
Discrete Optimization 48 (2023) 100778

a

b

a

(
w
t
l

p

h
1
(

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

Secretary and online matching problems with machine learned
advice
Antonios Antoniadis a,1, Themis Gouleakis b, Pieter Kleer b,∗,2, Pavel Kolev b

Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarbrücken, Germany

a r t i c l e i n f o

Article history:
Received 19 May 2021
Received in revised form 10 December
2022
Accepted 8 May 2023
Available online 9 June 2023

Keywords:
Secretary problem
Online bipartite matching
Machine learned advice
Learning augmentation

a b s t r a c t

The classic analysis of online algorithms, due to its worst-case nature, can be quite
pessimistic when the input instance at hand is far from worst-case. In contrast,
machine learning approaches shine in exploiting patterns in past inputs in order
to predict the future. However, such predictions, although usually accurate, can be
arbitrarily poor. Inspired by a recent line of work, we augment three well-known
online settings with machine learned predictions about the future, and develop
algorithms that take these predictions into account. In particular, we study the
following online selection problems: (i) the classic secretary problem, (ii) online
bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms
still come with a worst-case performance guarantee in the case that predictions
are subpar while obtaining an improved competitive ratio (over the best-known
classic online algorithm for each problem) when the predictions are sufficiently
accurate. For each algorithm, we establish a trade-off between the competitive
ratios obtained in the two respective cases.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this work, we consider various online selection algorithms augmented with so-called machine learned
dvice. In particular, we consider secretary and online bipartite matching problems. The high-level idea is to

incorporate some form of predictions in an existing online algorithm in order to get the best of two worlds:
i) provably improve the algorithm’s performance guarantee in the case that predictions are sufficiently good,
hile (ii) losing only a constant factor of the algorithm’s existing worst-case performance guarantee, when

he predictions are subpar. Improving the performance of classic online algorithms with the help of machine
earned predictions, e.g., in the sense of (i) and (ii), is a relatively new area that has gained a lot of attention

∗ Corresponding author.
E-mail addresses: a.antoniadis@utwente.nl (A. Antoniadis), a.antoniadis@utwente.nl (T. Gouleakis),

.s.kleer@tilburguniversity.edu (P. Kleer), p.s.kleer@tilburguniversity.edu (P. Kolev).
1 University of Twente, The Netherlands.
2 Tilburg University, The Netherlands.
ttps://doi.org/10.1016/j.disopt.2023.100778
572-5286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.disopt.2023.100778
https://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2023.100778&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.antoniadis@utwente.nl
mailto:a.antoniadis@utwente.nl
mailto:p.s.kleer@tilburguniversity.edu
mailto:p.s.kleer@tilburguniversity.edu
https://doi.org/10.1016/j.disopt.2023.100778
http://creativecommons.org/licenses/by/4.0/

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

r
d
p
p

n
F
o
o
p
b
a
p
o
a
t
y

g
o
p
t
t

1

g
p
O
t

M

S
s
o
a
i
v
p

in the last couple of years [1–9] motivated by the tremendous surge in the field of machine learning. See also
the recent overview article of Mitzenmacher and Vassilvitskii [10] or the website [11] that collects work on
algorithms with predictions.

We motivate the idea of incorporating machine-learned advice, in the class of problems studied in this
work, by means of a simple real-world problem. Consider the following setting for selling a laptop on an online
platform.3 A known number of potential buyers arrive one by one, say, in a uniformly random order, and
eport a price that they are willing to pay for the laptop. Whenever a buyer arrives, we have to irrevocably
ecide if we want to sell at the given price, or wait for a better offer. Based on historical data, e.g., regarding
revious online sales of laptops with similar specs, the online platform might suggest a (machine learned)
rediction for the maximum price that some buyer is likely to offer for the laptop.

How can we exploit this information in our decision process? One problem that arises here is that we do
ot have any formal guarantees for how accurate the machine-learned advice is for any particular instance.
or example, suppose we get a prediction of 900 dollars as the maximum price that some buyer will likely
ffer. One extreme policy is to blindly trust this prediction and wait for the first buyer to come along that
ffers a price sufficiently close to 900 dollars. If this prediction is indeed accurate, this policy has an almost
erfect performance guarantee, in the sense that we will sell to the (almost) highest bidder. However, if the
est offer is only, say, 500 dollars, we will never sell to this buyer (unless this offer arrives last), since the
dvice is to wait for a better offer to come along. In particular, the performance guarantee of this selling
olicy depends on the prediction error (400 dollars in this case) which can become arbitrarily large. The
ther extreme policy is to completely ignore the prediction of 900 dollars and just run the classic secretary
lgorithm: Observe a 1/e-fraction of the buyers and remember the highest price seen in this fraction. After
hat, sell to the first buyer who is willing to pay more than the best seen price in the first 1/e-fraction. This
ields, in expectation, a selling price of at least 1/e times the highest offer [13,14].

Can we somehow combine the preceding two extreme selling-policies, so that we get a performance
uarantee strictly better than that of 1/e in the case where the prediction for the highest offer is not too far
ff, while not losing too much over the guarantee of 1/e otherwise? Note that (even partially) trusting poor
redictions often comes at a price, and thus obtaining a competitive ratio worse than 1/e seems inevitable in
his case. We show that there is in fact a trade-off between the competitive ratio that we can achieve when
he prediction is accurate and the one we obtain when the prediction error turns out to be large.

.1. Our models and contributions

We show how one can incorporate predictions in various online selection algorithms for problems that
eneralize the classic secretary problem. The overall goal is to include as little predictive information as
ossible into the algorithm, while still obtaining improvements in the case that the information is accurate.
ur results are parameterized by (among other parameters) the so-called prediction error η that measures

he quality of the given predictions.
We briefly sketch each of the problems studied in this work, and then conclude with the description of

eta result 1.1, that applies to all of them.

ecretary problem. In order to illustrate our ideas and techniques, we start by augmenting the classic
ecretary problem with predictions. We emphasize that we consider the so-called value maximization version
f the problem. For details, see Section 3. Here, we are given a prediction p∗ for the maximum value among
ll arriving secretaries. This corresponds to a prediction for the maximum price somebody is willing to offer
n the laptop example. The prediction error is then defined as η = |p∗ − v∗|, where v∗ is the true maximum
alue among all secretaries. We emphasize that the algorithm is not aware of the prediction error η, and this
arameter is only used to analyze the algorithm’s performance guarantee.

3 This example is similar to the classic secretary problem [12].
2

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

o
w
t
o
c
c
t

e
t
a
a
c

(
m
s
t

G
p
a
c
G

b
a
f
o
t

e
m
c
n
d
e
a
e

c
i
(
w

M

b

Online bipartite matching with vertex arrivals. In Section 4, we study the online bipartite matching problem
n a bipartite graph G = (L ∪ R,E), with |L| = n and |R| = m. The vertex set R is known from the start
hile the nodes in the set L arrive online in a uniformly random order [15,16]. Upon arrival, a node reveals

he edge weights to its neighbors in R. We have to irrevocably decide if we want to match up the arrived
nline node with one of its (currently unmatched) neighbors in R. Kesselheim et al. [16] gave a tight 1/e-
ompetitive deterministic algorithm for this setting that significantly generalizes the same guarantee for the
lassic secretary algorithm [13,14]. Note that the classic secretary problem corresponds to the case in which
here is one offline node, i.e., |R| = 1.

The prediction that we consider in this setting is a vector of values p∗ = (p∗
1, . . . , p

∗
m) that predicts the

dge weights adjacent to the nodes r ∈ R in some fixed optimal (offline) bipartite matching in G. That is,
he prediction p∗ indicates the existence of a fixed optimal bipartite matching in which each node r ∈ R is
djacent to an edge with weight p∗

r . The prediction error is then the maximum prediction error taken over
ll nodes in r ∈ R and minimized over all optimal matchings. This generalizes the prediction used for the
lassic secretary problem.

An interpretation of this problem can be found in the problem where we want to sell a number of items
the offline nodes) to customers that arrive online one-by-one. Upon arrival a customer can be assigned at
ost one item. The prediction can be interpreted as an estimate of the value for which an item is typically

old in an optimal offline solution. From a theoretical point of view, our prediction setting is closely related
o the vertex-weighted online bipartite matching problem [17], which will be discussed in Section 4.

raphic matroid secretary problem. In Section 5, we augment the graphic matroid secretary problem with
redictions. In this problem, the edges of a given undirected graph G = (V,E), with |V | = n and |E| = m,
rrive in a uniformly random order. The goal is to select a subset of edges of maximum weight under the
onstraint that this subset is a forest. That is, it is not allowed to select a subset of edges that form a cycle in
. This problem also generalizes the classic secretary problem by considering a graph with k parallel edges
etween two nodes. The best known algorithm for this online problem is a (randomized) 1/4-competitive
lgorithm by Soto, Turkieltaub and Verdugo [18]. Their algorithm proceeds by first selecting no elements
rom a prefix of the sequence of elements with randomly chosen size, followed by selecting an element if and
nly if it belongs to a “canonically computed” (see [18] for details) offline optimal solution, and can be added
o the set of elements currently selected online.

The prediction that we consider here is a vector of values p = (p∗
1, . . . , p

∗
n) where p∗

i predicts the maximum
dge weight that node i ∈ V is adjacent to, in the graph G. This is equivalent to saying that p∗

i is the
aximum edge weight adjacent to node i ∈ V in a given optimal spanning tree (we assume that G is

onnected for sake of simplicity), which is, in a sense, in line with the predictions used in Section 4. (We
ote that the predictions model the optimal spanning tree in the case when all edge-weights are pairwise
istinct. Otherwise, there can be many (offline) optimal spanning trees, and thus the predictions do not
ncode a unique optimal spanning tree. We intentionally chose not to use predictions regarding which edges
re part of an optimal solution, as in our opinion, such an assumption would be too strong.) The prediction
rror is defined as the maximum prediction error over the individual nodes.

As a result of possible independent interest, we show that there exists a deterministic (1/4 − o(1))-
ompetitive algorithm for the graphic matroid secretary problem, which can roughly be seen as a determin-
stic version of the algorithm of Soto et al. [18]. Alternatively, our algorithm can be seen as a variation on the
deterministic) algorithm of Kesselheim et al. [16] for the case of online bipartite matching, in combination
ith an idea introduced in [19].

eta result
We note that for all the problems above, one cannot hope for an algorithm with a performance guarantee
etter than 1/e in the corresponding settings without predictions, as this bound is known to be optimal
3

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

(
c

o

already for the classic secretary problem [13,14] (recall that the other two problems we consider are
generalizations of the classic secretary problem). Hence, our goal is to design algorithms that improve upon
the 1/e worst-case competitive ratio in the case where the prediction error is sufficiently small, and otherwise
when the prediction error is large) never lose more than a constant (multiplicative) factor over the worst-case
ompetitive ratio.

For each of the preceding three problems, we augment existing algorithms with predictions. All of
ur resulting algorithms are deterministic. We show that the canonical approaches for the secretary

problem [13,14] and the online bipartite matching problem [16] can be naturally augmented with predictions.
We also demonstrate how to adapt our novel deterministic algorithm for the graphic matroid secretary
problem. Further, we comment on randomized approaches for the three problems in each respective section.

Meta result 1.1. There is a polynomial time deterministic algorithm that incorporates the predictions p∗

such that for some constants 0 < α, β < 1 it is

(i) α-competitive with α > 1
e , when the prediction error is sufficiently small; and

(ii) β-competitive with β < 1
e , independently of the prediction error.

We note that there is a correlation between the constants α and β, which can be intuitively described as
follows: The more one is willing to give up in the worst-case guarantee, i.e. the more confidence we have in
the predictions, the better the competitive ratio becomes in the case where the predictions are sufficiently
accurate.

We next give a high-level overview of our approach in order to establish Meta result 1.1 for our three
problems. In all cases we split up the random arrival sequence in three phases. In the first phase, we merely
observe the arriving elements without selecting any of them; this is called the observation (or sampling)
phase. In the remaining two phases, we run two extreme policies: One that fully exploits the predictions,
and one that ignores them completely. Although both extreme policies can be analyzed individually using
existing techniques, it is a non-trivial task to show that, when combined deterministically, they do not
obstruct each other too much. For example, suppose that the second phase tries to exploit the predictions,
but that the predictions are very poor. We might select many “bad” elements in the second phase which
makes it impossible to select sufficiently many good elements in the third phase in order to still obtain a
β-competitive algorithm. In some cases, the execution order of the two extreme policies is crucial for the
analysis of the approximation guarantee.

Some of the issues sketched in the previous paragraph can be circumvented by using randomized
algorithms. For example, one can instead randomize over the two policies that either exploit or ignore the
predictions, respectively. This avoids the problem of making sure that the two policies “do not obstruct
each other too much”. In this work, we only focus on deterministic algorithms as the best online algorithms
for the secretary, online bipartite matching and graphic matroid secretary problem are of a deterministic
nature (for the third problem we show that in this work). We will elaborate more on this in the respective
sections to come. In a nutshell, for the secretary problem, our deterministic algorithm has a better
performance guarantee than the “straightforward” randomization between the two extreme policies. For the
online bipartite matching and graphic matroid secretary problem, a randomization of this type performs
(in expectation) better than our deterministic algorithms. It is in an interesting open problem to find
deterministic algorithms with better performance guarantees.

We give detailed formulations of Meta result 1.1: in Theorem 3.1 for the secretary problem; in Theorem 4.1
for the online bipartite matching problem; and in Theorem 5.3 for the graphic matroid secretary problem.

Remark 1.2. In the statements of Theorems 3.1, 4.1 and 5.3 it is assumed that the set of objects O arriving
online (either vertices or edges) is asymptotically large. We hide o(1)-terms, with respect to n = |O|, at
certain places for the sake of readability.
4

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

1
o
b
f
s
d
a
i
p
i

1

a
r
i

B
n
r
r
o
t
e
b
t
h
G

w
f
d

w
a
c

o
b
p
r

Although the predictions provide relatively little information about the optimal solution, we are still able
to obtain improved theoretical guarantees in the case where the predictions are sufficiently accurate. In
the online bipartite matching setting with predictions for the nodes in R, we can essentially get close to a
/2-approximation assuming the predictions are close to perfect. This matches the state-of-the-art of what
ne can hope for with perfect predictions, because of the relation with the so-called vertex-weighted online
ipartite matching problem, which will be explained in Section 4. The best known deterministic algorithm
or this problem, to the best of our knowledge, is a simple 1/2-competitive greedy algorithm [17]. Roughly
peaking, our algorithm converges to that in [17] when the predictions get close to perfect. This will be
iscussed further in Section 4. For the graphic matroid secretary problem, we are also able to get close to
1/2-approximation in the case where the predictions (the maximum edge weights adjacent to the nodes

n the graph) get close to perfect. We note that this is probably not tight. We suspect that, when given
erfect predictions, it is possible to obtain an algorithm with a better approximation guarantee. This is an

nteresting open problem.

.2. Related work

This subsection consists of three parts. First we give a short overview of related problems that have been
nalyzed with the inclusion of machine learned advice following the frameworks in [5,6]. We continue with
elevant approximation algorithms for the matroid secretary problem, and then we consider models that
ncorporate additional information, such as prior distributions.

lack-box machine learned advice. Although online algorithms with machine learned advice are a relatively
ew area, there has already been a number of interesting results. We note that most of the following
esults are analyzed by means of consistency (competitive-ratio in the case of perfect predictions) and
obustness (worst-case competitive-ratio regardless of prediction quality), but the precise formal definitions
f consistency and robustness slightly differ in each paper [5,6].4 Our results can also be interpreted within
his framework, but for the sake of completeness we give the competitive ratios as a function of the prediction
rror. Purohit et al. [6], considered the ski rental problem and the non-clairvoyant scheduling problem. For
oth problems they gave algorithms that are both consistent and robust, and with a flavor similar to ours,
he trade-off between the robustness and consistency of their algorithms are given as a function of some
yperparameter which has to be chosen by the algorithm in advance. For the ski rental problem, in particular,
ollapudi et al. [7] considered the setting with multiple predictors, and they provided tight algorithms.
Lykouris and Vassilvitskii [5] studied the caching problem (also known in the literature as paging), and

ere able to adapt the classic Marker algorithm [21] to obtain a trade-off between robustness and consistency,
or this problem. Rohatgi [3] subsequently gave an algorithm whose competitive ratio has an improved
ependence on the prediction errors.

Further results in online algorithms with machine learned advice include the work by Lattanzi et al. [4]
ho studied the restricted assignment scheduling problem, and the work by Mitzenmacher [8] who considered
different scheduling/queuing problem. They introduced a novel quality measure for evaluating algorithms,

alled the price of misprediction.
Mahdian et al. [22] studied problems where it is assumed that there exists an optimistic algorithm (which

could in some way be interpreted as a prediction), and designed a meta-algorithm that interpolates between
a worst-case algorithm and the optimistic one. They considered several problems, including the allocation of
nline advertisement space, and for each gave an algorithm whose competitive ratio is also an interpolation
etween the competitive ratios of its corresponding optimistic and worst-case algorithms. However, the
erformance guarantee is not given as a function of the prediction error, but rather only as a function of the
espective ratios and the interpolation parameter.

4 The term “robustness” has also been used in connection with secretary problems (see for example [20]), but in a totally
different sense.
5

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

i
a
t
a
f
c
a
t
c
r

w
p
S
1
d

a
a
t
a

O
l
i
e

i
a
a
i
m
s
c
m
t
w

t
t
s

e
o

t

Approximation algorithms for the matroid secretary problem. The classic secretary problem was originally
ntroduced by Gardner [12], and solved by Lindley [13] and Dynkin [14], who gave 1/e-competitive
lgorithms. Babaioff et al. [19] introduced the matroid secretary problem, a considerable generalization of
he classic secretary problem, where the goal is to select a set of secretaries with maximum total value under
matroid constraint for the set of feasible secretaries. They provided an O(1/ log(r))-competitive algorithm

or this problem, where r is the rank of the underlying matroid. Lachish [23] later gave an O(1/ log log(r))-
ompetitive algorithm, and a simplified algorithm with the same guarantee was given by Feldman, Svensson
nd Zenklusen [24]. It is still a major open problem if there exists a constant-competitive algorithm for
he matroid secretary problem. Nevertheless, many constant-competitive algorithms are known for special
lasses of matroids, and we mention those relevant to the results in this work (see, e.g., [18,19] for further
elated work).

Babaioff et al. [19] provided a 1/16-competitive algorithm for the case of transversal matroids,5 which
as later improved to a 1/8-competitive algorithm by Dimitrov and Plaxton [25]. Korula and Pál [15]
rovided the first constant competitive algorithm for the online bipartite matching problem considered in
ection 4, of which the transversal matroid secretary problem is a special case. In particular, they gave a
/8-approximation. Kesselheim et al. [16] provided a 1/e-competitive algorithm, which is best possible, as
iscussed above.

For the graphic matroid secretary problem, Babaioff et al. [19] provide a deterministic 1/16-competitive
lgorithm. This was improved to a 1/(3e)-competitive algorithm by Babaioff et al. [26]; a 1/(2e)-competitive
lgorithm by Korula and Pál [15]; and a 1/4-competitive algorithm by Soto et al. [18], which is currently
he best algorithm. The algorithm from [19] is deterministic, whereas the other three are randomized. All
lgorithms run in polynomial time.

ther models, extensions and variations. There is a vast literature on online selection algorithms for prob-
ems similar to the (matroid) secretary problem. Here we discuss some recent directions and other models
ncorporating some form of prior information. These problems are concerned with relaxing assumptions of
xisting problems, rather than “augmenting” them with some form of advice.

The most important assumption in the secretary model that we consider is the fact that elements arrive
n a uniformly random order. If the elements arrive in an adversarial order, there is not much one can
chieve: There is a trivial randomized algorithm that selects every element with probability 1/n, yielding
1/n-competitive algorithm; deterministically no finite competitive algorithm is possible with a guarantee

ndependent of the values of the elements. There has been a recent interest in studying intermediate arrival
odels that are not completely adversarial, nor uniformly random. Kesselheim, Kleinberg and Niazadeh [27]

tudy non-uniform random arrival orderings under which (asymptotically) one can still obtain a 1/e-
ompetitive algorithm for the secretary problem. Bradac et al. [20] consider the so-called Byzantine secretary
odel in which some elements arrive uniformly at random, but where an adversary controls a set of elements

hat can be inserted in the ordering of the uniform elements in an adversarial manner. See also the very recent
ork of Garg et al. [28] for a conceptually similar model.
In a slightly different setting, Kaplan et al. [29] consider a secretary problem with the assumption that

he algorithm has access to a random sample of the adversarial distribution ahead of time. For this setting
hey provide an algorithm with almost tight competitive-ratio for small sample-sizes. Related models are
tudied in [30,31].

Furthermore, there is also a vast literature on so-called prophet inequalities. In the basic model, the
lements arrive in an adversarial order, but there is a prior distributional information given for the values
f the elements {1, . . . , n}. That is, one is given probability distributions X1, . . . , Xn from which the values

5 The transversal matroid secretary problem is a special case of the online bipartite matching problem where every node i ∈ L
hat arrives online has one common edge weight w on all edges {i, j} ∈ E.
i

6

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

a
i
v
t
s
a
s
a
(

q
s
d
a
F
o
s

d
o
s
i
m
a
o
s

f
s
m

2

n

2

c
o
a
o
o
w
m

of the elements are drawn. Upon arrival of an element e, its value drawn according to Xe is revealed and
n irrevocable decision is made whether to select this element or not. Note that the available distributional
nformation can be used to decide on whether to select an element. The goal is to maximize the expected
alue, taken over all prior distributions, of the selected element. For surveys on recent developments, refer
o [32,33]. Here we discuss some classic results and recent related works. Krengel, Sucheston and Garling [34]
how that there is an optimal 1/2-competitive algorithm for this problem. Kleinberg and Weinberg [35] gave
significant generalization of this result to matroid prophet inequalities, where multiple elements can be

elected subject to a matroid feasibility constraint (an analogue of the matroid secretary problem). There is
lso a growing interest in the prophet secretary problem [36], in which the elements arrive uniformly random
as in the secretary problem); see also [33].

Recently, settings with more limited prior information gained a lot of interest. These works address the
uite strong assumption of knowing all element-wise prior distributions. Azar, Kleinberg and Weinberg [37]
tudy the setting in which one has only access to one sample from every distribution, as opposed to the whole
istribution; see also [38]. Correa et al. [39] study this problem under the assumption that all elements
re identically distributed. Recently, an extension of this setting was considered by Correa et al. [40].
urthermore, Dütting and Kesselheim [41] consider prophet inequalities with inaccurate (measured in terms
f a metric) prior distributions X̃1, . . . , X̃n, while the true distributions X1, . . . , Xn remain unknown. They
tudy to what extent the existing algorithms are robust against inaccurate prior distributions.

Although our setting also assumes additional information about the input instance, there are major
ifferences. Mainly, we are interested in including a minimal amount of predictive information about an
ptimal (offline) solution, which yields a quantitative improvement in the case where the prediction is
ufficiently accurate. This is a completely different assumption than having a priori element-wise (possibly
naccurate) probability distributions. Furthermore, our setting does not assume that the predictive infor-
ation necessarily comes from a distribution (which is then used to measure the expected performance of

n algorithm), but can be obtained in a more general fashion from historical data (using, e.g., statistical
r machine learning techniques). Finally, and in contrast to other settings, the information received in our
etting can be inaccurate (and this is non-trivial do deal with).

Also conceptually close to our setting is the work of Dütting et al. [42]. They consider a general framework
or incorporating various forms of “advice” in the classic secretary model capturing e.g. sample-based or
ignal information. They derive various optimal policies in their framework, however, it does not cover the
achine-learned advice model built on the concepts of consistency and robustness [5,6] discussed earlier.

. Preliminaries

In this section we formally define the online algorithms of interest, provide the necessary graph theoretical
otation, and define the so-called Lambert W -function that will be used in Section 3.

.1. Online algorithms with uniformly random arrivals

We briefly sketch some relevant definitions for the online problems that we consider in this work. We
onsider online selection problems in which the goal is to select the “best feasible” subset out of a finite set
f objects O with size |O| = n, that arrive online in a uniformly random order. More formally, the n objects
re revealed to the algorithm one object per round. In each round i, and upon revelation of the current
bject oi ∈ O, the online selection algorithm has to irrevocably select an outcome zi out of a set of possible
utcomes Z(oi) (which may depend on o1, o2, . . . oi as well as z1, z2, . . . zi−1.) Each outcome zi is associated
ith a value vi(zi), and all values vi become known to the algorithm with the arrival of oi. The goal is to
aximize the total value T =

∑
v (z).
i i i

7

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

a
a
v
σ

o

2

v

I
i
F

o∑
e
i
i
ℓ

i

R
w
f
o

2

f
t
e

3

t
w
c
t

t
i

The value of an algorithm A selecting outcomes z1, z2 . . . zn on input sequence σ = (o1, . . . , on) is defined
s T (A(σ)) =

∑
i vi(zi). We sometimes refer to the input sequence as a permutation or arrival order. Such

n algorithm A is γ-competitive if E(T (A(σ))) ≥ γ · OPT(σ), for 0 < γ ≤ 1, where OPT(σ) is the objective
alue of an offline optimal solution, i.e., the solution of an algorithm that is aware of the whole input sequence
in advance. The expectation is taken over the randomness in σ (and the internal randomness of A in case

f a randomized algorithm). Alternatively, we say that A is a γ-approximation.

.2. Graph theoretical notation

An undirected graph G = (V,E) is defined by a set of nodes V and set of edges E ⊆ {{u, v} : u, v ∈ V, u ̸=
}. A bipartite graph G = (L∪R,E) is given by two sets of nodes L and R, and E ⊆ {{ℓ, r} : ℓ ∈ L, r ∈ R}.
n the bipartite case we sometimes write (ℓ, r) instead of {ℓ, r} in order to indicate that ℓ ∈ L and r ∈ R,
.e., we give a direction to the edge. We also use this notation for directed arcs in general directed graphs.
or a set of nodes W , we use G[W] to denote the induced (bipartite) subgraph on the nodes in W .

A function w : E → R≥0 is called a weight function on the edges in E; we sometimes write w(u, v)
r wuv in order to denote w({u, v}) for {u, v} ∈ E. For a collection F ⊆ E of edges, we write w(F) =

{u,v}∈F w(u, v). A matching M ⊆ E is a subset of edges so that every node is adjacent to at most one
dge in M . For a set of nodes W , we write W [M] to denote the nodes in W that are adjacent to an edge
n M . Such nodes are said to be matched. If G is undirected, we say that M is perfect if every node in V

s adjacent to precisely one edge in M . If G is bipartite, we say that M is perfect with respect to L if every
∈ L is adjacent to one edge in M , and perfect with respect to R if every r ∈ R is adjacent to some edge

n M .

emark 2.1. When G is bipartite, we will assume that for every subset S ⊆ L, there is a perfect matching
ith respect to S in G[S ∪ R]. For our applications, this can be done without loss of generality by adding

or every ℓ ∈ L a node rℓ to the set R, and adding the edge {ℓ, rℓ} to E. Moreover, given a weight function
n E we extend it to a weight function on E′ by giving all the new edges weight zero.

.3. Lambert W -function

The Lambert W -function is the inverse relation of the function f(w) = wew. Here, we consider this
unction over the real numbers, i.e., the case f : R → R. Consider the equation yey = x. For −1/e ≤ x < 0,
his equation has two solutions denoted by y = W−1(x) and y = W0(x), where W−1(x) ≤ W0(x) with
quality if and only if x = −1/e.

. Secretary problem

In the secretary problem there is a set {1, . . . , n} of secretaries, each with a value vi ≥ 0 for i ∈ {1, . . . , n},
hat arrive in a uniformly random order. Whenever a secretary arrives, we have to irrevocably decide
hether we want to hire that person. If we decide to hire a secretary, we automatically reject all subsequent
andidates. The goal is to select the secretary with the highest value. We assume without loss of generality
hat all values vi are distinct. This can be done by introducing a suitable tie-breaking rule if necessary.

There are two versions of the secretary problem. In the classic secretary problem, the goal is to maximize
he probability with which the best secretary is chosen. We consider a different version, where the goal

s to maximize the expected value of the chosen secretary. We refer to this as the value-maximization

8

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

v

O
W

(
v

i

secretary problem.6 In the remainder of this work, the term ‘secretary problem’ will always refer to the
alue-maximization secretary problem, unless stated otherwise.

The machine learned advice that we consider in this section is a prediction p∗ for the maximum value
PT = maxi vi among all secretaries.7 Note that we do not predict which secretary has the highest value.
e define the prediction error as

η = |p∗ − OPT|.

We emphasize that this parameter is not known to the algorithm, but is only used to analyze the algorithm’s
performance guarantee.

3.1. Deterministic algorithm

We will next describe our algorithm that incorporates the prediction p∗ for the maximum value.
Henceforth, we will refer to secretaries as elements. The formal description is given in Algorithm 1. We
introduce two (hyper)parameters c and λ that can, roughly speaking, be used to control the robustness-
consistency trade-off of Algorithm 1 in the spirit of [5,6]. Algorithm 1 is a generalization of the well-known
optimal algorithm for both the classic and value-maximization secretary problem [13,14], which can be
obtained by setting c = 1, in which case there is no Phase II. The (optimal) solution [13,14] to the secretary
problem without predictions is to first observe a fraction of n/e elements which we call Phase I. After that,
in Phase II, the first element with a value higher than the best value seen in Phase I is selected.

When looking closer at the analysis in [13,14] it becomes clear that one can obtain a 1/(ce)-competitive
algorithm, for c ≥ 1 by sampling either less or more elements in Phase I, more specifically a w−1 =
exp{W−1(−1/(ce))} or w0 = exp{W0(−1/(ce))} fraction of the elements respectively. Here W−1 and W0
are the branches of the Lambert W -function (see Section 2.3). Based on w−1 and w0, we define a new
algorithm consisting of three phases: Phase I is again an observation phase in which we do not select any
element; in Phase II we will try to exploit the prediction; and in Phase III we ignore the prediction, essentially
running the classic secretary algorithm with a different observation phase, in order to still guarantee a 1/(ce)-
competitive algorithm in case the prediction is very bad. Roughly speaking, the parameter c models the
factor that we are willing to lose in the worst-case when the prediction turns out to be poor.

How to exploit the prediction in Phase II? If we would a priori know that the prediction error is small,
then it seems reasonable to pick the first element that has a value ‘close enough’ to the predicted optimal
value. An issue that arises here is that we do not know whether the predicted value is smaller or larger than
the actual optimal value. In the latter case, the entire Phase II of the algorithm would be rendered useless,
even if the prediction error was arbitrarily small. In order to circumvent this issue, one can first lower the
predicted value p∗ slightly by some λ > 0 and then select the first element that is greater or equal than the
threshold p∗ −λ. Roughly speaking, the parameter λ can be interpreted as a guess for the prediction error η.
Alternatively, one could define an interval around p∗, but given that we get a prediction for the maximum
alue, this does not make a big difference.)

The input parameter λ can be seen as a confidence parameter in the prediction p∗ that allows us to
nterpolate between the following two extreme cases:

(i) If we have very low confidence in the prediction, we choose λ close to p∗;
(ii) If we have high confidence in the prediction, we choose λ close to 0.

6 Any α-approximation for the classic secretary problem yields an α-approximation for the value-maximization variant.
7 Such a prediction does not seem to have any relevance in case the goal is to maximize the probability with which the best

secretary is chosen. Intuitively, for every instance (v1, . . . , vn) there is a ‘more or less isomorphic’ instance (v′
1, . . . , v

′
n) for which

v′
i < v′

j if and only if vi < vj for all i, j, and for which, all values are close to each other and also to the prediction p∗, for
which we assume that p∗ < mini v

′
i. Any algorithm that uses only pairwise comparisons between the values v′

i can, intuitively,
not benefit from the prediction p∗. Of course, for the value-maximization variant, choosing any i will be close to optimal in this
case if the prediction error is small.
9

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

O

S
P
f

e
S

O
t
o
R
i

T
s

a
r

c
t
a
e
h
r
t

W

ALGORITHM 1: Value-maximization secretary algorithm
Input : Prediction p∗ for (unknown) value maxi vi; confidence parameter 0 ≤ λ ≤ p∗ and c ≥ 1.

utput: Element a.

et v′ = 0.
hase I:

or i = 1, . . . , ⌊exp{W−1(−1/(ce))} · n⌋ do
Set v′ = max{v′, vi}

nd
et t = max{v′, p∗ − λ}.

Phase II:
for i = ⌊exp{W−1(−1/(ce))} · n⌋ + 1, . . . , ⌊exp{W0(−1/(ce))} · n⌋ do

if vi > t then
Select element ai and STOP.

end
end
Set t = max{vj : j ∈ {1, . . . , ⌊exp(W0(−1/(ce))) · n⌋}}.
Phase III:
for i = ⌊exp{W0(−1/(ce))} · n⌋ + 1, . . . , n do

if vi > t then
Select element ai and STOP.

end
end

In the first case, we essentially get back the classic solution [13,14] but now with a guarantee of 1/(ce).
therwise, when the confidence in the prediction is high, we get a competitive ratio better than 1/e in case

he prediction error η is in fact small, in particular, smaller than λ. If our confidence in the prediction turned
ut to be wrong, when λ is larger than the prediction error, we still obtain a 1/(ce)-competitive algorithm.
ecall that the parameter c models what factor we are willing to lose in the worst-case when the prediction

s poor (but the confidence in the prediction is high). In Theorem 3.1 below, we analyze Algorithm 1.

heorem 3.1. For any λ ≥ 0 and c > 1, there is a deterministic algorithm for the (value-maximization)
ecretary problem that is asymptotically gc,λ(η)-competitive in expectation, where

gc,λ(η) =
{

max
{

1
ce ,

[
f(c)

(
max

{
1 − λ+η

OPT , 0
})]}

if 0 ≤ η < λ
1
ce if η ≥ λ

}
,

nd the function f(c) is given in terms of the two branches W0 and W−1 of the Lambert W -function and
eads

f(c) = exp{W0(−1/(ce))} − exp{W−1(−1/(ce))}.

We note that λ and c are independent parameters that provide the most general description of the
ompetitive ratio. Recall that λ is our confidence in the prediction and c describes how much we are willing
o lose in the worst case. Although these parameters can be set independently, some combinations of them
re not very sensible, as one might not get an improved performance guarantee, even when the prediction
rror is small (for instance, if c = 1, i.e., we are not willing to lose anything in the worst case, then it is not
elpful to consider the prediction at all). To illustrate the influence of these parameters on the competitive
atio, in Fig. 1, we plot various combinations of the input parameters c, λ and p∗ of Algorithm 1, assuming
hat η = 0. In this case p∗ = OPT and the competitive ratio simplifies to

gc,λ(0) = max
{

1
ce
, f(c) · max

{
1 − λ

p∗ , 0
}}

.

e therefore choose the axes of Fig. 1 to be λ/p∗ and c.

10

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

c

o

s

a
o

R
e
t
1
c

P
e
t
(
o
e

W

e
fi

(

Fig. 1. The red curve shows the optimal competitive ratio without predictions, i.e., gc,λ(0) = 1/e. Our algorithm achieves an improved
ompetitive ratio gc,λ(0) > 1/e in the area below this curve, and a worse competitive ratio gc,λ(0) < 1/e in the area above it.

Furthermore, as one does not know the prediction error η, there is no way in choosing these parameters
ptimally, since different prediction errors require different settings of λ and c.

To get an impression of the statement in Theorem 3.1, if we have, for example, η+ λ = 1
10 OPT, then we

tart improving over 1/e for c ≥ 1.185. Moreover, if one believes that the prediction error is low, one should
set c very high (hence approaching a 1-competitive algorithm in case the predictions are close to perfect).

Remark 3.2. The fact that OPT appears in the competitive ratio in Theorem 3.1 stems from the definition
of the competitive ratio in combination with the fact that η is defined as the difference between the optimal
nd the predicted values. In particular, a specific η could refer to a tiny or a huge relative error depending
n the value of OPT, so it is not surprising that the competitive ratio is expressed in terms of η/OPT.

emark 3.3. Note, that the bound obtained in Theorem 3.1 has a discontinuity at η = λ. This can be
asily smoothed out by selecting λ according to some distribution, which now represents our confidence in
he prediction p∗. The competitive ratio will start to drop earlier in this case, and will continuously reach
/(ce). Furthermore, for η = λ = 0 this bound is tight for any fixed c. A further illustration of how the
ompetitive ratio changes as a function of η is given in Appendix A.

roof of Theorem 3.1. By carefully looking into the analysis of the classic secretary problem, see,
.g., [13,14], it becomes clear that although sampling an 1/e-fraction of the items is the optimal trade-off for
he classic algorithm and results in a competitive ratio of 1/e, one could obtain a 1/(ce)-competitive ratio
for c > 1) in two ways: by sampling either less, or more items, more specifically an exp{W−1(−1/(ce))}
r exp{W0(−1/(ce))} fraction of the items respectively. These quantities arise as the two solutions of the
quation

−x ln x = 1
ce
.

e next provide two lower bounds on the competitive ratio.
First of all, we prove that in the worst-case we are always 1/(ce)-competitive. We consider two cases.
Case 1: p∗ − λ > OPT . Then we never pick an element in Phase II, which means that the algorithm is

quivalent to the algorithm that observes a fraction exp{W0(−1/(ce))} of all elements and then chooses the
rst element better than what has been seen before, which we know is 1/(ce)-competitive.

Case 2. p∗ − λ ≤ OPT . Let “Algorithm A” be the algorithm that first observes a fraction exp{W−1(−1/
ce))} of all elements and then selects the first element better than what has been seen before (which we
11

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

p
a

p

w
w

t

3

t
d

w
s
p
a
i

t
t
t
s

know is 1/(ce)-competitive [13,14]). Consider a fixed arrival order and suppose that, for this permutation,
we select an element with value OPT in Algorithm A. Our algorithm also chooses an element of value OPT
in this case, because of the condition p∗ − λ ≤ OPT . As the analysis in [13,14] for the classic secretary
roblem relies on analyzing the probability with which we pick an element of value OPT, it follows that our
lgorithm is also 1/(ce)-competitive in this case.

The second bound on the competitive ratio applies to cases in which the prediction error is small. In
articular, suppose that 0 ≤ η < λ.

Case 1: p∗ > OPT . We know that p∗ − λ < OPT , as η < λ. Therefore, if OPT appears in Phase II, and
e have not picked anything so far, we will pick OPT . Since OPT appears in Phase II with probability f(c),
e in particular pick some element in Phase II with value at least OPT −λ with probability f(c) (note that

this element does not have to be OPT necessarily).
Case 2: p∗ ≤ OPT . In this case, using similar reasoning as in Case 1, with probability f(c) we will pick

some element with value at least OPT − λ − η. To see this, note that in the worst case we would have
p∗ = OPT −η, and we could select an element with value p∗ −λ, which means that the value of the selected
item is OPT − λ− η.

This means that, in any case, with probability at least f(c), we will pick some element in Phase II with
value at least min{OPT −λ,OPT −λ− η} = OPT −λ− η if η < λ. That is, if 0 ≤ η < λ, and if we assume
hat OPT − λ− η ≥ 0, we are guaranteed to be f(c) (1 − (λ+ η)/OPT) -competitive. □

.2. Straightforward randomization

One natural question that arises from the bound in Theorem 3.1 is whether one can significantly improve
he result using randomization (we also already discussed randomization as a way of “smoothing” out the
iscontinuity at η = λ in Remark 3.3).

Here, we provide a brief comparison with the following straightforward randomization of Algorithm 1,
hich randomly chooses between running the classic secretary problem without predictions and (roughly

peaking) the greedy prediction-based procedure in Phase II in Algorithm 1. That is, given γ ∈ [0, 1], with
robability γ it runs the classic secretary problem, and with probability 1 − γ, it runs the prediction-based
lgorithm that simply selects the first element with value greater or equal than p∗ − λ (if any). Note that
ts expected competitive ratio at least

γ
1
e

+ (1 − γ)
(

max
{

1 − λ+ η

OPT , 0
})

. (1)

In order to compare Algorithm 1 with the straightforward randomization, we set γ = 1/c. This implies
hat both algorithms are at least 1/(ce)-competitive in the worst-case when the predictions are poor. Having
he same worst-case guarantee, we now focus on their performance in case when the prediction error η and
he confidence parameter λ are small. In particular, let us consider the case where λ+ η = δ · OPT for some
mall δ > 0. Then, the expected competitive ratio in (1) reduces to

1
ce

+
(

1 − 1
c

)
(1 − δ). (2)

We now compare the expected competitive ratio of Algorithm 1 and its straightforward randomization,
which read f(c)(1 − δ) and (2) respectively. In Fig. 2, we conduct a numerical experiment with fixed δ = 0.1
and λ + η = 0.1OPT. Our experimental data indicates that for c ≥ 1.185, Algorithm 1 is at least 1/e-
competitive and it significantly outperforms the classic secretary algorithm as c increases. Furthermore, for
c ≥ 1.605 Algorithm 1 performs better than its straightforward randomization. On the other hand, we
note that our experiments indicate that as δ increases the competitive advantage of Algorithm 1 over its
straightforward randomization decreases.
12

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

p
(

4

S
f
a
t
i

a
t
a
p

p
r
n

b
w
t
r
c
u

t
i

Fig. 2. The black horizontal line indicates the tight bound of 1/e for the classic secretary algorithm. The bold blue line is the
erformance guarantee for Algorithm 1; and the dashed red line is the performance guarantee for the obvious randomized algorithm.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

. Online bipartite matching with random arrivals

In this section we consider a generalization of the value-maximization secretary problem discussed in
ection 3. We study an online bipartite matching problem on a graph G = (L ∪ R,E) with edge weight
unction w : E → R≥0. The vertices ℓ ∈ L arrive in a uniformly random order. Whenever a vertex ℓ ∈ L

rrives, it reveals its neighbors r ∈ R and what the corresponding edge weights w(ℓ, r) are. We then have
he option to add an edge of the form (ℓ, r), provided r has not been matched in an earlier step. The goal
s to select a set of edges, i.e., a matching, with maximum weight.

We assume that we are given, for all offline nodes r ∈ R, a prediction p∗
r for the value of the edge weight

djacent to r in some fixed optimal offline matching (which is zero if r is predicted not to be matched in
his offline matching). That is, we predict that there exists some fixed optimal offline matching in which r is
djacent to an edge of weight p∗

r without predicting which particular edge this is. Note that the predictions
= (p∗

1, . . . , p
∗
r) implicitly provide a prediction for OPT, namely

∑
r∈R p

∗
r . Recall that OPT was used as a

rediction in Section 3. In the current setting, using OPT as a prediction does not seem to lead to valuable
esults. Roughly speaking, the problem is that OPT gives no information about how much the individual
odes in R contribute to OPT, which makes it hard to exploit it as a prediction.

It turns out that this type of predictions closely corresponds to the so-called online vertex-weighted
ipartite matching problem where every offline node is given a weight wr, and the goal is to select a matching
ith maximum weight, which is the sum of all weights wr for which the corresponding r is matched in

he online algorithm. This problem has both been studied under adversarial arrivals [17,43] and uniformly
andom arrivals [44,45]. In case the predictions are perfect, then, in order to find a matching with the
orresponding predicted values, we just ignore all edges w(ℓ, r) that do not match the value p∗

r . This brings
s in a special case of the online vertex-weighted bipartite matching problem.

The prediction error in this section will be defined as the maximum error over all predicted values and
he minimum over all optimal matchings in G. We use M(G,w) to denote the set of all optimal matchings
n G with respect to the weight function w, and then define

η = min max |p∗
r − w(Mr)|.
M∈M(G,r) r∈R

13

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

o

t
o
i

4

a
a
t
t
v
T
a
c

w
t
k
T
a
p
i

t
i
a

Here, we use w(Mr) to denote the value of the edge adjacent to r ∈ R in a given optimal solution with
bjective value OPT =

∑
r w(Mr).

In the next sections we will present deterministic and randomized algorithms, inspired by algorithms for
he online vertex-weighted bipartite matching problem, that can be combined with the algorithm in [16] in
rder to obtain algorithms that incorporate the predictions. We start with a deterministic algorithm, which
s the main result of this section.

.1. Deterministic algorithm

We start by shortly recalling the algorithm by Kesselheim et al. [16] and the main ideas underlying its
nalysis. Similar to the algorithm for the classic secretary problem, it also consists of a sampling phase and
selection phase. During the sampling phase, ⌊n/e⌋ many vertices are observed without adding any edges

o the matching. For each subsequent vertex ℓ ∈ {⌊n/e⌋ + 1, . . . n} that arrives an optimum matching for
he currently revealed part of the graph is computed, and if (i) in that optimum matching ℓ is matched to
ertex v, and (ii) v is currently unmatched for the algorithm, then edge (ℓ, v) is added to the matching.
he most important feature in the analysis of the above algorithm is interpreting the random arrival order
s a sequence of stochastically independent experiments. This allows them to lower bound the expected
ontribution to the objective function of every vertex ℓ in {⌊n/e⌋ + 1, . . . n} independently by

⌊n/e⌋
ℓ− 1 · OPT

n
.

Their result that the algorithm is e-competitive then follows by adding up all of these expected contributions.
Note that this is best possible, since the problem generalizes the classical secretary problem for which no
better than e-competitive algorithm can exist.

As we will see, our algorithm is in part based on a modification of the algorithm of [16] that allows it to be
combined with a third phase in which the predictions are exploited. This modification will require certain
adaptations/generalizations to the analysis of the algorithm of [16] which we include for completeness in
Appendix C.

We next give a simple deterministic greedy algorithm that provides a 1/2-approximation in the case
hen the predictions are perfect. It is very similar to a greedy algorithm given by Aggarwal et al. [17] for

he online vertex-weighted bipartite matching problem. In fact, the 1/2-approximation from [17] is the best
nown deterministic algorithm for online vertex-weighted bipartite matching, to the best of our knowledge.
herefore, our aim is to give an algorithm that includes the predictions in such a way that, if the predictions
re good (and we have high confidence in them), we should approach a 1/2-approximation, whereas if the
redictions turn out to be poor, we are allowed to lose at most a constant factor w.r.t. the 1/e-approximation
n [16].

Although we do not emphasize it in the description, Algorithm 2 can be run in an online fashion. Provided
hat there exists an offline matching in which every r ∈ R is adjacent to some edge with weight at least tr,
t can be shown, using the same arguments as given in [17], that Algorithm 2 yields a matching with weight
t least 1

2
∑
r tr. We present the details in the proof of Theorem 4.1 later on.

Algorithm 3 is a deterministic algorithm that, similar to Algorithm 1, consists of three phases. The first
two phases correspond to the two phases of the algorithm of Kesselheim et al. [16] as explained in the
beginning of this section. In the third phase, whose purpose is to exploit the predictions, we then run the
threshold greedy algorithm as described in Algorithm 2. Roughly speaking, we need to keep two things in
mind in order to guarantee that we remain: constant-competitive in case the predictions are bad, and get
an improved guarantee in case the predictions are good. In order to guarantee the latter, we should not

match up too many offline nodes in the second phase, as this would block the possibility of selecting a good

14

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

O

S
f

e

O

P
f

e
L
P
f

e
P
f

e

m
w

a

ALGORITHM 2: Threshold greedy algorithm
Input : Thresholds t = (t1, . . . , t|R|) for offline nodes r ∈ R; ordered list (v1, . . . , vℓ) ⊆ L.

utput: Matching M

et M = ∅.
or i = 1, . . . , |L| do

Set ri = argmaxr{w(vi, r) : r ∈ N (vi), w(vi, r) ≥ tr and r /∈ R[M]}. /*Breaking ties arbitrarily
if ri ̸= ∅ then

Set M = M ∪ {vi, ri}.
end

nd

solution in the third phase in case the predictions are good. On the other hand, in order to guarantee the
former, we should not select to few offline nodes in the second phase, otherwise we are no longer guaranteed
to be constant-competitive in case the predictions turn out to be poor. The analysis of Algorithm 3 given
in Theorem 4.1 shows that it is possible to achieve both these properties.

For the sake of simplicity, in both the description of Algorithm 3 and its analysis in Theorem 4.1, we use
a common λ to lower the predicted values (as we did in Section 3 for the secretary problem). Alternatively,
one might investigate the use of a resource-specific value λr for this as well, but then the analysis seems to
become much more involved.
ALGORITHM 3: Online bipartite matching algorithm with predictions

Input : Predictions p∗ = (p∗
1, . . . , p∗

|R|), confidence parameter 0 ≤ λ ≤ minr p∗
r , and c > d ≥ 1.

utput: Matching M .

hase I: /*Algorithm from [16]
or i = 1, . . . , ⌊n/c⌋ do

Observe arrival of node ℓi, and store all the edges adjacent to it.
nd
et L′ = {ℓ1, . . . , ℓ⌊n/c⌋} and M = ∅.
hase II:

or i = ⌊n/c⌋ + 1, . . . , ⌊n/d⌋ do
Set L′ = L′ ∪ ℓi.
Set M i = optimal matching on G[L′ ∪ R].
Let ei = (ℓi, r) be the edge assigned to ℓi in M i.
if M ∪ ei is a matching then

Set M = M ∪ {ei}.
end

nd
hase III: /*Threshold greedy algorithm

or i = ⌊n/d⌋ + 1, . . . , n do
Set ri = argmaxr{w(vi, r) : r ∈ N (vi), w(vi, r) ≥ p∗

r − λ and r /∈ R[M]}
if ri ̸= ∅ then

Set M = M ∪ {ℓi, ri}.
end

nd

Theorem 4.1. For any λ ≥ 0 and c > d ≥ 1, there is a deterministic algorithm for the online bipartite
atching problem with uniformly random arrivals that is asymptotically gc,d,λ(η)-competitive in expectation,
here

gc,d,λ(η) =
{

max
{

1
c ln(cd),

[
d−1
2c

(
max

{
1 − (λ+η)|ψ|

OPT , 0
})]}

if 0 ≤ η < λ,

1
c ln(cd) if η ≥ λ.

}
,

nd |ψ| is the cardinality of an optimal (offline) matching ψ of the instance.

15

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

m
d
i

b
p
t
s

P
b

c

(
F
T
a
v

T
d
s

A
M

F
o

b
p
w
i
o
o

T
f
w

We note that both the cardinality |ψ| and the value OPT of an optimal matching appear in the competitive
ratio. If |ψ|/OPT → ∞ (when min{|R|, |L|} → ∞), this means that the weights of the edges in the optimal

atching become very small, in which case the function gc,d,λ(η) in Theorem 4.1 boils down 1
c ln(cd), which

oes not give an improved guarantee in case the predictions are accurate. Roughly speaking, Theorem 4.1
s only of interest when |ψ|/OPT stays bounded away from zero.

Note that Theorem 4.1 tells us that we will always have a worst-case guarantee of 1
c ln(cd) which is constant

ecause c and d are constant. In order to see how we can get close to a 1/2-approximation in case the
redictions are close to being perfect, we should set λ to be small. If then η < λ, roughly speaking meaning
hat the prediction is close to perfect, we get a bound of (d−1)/2c. If we therefore choose c/d close to 1 (but
till constant to ensure a constant worst-case guarantee), we can get arbitrarily close to a 1/2-approximation.

roof of Theorem 4.1. We provide two lower bounds on the expected value of the matching M output
y Algorithm 3.

First of all, the analysis of the algorithm of Kesselheim et al. [16] can be generalized to the setting we
onsider in the first and second phase. In particular, their algorithm then yields a(

1
c

− 1
n

)
ln

(c
d

)
-competitive approximation.

The 1/n factor is hidden in the statement of Theorem 4.1, following Remark 1.2, for sake of readability.)
or completeness, we present a proof of this statement in Appendix C.
he second bound we prove on the expected value of the matching M is based on the threshold greedy
lgorithm we use in the third phase. Let ψ ∈ M(G,w) be an optimal (offline) matching, with objective
alue OPT, and suppose that

η = max
r∈R

|ψr − p∗
r | < λ. (3)

he proof of the algorithm in [16] analyzes the expected value of the online vertices in L. Here we take a
ifferent approach and study the expected value of the edge weights adjacent to the nodes in r ∈ R. Fix
ome r ∈ R and consider the edge (ℓ, r) that is matched to r in the optimal offline matching ψ (if any).

Let Xr be a random variable denoting the value of node r ∈ R in the online matching M chosen by
lgorithm 3. Let Yℓ be a random variable that denotes the value of node ℓ ∈ L[ψ] in the online matching
. It is not hard to see that

E(w(M)) =
∑
r∈R

E(Xr) and E(w(M)) ≥
∑
ℓ∈L[ψ]

E(Yℓ). (4)

or the inequality, note that for any fixed permutation the value of the obtained matching is always larger
r equal to the sum of the values that were matched to the nodes ℓ ∈ L[ψ].

Now, consider a fixed edge (ℓ, r) that is contained in ψ. We will lower bound the expectation E(Xr + Yℓ)
ased on the expected value these nodes would receive, roughly speaking, if they get matched in the third
hase. Therefore, suppose for now that the event that r did not get matched in the second phase occurs, as
ell as the event that ℓ appears in the part of the uniformly random input sequence/permutation considered

n the third phase. We will later lower bound the probability with which these events occur. By definition
f the greedy threshold algorithm, we know that at the end of Phase III either node r ∈ R is matched, or
therwise at least node ℓ is matched to some other r′ ∈ R for which

w(ℓ, r′) ≥ w(ℓ, r) ≥ p∗
r − η ≥ p∗

r − λ. (5)

o see this, consider the following three cases: either ℓ got matched to r, or it got matched to some other r′

or which w(ℓ, r′) ≥ w(ℓ, r) ≥ p∗
r − λ, or r was matched earlier during the third phase to some other ℓ′ for

hich w(ℓ′, r) ≥ p∗ − λ.
r

16

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

T
(

F

w

a
i

4

t
r
r
o
m

p
a
i
w
S
w

F

Looking closely at the analysis of Kesselheim et al. [16], see Appendix C.3, it follows that the probability
that a fixed node r did not get matched in the second phase satisfies

P(r was not matched in Phase II) ≥ d

c
− o(1).

his lower bound is true, independently of whether or not ℓ appeared in Phase III, or the first two phases
see Appendix C). This event that ℓ appeared in Phase III holds with probability (1 − 1/d). Therefore,

P(r was not matched in Phase II and ℓ arrives in Phase III) ≥
(
d

c
− o(1)

) (
1 − 1

d

)
= d− 1

c
− o(1).

urthermore, we have from the arguments before (5) that under this condition either Xr ≥ p∗
r − λ or

Yℓ ≥ p∗
r − λ. This implies that

E(Xr + Yℓ) ≥
(
d− 1
c

− o(1)
)

(p∗
r − λ). (6)

By adding up the (in)equalities in (4), and combining this with (6), we get

2 · E(w(M)) ≥
(
d− 1
c

− o(1)
) ∑
r∈R[ψ]

(p∗
r − λ) ≥

(
d− 1
c

− o(1)
)

(OPT − (λ+ η)|ψ|)

assuming that OPT − (λ+ η)|ψ| ≥ 0. In the last inequality, we use the definition of η in (3). Rewriting this
gives

E(w(M)) ≥
(
d− 1

2c − o(1)
) (

1 − (λ+ η)|ψ|
OPT

)
· OPT,

hich yields the desired bound. □

It is interesting to note that Theorem 4.1 does not seem to hold if we interchange the second and the
third phase. In particular, if the predictions are too low, we most likely match up too many nodes in r ∈ R

lready in the second phase (which is now the threshold greedy algorithm). Indeed, a similar calculation as
n the proof of Theorem 4.1 seems to yield a worst bound, but we leave this to the interested reader.

.2. Randomized algorithm

If we allow randomization, we can give better approximation guarantees than the algorithm given in
he previous section, by using a convex combination of the algorithm of Kesselheim et al. [16], and the
andomized algorithm of Huang et al. [45] for online vertex-weighted bipartite matching with uniformly
andom arrivals. We only sketch this idea here. We give a simple, generic way to reduce an instance of
nline bipartite matching with predictions p∗

r for r ∈ R to an instance of online vertex-weighted bipartite
atching with vertex weights (that applies in case the predictions are accurate).
Suppose we are given an algorithm A for instances of the online vertex-weighted bipartite matching

roblem that is α-competitive. If the predictions would be perfect, we can do the following. Whenever a node
rrives, we only focus on edges whose weight matches the predicted value p∗

r . To be precise, consider the
nstance in which we leave out all edges (ℓ, r) for which w(ℓ, r) ̸= p∗

r . If we run algorithm A on this instance,
e obtain a matching that is α-competitive with respect to the optimal matching under the predicted values.
ince the predictions are perfect, this also gives an α-competitive algorithm for the original instance (on
hich we run the algorithm that makes the same decisions as algorithm A).
In case the predictions are accurate, but not perfect, we need a slightly more general version of this idea.

ix some small parameter λ > 0 up front and assume that η < λ. We assume λ and η to be small as we are

17

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

g
t
β

A
p

i
i
a
o
I
b
n

a
b

R
i
a
e
e

a
A
e
i

5

p
u
a
i

arguing about the case where the predictions are accurate. Whenever a vertex ℓ arrives online we only take
into account edges (ℓ, r) with the property that w(ℓ, r) ∈ [p∗

r − λ, p∗
r + λ], and ignore all edges that do not

satisfy this property. To be precise, we can consider the instance of the vertex-weighted bipartite matching
problem in which we leave out all edges for which w(ℓ, r) ∈ [p∗

r−λ, p∗
r+λ] and where the (offline) vertices are

iven the weights p∗
r . The decision we make in the original instance, are the decisions that A would make on

he modified instance. Because we assume η to be small, this will give us an algorithm that is approximately
(λ)-competitive, with limλ→0 β(λ) = α.

The 0.6534-competitive algorithm of Huang et al. [45] is the currently best known randomized algorithm
for online vertex-weighted bipartite matching with uniformly random arrivals, and can be used for our

urposes with α = 0.6534.

5. Deterministic graphic matroid secretary algorithm

In this section we will study the graphic matroid secretary problem. Here, we are given a (connected)
graph G = (V,E) of which the (uniform random) input sequence is formed by the edges of E, i.e., the edges
n E arrive one-by-one in an online fashion. There is an edge weight function w : 2E → R≥0 and a weight
s revealed if an edge arrives. The goal is to select a forest (i.e., a subset of edges that does not give rise to

cycle) of maximum weight. The possible forests of G form the independent sets of the graphical matroid
n G. It is well-known that the offline optimal solution of this problem is maximum weight spanning tree.
t can be found by the greedy algorithm that first orders all the edge weights in decreasing order. It then
uilds a spanning tree by repeatedly adding edges to an initially empty set, all the while making sure that
o cycles are introduced. This is known as Kruskal’s algorithm.

We will next explain the predictions that we consider in this section. For every node v ∈ V , we let p∗
v be

prediction for the maximum edge weight maxu∈N (v) wuv adjacent to v ∈ V . The prediction error is defined
y

η = max
v∈V

⏐⏐p∗
v − wmax(v)

⏐⏐, where wmax(v) = max
u∈N (v)

wuv.

emark 5.1. Although the given prediction is formulated independently of any optimal solution (as we did
n the previous sections), it is nevertheless equivalent to a prediction regarding the maximum weight wuv
djacent to v ∈ V in an optimal (greedy) solution. To see this, note that the first time Kruskal’s algorithm
ncounters an edge weight wuv adjacent to v, for some u, it can always be added as currently there is no
dge adjacent to v. I.e., adding the edge {u, v} cannot create a cycle.

Before we give the main result of this section, we first provide a deterministic (1/4 − o(1))-competitive
lgorithm for the graphic matroid secretary problem in Section 5.1, which is of independent interest.
lthough this does not improve over the approximation guarantee of the randomized algorithm of Soto

t al. [18], our algorithm is deterministic. We then continue with an algorithm incorporating the predictions
n Section 5.2.

.1. Deterministic approximation algorithm

In this section, we provide a deterministic (1/4 − o(1))-approximation for the graphic matroid secretary
roblem. For a given undirected graph G = (V,E), we use the bipartite graph interpretation that was also
sed in [19]. That is, we consider the bipartite graph BG = (E ∪ V,A), where an edge {e, v} ∈ A, for e ∈ E

nd v ∈ V , if and only if v ∈ e. Note that this means that every e = {u, v} is adjacent to precisely u and v

n the bipartite graph B . Moreover, the edge weights for {e, v} and {e, u} are both w (which is revealed
G e

18

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

o
c
g
M

{
a

a
u
p
w
c
t

c

d

O

P
f

e
L
P
f

e

i
o

upon arrival of the element e).8 We emphasize that in this setting, the e ∈ E are the elements that arrive
online.

Algorithm 4 is very similar to the algorithm in [16] with the only difference that we allow an edge {e, u}
r {e, v} to be added to the currently selected matching M in BG if and only if both nodes u and v are
urrently not matched in M . In this section we often represent a (partial) matching in BG by a directed
raph (of which its undirected counterpart does not contain any cycle). In particular, given some matching

in BG, we consider the directed graph DM with node set V . There is a directed edge (u, v) if and only if
e, v} is an edge in M , where e = {u, v} ∈ E. Note that every node in DM has an in-degree of at most one
s M is a matching.

Using the graph DM it follows that if both u and v are not matched in the current matching M , then
dding the edge {e, u} or {e, v} can never create a cycle in the graph formed by the elements e ∈ E matched
p by M , called E[M], which is the currently chosen independent set in the graphic matroid. We will next
rove this claim. Note that the set E[M] is precisely the undirected counterpart of the edges in DM together
ith {u, v}. For sake of contradiction, suppose adding the edge {u, v} to E[M] would create an (undirected)
ycle C. As both u and v have in-degree zero (as they are unmatched in M), it follows that some node on
he cycle C must have two incoming directed edges in the graph DM . This yields a contradiction.

We note that, although u and v being unmatched is sufficient to guarantee that the edge {u, v} does not
reate a cycle, this is by no means a necessary condition.

Although the optimal choice of the parameter c equals c = 2 in Algorithm 4, we include a general
escription which is handy for when we want to include predictions in the next section.

ALGORITHM 4: Deterministic graphic matroid secretary algorithm
Input : Bipartite graph GB = (E ∪ V, A) for undirected weighted graph G = (V, E), with |E| = m, and

parameter c > 0.
utput: Matching M of GB corresponding to forest in G.

hase I:
or i = 1, . . . , ⌊m/c⌋ do

Observe arrival of element ei, but do nothing.
nd
et E′ = {e1, . . . , e⌊m/c⌋} and M = ∅.
hase II:

or i = ⌊m/c⌋ + 1, . . . , m do
Let E′ = E′ ∪ ei.
Let M i = optimal matching on BG[E′ ∪ V].
Let ai = {ei, u} be the edge assigned to ei = {u, v} in M i (if any).
if M ∪ ai is a matching and both u and v are unmatched in M then

Set M = M ∪ ai.
end

nd

Theorem 5.2. Algorithm 4 is a deterministic (1/4 − o(1))-competitive algorithm for the graphic matroid
secretary problem for c = 2.

Proof (Sketch). The proof proceeds along similar lines as the proof in Appendix C, but is technically more
nvolved this time. Roughly speaking, it can be shown that the expected contribution of node ℓ in Phase II
f Algorithm 4 this time is at least

⌊m/c⌋ − 1
(ℓ− 1) − 1 · ⌊m/c⌋

ℓ− 1 · OPT
m

,

8 We call the edges in E (of the original graph G) elements, in order to avoid confusion with the edges of B .
G

19

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

O

P
f

e
L
P
f

e
P
f

e

i
4

T

ALGORITHM 5: Graphic matroid secretary algorithm with predictions
Input : Bipartite graph GB = (E ∪ V, A) for undirected graph G = (V, E) with |E| = m. Predictions

p = (p∗
1, . . . , p∗

n). Confidence parameter 0 ≤ λ ≤ mini p∗
i and c > d ≥ 1.

utput: Matching M of GB corresponding to forest in G.

hase I:
or i = 1, . . . , ⌊m/c⌋ do

Let ei = {u, v}.
Set tv = max{tv, w(u, v)} and tu = max{tu, w(u, v)}.

nd
et E′ = {e1, . . . , e⌊m/c⌋} and M = ∅.
hase II:

or i = ⌊m/c⌋ + 1, . . . , ⌊m/d⌋ do
Let ei = {u, v}, S = {x ∈ {u, v} : x /∈ E[M] and w(u, v) ≥ max{tx, p∗

x − λ}} and yi = argmaxx∈Sp∗
x − λ.

if E[M] ∪ {ei} does not contain a cycle then
Set M = M ∪ {ei, yi}.

end
nd
hase III:

or i = ⌊m/d⌋ + 1, . . . , m do
Let E′ = E′ ∪ ei.
Let M i = optimal matching on BG[E′ ∪ V].
Let ai = {ei, u} be the edge assigned to ei = {u, v} in M i (if any).
if M ∪ ai is a matching and both u and v are unmatched in M then

Set M = M ∪ ai.
end

nd

where m = |E| is the total number of edges and c a parameter that determines the length of the two phases
n Algorithm 4. Summing up over all ℓ in Phase II, we obtain that the expected value obtained by Algorithm
is at least

OPT

m

m∑
ℓ=⌊m/c⌋+1

⌊m/c⌋ − 1
(ℓ− 1) − 1 · ⌊m/c⌋

ℓ− 1 ≥ OPT
(
c− 1
c2 − o(1)

)
.

his quantity is maximized for c = 2, yielding the desired result. The full proof is given in Appendix D □

5.2. Algorithm including predictions

In this section we will augment Algorithm 4 with the predictions for the maximum edge weights adjacent
to the nodes in V . We will use the bipartite graph representation BG as introduced in Section 5. Algorithm
5 consists of three phases, similar to Algorithm 3.

Instead of exploiting the predictions in Phase III, we already exploit them in Phase II for technical reasons.
Roughly speaking, in Phase II, we run a greedy-like algorithm that selects for every node v ∈ V at most
one edge that satisfies a threshold based on the prediction for node v and the best edges seen in Phase I
adjacent to v. The latter is done to guarantee that we do not select too many edges when the predictions
are poor (in particular when they are too low). A similar idea has already been used in Algorithm 1 for the
secretary problem.
20

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

s

l
i
p

P
v

i
v

a
Q

I
P

o

a
t

N
a

a
(

W

(
s
o

Theorem 5.3. For any λ ≥ 0 and c > d ≥ 1, there is a deterministic algorithm for the graphic matroid
ecretary problem that is asymptotically gc,d,λ(η)-competitive in expectation, where

gc,d,λ(η) =

⎧⎨⎩max
{
d−1
c2 , 1

2
(1
d − 1

c

) (
1 − 2(λ+η)|V |

OPT

)}
if 0 ≤ η < λ,

d−1
c2 if η ≥ λ.

If λ is small, we roughly obtain a bound of (1/d−1/c)/2 in case η is small, and a bound of (d−1)/c2 if η is
arge. Note that the roles of c and d have interchanged w.r.t. Algorithm 3 as we now exploit the predictions
n Phase II instead of Phase III. Roughly speaking, if d → 1 and c → ∞ we approach a bound of 1/2 if the
redictions are good, whereas the bound of (d− 1)/c2 becomes arbitrarily bad.

roof of Theorem 5.3. As in the proof of Theorem 4.1, we provide two lower bounds on the expected
alue on the matching M outputted by Algorithm 5. We first provide a bound of

1
2

(
1
d

− 1
c

) (
1 − 2(λ+ η)|V |

OPT

)
OPT

n case the prediction error is small, i.e., when η < λ. For simplicity we focus on the case where for each
∈ V , the weights of the edges adjacent to v in G are distinct.9

For every v ∈ V , let emax(v) be the (unique) edge adjacent to v with maximum weight among all edges
djacent to v. Consider the fixed order (e1, . . . , em) in which the elements in E arrive online, and define

= {v ∈ V : emax(v) arrives in Phase II}. We will show that the total weight of all edges selected in Phase
I is at least 1

2
∑
v∈Q(p∗

v − (λ + η)). Let T ⊆ Q be the set of nodes for which the edge emax(v) arrives in
hase II, but for which v does not get matched up in Phase II.
In particular, let v ∈ T and consider the step ℓ in Phase II in which emax(v) = {u, v} arrived. By definition

f η, and because η < λ, we have

w(u, v) = wmax(v) ≥ max{tv, p∗
v − η} ≥ max{tv, p∗

v − λ}, (7)

nd so the pair {ei, v} is eligible (in the sense that v ∈ S). Since v did not get matched, one of the following
wo holds:

(i) The edge emax(v) got matched up with u.
(ii) Adding the edge {emax(v), v} to M would have yielded a cycle in E[M] ∪ emax(v).

ote that it can never be the case that we do not match up emax(v) to u for the reason that it would create
cycle. This is impossible as both u and v are unmatched.
Now, in the first case, since u is matched it must hold that w(u, v) ≥ max{tu, p∗

u−λ}, and p∗
u−λ ≥ p∗

v−λ
s v was eligible to be matched up in the online matching M (but it did not happen). Further, combining
7) and the definition of yi in Phase II, yields

2w(u, v) ≥ (p∗
u − λ) + (p∗

v − η) ≥ (p∗
u − η − λ) + (p∗

v − η − λ). (8)

e call u the (i)-proxy of v in this case.
In the second case, if adding emax(v) would have created an (undirected) cycle in the set of elements

i.e., the forest) selected so far, this yields a unique directed cycle in the graph DM defined in the previous
ection. If not, then there would be a node with two incoming arcs in DM , as every arc on the cycle is
riented in some direction. This would imply that M is not a matching.

9 For the general case, one can use a global ordering on all edges in E and break ties where needed.
21

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

w
w
s

t
w

W
p
t

w

Let e′ = {u, z} ∈ E be the element corresponding to the incoming arc at u in DM . Note that by
assumption u is already matched up, as emax(v) creates a directed cycle in DM∪emax(v). That is, we have
{e′, u} ∈ M . Then, by definition of η, we have

η + p∗
u ≥ emax(u) ≥ w(u, v) ≥ p∗

v − η, (9)

where the last inequality holds by (7). Combining (9) with the fact that w(u, z) ≥ p∗
u − λ (because {u, z}

got matched up to u), and the fact that emax(v) ≥ p∗
v − η, by (7), it follows that

2w(u, z) ≥ [p∗
u − (λ+ η)] + [p∗

v − (λ+ η)]. (10)

In this case, we call u the (ii)-proxy of v.

Claim 5.4. For any distinct v, v′ ∈ T , their corresponding proxies u and u′ are also distinct.

Proof. Suppose that u = u′. The proof proceeds by case distinction based on the proxy types.

1. u = u′ is defined as (i)-proxy for both v and v′: This cannot happen as u = u′ would then have been
matched up twice by Algorithm 5.

2. u = u′ is defined as (ii)-proxy for both v and v′: In this case there is a directed cycle with the arc
(u, v) = (u′, v) and another directed cycle with the arc (u′, v′) = (u, v′). Hence, there is a vertex with
two incoming arcs in DM . This also means that Algorithm 5 has matched up a vertex twice, which is
not possible.

3. u = u′ is defined as (i)-proxy for v and as (ii)-proxy for v′: Then emax(v), which gets matched up with
u = u′, must have arrived before emax(v′). If not, then both v′ and u = u′ would have been unmatched
when emax(v′) arrived and we could have matched it up with at least v′ (as this cannot create a cycle
since u = u′ is also not matched at that time). This means that when emax(v′) arrived, the reason that
we did not match it up to v′ is because this would create a directed cycle in DM∪emax(v′). But, as u
has an incoming arc from v in DM , this means that the directed cycle goes through v, which implies
that v did get matched up in Phase II, which we assumed was not the case.

This concludes the proof of the claim. □

Using Claim 5.4 in combination with (8) and (10), we then find that

w[MII] ≥ 1
2

∑
v∈Q

[p∗
v − (λ+ η)],

here MII contains all the edges obtained in Phase II. Roughly speaking, for every edge emax(v) that
e cannot select in Phase II, there is some other edge selected in Phase II that ‘covers’ its weight in the

ummation above (and for every such v we can find a unique edge that has this property).
Now, in general, we have a uniformly random arrival order, and therefore, for every v ∈ V , the probability

hat edge emax(v) arrives in Phase II equals 1
d − 1

c . Therefore, with expectation taken over the arrival order,
e have

E[MII] ≥ 1
2

(
1
d

− 1
c

) ∑
v∈V

(p∗
v − (λ+ η)) ≥ 1

2

(
1
d

− 1
c

) (
1 − 2(λ+ η)|V |

OPT

)
OPT.

e continue with the worst-case bound that holds even if the prediction error is large. We first analyze the
robability that two given nodes u and v do not get matched up in Phase II. Here, we will use the thresholds
v defined in Algorithm 5.

Conditioned on the set of elements A that arrived in Phase I/II, the probability that the maximum edge
eight adjacent to v, over all edges adjacent to v in A, appears in Phase I is at equal to (d/c). This implies

that v will not get matched up in Phase II, by definition of Algorithm 5. The worst-case bound of (d−1)/c2

is proven in Appendix E along similar lines as Appendices C and D. □
22

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

a
e
r
t

6

i
d
s
p
f
i
r

D

A

I
t
K
p

A

c

t

5.3. Randomized algorithm with predictions

For the graphic matroid secretary problem with prediction there is also a (randomized) convex com-
bination possible between two algorithms that either fully exploit, or completely ignore, the prediction,
respectively. We can use the 4-competitive algorithm of Soto et al. [18] as the algorithm that completely
ignores the prediction. An algorithm that fully exploits the predictions is given by the one that runs Phase II
of Algorithm 5 on the whole input sequence. That is, we lower every prediction p∗

x by λ. We then repeatedly
dd an edge whose weight exceeds p∗

x − λ whenever it does not create a cycle with the already selected
dges. In case the predictions are close to perfect, this algorithm is 1/2-competitive. There might be better
andomized (or deterministic) algorithms for exploiting the predictions when they are accurate, but we leave
his for future work.

. Conclusion

Our results can be seen as the first evidence that online selection problems are a promising area for the
ncorporation of machine learned advice following the frameworks of [5,6]. Many interesting problems and
irections remain open. For example, does there exist a natural prediction model for the general matroid
ecretary problem? It is still open whether this problem admits a constant-competitive algorithm. Is it
ossible to show that there exists an algorithm under a natural prediction model that is constant-competitive
or accurate predictions, and that is still O(1/ log(log(r)))-competitive in the worst case, matching the results
n [23,24]? Furthermore, although our results are optimal within this specific three phased approach, it
emains an open question whether they are optimal in general for the respective problems.

ata availability

No data was used for the research described in the article

cknowledgments

An extended abstract of this work appeared in the Proceedings of the 34th Conference on Neural
nformation Processing Systems (NeurIPS 2020). This version contains all proofs and additional remarks
hat were omitted in the NeurIPS proceedings version (due to space constraints). We would like to thank
urt Mehlhorn for drawing our attention to the area of algorithms augmented with machine learned
redictions. Antonios Antoniadis was supported by German Science Foundation grant AN 1262/1-1.

ppendix A. Smoothing out the discontinuity of Theorem 3.1

We show that the discontinuity at η = λ, in Theorem 3.1, can be smoothed out by selecting λ according
to some distribution with mean representing our confidence in the prediction p∗. Further, we study the
ompetitive ratio as a function of the prediction error η.

We note that Algorithm 1 although deterministic, can be relatively easily transformed to an algorithm
hat picks the confidence parameter λ ∈ [0, p∗] according to some probability distribution. Algorithm 1 is

then the special case where the whole probability mass of the distribution is at one point in [0, p∗].
This naturally gives rise to the question of whether there exists a distribution that outperforms the

deterministic algorithm. It can be relatively easily seen, that the deterministic algorithm with λ = η is
the best possible competitive ratio that can be obtained with such an approach. Therefore, a randomized

algorithm can at best match the deterministic one with λ = η, and this happens only in the case in the

23

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

x

c
o
w
r

c

a
f

w

b

A

g

Fig. A.3. A comparison the deterministic (in red) and randomized (in blue) choice of λ. The y-axes are the competitive ratio, the
-axes are the prediction error η, and all figures consider p∗ = 100. In Fig. A.3(a) we take λ = 25 for the deterministic algorithm and
hoose λ according to the uniform distribution in (20, 30) for the randomized one. In Fig. A.3(b) we have λ ≈ 25 for the deterministic
ne and the normal distribution with mean 25 and variance 10. Finally, in Fig. A.3(c) we have λ ≈ 25, and the normal distribution
ith mean 0 and variance 32. All plots have c = 2. (For interpretation of the references to color in this figure legend, the reader is

eferred to the web version of this article.)

enter of mass of the used distribution is at η. Since η is unknown to the algorithm, it is not possible to
select a distribution that outperforms any deterministic algorithm for all possible η’s.

Despite that, it may still be advantageous to pick λ at random according to some distribution, in order to
void the “jump” that occurs at η = λ in the competitive ratio of the deterministic algorithm. In particular
or an appropriate distribution with density function hλ(x) the expected competitive ratio is given by:

Eλ [gc,λ(η)] = Pr[λ < η] · 1
ce

+ f(c)
∫ p∗

η

hλ(x)
(

1 − x+ η

OPT

)
dx,

hich can be seen as a convex combination of two competitive ratios.
Some example distributions and how they compare to an algorithm that selects λ deterministically can

e seen in Fig. A.3.

ppendix B. Perfect matching instances

Given an undirected weighted bipartite graph G′ = (L′ ∪R′, E′, w′) we construct an augmented bipartite
raph G = (L ∪R,E,w) as follows:
24

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

I
O

p
n

O

P
f

e
L
P
f

e

(i) the left node set L = L′; (ii) the right node set R = R′ ∪ L′; (iii) the edge set E = E′ ∪ F ′ where
the set F ′ consists of edges {ui, vi} such that ui and vi are the ith node in L and L′ respectively, for all
i ∈ {1, . . . , |L|}; (iv) w(e) = w′(e) for all edges e ∈ E′ and w(e) = 0 for all edges e ∈ F ′.

We call the resulting bipartite graph G perfect.

Fact B.1. Suppose G = (L∪R,E,w) is a perfect bipartite graph. Let ℓ ∈ {1, . . . , |L|} be an arbitrary index
and L(ℓ) = {S ⊆ L : |S| = ℓ} be the set of all subsets of nodes in L of size ℓ. Then, for every subset S ∈ L(ℓ)
the induced subgraph G[S ∪N(S)] has a perfect matching MS of size ℓ, i.e., |MS | = |S| = ℓ.

Appendix C. General analysis of the algorithm of Kesselheim et al. [16]

In this section, we analyze a modified version of the algorithm of Kesselheim et al. [16], see Algorithm 6.
Our analysis extends the proof techniques presented in [16, Lemma 1].

Theorem C.1. Given a perfect bipartite graph, Algorithm 6 is (1
c − 1

n) ln c
d competitive in expectation.

n addition, the expected weighted contribution of the nodes {⌊n/d⌋ + 1, . . . , n} to the online matching M is
PT · (1

c − 1
n) ln d.

For convenience of notation, we will number the vertices in L from 1 to n in the random order they are
resented to the algorithm. Hence, we will use the variable ℓ as an integer, the name of an iteration and the
ame of the current node (the last so far).

ALGORITHM 6: Online bipartite matching algorithm (under uniformly random vertex arrivals)
Input : Vertex set R and cardinality |L| = n.

utput: Matching M .

hase I:
or ℓ = 1, . . . , ⌊n/c⌋ do

Observe arrival of node ℓ, but do nothing.
nd
et L′ = {1, . . . , ⌊n/c⌋} and M = ∅.
hase II:

or ℓ = ⌊n/c⌋ + 1, . . . , ⌊n/d⌋ do
Let L′ = L′ ∪ ℓ.
Let M (ℓ) = optimal matching on G[L′ ∪ R].
Let e(ℓ) = (ℓ, r) be the edge assigned to ℓ in M (ℓ).
if M ∪ e(ℓ) is a matching then

Set M = M ∪ {e(ℓ)}.
end

nd

Organization
In Appendix C.1, we present the notation. In Appendix C.2, we give the main structural result and prove

Theorem C.1. In addition, in Appendix C.3, we give a lower bound on the probability that an arbitrary node
r ∈ R remains unmatched after the completion of Phase II.

C.1. Notation

Consider the following random process:

25

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

i
s

t
r

C

w

P

G

S

P

Sample uniformly at random a permutation of the nodes L. Let Lℓ be a list containing the first ℓ nodes
n L, in the order as they appear, and let M (ℓ) be the corresponding optimum matching of the induced
ubgraph G(ℓ) on the node set Lℓ ∪N(Lℓ).

Let E(ℓ) be the event {e(ℓ) ∪M is a matching}, where (r.v.) M is the current online matching. Note that
he existence of edge (r.v.) e(ℓ) is guaranteed by Fact B.1 and G is a perfect bipartite graph. We define a
andom variable

Aℓ =
{
w(e(ℓ)) , if event E(ℓ) occur;
0 , otherwise.

C.2. Structural Lemma

Lemma C.2. Suppose G = (L ∪ R,E,w) is a perfect bipartite graph. Then, for every c > 1 it holds for
every ℓ ∈ {⌊n/c⌋ + 1, . . . , n} that

E[Aℓ] ≥ ⌊n/c⌋
n

· OPT
ℓ− 1 .

Before we prove Lemma C.2, we show that it implies Theorem C.1.

.2.1. Proof of Theorem C.1
Using Lemma C.2, we have

E

⎡⎣n/d∑
ℓ=1

Aℓ

⎤⎦ =
n/d∑

ℓ=⌊n/c⌋+1

E [Aℓ] ≥
n/d∑

ℓ=⌊n/c⌋+1

⌊n/c⌋
n

· OPT
ℓ− 1 ≥ OPT ·

(
1
c

− 1
n

)
· ln c

d
,

here the inequalities follow by combining ⌊n/c⌋
n ≥ 1

c − 1
n and

n/d∑
ℓ=⌊n/c⌋+1

1
ℓ− 1 =

n/d−1∑
ℓ=⌊n/c⌋

1
ℓ

≥ ln n/d

⌊n/c⌋
≥ ln c

d
.

C.2.2. Proof of Lemma C.2
We prove Lemma C.2 in two steps. Observe that E[Aℓ | � E(ℓ)] = 0 implies

E [Aℓ] = E
[
w(e(ℓ)) | E(ℓ)

]
· Pr

[
E(ℓ)

]
.

We proceed by showing, in Lemma C.3, that E
[
w(e(ℓ)) | E(ℓ)] ≥ OPT

n , and then in Lemma C.4 that
r

[
E(ℓ) | E(ℓ)] ≥ ⌊n/c⌋

ℓ−1 .
Let S be a subset of L of size ℓ, and let MS be the optimum weighted matching w.r.t. the induced subgraph

[S ∪ N(S)]. For a fixed subset S ⊆ L with size ℓ, let Rℓ(S) be the event that {the node set of Lℓ equals
}, i.e. Set(Lℓ) = S. Let L(ℓ) be the set of all subsets of L of size ℓ, i.e., L(ℓ) = {S ⊆ L : |S| = ℓ}.

Lemma C.3. For every perfect bipartite graph G = (L ∪R,E,w) it holds that

E
[
w(e(ℓ)) | E(ℓ)

]
≥ OPT

n
.

roof. Using conditional expectation,

E
[
w(e(ℓ)) | E(ℓ)

]
=

∑
E

[
w(e(ℓ)) | Rℓ(S) ∧ E(ℓ)

]
· Pr [Rℓ(S)] . (C.1)
S∈L(ℓ)

26

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

w
h

L

P
e

Since the order of L is sampled u.a.r. we have Pr [Rℓ(S)] = 1/
(
n
ℓ

)
, and thus it suffices to focus on the

conditional expectation

E
[
w(e(ℓ)) | Rℓ(S) ∧ E(ℓ)

]
=

∑
e(i)∈MS

w(e(i)) · Pre(ℓ)∼MS

[
e(ℓ) = e(i)

]
= 1
ℓ

∑
e(i)∈MS

w(e(i)). (C.2)

here the last equality uses G is a perfect bipartite graph and Fact B.1. Then, by combining (C.1),(C.2) we
ave

E
[
w(e(ℓ)) | E(ℓ)

]
= 1(

n
ℓ

) · 1
ℓ

∑
S∈L(ℓ)

∑
e(i)∈MS

w(e(i)). (C.3)

Observe that for any subset S ⊆ L, it holds for M⋆|S = {e(i) = (i, ri) ∈ M⋆ : i ∈ S} the restriction of
the optimum matching M⋆ (w.r.t. the whole graph G) on S that∑

e(i)∈MS

w(e(i)) ≥
∑

e(i)∈M⋆|S

w(e(i)). (C.4)

Further, since every vertex i ∈ L(M⋆) appears in
(
n−1
ℓ−1

)
many subsets of size ℓ and

(
n−1
ℓ−1

)
/
(
n
ℓ

)
= ℓ/n, it

follows by (C.3),(C.4) that

E
[
Aℓ | E(ℓ)

]
≥ 1(

n
ℓ

) · 1
ℓ

∑
S∈L(ℓ)

∑
e(i)∈M⋆|S

w(e(i))

=
(
n−1
ℓ−1

)(
n
ℓ

) · 1
ℓ

∑
e(i)∈M⋆

w(e(i)) = OPT

n
. □

emma C.4. For every perfect bipartite graph G = (L ∪R,E,w) it holds that

Pr
[
E(ℓ)

]
≥ ⌊n/c⌋

ℓ− 1 . (C.5)

roof. For a fixed subset S ⊆ L with size ℓ, let F (i)
S,ℓ be the event that {event Rℓ(S) occurs} and {the edge

(ℓ) = (i, ri)}. Then, by conditioning on the choice of subset S ∈ L(ℓ), we have

Pr
[
E(ℓ)

]
= 1(

n
ℓ

) ∑
S∈L(ℓ)

Pr
[
e(ℓ) ∪M is a matching | Rℓ(S)

]
= 1(

n
ℓ

) 1
ℓ

∑
S∈L(ℓ)

∑
(i,ri)∈MS

Pr
[
(i, ri) ∪M is a matching | F (i)

S,ℓ

]
. (C.6)

Note that in (C.6), the subset S ⊆ L with size ℓ and the edge (i, ri) ∈ MS are fixed!
Given the first k nodes of L, in the order as they arrive, and the corresponding perfect matching (r.v.)

M (k), let (r.v.) e(k) = (k, rk) be the edge matched in (r.v.) M (k) from the last node (r.v.) k. Note that since
G is perfect, it follows by Fact B.1 that edge e(k) exists and |M (k)| = k. We denote by (r.v.) M (k)[k] the
corresponding right node rk.

Let Qk be the event that

{node ri ̸∈ M (k)} ∨
{

{node ri ∈ M (k)} ∧ {M (k)[k] ̸= ri}
}
.

Then, we have

Pr
[
(i, ri) ∪M is a matching | F (i)

S,ℓ

]
= Pr

⎡⎣ ℓ−1⋀
Qk | F (i)

S,ℓ

⎤⎦ . (C.7)

k=⌊n/c⌋+1

27

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

c

W
e

a

S

h

Observe that the probability of event � Qk is equal to

Pr
[
{node ri ∈ M (k)} ∧

{
{node ri /∈ M (k)} ∨ {M (k)[k] = ri}

}]
= Pr

[
{node ri ∈ M (k)} ∧ {M (k)[k] = ri}

]
. (C.8)

Let Wi,t be the event that F (i)
S,ℓ ∧

(⋀t−1
j=kQj

)
for t ∈ {k+ 1, . . . , ℓ− 1}, and Wi,k be the event F (i)

S,ℓ. Using
onditional probability, we have

Pr

⎡⎣ ℓ−1⋀
k=⌊n/c⌋+1

Qk | F (i)
S,ℓ

⎤⎦ = Pr [Qℓ−1 | Wi,ℓ−1] · · ·Pr [Qk+1 | Wi,k+1] · Pr [Qk | Wi,k] . (C.9)

e now analyze the terms in (C.9) separately. Let T (i, k) be the set of all matchings M (k) satisfying the
vent F (i)

S,ℓ ∧ {node ri ∈ M (k)}. Using (C.8), we have

Pr
[
� Qk | F (i)

S,ℓ

]
= Pr

[
{node ri ∈ M (k)} ∧ {M (k)[k] = ri} | F (i)

S,ℓ

]
≤ Pr

[
M (k)[k] = ri | F (i)

S,ℓ ∧ {node ri ∈ M (k)}
]

= 1
|T (i, k)|

∑
M ′∈T (i,k)

1
|M ′|

= 1
k
, (C.10)

where the last equality follows by Fact B.1 and G is perfect. Thus,

Pr [Qk | Wi,k] = 1 − Pr
[
� Qk | F (i)

S,ℓ

]
≥ 1 − 1

k
. (C.11)

Similarly, for t ∈ {k + 1, . . . , ℓ− 1} we have

Pr [� Qt | Wi,t] ≤ Pr
[
M (t)[t] = ri | Wi,t ∧ {node ri ∈ M (t)}

]
= 1
t
,

nd therefore
Pr [Qt | Wi,t] = 1 − Pr [� Qt | Wi,t] ≥ 1 − 1

t
. (C.12)

By combining (C.7),(C.9),(C.11),(C.12), we obtain

Pr
[
(i, ri) ∪M is a matching | F (i)

S,ℓ

]
≥

ℓ−1∏
k=⌊n/c⌋+1

(
1 − 1

k

)
= ⌊n/c⌋

ℓ− 1 . (C.13)

ince every summand in (C.6) is lower bounded by (C.13), we have

Pr
[
E(ℓ) | E(ℓ)

∃

]
≥ ⌊n/c⌋

ℓ− 1 . □

C.3. Algorithm 3 (Omitted Proofs)

We now lower bound the probability that an arbitrary node r ∈ R remains unmatched after the
completion of Phase II in Algorithm 3. Our analysis uses similar arguments as in Lemma C.4, but for the
sake of completeness we present the proof below.

Lemma C.5. For every constants c ≥ d ≥ 1 and for every perfect bipartite graph G = (L ∪ R,E,w), it
olds for every node r ∈ R that

Pr [r is not matched in Phase II] ≥ d − o(1).

c

28

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

P

Proof. Observe that

Pr [r is not matched in Phase II] = Pr

⎡⎣ ⌊n/d⌋⋀
k=⌊n/c⌋+1

Qk

⎤⎦ .
Using (C.13), we have

Pr [r is not matched in Phase II] ≥
⌊n/d⌋∏

k=⌊n/c⌋+1

(
1 − 1

k

)
≥ ⌊n/c⌋

⌊n/d⌋
≥ d

c
− d

n
. □

Appendix D. Deterministic graphic matroid secretary algorithm

In this section, we analyze the competitive ratio of Algorithm 4.
Theorem 5.2. The deterministic Algorithm 4 is (1/4 − o(1))-competitive for the graphic matroid secretary

problem.
The rest of this section is devoted to proving Theorem 5.2, and is organized as follows. In Appendix D.1,

we give two useful summation closed forms. In Appendix D.2, we present our notation. In Appendix D.3,
we extend Lemma C.2 to bipartite-matroid graphs. In Appendix D.4, we prove Theorem 5.2.

D.1. Summation bounds

Claim D.1. For any k ∈ N and n ∈ N+, we have

n+k∑
ℓ=n

1
ℓ · (ℓ+ 1) = k + 1

n(n+ k + 1) .

roof. The proof is by induction. The base case follows by

1
n

· 1
n+ 1 + 1

n+ 1 · 1
n+ 2 = 2

n(n+ 2) .

Our inductive hypothesis is
∑n+k
ℓ=n

1
ℓ·(ℓ+1) = k+1

n(n+k+1) . Then, we have

n+k+1∑
ℓ=n

1
ℓ

· 1
ℓ+ 1 = k + 1

n(n+ k + 1) + 1
n+ k + 1 · 1

n+ k + 2 = 1
n+ k + 1

[
k + 1
n

+ 1
n+ k + 2

]
= 1
n+ k + 1

[
(k + 1)(n+ k + 1) + n+ k + 1

n(n+ k + 2)

]
= k + 2
n(n+ k + 2) . □

Claim D.2. For any c > 1, it holds that

f(c, n) := 1
n

n−1∑
ℓ=⌊n/c⌋

(⌊n/c⌋ − 1) ⌊n/c⌋
(ℓ− 1)ℓ = ⌊n/c⌋

n
·
[
n− 1
n− 2 − ⌊n/c⌋

n− 2

]
?
c− 1
c2 .

In particular, the lower bound is maximized for c = 2 and yields f(2, n) ? 1/4.

Proof. By Claim D.1, we have

n−1∑ 1
ℓ− 1 · 1

ℓ
=

⌊n/c⌋+[n−⌊n/c⌋−2]∑ 1
ℓ

· 1
ℓ+ 1 = n− ⌊n/c⌋ − 1

(⌊n/c⌋ − 1) (n− 2) ,

ℓ=⌊n/c⌋ ℓ=⌊n/c⌋−1

29

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

F
m

D

{
a
{
m

D

L
(

H

L

and thus

1
n

n−1∑
ℓ=⌊n/c⌋

(⌊n/c⌋ − 1) ⌊n/c⌋
(ℓ− 1)ℓ = (⌊n/c⌋ − 1) ⌊n/c⌋

n
· n− ⌊n/c⌋ − 1

(⌊n/c⌋ − 1) (n− 2)

= ⌊n/c⌋
n

·
[
n− 1
n− 2 − ⌊n/c⌋

n− 2

]
≥

(
1
c

− 1
n

)
·
[
1 + 1

n− 2 − n

n− 2 · 1
c

]
?

1
c

·
[
1 − 1

c

]
= c− 1

c2 .

Let g(x) = (x− 1)/x2. Observe that its first derivative satisfies

d

dx
g(x) = x2 − (x− 1)2x

x4 = x(2 − x)
x4 = 0 ⇐⇒ x1 = 0 x2 = 2.

urther, g(x) decreases in the range [−∞, 0], increases in [0, 2] and again decreases in [2,∞]. Hence, we have
axx>0 g(x) = g(2) = 1/4. □

.2. Notation

Given an undirected weighted graph G′ = (V,E′, w′), we construct the bipartite graph BG = (L ∪R,E)
with weight function w as follows: Let the set of the right nodes be R = V ; (ii) the set of the left nodes
be L = E′, i.e., {u, v} ∈ L if {u, v} ∈ E′; (iii) and for each edge in {u, v} ∈ E′ we insert two edges
{u, v}, u}, {{u, v}, v} ∈ E with equal weight w({{u, v}, u}) = w({{u, v}, v}) = w′({u, v}). Note that
lthough in Algorithm 4 M (ℓ) is a (normal) matching, M is a special kind of matching, since for an edge
{u, v}, u} ∈ E (similarly {{u, v}, v} ∈ E) to be matched it is required that both nodes u, v ∈ R are not yet
atched. To emphasize this, we refer to M as a matching⋆.

.3. Structural Lemma

We now extend Lemma C.2.

emma D.3. Suppose BG = (L ∪ R,E) is the bipartite graph representation of G with weight function w

as in Appendix D.2). Then, for every c > 1 it holds for every ℓ ∈ {⌊m/c⌋ + 1, . . . ,m} that

E[Aℓ] ≥ ⌊m/c⌋ − 1
(ℓ− 1) − 1 · ⌊m/c⌋

ℓ− 1 · OPT
m

.

It is straightforward to verify that the analogue of Lemma C.3 holds, and yields

E
[
w(e(ℓ)) | E(ℓ)

]
≥ OPT

m
.

ence, to prove Lemma D.3 it remains to extend the statement of Lemma C.4.

emma D.4. Suppose BG = (L ∪ R,E) is the bipartite graph representation of G with weight function w

(as in Appendix D.2). Then

Pr
[
E(ℓ)

]
≥ ⌊m/c⌋ − 1 · ⌊m/c⌋

.
(ℓ− 1) − 1 ℓ− 1
30

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

{
o

a

H

D

T

A

A

T

Proof. We follow the proof in Lemma C.4, with the amendment that a node {uk, vk} ∈ L and an edge
{uk, vk}, rk} ∈ E. Recall that for a fixed subset S ⊆ L with size ℓ and an edge (i, ri) ∈ MS , we can condition
n the event F (i)

S,ℓ that {the node set of Lℓ equals S} and {the edge e(ℓ) = (i, ri)}.
Let Qrk be the event that

{node r ̸∈ M (k)} ∨
{

{node r ∈ M (k)} ∧ {M (k)[k] ̸= r}
}
,

nd let Pk be the event that Qui
k ∧Q

vi
k . Then, we have

Pr
[
{{ui, vi}, ri} ∪M is a matching⋆ | F (i)

S,ℓ

]
= Pr

⎡⎣ ℓ−1⋀
k=⌊m/c⌋+1

Pk | F (i)
S,ℓ

⎤⎦ .
Combining the Union bound and (C.10), yields

Pr
[
� Pk | F (i)

S,ℓ

]
= Pr

[
� Q

ui
k ∨ � Q

vi
k | F (i)

S,ℓ

]
≤ Pr

[
� Q

ui
k | F (i)

S,ℓ

]
+ Pr

[
� Q

vi
k | F (i)

S,ℓ

]
≤ 2
k
.

ence, using similar arguments as in the proof in Lemma C.4, we have

Pr
[
E(ℓ)

]
≥

ℓ−1∏
k=⌊m/c⌋+1

(
1 − 2

k

)
= ⌊m/c⌋ − 1

(ℓ− 1) − 1 · ⌊m/c⌋
ℓ− 1 . □

.4. Proof of Theorem 5.2

Using Lemma D.3, we have

E

[
m∑
ℓ=1

Aℓ

]
=

m∑
ℓ=⌊m/c⌋+1

E [Aℓ] ≥ OPT

m

m∑
ℓ=⌊m/c⌋+1

⌊m/c⌋ − 1
(ℓ− 1) − 1 · ⌊m/c⌋

ℓ− 1 .

he statement follows by Claim D.2 and noting that

1
m

m∑
ℓ=⌊m/c⌋+1

⌊m/c⌋ − 1
(ℓ− 1) − 1 · ⌊m/c⌋

ℓ− 1 ≥
(
c− 1
c2 − o(1)

)
≥

(
1
4 − o(1)

)
. (D.1)

ppendix E. Graphic matroid secretary algorithm with predictions

In this section, we prove the worst-case bound of (d − 1)/c2 in Theorem 5.3, by analyzing Phase III of
lgorithm 5.

heorem E.1. The Phase III in Algorithm 5 is (d−1
c2 − o(1))-competitive.

The rest of this section is denoted to proving Theorem E.1, and is organized as follows. In Appendix E.1,
we analyze the probability that a fixed pair of distinct vertices is eligible for matching in Phase III. In
Appendix E.2, we give a lower bound on the event that {e(ℓ) ∪ M is a matching⋆}. In Appendix E.3, we
prove Theorem E.1.
31

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

C

P
L

b

n

l

a

E

m
s
ℓ

L
(

P
{
c

E.1. Pairwise node eligibility in Phase III

For any distinct nodes u, v ∈ R, we denote by Φ /∈M
u,v the event that

{u and v are not matched in Phase II}.

laim E.2. It holds that
Pr

[
Φ /∈M
u,v

]
≥

(
d

c

)2
·

1 − c
m

1 − d
m

.

roof. Let S be a random variable denoting the set of all nodes in L that appear in Phase I and Phase II.
et

e′
max(u, S) = arg max

{u,z}∈S
w(u, z)

e a random variable denoting the node {u, z} ∈ L with largest weight seen in the set S.
The proof proceeds by case distinction:
Case 1. Suppose e′

max(u, S) = e′
max(v, S), i.e., there is a node {u, v} ∈ S. Let Kr(S) be the event that

ode e′
max(r, S) ∈ S is sampled in Phase I. By conditioning on the choice of S, we have

Pr
[
Φ /∈M
u,v

]
=

∑
S

Pr [Kr(S) | S] · Pr [S] = m/c

m/d
·
∑
S

Pr [S] = d

c
.

Case 2. Suppose e′
max(u, S) ̸= e′

max(v, S), i.e., there are distinct nodes {u, x} ∈ S and {v, y} ∈ S with
argest weight, respectively from u and v. By conditioning on the choice of S, we have

Pr [Ku(S) ∧ Kv(S) | S] =
2
(m

c
2

)
· (md − 2)!
(md)! =

(
d

c

)2
·

1 − c
m

1 − d
m

,

nd thus
Pr

[
Φ /∈M
u,v

]
=

∑
S

Pr [Ku(S) ∧ Kv(S) | S] · Pr [S] =
(
d

c

)2
·

1 − c
m

1 − d
m

. □

.2. Lower bounding the Matching⋆ event

Recall that E(ℓ) denotes the event that {e(ℓ) ∪ M is a matching⋆}, where (r.v.) M is the current online
atching⋆, see Appendix D.2 for details. In order to control the possible negative side effect of selecting

uboptimal edges in Phase II, we extend Lemma D.4 and give a lower bound on the event E(ℓ) for any node
∈ L that appears in Phase III.

emma E.3. Suppose BG = (L ∪ R,E) is the bipartite graph representation of G with weight function w

as in Appendix D.2). Algorithm 5 guarantees in Phase III that

Pr
[
E(ℓ)

]
≥ ⌊m/d⌋ − 1

(ℓ− 1) − 1 · ⌊m/d⌋
ℓ− 1 · Pr

[
Φ /∈M
u,v

]
, ∀ℓ ∈ {⌊m/d⌋ + 1, . . . ,m}.

roof. We follow the proof in Lemma C.4, with the amendment that a node {uk, vk} ∈ L and an edge
{uk, vk}, rk} ∈ E. Recall that for a fixed subset S ⊆ L with size ℓ and a fixed edge {{ui, vi}, ri} ∈ MS , we
an condition on the event F (i)

S,ℓ that

{the set of nodes of L equals S} and {the edge e(ℓ) = {{u , v }, r }}.
ℓ i i i

32

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

T

E

e

F

Let Qrk be the event that

{node r ̸∈ M (k)} ∨
{

{node r ∈ M (k)} ∧ {M (k)[k] ̸= r}
}
,

and let Pk denotes the event Qui
k ∧Q

vi
k . The proof proceeds by case distinction:

Case 1. For ℓ = ⌊m/d⌋ + 1, we have

Pr
[
E(ℓ)

]
= Pr

[
{{ui, vi}, ri} ∪M is a matching⋆ | F (i)

S,ℓ

]
= Pr

[
Φ /∈M
u,v

]
.

Case 2. For ℓ = {⌊m/d⌋ + 2, . . . ,m}, we have

Pr
[
E(ℓ)

]
= Pr

[
{{ui, vi}, ri} ∪M is a matching⋆ | F (i)

S,ℓ

]
= Pr

⎡⎣ ℓ−1⋀
k=⌊m/d⌋+1

Pk | F (i)
S,ℓ ∧ Φ /∈M

u,v

⎤⎦ · Pr
[
Φ /∈M
u,v

]
.

Combining the Union bound and (C.10), yields

Pr
[
� Pk | F (i)

S,ℓ ∧ Φ /∈M
u,v

]
= Pr

[
� Q

ui
k ∨ � Q

vi
k | F (i)

S,ℓ ∧ Φ /∈M
u,v

]
≤ Pr

[
� Q

ui
k | F (i)

S,ℓ ∧ Φ /∈M
u,v

]
+ Pr

[
� Q

vi
k | F (i)

S,ℓ ∧ Φ /∈M
u,v

]
≤ 2
k
.

Hence, using similar arguments as in the proof of Lemma C.4, we have

Pr

⎡⎣ ℓ−1⋀
k=⌊m/d⌋+1

Pk | F (i)
S,ℓ ∧ Φ /∈M

u,v

⎤⎦ ≥
ℓ−1∏

k=⌊m/d⌋+1

(
1 − 2

k

)
= ⌊m/d⌋ − 1

(ℓ− 1) − 1 · ⌊m/d⌋
ℓ− 1 .

herefore, it holds that
Pr

[
E(ℓ)

]
≥ ⌊m/d⌋ − 1

(ℓ− 1) − 1 · ⌊m/d⌋
ℓ− 1 · Pr

[
Φ /∈M
u,v

]
. □

.3. Proof of Theorem 5.3

In this section, we analyze the expected contribution in Phase III. Our goal now is to lower bound the
xpression

E [Aℓ] = E
[
w(e(ℓ)) | E(ℓ)

]
· Pr

[
E(ℓ)

]
.

It is straightforward to verify that Lemma C.3 holds in the current setting and yields

E
[
w(e(ℓ)) | E(ℓ)

]
≥ OPT

m
.

urther, by Lemma E.3, it holds for every ℓ ∈ {⌊m/d⌋ + 1, . . . ,m} that

E [Aℓ] = E
[
w(e(ℓ)) | E(ℓ)

]
· Pr

[
E(ℓ)

]
≥ OPT

m
· ⌊m/d⌋ − 1

(ℓ− 1) − 1 · ⌊m/d⌋
ℓ− 1 · Pr

[
Φ /∈M
u,v

]
,

and thus
m∑

E [Aℓ] ≥ Pr
[
Φ /∈M
u,v

]
· OPT

m

m∑ ⌊m/d⌋ − 1
(ℓ− 1) − 1 · ⌊m/d⌋

ℓ− 1 .

ℓ=⌊m/d⌋+1 ℓ=⌊m/d⌋+1

33

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778

R

Hence, by combining the first inequality in (D.1) and Claim E.2, yields

E

⎡⎣ m∑
ℓ=⌊m/d⌋+1

Aℓ

⎤⎦ ≥
(
d

c

)2
(1 − o(1)) ·

(
d− 1
d2 − o(1)

)
·OPT

≥
(
d− 1
c2 − o(1)

)
·OPT.

eferences

[1] T. Kraska, A. Beutel, E.H. Chi, J. Dean, N. Polyzotis, The case for learned index structures, in: Proc. of the 2018
International Conference on Management of Data, SIGMOD, 2018, pp. 489–504.

[2] E.B. Khalil, B. Dilkina, G.L. Nemhauser, S. Ahmed, Y. Shao, Learning to run heuristics in tree search, in: Proc. of the
26th International Joint Conference on Artificial Intelligence, in: (IJCAI), 2017, pp. 659–666.

[3] D. Rohatgi, Near-optimal bounds for online caching with machine learned advice, in: Proc. of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2020, pp. 1834–1845.

[4] S. Lattanzi, T. Lavastida, B. Moseley, S. Vassilvitskii, Online scheduling via learned weights, in: Proc. of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2020, pp. 1859–1877.

[5] T. Lykouris, S. Vassilvitskii, Competitive caching with machine learned advice, in: Proc. of the 35th International
Conference on Machine Learning, (ICML), Vol. 80, 2018, pp. 3302–3311.

[6] M. Purohit, Z. Svitkina, R. Kumar, Improving online algorithms via ML predictions, in: Proc. of Advances in Neural
Information Processing Systems, (NeurIPS), 2018, pp. 9661–9670.

[7] S. Gollapudi, D. Panigrahi, Online algorithms for rent-or-buy with expert advice, in: Proc. of 36th International
Conference of Machine Learning, (ICML), 2019, pp. 2319–2327.

[8] M. Mitzenmacher, Scheduling with predictions and the price of misprediction, in: Proc. of the 11th Innovations in
Theoretical Computer Science Conference, (ITCS), in: LIPIcs, vol. 151, 2020, pp. 14:1–14:18.

[9] A.M. Medina, S. Vassilvitskii, Revenue optimization with approximate bid predictions, in: Proc. of the 31st International
Conference on Neural Information Processing Systems, (NeurIPS), 2017, pp. 1856–1864.

[10] M. Mitzenmacher, S. Vassilvitskii, Algorithms with predictions, Commun. ACM 65 (7) (2022) 33–35.
[11] A. Lindermayr, N. Megow (creators), Algorithms with predictions. URL https://algorithms-with-predictions.github.io/.
[12] M. Gardner, Mathematical games, Sci. Am. (1960) 150–153.
[13] D.V. Lindley, Dynamic programming and decision theory, J. R. Stat. Soc. 10 (1) (1961) 39–51.
[14] E.B. Dynkin, The optimum choice of the instant for stopping a Markov process, Sov. Math. Dokl 4 (1962).
[15] N. Korula, M. Pál, Algorithms for secretary problems on graphs and hypergraphs, in: Proc. of 36th International

Colloquium on Automata, Languages, and Programming, (ICALP), 2009, pp. 508–520.
[16] T. Kesselheim, K. Radke, A. Tönnis, B. Vöcking, An optimal online algorithm for weighted bipartite matching and

extensions to combinatorial auctions, in: Proc. of 21st European Symposium on Algorithms, (ESA), 2013, pp. 589–600.
[17] G. Aggarwal, G. Goel, C. Karande, A. Mehta, Online vertex-weighted bipartite matching and single-bid budgeted

allocations, in: Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2011, pp. 1253–1264.
[18] J.A. Soto, A. Turkieltaub, V. Verdugo, Strong algorithms for the ordinal matroid secretary problem, in: Proc. of the

29th Annual ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 715–734.
[19] M. Babaioff, N. Immorlica, D. Kempe, R. Kleinberg, Matroid secretary problems, J. ACM 65 (6) (2018).
[20] D. Bradac, A. Gupta, S. Singla, G. Zuzic, Robust algorithms for the secretary problem, in: Proc. of 11th Conference

on Innovations in Theoretical Computer Science Conference (ITCS), Vol. 151, 2020, pp. 32:1–32:26.
[21] A. Fiat, Y. Rabani, Y. Ravid, Competitive k-server algorithms, J. Comput. System Sci. 48 (3) (1994) 410–428.
[22] M. Mahdian, H. Nazerzadeh, A. Saberi, Online optimization with uncertain information, ACM Trans. Algorithms 8 (1)

(2012) 2:1–2:29.
[23] O. Lachish, O (log log rank) competitive ratio for the matroid secretary problem, in: Proc. of 55th Annual Symposium

on Foundations of Computer Science, (FOCS), 2014, pp. 326–335.
[24] M. Feldman, O. Svensson, R. Zenklusen, A simple o (log log (rank))-competitive algorithm for the matroid secretary

problem, in: Proc. of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2014, pp. 1189–1201.
[25] N.B. Dimitrov, C.G. Plaxton, Competitive weighted matching in transversal matroids, Algorithmica 62 (1) (2012)

333–348.
[26] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, K. Talwar, Secretary problems: weights and discounts, in: Proc.of the

20th Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 1245–1254.
[27] T. Kesselheim, R. Kleinberg, R. Niazadeh, Secretary problems with non-uniform arrival order, in: Proc. of the 47th

Annual ACM Symposium on Theory of Computing, (STOC), 2015, pp. 879–888.
[28] P. Garg, S. Kale, L. Rohwedder, O. Svensson, Robust algorithms under adversarial injections, 2020, arXiv preprint ar

Xiv:2004.12667.
[29] H. Kaplan, D. Naori, D. Raz, Competitive analysis with a sample and the secretary problem, in: Proc. of the 14th

Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2020, pp. 2082–2095.
[30] J. Correa, A. Cristi, B. Epstein, J. Soto, Sample-driven optimal stopping: From the secretary problem to the iid prophet
inequality, 2020, arXiv preprint arXiv:2011.06516.

34

http://refhub.elsevier.com/S1572-5286(23)00020-8/sb1
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb1
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb1
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb2
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb2
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb2
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb3
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb3
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb3
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb4
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb4
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb4
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb5
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb5
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb5
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb6
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb6
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb6
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb7
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb7
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb7
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb8
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb8
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb8
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb9
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb9
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb9
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb10
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb12
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb13
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb14
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb15
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb15
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb15
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb16
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb16
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb16
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb17
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb17
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb17
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb18
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb18
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb18
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb19
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb20
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb20
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb20
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb21
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb22
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb22
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb22
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb23
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb23
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb23
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb24
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb24
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb24
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb25
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb25
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb25
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb26
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb26
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb26
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb27
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb27
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb27
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://arxiv.org/abs/2004.12667
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb29
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb29
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb29
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516
http://arxiv.org/abs/2011.06516

A. Antoniadis, T. Gouleakis, P. Kleer et al. Discrete Optimization 48 (2023) 100778
[31] J. Correa, A. Cristi, L. Feuilloley, T. Oosterwijk, A. Tsigonias-Dimitriadis, The secretary problem with independent
sampling, in: Proc. of the 32nd ACM-SIAM Symposium on Discrete Algorithms, SODA, 2021, pp. 2047–2058.

[32] B. Lucier, An economic view of prophet inequalities, ACM SIGecom Exch. 16 (1) (2017) 24–47.
[33] J. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, T. Vredeveld, Recent developments in prophet inequalities, ACM

SIGecom Exch. 17 (1) (2019) 61–70.
[34] U. Krengel, L. Sucheston, On semiamarts, amarts, and processes with finite value, Adv. Appl. Probab. 4 (197–266)

(1978) 1–5.
[35] R. Kleinberg, S.M. Weinberg, Matroid prophet inequalities and applications to multi-dimensional mechanism design,

Games Econom. Behav. 113 (2019) 97–115.
[36] S. Ehsani, M. Hajiaghayi, T. Kesselheim, S. Singla, Prophet secretary for combinatorial auctions and matroids, in: Proc.

of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2018, pp. 700–714.
[37] P.D. Azar, R. Kleinberg, S.M. Weinberg, Prophet inequalities with limited information, in: Proc. of the 25th Annual

ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2014, pp. 1358–1377.
[38] J. Wang, The prophet inequality can be solved optimally with a single set of samples. arXiv Preprint arXiv:1812.10563.
[39] J. Correa, P. Dütting, F. Fischer, K. Schewior, Prophet inequalities for I.I.D. Random variables from an unknown

distribution, in: Proc. of the 20th ACM Conference on Economics and Computation, (EC), 2019, pp. 3–17.
[40] J.R. Correa, A. Cristi, B. Epstein, J.A. Soto, The two-sided game of googol and sample-based prophet inequalities, in:

Proc. of the 31st ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2020, pp. 2066–2081.
[41] P. Dütting, T. Kesselheim, Posted pricing and prophet inequalities with inaccurate priors, in: Proc. of the 20th ACM

Conference on Economics and Computation, (EC), 2019, pp. 111–129.
[42] P. Dütting, S. Lattanzi, R. Paes Leme, S. Vassilvitskii, Secretaries with advice, in: Proc. of the 22nd ACM Conference

on Economics and Computation, EC, 2021, pp. 409–429.
[43] R.M. Karp, U.V. Vazirani, V.V. Vazirani, An optimal algorithm for on-line bipartite matching, in: Proc. of the 22nd

Annual ACM Symposium on Theory of Computing, (STOC), 1990, pp. 352–358.
[44] M. Mahdian, Q. Yan, Online bipartite matching with random arrivals: an approach based on strongly factor-revealing

lps, in: Proc. of the 43rd Annual ACM Symposium on Theory of Computing, (STOC), 2011, pp. 597–606.
[45] Z. Huang, Z.G. Tang, X. Wu, Y. Zhang, Online vertex-weighted bipartite matching: Beating 1-1/e with random arrivals,

ACM Trans. Algorithms (TALG) 15 (3) (2019) 1–15.
35

http://refhub.elsevier.com/S1572-5286(23)00020-8/sb31
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb31
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb31
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb32
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb33
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb33
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb33
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb34
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb34
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb34
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb35
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb35
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb35
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb36
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb36
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb36
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb37
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb37
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb37
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://arxiv.org/abs/1812.10563
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb39
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb39
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb39
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb40
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb40
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb40
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb41
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb41
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb41
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb42
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb42
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb42
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb43
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb43
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb43
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb44
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb44
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb44
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb45
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb45
http://refhub.elsevier.com/S1572-5286(23)00020-8/sb45

	Secretary and online matching problems with machine learned advice
	Introduction
	Our models and contributions
	Meta Result

	Related work

	Preliminaries
	Online algorithms with uniformly random arrivals
	Graph theoretical notation
	Lambert W-function

	Secretary problem
	Deterministic algorithm
	Straightforward randomization

	Online bipartite matching with random arrivals
	Deterministic algorithm
	Randomized algorithm

	Deterministic graphic matroid secretary algorithm
	Deterministic approximation algorithm
	Algorithm including predictions
	Randomized algorithm with predictions

	Conclusion
	Data availability
	Acknowledgments
	Appendix A. Smoothing out the discontinuity of Theorem 3.1
	Appendix B. Perfect Matching Instances
	Appendix C. General analysis of the algorithm of Kesselheim KRTV2013
	Organization
	Notation
	Structural Lemma
	Proof of Theorem C.1
	Proof of Lemma C.2

	Algorithm 3 (Omitted Proofs)

	Appendix D. Deterministic Graphic Matroid Secretary Algorithm
	Summation bounds
	Notation
	Structural Lemma
	Proof of Theorem 5.2

	Appendix E. Graphic Matroid Secretary Algorithm with Predictions
	Pairwise Node Eligibility in Phase III
	Lower Bounding the Matching⋆ Event
	Proof of Theorem 5.3

	References

