we have obtained a personalised model for AAA progression, based
on longitudinal CT data. We combine fully automatic state-of-the-art image
segmentation methods, registration, and shape modeling with implicit neural
representations and adequate regularisation terms to build personalised models
of an evolving anatomical structure. In experiments with four longitudinally
scanned AAA patients, we have demonstrated how the model represents the
evolving shape of an AAA over time. This may impact patient monitoring and
treatment; accurate knowledge about the progression of an AAA allows the
physician to personalise surveillance and time intervention better based on AAA
diameter and growth rate [16].

One appealing aspect of our approach is the continuity of the implicit neu-
ral representations. This allows us to reconstruct an AAA mesh at any point
in time, at any desired resolution. We have here modeled shape changes over
multiple years with sparse and irregularly spaced shape data. Modeling this
change through linear interpolation of alternative surface representations, such
as meshes or point clouds, would require point-to-point correspondence, a chal-
lenging problem that we here circumvent. Moreover, since our network relies on
pointcloud data, it is agnostic to imaging modality. This is important for lon-
gitudinal studies of AAAs, where imaging modalities such as MRI and 3D US
are increasingly used. All these scans can be incorporated into this framework
as long as we can extract AAA surfaces. Furthermore, because we represent
an evolving shape in space and time in a differentiable neural network, we can
add any gradient-based regularisation term to the loss function. We have here
included an Fikonal term and temporal regularization, but this framework could
be further extended.

Lastly, we found that our model is sensitive to errors in the initial alignment of
AAA shapes. Although we have followed [4] in registering based on the location
of the vertebrae, better results can likely be achieved by registering based on
other landmarks, such as the renal arteries and iliac bifurcation.

One limitation of the current approach is the relatively limited test set of
four longitudinally scanned patients, which we aim to increase in future work.
By increasing the data set and combining the here proposed model-driven with a
data-driven approach [4,9,21], we might address current limitations of our model
in extrapolation. Moreover, our current method is based on AAA morphology,
but can be extended with biomarkers related to AAA growth and rupture [6].
Furthermore, additional optimization constraints could more properly model the
pathophysiology of aneurysms. Whereas our temporal regularization term now
aimed to minimise the gradient of the SDF, in future work, we could optimise this
gradient within biologically plausible growth rates. This kind of regularization
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could also be obtained in a data-driven way, by learning a generalisable model
from a larger set of patients with longitudinal data. Finally, there is evidence
that intraluminal thrombus shape plays a key role in AAA remodeling [21], and
it might be beneficial to explicitly represent thrombus in our INR [1].

In conclusion, we have shown that INRs are promising tools in modeling AAA
evolution. In future work, this flexible model could be extended with biologically
plausible regularization terms and hemodynamic parameters.
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