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A B S T R A C T   

Constructed land, cropland, and ecological land are undergoing intense competition in many rapidly-developing 
regions. One of the major reasons to cause frequent land use (LU) conversions is the policy dynamics. The 
detection of such conversions is thus a prerequisite to understanding urban dynamics and how policies shape 
landscapes. This paper presents a bi-directional strategy to detect the LU change of the Huangshui River Basin of 
China from 1987 to 2018 using time-series Landsat imagery. We first initialized classification and optimization of 
remote sensing images using the Random Forest algorithm; We then detected bi-directional spatio-temporal 
changes based on the distribution probability of land-cover types. Our results reveal complicated dynamics 
underlying the net increase in urban and built-up land (UB) and the net decrease in cropland. In this area, due to 
the implementation of ecological compensation projects such as ecological migration and mine restoration, we 
found that on average 5.52 km2 of UB was converted into ecological land (forest, grassland and shrubland) every 
year, even though UB has expanded 3.6 times in the last 30 years with multiple conversions for cropland and 
ecological land. Meanwhile, 60% of lost cropland was converted to shrubland and grassland, and 40% was 
converted to UB. The accuracy of LU classification increases by 6.03% from 88.17%, and kappa coefficient in-
creases by 2.41% from 85.16, compared to the existing initial results and uni-directional detection method. This 
study highlights the importance of the use of an effective remote sensing-based strategy for monitoring high- 
frequency LU changes in watershed areas with complicated human-nature interactions.   

1. Introduction 

Remote sensing technology has been proved to be a powerful tool in 
detecting rapid, macroscopic, and dynamic surface land use/cover 
changes (Turner et al., 2007; Cracknell, 2019; Feizizadeh et al., 2021a). 
Conflicts between urbanization, food production, and conservation of 
ecosystem diversity have become increasingly prominent along with the 
increase of human activities. These conflicts are highly dynamic due to 
the frequent policy-driven inter-landcover conversions, such as indus-
trial development, cropland protection, and ecological conservation 

(Chen et al., 2021b). Thus, there is an increasing need for LU monitoring 
at high temporal and spatial resolutions (Wang and Gamon, 2019; Weiss 
et al., 2020; Zeng et al., 2020). Time-series images make it possible to 
detect high-resolution LU changes thanks to their rich temporal features 
able to reflect seasonality and long-term stability (Hütt et al., 2016; 
Wang et al., 2017; Thyagharajan and Vignesh, 2017; Bhosle and 
Musande, 2019; Zhang et al., 2020). With the development of remote 
sensing technology which provides various types and resolutions of 
remote sensing data, such as multispectral, hyperspectral, and micro-
wave images, a wide application of time series images becomes possible. 
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In 2008, Landsat data were made available to the public for free to 
download. It has greatly reduced the cost of acquiring historical remote 
sensing images. The question of how to make full use of the advantages 
of remote sensing images to improve LU monitoring has been arousing 
more and more attention (Cracknell, 2019). 

At present, there are two main methods for LU change detection: post 
classification comparison or bi-temporal change detection, and temporal 
trajectory analysis. The former is based on the classification of mono- 
temporal images. It compares classifications of different time phases 
to detect changes, generally using anniversary dates or anniversary 
windows (annual cycles or their multiples). It emphasizes classification 
accuracy and algorithm research on a single image, including support 
vector machine (Mountrakis et al., 2011), random forest (Mutanga and 
Kumar, 2019), and various deep learning methods (Wu et al., 2021; 
Feizizadeh et al., 2021b; Garajeh et al., 2021), mostly for all land-cover 
types (Ibrahim et al., 2014). The advantage is that it can extract trending 
changes between land-cover types within a specific time period without 
requiring large computational time, but likely ignoring the details of the 
process. The latter usually reconstruct the ground-type evolution by 
constructing a time series index, using its seasonal and periodic char-
acteristics, detecting time mutation points to obtain the transformation 
of target features, and paying more attention to intra-annual and 
inter-annual changes on a time series scale. Such as convolutional neural 
network (CNN) model method (Grings et al., 2020), break for additive 
season and trend (BFAST) model method (Verbesselt et al., 2010) and 
time series detection method based on NDVI time series (Yang et al., 
2018). These methods can effectively capture the direction and time of 
transition between land types, and better reflect the law of land type 
transfer, but they mostly target single ground type (impervious surface, 
cropland, forest). They also need more computations and thus more 
suitable for small area research. For areas with a fragile ecological 
environment and a severe human-land conflict, in order to accurately 
reveal the complex transformation relationship between land types, it is 
necessary to combine the advantages of the two to carry out large-scale, 
long-term, high-frequency land cover classification and change detec-
tion. The recently developed Google Earth Engine (GEE, https://eart 
hengine.google.com/) as a cloud platform makes this idea possible. 

Surface cover monitoring studies with the GEE platform have ach-
ieved significant progress in detecting changes in single or specific 
features and specific phenomena, including impervious surface (Liu 
et al., 2018), cropland (Teluguntla et al., 2018), wetland (Mahdianpari 
et al., 2019), mangrove (Li et al., 2019a), industrial oil palm (Lee et al., 
2016), drought assessment (Sazib et al., 2018), and flood monitoring 
(Beaton et al., 2019). Because of the excellent computational power and 
petabyte-level data catalog of GEE (Gorelick et al., 2017), monitoring 
long time series and high-frequency LU changes become feasible. For 
example, Hu & Hu (2019) used GEE to study the annual land change and 
its driving mechanism in Central Asia from 2001 to 2017; Khanal et al. 
(2020) studied annual LU in Province No.1 of Nepal for the period 
2000–2018; Feizizadeh et al. (2021c) utilizes machine learning algo-
rithms on the GEE for land use/land cover (LULC) mapping and 
change-detection analysis using a Landsat satellite image time series at 
an environmentally sensitive area in Northern Iran. 

However, some issues on LU change and conflicts detection need to 
be addressed. First, the detection study of annual frequency needs to 
consider the logical problem of land-cover types development (Li et al., 
2015; Zhang and Weng, 2016; Zhang et al., 2017). The general 
bi-temporal change detection studies, however, usually ignore the 
transition mode between different land-cover types consistent with 
realistic logic due to the long observation interval (5 years or more) 
(Tsai et al., 2018; Tian et al., 2014). Secondly, since LU transition is 
complex, it calls for new methods instead of being simplified by 
smoothing the whole land-cover types through a variety of periodic 
filtering methods (Khanal et al., 2020), which can only correct outliers 
in a reasonable range (Atkinson et al., 2012; Shao et al., 2016). Finally, 
bi-directional and multiple changes among cropland, forest, grassland, 

and constructed land are common in some areas due to the 
frequently-changing policies. For these types of regions, the above 
methods have limited accuracies of their classification and change 
detection. 

Here we selected Huangshui watershed in China as a study area 
where multiple policies lead to frequent LU changes. The study area is 
located in the transition zone between Qinghai-Tibet Plateau and Loess 
Plateau, which is environmentally fragile and sensitive to both climate 
change and human activities (Ge and Zhang, 2017; Yang and Liu, 2013). 
It is also the focus of China’s "Grain to Green" and "the Great Western 
Development" policies. There is competition among urban expansion, 
grain demand, and ecological conservation, due to the economic and 
population agglomeration (Jia et al., 2020). There are bi-directional and 
multiple transformations among cropland, forest, grassland, and con-
struction land. In an ecological transition area with a complex topog-
raphy and drastic changes like Huangshui River Basin in China, it is a 
challenging task to carry out high-frequency long time-series remote 
sensing detection for the whole land-cover types. In this study, we 
present a bi-directional strategy to detect LU annual changes based on 
the classification of time series Landsat imagery. We then carried out 
and validated them on Google Earth Engine platform. Based on the 
statistics of the classification and the detection results, we further 
analyzed the patterns of changes in different land-cover types. 

2. Study area and datasets 

2.1. Study area 

The Huangshui River Basin is located in the northeastern Qinghai 
Province, China, and in the transition zone between the Loess Plateau 
and the Qinghai-Tibet Plateau (36◦02’~37◦28’ N, 100◦42’~103◦04’E), 
with a drainage area of about 16,200 km2. The combination of Huang-
shui mainstream area and its tributary Datong River Basin is a special 
physiographic unit being wide in the west and narrow in the east, and is 
also unique ecosystem in the Qinghai-Tibet Plateau (Dong et al., 2021). 
The basin presents a pinnate drainage pattern, with high-northwest and 
low-southeast landscapes. The mainstream flows from the northwest to 
the southeast. The basin includes river valleys, plains, loess hills, alpine 
pastures, and middle & high mountains, with a minimum altitude of 1, 
655 m, a maximum altitude of 4,860 m, and a sharp vertical difference 
(Fig. 1). The total area of the Huangshui River Basin only accounts for 
2.24% of the area of Qinghai Province. The population, industrial and 
agricultural production value account for more than 50% of the entire 
Qinghai Province, as it is the most densely populated and economically 
developed area in Qinghai Province. The Huangshui River Basin has an 
annual precipitation of 300–500 mm. It locates in an arid and semi-arid 
climate zone and is an ecological transition zone with precipitation of 
400 mm and a typical agricultural and pastoral transition zone in China. 
The population is constantly converging, and urban expansion and 
cropland protection compete in a limited space (Jia et al., 2020). The 
agricultural and pastoral transition zone itself is extremely ecologically 
fragile and is a policy area for the “Grain to Green” program under the 
leadership of the Chinese government (Zhao et al., 2020). The compe-
tition between cropland production and the protection of ecologically 
fragile areas is extremely prominent. 

2.2. Datasets 

We mainly used Landsat series image, including Thematic Mapper 
(TM), Enhanced Thematic Mapper Plus (TEM+), and Operational Land 
Imager (OLI) data. Data in the following two periods was considered in 
order to obtain the maximum vegetation spectral difference, including 
the greening (June–October) and browning periods (November - next 
March). We calculated spectral indices such as Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 
and Normalized Difference Built-up Index (NDBI). To obtain as many 
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annual observational data with cloud cover less than 10% as possible, a 
total of 24-year low-cloud cover data from 1987 to 2018 were obtained 
through image acquisition based on pixel mosaic (Li et al., 2019b), 
which is 6 years longer than the entire scene mosaic. Auxiliary data for 
classification included night light data, digital elevation data, and 
climate data. Among them, the night light data (nighttime day/night 
band composites version 1) was used to distinguish urban and 
non-urban areas and provides monthly average radiation composite 
images of visible infrared imaging radiometer suite (VIIRS) day/night 
band (DNB) night data. The digital elevation model was retrieved from 
the Land Processes Distributed Active Archive Center (LP DAAC) (the 
United States) and has been filled with open-source data (ASTER 
GDEM2, GMTED2010, and NED) (Farr et al., 2007). Climate data was 
from Famine Early Warning Systems Network (FEWS NET) Land Data 
Assimilation System (FLDAS). It includes climate-related variables, i.e., 
moisture content, humidity, evapotranspiration, average soil tempera-
ture, and total precipitation rate (McNally et al., 2017). In addition, the 

China meteorological dataset is obtained from the Resource and Envi-
ronmental Science and Data Center of the Chinese Academy of Sciences, 
which includes meteorological variables such as Pa (annual average 
precipitation), TaDEM (annual average temperature), and AAT10DEM 
(accumulated temperature ≥10 ◦C). The dataset is based on meteoro-
logical data from 1915 stations in China, including monthly precipita-
tion and monthly average temperature from each station for many years. 
Pa, TaDEM, and AAT10DEM are calculated based on the station data 
after altitude correction, and the national spatial distribution dataset 
was interpolated through inverse distance weighting average (Xu and 
Zhang, 2017). Table 1 is the data details. 

2.3. Classification system and sampling 

According to previous studies on LU classification systems in the 
basin (Cao et al., 2020), this paper builds a LU classification system 
consisting of 7 types, i.e., cropland, shrubland, forest, grassland, water, 

Fig. 1. Study area and field study route.  
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urban and built-up, and bareland. Table 2 is for specific ground objects. 

3. Methods 

For long time-series and high-frequency LU change detection using 
remote sensing images, it is challenging to reduce classification errors 
and their impacts on change detection. To address this challenge, we 
present a bi-directional strategy to detect the LU change using time- 
series Landsat imagery, which mainly includes the initial classification 
using continuously optimized random forest and the bi-directional 
spatial-temporal consistency detection method. The following sections 
describe each individual component of the whole process in detail 
(Fig. 2). 

3.1. Sample library establishment and validation 

The quality of training samples directly affects the final classification 
results (Xie et al., 2019). Establishing historical images is indeed a 
challenging task. We conducted a detailed field investigation and 
adopted a robust site selection strategy. We first set up a total of 20 days 
of field visits in the study area in 2017 and 2018 to more intuitively 
understand the geomorphology and land-cover types distribution of the 
study area. Then, the whole 24-year sample data were obtained by 
backward modification year by year and point by point. The training 
sample of 2018 was obtained by using the high-resolution images 
combined with the fieldwork understanding. For the training sample of 
2017, we looked at historical images of 2017 and checked whether the 
ground type have changed point by point. Based on this approach, we 
gave category replacement and deletion adjustment to the samples. 
Since there are no high-quality images for reference on Google Earth 
before 2000, this process involved not only information from historical 
images, but also experience from field visits and local knowledge ob-
tained from local residents during field visits. In this way, we obtained 
training samples backward to the year 1987. This sample selection 
strategy ensures the continuity and stability of the sample selection 
process as much as possible. 80% of the samples were used as training 

samples and 20% were used as validation samples. 
Accuracy evaluation through confusion matrix and two indicators of 

completeness rate and correctness rate are selected. The completeness 
rate is the ratio of the number of pixels obtained by a certain land type 
classification to the total number of actual pixels of the land type, cor-
responding to the missing points; the correct rate is the number of pixels 
correctly classified divided by the actual number of land types to the 
total number of pixels, corresponding to the misclass points. 

3.2. Initial classification using continuously optimized random forest 

An essential prerequisite for a bi-directional spatial-temporal con-
sistency detection strategy is to obtain the initial classifications with as 
high accuracy as possible. The random forest (RF) classifier, comprised 
of a decision-tree classification using the bagging strategy and an in-
ternal algorithm on the GEE platform (Xie et al., 2019), was used to 
combine the training data and composited metrics for land-cover map-
ping. It has advantages in relatively robust performance, the capability 
of the inclusion of a bigger number of variables, and quantitative mea-
surement of variable contributions (Belgiu and Drăguţ, 2016). 

Firstly, in terms of supervised classification, classification results 
were greatly affected by the distribution of training samples (Foody and 
Mathur, 2004). Especially for research areas with fragmented landscape 
and strong spatial heterogeneity, the accuracy of the final results was 
directly affected by the distribution of training samples which needs to 
contain complete and comprehensive surface features (Long et al., 
2018). Therefore, training data were randomly sampled 10 times based 
on random functions of the GEE platform, and the results with maximum 
accuracy were taken as the optimal sample point distribution. Secondly, 
texture is an essential feature for remote sensing images. Through 
texture analysis, hidden information can be obtained from the images by 
extracting spatial changes (Jin et al., 2018; Franklin, 2020). Unlike color 
features, the texture is not pixel-based, but region-based. The detection 
window for texture analysis is carefully designed in this study consid-
ering the following contradictory impacts: The larger detection window, 
the stronger ability to detect spatial consistency, but a small detection 
window can accurately locate the texture’s abrupt change. Thus, we 
dynamically set the window size to 1–9 according to the image quality 
each year to select the most accurate texture and its corresponding 
optimal window size. In addition, since this area is a typical ecological 
transition zone, climatic conditions on the one hand are deemed as the 
main driving factors affecting the change of LU pattern in this area 
(Zhang et al., 2020). On the other hand, previous studies demonstrated 
that landcover types such as grassland, shrubland, and forest could 
feedback the influences of precipitation changes. Accordingly, this paper 
introduced precipitation, soil moisture, temperature, and other climate 
factors to facilitate classification and improve classification accuracy 
(Cui et al., 2021). After the above optimization, the initial classification 
accuracy could be gradually improved. Taking 2018 as an example, the 
minimum initial accuracy of optimized results increased from 79.01% to 
86.33%, 87.13%, and 87.21% respectively, with a remarkable increase 
of 7.32% at the stage of optimizing the sample point distribution. 

3.3. The bi-directional spatial-temporal consistency detection method 

We assumed that the conversion between different land-cover types 
generally presents certain continuity and rationality. Specifically, when 
one land-cover type undergoes a relatively stable period, then other 
types occasionally appeared within this process is likely incorrect. 
Therefore, our method is to improve the accuracy of the results by 
modifying the intrusive types caused by classification errors that destroy 
the dominant type during the stable period. Its main steps are as follows:  

(1) Eliminate the outliers in the time dimension for stable land-cover 
types. In each time series, we consider that the isolated ground 
pixels are unreasonable and regarded as a classification error. A 

Table 1 
DETAILS OF THE DATA SOURCE.  

DATA Year (s) Spatial 
Resolution 

Temporal 
Resolution 

Landsata 1987–2018 30 m 16 days 
NPP/VIIRSa 1992–2018 15 arc seconds 1 month 
STRMa 2000 30 m – 
FLDASa 1982–2018 0.1◦ 1 month 
Pa (Average annual 

precipitation) 
1990–2018 500 m – 

TaDEM (Annual average 
temperature） 

1990–2018 500 m – 

AAT10DEM (≥10 ◦C 
accumulated temperature) 

1990–2018 500 m –  

a Is online access to data through the GEE platform. 

Table 2 
FEATURE CLASSIFICATION SYSTEM.  

Category Abbreviation Description 

Cropland CRL Refer to land used for growing crops 
Shrubland SRL Refer to shrubland and scrubland with canopy 

density >40% and height below 2 m 
Forest FRT Refer to natural and man-made forests with 

canopy density >30％ 
Grassland GRL Natural grassland and improved grassland 
Water WTR Natural inland water and land for water 

conservancy facilities 
Urban and 

built-up 
UB Refer to urban and rural residential areas and land 

for industry, mining, transportation, etc. 
Bareland BRL Land not yet used, including barren land  
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time filter method (Li et al., 2015) is used to eliminate those 
noises and modify time series.  

(2) Bi-directional window consistency correction. Two initial seed 
windows are built up on both sides of the time series of the 
classification results, and two detection windows are created in 
the front of the seed window. The consistency of the ground types 

between initial seed windows and detection windows is judged by 
using formula (1), and the correction process is simultaneous 
until the detection windows on both sides meet the loop stops 
(Fig. 3). 

Fig. 2. Flowchart of the proposed bi-directional strategy to detect land use change.  

Fig. 3. Three-stage schematic diagram of the bidirectional spatial-temporal consistency detection method.  
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prob=
∑j=i+d

j=i+1count
(
Wi = Wj

)

Wd
(1)  

{
Ws = Wd(prob≥0.6)  Li+1→Lj(i+1<j≤i+d) = Ks  and  s = j
Ws ∕= Wd(prob≥0.6)  s = s + 1 (2)  

where Ws and Wd are seed window and detection window, and Li and Lj 

are starting and ending cell of detection windows; Ks is the ground type 
of seed window, and Kd is the dominant ground type in a detection 
window; prob is the distribution probability of a ground type in the 
detection window. Taking a single side as an example, we need to 
determine whether the type Ks in Ws is identical with the dominant 
ground class Kd or not. For the former case, the algorithm will correct 
non-dominant ground class as dominant ones in Wd, move forward the 
seed window Ws to dominant ground type at the final position of Wd, 
and start next detection; for the latter case, it will move forward Ws only 
one position, and check Wd for consistency again. Determine dominant 
ground objects are which comparing the distribution probability and 
greater than the threshold 0.6 and vice versa (see formula 2).  

(3) Identification of change nodes in time series of different land- 
cover types. When two detection windows meet, the algorithm 
stops. Both detection windows are merged into a large window, 
where types inside are resorted. Then, the years of ground types 
transfer are specified (see formula 3). 

⎧
⎨

⎩

n1 = count(WN = Wls  ) Wl(l=l+n1)

N = n1 + n2 + ...+ nn
n2 = count(WN = Wrs  ) Wr(r=r− n2)

(3)  

where N is the total number of pixels in a merged windowWN; n1 is the 
ground type inWN which is identical with left cell Wls; n2 is the ground 
type in WN which is identical with right cell Wrs; count() is a conditional 
function. When the ground type on the left and right of the equal sign are 
identical, it equals 1, otherwise equals 0. Finally, the left ground type Wl 

locates in l+ n1, the right ground type Wr locates in r − n2, If there is an 
extra cell, another ground type will be filled. When ground types on both 
sides are un-identical, it is a year for a sudden change in ground type 
transformation. 

4. Results 

LU classification results for 24 years (1987–2018) based on the bi- 
directional strategy are shown in Fig. 4. We found that UB is gradually 
filling the entire valley area and expanding along its shores. The slopes 
of the valley and other small watersheds with large areas of cropland are 
gradually being occupied by UB. Other areas are covered in shrubland, 
forest, and grassland. Further comparative analysis of the classification 
results of different years shows that, firstly, UB is the fastest-growing 
class, increasing from 307.47 km2 in 1987 to 1091.83 km2 in 2018, an 
expansion of 3.6 times. Cropland is the main source of UB expansion, 
with a total area of 559.47 km2, accounting for 67.51% of the total new 
UB growth. Forest, grassland, and other vegetation land account for 
24.60%, followed by cropland. Secondly, cropland loss involves 
maximum area change, and cropland area was decreased by nearly 20% 
from 6114.09 km2 in 1987 to 4900.33 km2 in 2018. Among them, 
827.12 km2 cropland was converted into ecological land (includes for-
est, shrubland, and grassland), accounting for 59.09% of the total lost 
area, much higher than 39.97% for UB, significantly different from the 
situation that cropland losses are mainly caused by the urban expansions 
in Eastern and Central China. Thirdly, ecological land such as forests and 
grassland presented a slow-growth trend, with an annual growth of 
0.23% from 12,521.49 km2 to 13,427.68 km2. 

Through analysis of conversion time for different types, it can be 
found that the LU change in this basin presents typical stage charac-
teristics (Fig. 5). Firstly, the rate of UB expansion in different stages is 
significantly different. The newly added UB mainly occurred in 
2000–2014, accounting for 56.54% of the total area. Among them, the 
annual average growth rate was 3.84% from 2000 to 2010, and quick 
expansion occurred in 2010–2014, with an annual average growth rate 

Fig. 4. Results of land use classification in Huangshui watershed from 1987 to 2018.  
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of 6.74%, more consistent with the “Great Western Development” pro-
gram formulated by the Chinese government. Secondly, these are stage 
dominant characteristics during the processing when UB and ecological 
land invaded cropland. During 2000–2006 and 2014–2018, more 
cropland was converted into ecological land. In 2000–2006, 6.42% of 
cropland (362.30 km2) was converted into ecological land, with an 
annual loss rate of 60.38 km2/year, In 2014–2018, 3.20% of cropland 
(160.21 km2) was converted into ecological land, with an annual 
average loss of 40.05 km2/year, accounting for 76.00% and 65.40% of 
the cropland loss respectively, closely related to two rounds of “Grain to 
Green” program implemented by the Chinese government in 2000 and 
2014. However, during 2006–2014, more cropland was converted to UB 
0.5.61% cropland (298.16 km2) was converted to UB, with an annual 
average loss of 37.27 km2/year, accounting for 47.71% of cropland loss, 
much higher than 23.14% and 34.03% in other periods, and occupation 
of cropland for UB development was faster than returning cropland to 
ecological land. In general, UB expansion was dominant in 1987–2000 
and 2006–2014, while returning cropland to ecological land was 
dominant in 2000–2006 and 2014–2018. 

In addition, while rapid urbanization and the “Grain to Green” pro-
gram are invading cropland in both directions, there is also a phenom-
enon that cropland reversely invades ecological land and UB. In the 
periods of 1987–2000, 2000–2006, 2006–2014, 2014–2018, there were 
165.19 km2, 129.16 km2, 119.47 km2 and 63.01 km2 ecological land 
converted into cropland, and 38.70 km2, 39.17 km2, 45.04 km2 and 
48.42 km2 UB converted into ecological land, respectively. The main 
reason for cropland conversion lied in that more rural laborers migrated 
out, and more cropland should be cultivated around large counties and 
urban areas to meet people’s daily lives in the context of rapid urbani-
zation (Hu et al., 2020). While for the latter, the “Grain to Green” pro-
gram specifies ecological migration in remote rural areas unsuitable for 
farming and living, leading to houses collapse naturally and ecological 
restoration (Xu et al., 2020; Peng et al., 2020). This method has the 
advantage of accurately identifying the type of land involved in 
bi-directional conversion. 

5. Discussion 

5.1. Overall accuracy comparison analysis 

One purpose of this study is to solve the logical errors that may occur 
in the time series. Most long-term LU change studies based on GEE (Tsai 
et al., 2018; Hu et al., 2019; E. Nyland et al., 2018) generally do not exist 
or do not consider the correction of logical errors. While some re-
searchers have paid attention to the logical errors that may occur in 
long-term, high-frequency land change detection, their common feature 
is a focus on specific logical changes in specific features or phenomena, 
such as an impervious surface (urbanization process) (Li et al., 2015), 
cropland expansion (Jin et al., 2019), deforestation (Grings et al., 2020). 
These methods are all based on uni-directional and irreversible judg-
ment logic. This motivate us to compare the proposed bi-directional 
detection method with the above two types of methods, i.e. the initial 
classification and uni-directional detection methods. 

We compared the results for the years 1991, 1994, 1996, and 1999 to 
understand how the bi-directional method achieves higher accuracy 
(Fig. 6). To this end we normalized the area of cropland, grassland, and 
UB in the region and plot them as line graphs to show their area fluc-
tuations under the three different results. We found that the initial re-
sults of cropland and grassland have a strong interannual variability, 
reaching 0.24 and 0.23, while the UB in 1994 shows an obvious logical 
error. Both the uni-directional and bi-directional methods have good 
correction effects. For example, the inter-annual variation of cropland 
and grassland is less than 0.05, and the UB also shows a monotonic 
increasing trend, which is in line with the actual situation. However, we 
also found that the area fold lines of some types of the uni-directional 
algorithm are too smooth. We found that the uni-directional method 
caused the situation in which strong type encroached on weak type, for 
example, the expansion of the cropland caused the discontinuous river 
and the forest on both sides to be missed in Fig. 6a; since the over- 
encroachment of the cropland, the grassland loses its typical 
geographical distribution characteristics that grows only on the shaded 
slope surface (water is not easy to evaporate) in the loess hilly area in 
Fig. 6c, while the bi-directional method effectively avoids this situation 
(Fig. 6b and d) (Zhao et al., 2020; Chen et al., 2021a). 

We further compared our bi-directional method with the existing 

Fig. 5. Conversion matrix between different features at different stages in the Huangshui Basin from 1987 to 2018.  
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initial classification and uni-directional method. Results show the bi- 
directional detection method was significantly better than initial clas-
sification and uni-directional detection in terms of overall change 
detection accuracy, and the average of the overall accuracy (OA) was 
increased by 6.03% and 2.41% respectively (Fig. 7a). The accuracy was 
improved to a different extent in different years, and the overall clas-
sification accuracy was improved significantly in some years. Compared 
with the initial classification results, accuracy improvement ranges 
arrange between 0.92% and 10.22%, the OA was most significantly 
improved in 2006, 2009, and 1996 with increases of 10.22%, 10.00%, 
and 9.17%, respectively. Compared with the uni-directional detection 
method, accuracy improvement ranges between 0.80% and 4.98%. The 
OA was most significantly improved in 2009,1991, and 2006 with in-
creases of 4.98%, 4.51%, and 4.50%, respectively. In general, the OA of 
initial classification results was between 76.38% and 87.90%, and the 
average of OA was 82.14%; the OA of uni-directional detection results 
was between 81.53% and 90.49%, and the average of OA was 85.76%. 
The OA of bi-directional detection results was between 84.20% and 
91.74%, and the average OA was 88.17%. 

5.2. The correctness and completeness analysis of change detection 

To comprehensively evaluate the method, the validation procedure 
was carried out both forwards and backwards. Forward validation is to 
assess the correctness of LU change detection using the proposed 
method, and backward validation is to evaluate the completeness of LU 

change detection. The correctness and completeness characterized the 
accuracy of change detection, and the advantages of this method were 
further illustrated. Different from the previous studies focusing on a 
single type (Chai and Li, 2018; Jin et al., 2019), this study has carried out 
a spatial-temporal consistency strategy for all land-cover types, drawn a 
radar chart to show the completeness accuracy (Fig. 7b) and correctness 
accuracy (Fig. 7c) of the initial classification, uni-directional detection 
and bi-directional detection results of 7 types of ground classes from 
1987 to 2018. 

The completeness accuracy of the cropland in the uni-directional 
results is 96.21%, which is much higher than 81.14% and 91.28% of 
the initial classification and bi-directional method, mainly because the 
cropland processed by the uni-directional method has the phenomenon 
of expanding and encroaching on other features, resulting in high 
completeness, while the results of the bi-directional method improve the 
original cropland classification accuracy while correcting the over- 
expansion of the uni-directional method to get a better result (Fig. 6a 
and c). As shown in Fig. 7b, the three methods of completeness accuracy 
for UB were 89.14%, 91.41%, and 91.51%, which did not improve 
significantly and did not exceed 2%, indicating that more misclassifi-
cation occurred for UB during the whole time series. In addition, for 
shrubland, both uni-directional and bi-directional detection method 
improved their completeness well, improving the initial result of 
53.12% with an increase of about 10%. 

The correctness accuracy of the three methods of cropland is 80.60%, 
81.20%, and 85.25%, especially the bi-directional method is improved 

Fig. 6. Comparison of results for initial classification, uni-directional method, and bi-directional method.  
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more, which is a good correction of the uni-directional method of the 
expansion of the score and improve the correctness (Fig. 6b and d). The 
correctness of shrubland has been improved more than the complete-
ness, and the accuracy of the three stages are 68.22%, 82.43%, and 
87.88%, respectively. Whether it is spectral or textural characteristics, 
shrubland are more likely to be confused with other surrounding types 
(Xie et al., 2019). Combined with the completeness rate, it can be found 
that the results processed by the bi-directional detection can well solve 
the problem of missing classification of shrubs on long-time series from a 
logical point of view. 

5.3. Uncertainty and potential solutions 

For long-time and high-frequency LU change detection studies, it is 

essential to correct the classification results using time-series contextual 
information. When the image density increases and the image quality 
decreases, it could lead to an exponential increase of errors and un-
certainties in the LU classification of each period and the final change 
detection (Bruzzone and Prieto, 2000; Coppin et al., 2010; Feizizadeh 
et al., 2021a). Our experimental results show that this situation can be 
effectively improved by introducing contextual information. For 
example, cloud pollution and areas of bad image elements can be 
approximately replaced by results from neighboring years; the plausi-
bility of transitions among types can be reasoned based on temporal 
contextual information. 

As with many other similar methods, our strategy has a high 
dependence on the accuracy of the initial classification results (Smits 
and Annoni, 2000; Grings et al., 2020). We also acknowledge that a 

Fig. 7. Accuracy comparison of initial classification, uni-directional method and bi-directional method; (a) overall accuracy; (b) completeness accuracy; (c) cor-
rectness accuracy. 
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certain amount of data redundancy is generated in providing feature 
vectors to the random forest classifier, and the feature vectors with high 
relevance should be selected for it to be trained to speed up the process 
and efficiency (Zhang and Yang, 2020; Belgiu and Drăguţ, 2016). In 
addition, our study area is located in an ecological transition watershed 
area, where features are confusing and difficult to classify, so a smaller 
detection window and a distribution probability threshold with low 
constraint are used. If for some regions with strong ecological resilience 
and high intensity of human activities, such as the developed areas of 
eastern China, where low elevation plain area with obvious and single 
land-cover types, a larger detection window and a higher distribution 
probability threshold can be adopted to obtain better results. Finally, in 
order to further optimize and improve the results, we need to consider 
the more sequential probability of feature distributions, especially the 
change characteristics of the time dimension of typical features and 
conduct experiments on larger areas of complex regions to test the sta-
bility of the strategy. 

6. Conclusion 

We proposed a bi-directional strategy to detect LU change for the 
Huangshui watershed, China, to achieve long time series and high fre-
quency LU cover classification and monitoring for1987-2018. The most 
important feature of this method is that by judging the distribution 
probability of land types, complex topography, ecological transitions, 
and dramatic LU changes due to multiple regional policy influences can 
be identified. In our study this strategy significantly improves the clas-
sification accuracy with an annual average of overall accuracy of 
88.17%, increased by 6.03% and 2.41%, respectively, compared with 
initial results and uni-directional detection method. This helps detect bi- 
directional spatial and temporal changes in LU and to explore how 
policy affects LU. Therefore, we believe that the temporal and spatial 
dimensional information embedded in the remote-sensed time series 
images should be fully considered and utilized in conjunction with the 
actual situation of the region, and these will effectively enhance the 
quality of the LU classification and change detections for climate- 
sensitive and environmentally fragile areas and contribute to the plan-
ning of regional sustainable development. At the same time, this method 
is also transferable to areas where LU changes drastically under inten-
sive human activities, including basins, coastal zones and urban 
agglomerations. 
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