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ABSTRACT

Shape encoding and shape analysis are valuable tools for comparing shapes and for dimensionality
reduction. A specific framework for shape analysis is the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework, which is capable of shape matching and dimensionality reduction.
Researchers have recently introduced neural networks into this framework. However, these works
can not match more than two objects simultaneously or have suboptimal performance in shape
variability modeling. The latter limitation occurs as the works do not use state-of-the-art shape
encoding methods. Moreover, the literature does not discuss the connection between the LDDMM
Riemannian distance and the Riemannian geometry for deep learning literature. Our work aims
to bridge this gap by demonstrating how LDDMM can integrate Riemannian geometry into deep
learning. Furthermore, we discuss how deep learning solves and generalizes shape matching and
dimensionality reduction formulations of LDDMM. We achieve both goals by designing a novel
implicit encoder for shapes. This model extends a neural network-based algorithm for LDDMM-
based pairwise registration, results in a nonlinear manifold PCA, and adds a Riemannian geometry
aspect to deep learning models for shape variability modeling. Additionally, we demonstrate that the
Riemannian geometry component improves the reconstruction procedure of the implicit encoder in
terms of reconstruction quality and stability to noise. We hope our discussion paves the way to more
research into how Riemannian geometry, shape/image analysis, and deep learning can be combined.

Keywords shapes · Riemannian geometry · principal geodesic analysis · LDDMM · diffeomorphic registration · latent
space · implicit neural representations

1 Introduction

The shape of objects is an interesting quantity to analyze. For instance, as the human anatomy varies from person
to person, shape registration transforms the anatomical shapes into a single coordinate frame. Once the shapes are
registered, it is possible to compare them and establish correspondences between them. Various registration frameworks
are available, among which is the diffeomorphic registration framework known as Large Deformation Diffeomorphic
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Metric Mapping (LDDMM), which also has applications in other inverse problems such as indirect image registration
[1, 2, 3] and motion estimation [4, 5]. Standard LDDMM registration algorithms take a specific formulation of the
LDDMM variational problem and solve it via gradient descent [6, 7, 8, 9, 10, 11]. Recently, techniques using machine
learning have been designed, such as the neural network-based algorithm called ResNet-LDDMM [12].

However, the latter algorithm and the standard algorithms only concern a registration between exactly two images
or shapes. They do not cover how to register and match multiple objects simultaneously, nor do they address how to
register a new object to a group of previously registered objects. Groupwise registration algorithms [13, 14, 15, 10]
address these challenges by registering all the objects to the same estimated template shape. Registering a new object
to the group is accomplished by registering it to the template shape. However, to our knowledge, the use of neural
networks for LDDMM-based groupwise registration has not been thoroughly investigated in existing research.

Another important task besides shape registration is modeling the variability of the shape data. Using a Riemannian
distance on shape space, principal geodesic analysis (PGA) estimates the factors of variation given the shape data.
More precisely, similar to principal component analysis (PCA), PGA calculates a geodesic submanifold of the shape
manifold that explains most of the variability of the data. However, the restriction to geodesic submanifolds hinders
reconstruction performance and limits the factors of variation one can find. In particular, this applies to the PGA that
uses the Riemannian distance induced by LDDMM.

Besides the more mathematical shape analysis tools described above, deep learning has recently been used for shape
registration [16, 12, 17] and for shape variability modeling and shape reconstruction in computer vision [18, 19, 20] and
the medical domain [21, 22, 23]. Recently, the implicit representation of a shape gained a lot of attention, as combining
it with neural networks yields state-of-the-art results. For instance, the implicit neural representation (INR) methods
DeepSDF [24], SIREN [25], and Occupancy Network [26] yield state-of-the-art shape encodings and reconstructions.

Despite achieving state-of-the-art performance, INRs have drawbacks. For example, standard INR models lack shape
registration capabilities. To solve this issue, recent works [27, 28, 29] create template-based INR models that allow for
joint registration and encoding. These models parameterize a template shape with an INR and transform it into other
shapes to allow for shape matching. In the template-based approach, countless template and transformation pairs exist
that can reconstruct the same shape, similar to the infinite number of implicit representations representing a particular
shape. This is problematic because not every template and transformation pair matches the shape prior of the data. In
other words, the template-based models do not take into account the Riemannian geometry structure of the shape space,
which is used in PGA to define a proper deformation from the template to the reconstructed shapes. The most relevant
work that attempts to incorporate shape Riemannian geometry into an INR latent space model is Atzmon et al. [30].
However, their model can not perform shape encoding and shape analysis jointly.

The main issues of the existing approaches that we discussed are:

• Neural network-based algorithms for pairwise LDDMM registration lack generalization.
• LDDMM-based PGA can only look for geodesic submanifolds.
• Joint encoding and registration algorithms based on INRs lack the Riemannian geometry from PGA.

In this work, we introduce an approach that can jointly deal with these issues. Figure 1 shows the different paths to the
same model in blue. More precisely, we start at the Fréchet mean finding problem of LDDMM PGA and construct a
nonlinear extension of PGA by adding neural networks. The resulting model is a template-based INR model for jointly
encoding and matching shapes. It is similar to the deformable template model developed by Sun et al. [29]. However,
our model differs from theirs as we merge it with the LDDMM framework. Specifically, we use the Riemannian
deformation cost of LDDMM as a shape deformation regularizer. Furthermore, we consider point data instead of the
signed distance data used by Sun et al. [29].

The designed model can be seen as either:

• a nonlinear PGA,
• a joint encoding and registration algorithm based on deep learning that incorporates the Riemannian geometry

of the shape space,
• a generalization of ResNet-LDDMM [12].

First, we show that our method resembles PGA. More precisely, we establish that the Riemannian regularization is
required to simultaneously achieve two objectives: obtaining a template shape as the mean of the data and obtaining
physically plausible deformations that align the template to the data. Based on this observation, we also argue that our
shape encoding model has an added Riemannian geometry component. In addition, we discuss how our method can
easily match two new shapes, thus generalizing ResNet-LDDMM [12]. Finally, we show that the Riemannian geometry
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Figure 1: Our novel RSA-INR method can be derived in three different ways. First, RSA-INR extends the ResNet-
LDDMM pairwise registration algorithm by adding latent codes. This extension ensures straightforward calculation
of correspondences between two new shapes. Alternatively, our model extends shape variability modeling based on
LDDMM PGA by adding neural networks. Finally, we consider state-of-the-art INR latent space models for joint shape
encoding and shape analysis and add Riemannian geometry to the latent space.

leads to better reconstruction generalization compared to the model without it and the model with a regularization
that is not based on Riemannian geometry. We also demonstrate that our model is more robust against noise than the
other two models. The better reconstructions and the improved stability to noise show that the Riemannian regularizer
yields better factors of variation given the shape data. Summarizing, we show how shape/image analysis, Riemannian
geometry, and deep learning are connected and can reinforce each other.

The rest of the paper is organized as follows. In Section 2, we put our work into context by discussing related works.
Subsequently, we treat the background theory needed for our method. Specifically, we treat the implicit representation
of shapes (Section 3.1) and the LDDMM framework (Section 3.2). Section 4 introduces our neural network model
that uses a Riemannian regularization, resembles PGA, and allows for groupwise registration. We employ this model
in Section 5 where we compare it to the same model without the Riemannian regularization and to the model with
a non-Riemannian regularization. Finally, we discuss some limitations of our approach, discuss future work, and
summarize the paper in Sections 6 and 7. In the appendices, we provide additional experiments, additional details, and
some basics of Riemannian geometry.

2 Related work

In this section, we contextualize our contributions by discussing related literature on principal geodesic analysis (PGA),
Riemannian geometry for latent space models, and neural ordinary differential equations (NODE).

2.1 Principal geodesic analysis

Principal component analysis (PCA) is a well-known technique that has applications in, among others, dimensionality
reduction, data visualization, and feature extraction. In addition, the probabilistic extension of PCA, called Probabilistic
PCA, can also be used to generate new samples from the data distribution [31]. A limitation of PCA and probabilistic
PCA is that they can only be applied to Euclidean data and not Riemannian manifold-valued data. To solve this
limitation, principal geodesic analysis (PGA) [32] and probabilistic principal geodesic analysis (PPGA) [33] are
introduced as extensions of PCA and probabilistic PCA, respectively.

PGA is applied in various domains. For instance, optimal transport (OT) uses PGA to define Fréchet means and
interpolations of data distributions called barycenters [34, 35]. Shape analysis uses PGA as well [32]. Different versions
of shape PGA are obtained by choosing different Riemannian distances on the shape space. For instance, while in
Zhang and Fletcher [36] and Zhang et al. [37] an LDDMM-based distance is used for PGA, Heeren et al. [38] use a
thin shell energy as the Riemannian distance. Furthermore, besides shape analysis based on PGA, shape analysis tools
exist that use tangent PCA [39, 10] or that use a combination of tangent PCA and geodesic PCA [40].
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Similar to how an autoencoder is a nonlinear version of PCA, our encoding framework can be viewed as a nonlinear
version of PGA and PPGA. Another neural network model that can be regarded as a nonlinear version of PPGA is the
Riemannian variational autoencoder (Riemannian VAE) [41]. The Riemannian VAE only considers learning a latent
space for data on finite-dimensional Riemannian manifolds for which the exponential map and the Riemannian distance
have an explicit formula. Hence, it is not applicable to the infinite-dimensional Riemannian manifold of shapes for
which the LDDMM Riemannian distance does not have an explicit formula. Our deformable template model extends
the Riemannian VAE to this setting.

Bone et al. [42] construct a shape VAE that resembles PGA for shapes [36]. Similar to our work, they use an ordinary
differential equation (ODE) to deform a learned template shape to a reconstructed shape. Moreover, they introduce a
regularizer on the velocity vector fields to let the ODE flow be a diffeomorphism. In contrast, while Bone et al. [42]
consider the mesh representation of shapes, we consider the state-of-the-art implicit shape representation. This allows
us to get infinite-resolution shape reconstructions because the shapes are represented by the zero level set of a function.
In addition, our model extends the regularizer of Bone et al. to allow a rigidity prior on the template deformations. The
regularizer enforces a novel Riemannian structure on the implicit encoding space. Finally, in contrast to their work, we
are more interested in the effect of the regularization. First, we investigate whether the Riemannian regularization is
needed for the model to resemble PGA. Hence, we examine if Riemannian regularization is necessary to jointly learn a
proper template shape and physically plausible deformations from the template to the (reconstructed) training data.
Moreover, we demonstrate that the Riemannian regularization helps reconstruction generalization and helps the stability
of the reconstruction process.

2.2 Riemannian geometry for latent space models

Latent space models based on neural networks are used for, among others, dimensionality reduction, clustering, and data
augmentation. Most of these models have the drawback that distances between latent codes do not always correspond
to a ’semantic’ distance between the objects they represent. One mathematical tool to solve this issue is Riemannian
geometry. Arvanitidis et al. [43] design a Riemannian distance between latent codes by defining the corresponding
Riemannian metric. This metric is defined as the standard Euclidean metric pulled back under the action of the decoder.
The shortest paths under this Riemannian metric are found by solving the geodesic equation via a numerical solver.
However, one can also find the shortest path by solving the geodesic equation via Gaussian processes and fixed point
iterations [44]. Another approach is to solve the geodesic minimization problem [45, 46]. In Arvanitidis et al. [47]
a surrogate Riemannian metric is proposed that approximates the Euclidean pullback metric and yields more robust
calculations of shortest paths. In Chadebec et al. [46], the Riemannian metric is incorporated into a Hamiltonian
Markov Chain to sample from the posterior distribution of a VAE. Geng et al. [48] enforce a Riemannian distance
structure by encouraging Euclidean distances in latent space to equal the Riemannian distance in the original space.
Consequently, linear interpolations correspond to points on the learned manifold.

Besides using the Riemannian metrics and the shortest paths for defining good distances, creating good interpolations,
and defining probability distributions on the latent space, they are also used for improved shape generation [46], for
improved clustering [49, 46], and for data augmentation [50].

The nonlinear PGA that we deploy is related to the Riemannian geometry for latent space models literature. The reason
is that we embed a Riemannian distance between a learned template shape and the other shapes by using LDDMM as
Riemannian distance.

2.3 Neural ODEs

The neural ODE (NODE) [51] is a first-order differential equation where the time derivative is parameterized by a
neural network. It has applications in learning dynamics [52, 53, 54, 55], control [56, 57], generative modeling [51, 58],
and joint shape encoding, reconstruction, and registration [59, 19, 29]. Furthermore, there is a bidirectional connection
between the NODE and optimal transport (OT). First, due to the fluid dynamics formulation of OT [60], NODEs can
be used to solve high-dimensional OT problems [61]. In addition, the learned dynamics can be complex and require
many time steps to be solved accurately. As a consequence, training NODEs can be challenging and time-consuming.
OT-inspired regularization functionals solve this issue as they simplify the dynamics and reduce the time needed to
solve the NODE [62, 63].

Our framework fits the bidirectional connection of NODEs and OT. First, we use a neural ODE to solve the LDDMM
problem, which is a problem that in formulation bears similarities to the fluid dynamics formulation of OT. Hence, our
approach shares similarities with the works using NODEs to solve OT problems. In addition, we use cost functionals
inspired by LDDMM to regularize the NODE used for shape matching. This fits the works that use OT for regularizing
the dynamics of NODEs.
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3 Preliminaries

3.1 Implicit shape representations

Recently, the implicit shape representation has emerged in state-of-the-art deep learning algorithms dealing with shapes.
A shape S := {x | f(x) = c} is described by the c level set of a function f : Ω→ R on the image domain Ω ⊂ Rd.
Two examples of common implicit representations are the signed distance function (SDF) with c = 0 and the occupancy
function with c = 0.5, respectively:

SDFS(x) =

{
infy∈S‖x− y‖2 if x outside S,
− infy∈S‖x− y‖2 if x inside S, (1)

OCCS(x) =


0 if x outside S,
0.5 if x ∈ S,
1 if x inside S.

(2)

As opposed to the more traditional discrete representations such as point clouds, meshes, or voxel grids, the implicit
shape representation is a continuous representation as it represents the shape using a function. As a consequence,
we can obtain a mesh or point cloud at an arbitrary resolution by using marching cubes [64]. Unlike the discrete
representations, the implicit representation has the disadvantage that it does not provide point correspondences between
shape deformations.

3.2 Diffeomorphic shape matching and a distance on shape space

To match two shapes S and T , a function f(x) is constructed that assigns to each point x ∈ S a point f(x) ∈ T in a
meaningful way. For instance, when comparing two human shapes, one wants to match points on the arm of one human
with points on the same arm of the other human.

In this work, we focus on the diffeomorphic registration framework called Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [6]. The objective of LDDMM is to find a diffeomorphism φ : Ω→ Ω that matches two objects
O1 and O2 (e.g., images or shapes defined on Ω ⊂ Rd) by deforming O1 into O2. More precisely, LDDMM wants
φ ·O1 = O2 with φ ·O a left group action of the diffeomorphism group on the set of objects. For instance, an image
I : Ω → Rn can be deformed by a left group action φ · I := I ◦ φ−1 and a shape S := {x | x on the shape} can be
deformed by a left group action φ · S := φ(S).

To construct a diffeomorphism that achieves φ ·O1 = O2, LDDMM considers a subgroup of the diffeomorphism group.
This subgroup consists of diffeomorphisms emerging as flows of ordinary differential equations (ODEs). Define a time
dependent vector field v : Ω× [0, 1]→ Rd and assume vt := v(·, t) ∈ V for some Hilbert space V . The corresponding
ODE is dx

dt = vt(x) and it gives us a flow of diffeomorphisms:

∂φ

∂t
(x, t) = vt(φ(x, t)),

φ(x, 0) = x.
(3)

To make these ODE flows diffeomorphisms, one has to enforce smoothness on the velocity vector fields vt ∈ V .
Generally, this is accomplished by choosing an appropriate normed space V and assuming v ∈ L1([0, 1], V ) [6, 10, 65].
For conciseness, we leave out the details.

Using these considerations, the subgroup that LDDMM considers is defined as

G := {φ1 | φ1(·) := φ(·, 1) for φ in Equation (3), v ∈ L1([0, 1], V )}. (4)

There might exist multiple φ ∈ G such that φ ·O1 = O2 for objects O1 and O2. The LDDMM approach selects the
’smallest’ φ ∈ G such that φ ·O1 = O2. To define ’smallest’, LDDMM uses the following Riemannian distance ρG on
G:

ρG(φ0, φ1) := inf
φ∈G

(∫ 1

0

‖vt‖V dt | φ1 = φ ◦ φ0

)
, (5)

where ‖·‖V is a norm on V . The LDDMM approach selects the φ ∈ G such that φ ·O1 = O2 and ρG(id, φ) is small.
Alternatively, we can reformulate this problem as finding a distance between two objects O1 and O2:
Theorem 1 ([6]). Assume ‖·‖V is a norm on V and ρG is given by equation (5). Then we can define a distance
ρO(O1, O2) as

ρO(O1, O2) := inf
φ∈G

(ρG(id, φ) | O2 = φ ·O1) (6)

5



RSA-INR: Riemannian Shape Autoencoding via 4D Implicit Neural Representations A PREPRINT

or alternatively:

ρO(O1, O2) = min
vt

(∫ 1

0

‖vt‖V dt

)
s.t.

dφt
dt

= vt(φt), φ0 = id,

φ1 ·O1 = O2.

(7)

As mentioned above, the goal of LDDMM is to approximately solve Equations (6) and (7). However, it is known that
the solution φt to Equation (7) is reparameterization invariant. Hence, there exists an infinite number of φt that trace
out the same curve in the diffeomorphism group and that all have the same integral cost. To resolve this issue, LDDMM
minimizes an energy that is not reparameterization invariant. This is possible by the following theorem:

Theorem 2 ([6]). Assume ‖·‖V is a norm on V . Then we can define the energy EG between two diffeomorphisms as

EG(φ0, φ1) := inf
φ∈G

(∫ 1

0

‖vt‖2V dt | φ1 = φ ◦ φ0

)
.

Moreover, we define the induced energy EO as

EO(O1, O2) := inf
φ∈G

(EG(id, φ) | O2 = φ ·O1)

or alternatively:

EO(O1, O2) = min
vt

(∫ 1

0

‖vt‖2V dt

)
s.t.

dφt
dt

= vt(φt), φ0 = id,

φ1 ·O1 = O2.

(8)

It can be shown that any φt solving the energy minimization problem (8) solves the distance problem in Equation (7).
Conversely, any constant speed curve φt ∈ G (i.e., ‖vt‖V stays constant over time) that solves the distance problem in
Equation (7) solves the energy minimization problem in Equation (8).

Using Theorem 2, LDDMM solves optimization problem (8) instead of optimization problem (7). To solve the energy
minimization problem (8), LDDMM solves the relaxed problem:

min
vt

(∫ 1

0

‖vt‖2V dt

)
+

1

σ2
D(φ1 ·O1, O2)

s.t.
dφt
dt

= vt(φt), φ0 = id,

(9)

where D is some data fidelity term and σ ∈ R. For instance, when dealing with images, one can use D(I1, I2) =
‖I1 − I2‖2L2(Ω) and φ · I = I ◦ φ−1.

4 Riemannian autodecoder for implicit shape representation

In this section, we introduce our novel implicit shape encoder. First, we explain how our deformable template model
(see Figure 2) and our loss function are derived from the Fréchet mean finding problem in LDDMM PGA. Subsequently,
we parameterize the template by an INR, choose the data fitting term, and choose the regularization terms. Finally, we
treat how we numerically deform the template to obtain a reconstruction of a shape and we treat how we can obtain
latent codes for unseen shapes.

4.1 Autodecoder based on principal geodesic analysis

Our model builds upon the LDDMM method, which was discussed in Section 3.2. Moreover, it extends the model
proposed by Sun et al. [29] by adding an LDDMM-inspired regularization term. We now treat how our model can
be derived from the LDDMM Fréchet mean problem [13, 66, 14, 15], in particular from PGA that uses an LDDMM
distance [36, 37].

6
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Figure 2: Overview of our framework. We map a latent vector zi to a time dependent velocity vector field vt(·, zi) :=
v(·, t, zi). This defines a flow of diffeomorphisms φi via an ODE. The diffeomorphism φi(·, 1) creates (reconstructed)
shapes Si on a nonlinear non-geodesic subset of the Riemannian shape manifoldM by deforming a learned template T
via a group action: ci(t) = φi(·, t) · T . The goal is to learn the template T as Fréchet mean of the data and to learn the
ci(t) paths as geodesics onM between the template T and the data.

Assume we want to find the Fréchet mean based on LDDMM PGA [36, 37]. The Fréchet mean T should solve:

min
T

E
S∼ρ(S)

[
ρO(T ,S)2

]
,

with ρ(S) the distribution of shapes and ρO given as the distance in Equations (6) and (7). Using Theorem 2 and the
fact that we can normalize any curve φt to have constant ‖vt‖V , we can also minimize:

min
T

E
S∼ρ(S)

[EO(T ,S)] .

Writing out EO using Equation (8) and approximating the expectation using N training samples, we get:

min
{vi(·,t)}Ni=1,T

1

N

N∑
i=1

[∫ 1

0

‖vi(·, t)‖2V dt

]
s.t.

dφi
dt

(x, t) = vi(φi(x, t), t), φ0 = id,

φi(·, 1) · T = Si.

(10)

As in LDDMM, we turn the hard constraint into a soft constraint using a data fitting term D and a σ ∈ R:

min
{vi(·,t)}Ni=1,T

1

N

N∑
i=1

[
D (φi(·, 1) · T ,Si) + σ2

∫ 1

0

‖vi(·, t)‖2V dt

]
s.t.

dφi
dt

(x, t) = vi(φi(x, t), t), φ0 = id.

Finally, we parameterize the unknowns. We parameterize φi(·, 1) by specifying the corresponding flow in reverse
time. Defining zi as the latent code belonging to the shape Si and defining vϕ as a neural network, the reverse time
flow is given by dφt

dt (x, zi) = vϕ(φt(x, zi), t, zi). Moreover, we represent the template by Tθ for some parameters θ.
Combining this with an autodecoder strategy [24, 29] yields the final loss function:

min
θ,ϕ,{zi}Ni=1

1

N

N∑
i=1

[
D(φ1(·, zi)−1 · Tθ,Si) + σ2

∫ 1

0

‖vϕ(·, t, zi)‖2V dt

]
s.t.

d

dt
φt(x, zi) = vϕ(φt(x, zi), t, zi), φ0 = id.

(11)

7
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Hence, we do not use an encoder. We only need to optimize the decoder φ1(·, ·)−1 · Tθ and the latent codes zi
to reconstruct the training data. In Section 4.5, we discuss how to obtain latent codes of unseen shapes using the
autodecoder. For more information on autodecoders, we refer to the work of Park et al. [24].

After training, we can decode and reconstruct shapes by deforming Tθ via the group action φ1(·, z)−1 · Tθ. This also
ensures that the reconstruction is matched to the template. Consequently, we can match unseen shapes with each other
by pairing points that map to the same point on Tθ. Hence, we perform a groupwise registration using neural networks
and generalize ResNet-LDDMM [12].
Remark 1. Our derivation shows that the learned template shape Tθ should represent a Fréchet mean of the data. To
compute the Fréchet mean, we calculate the energies EO(Tθ,Si) via the vi in Equation (10) and the vϕ in Equation
(11). Hence, according to Theorem 2, we can use the decoder to estimate the distances ρO(Tθ,S) for reconstructed
shapes S. Furthermore, by definition of ρO, the deformation φt(·, zi) · Si should represent a geodesic from Si to the
learned template Tθ. Hence, if trained perfectly, the decoder transforms the template shape via a shape space geodesic
to the reconstructed shapes. Overall, we are enforcing a Riemannian structure on the latent space.

4.2 Choice of data fidelity

In this work, we represent the learnable template shape Tθ via an implicit representation (see Section 3.1). We make
the template shape learnable by parameterizing the implicit function representation by a neural network fθ : R3 → R,
making fθ an implicit neural representation (INR) [24, 26, 25, 67]. In this case, we define the group action in Equation
(11) by

I(x, z, t) = ((φt(·, z))−1 · fθ)(x) := fθ(φt(x, z)), (12)
where I(x, z, 0) equals the implicit representation of the template shape and I(x, z, 1) is the reconstructed implicit
representation of a shape S . We can get a mesh and point cloud for the reconstructed shape by applying marching cubes
on I(x, z, 1). Another strategy is to apply marching cubes to the template INR fθ to get a template meshMT and then
get the reconstructed meshMz by φ−1

1 (MT , z).

To fit the reconstructed implicit functions I(x, zi, 1) to the shapes Si, we need to choose a proper D in Equation (11).
Recent works that employ a deformable template for joint shape encoding and registration [28, 29] use D(I1, I2) =
‖I1 − I2‖2L2(Ω) with Ii an implicit representation of a shape. However, there are two issues with this data fitting term.

First, assume we have two circles of radii 0.75 and 0.1, respectively. Moreover, assume they are represented by their
SDF, as presented in Equation (1). These SDFs are shown in Figure 3.
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Figure 3: SDF values in [−1, 1]2 of a circle with radius 0.75 (left) and of a circle with radius 0.1 (right).

We note that minx∈Ω SDFS0(x) < minx∈Ω SDFS1(x) as dark blue is present in the figure of the circle with radius
0.75 but not in the other figure. This means there does not exist a diffeomorphism that matches the two implicit
representations (i.e., SDF images). However, in Equation (11) we want to diffeomorphically match both to the same
template implicit function. This is not possible as the two SDFs can not be diffeomorphically matched.

Additionally, a specific choice of implicit function influences the diffeomorphism we find. Assume shapes S0 and S1

are represented by implicit functions that can be exactly matched. If a point x0 in shape S0 has implicit function value s,
it must be matched with a point x1 in shape S1 that also has implicit function value s. By also matching points outside
and inside the shape based on information like the SDF value, we influence how the points on the shape are matched.

To overcome these issues, we take inspiration from an approach that learns signed distance functions for meshes and
point clouds [67]. Our approach uses the point cloud representation for the training shapes {Si}Ni=1 and uses the
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following data fidelity term D:

D(φ1(·, z)−1 · Tθ,Si) = E
x∈Si

[|I(x, z, 1)|+ τ (1− Fcos(∇xI(x, z, 1), ni(x)))] ,

with τ ∈ R, ni(x) the unit normal of the shape Si at x ∈ Si, and Fcos the cosine similarity:

Fcos(a, b) =
〈a, b〉2

max(‖a‖2, ‖b‖2, 10−8)
.

This data fitting term solves the previously mentioned issues since it only focuses on matching points on the training
shapes with points on the template shape. In other words, all points on the training shapes are matched to the zero level
set of the INR fθ. However, using only this loss function encourages fθ = 0 as this ensures that all points are matched
to the zero level set of fθ. To avoid this trivial template shape, we constrain the learned template in optimization
problem (11) via additional loss terms:

min
θ,ϕ,{zi}Ni=1

1

N

N∑
i=1

[
E

x∈Si
[|I(x, zi, 1)|+ τ (1− Fcos(∇xI(x, zi, 1), ni(x)))]

+β E
x∈Ω\Si

[exp (−α|I(x, zi, 1)|)] + σ2

∫ 1

0

‖vϕ(·, t, zi)‖2V dt

]
+ λ E

x∈Ω
[|‖∇xfθ(x)‖2 − 1|]

s.t.
d

dt
φt(x, zi) = vϕ(φt(x, zi), t, zi), φ0 = id,

I(x, z, t) := ((φt(·, z))−1 · fθ)(x) := fθ(φt(x, z)).

(13)

Here the penalty corresponding to λ ∈ R is an eikonal penalty, regularizing the template shape to be a signed distance
function as in Equation (1). This ensures that fθ 6= 0. Furthermore, the loss function involving the β parameter ensures
that only points on Si are matched to the zero level set of fθ. Both terms are inspired by Sitzmann et al. [25], Deng et
al. [27], and Gropp et al. [67].
Remark 2. Another approach to solve the issues is using the occupancy function in Equation (2) as an implicit repre-
sentation for the data and for the template shape. Earlier works using occupancy functions as implicit representations
are Mescheder et al. [26] and Niemeyer et al. [59]. The reason occupancy functions solve the issues is that we only
match points inside (outside) shape S0 to points inside (outside) shape S1 and do not take into account information like
the SDF value. As the occupancy function and the occupancy values resemble probabilities, we would use the binary
cross entropy loss as data fidelity term D in optimization problem (11) [26, 59]. However, as shown in Appendix C, our
strategy that uses point clouds as data representation allows for higher-quality reconstructions. As a consequence, we
use the point cloud data representation instead of the occupancy value data representation.

4.3 Choice of velocity field regularization term

For the norm ‖·‖V in optimization problem (11) we choose an isometric (rigid) deformation prior on the velocity vector
fields by combining the Killing energy [68, 69] with an L2(Ω) penalty:

‖v‖2V :=

∫
Ω

‖(Jxv) + (Jxv)T ‖2F + η‖v‖22dx, (14)

where Jxv is the Jacobian of v with respect to x and η ∈ R. If η and the functional in Equation (14) are small, then we
expect the template shape to deform almost isometrically to the reconstructed shapes via I(x, z, t) in Equation (12).
Moreover, as shown in Appendix B, under certain conditions the Killing energy can be viewed as an extension of a
standard norm used in LDDMM.

4.4 Solving the ordinary differential equation

To solve optimization problems (11) and (13), we need to parameterize the velocity vector field vϕ and solve the
resulting ordinary differential equation. Similarly to Gupta et al. [19] and Sun et al. [29], our model parameterizes vϕ
as a quasi-time-varying velocity vector field. Concretely, using χA as the indicator function of A, we define K neural
networks vϕk

: Ω→ Rd representing stationary velocity fields and define vϕ as

vϕ(x, t) =

K∑
k=1

χ[ k−1
K , k

K ](t) · vϕk
(x). (15)

9
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The main reason for this parameterization is that training time-varying velocity vector fields can be difficult as the
model does not have training data for 0 < t < 1. During training, we solve the ODE using an Euler discretization with
K time steps. Consequently, similar to ResNet-LDDMM [12], we approximate the ODE with a ResNet architecture.

4.5 Encoding objects

We use the strategy from DeepSDF [24] to encode (new) objects. More precisely, we solve the following optimization
problem for encoding the object S:

min
z
Drec(φ1(·, z)−1 · Tθ,S) + γ‖z‖22, (16)

where γ ∈ R, φ1 is defined via the ODE in optimization problems (11) and (13), Tθ is the learned template, and Drec
is some reconstruction data fitting term. For instance, in case S is represented by a mesh or a point cloud, we use
Ex∈S [|I(x, z, 1)|] as Drec with I(x, z, t) given by Equation (12).
Remark 3. Our encoding procedure presented in Equation (16) can be viewed as a nonlinear extension of the encoding
strategy in PGA [32]. In PGA, the first step is to find the Fréchet mean µ of the data. Subsequently, PGA identifies
a subspace V of the tangent space TµM such that most variability in the data is described by H = Expµ(V ), where
Expµ is the exponential map at µ. Finally, to project a data point x ∈M onto H , one calculates:

πH(x) = arg min
y∈H

d(x, y)2,

where d is the Riemannian distance on the Riemannian manifold M . Alternatively, this can be reformulated into a
minimization over the subspace V :

arg min
v∈V

d(x,Expµ(v))2.

Equation (16) resembles this optimization problem. First, we have x = S. Furthermore, φ1(·, z)−1 · Tθ should
approximate Expµ in case we consider the LDDMM manifold with µ = Tθ. Although Drec is not a Riemannian
distance, it replaces the Riemannian distance d, as also done in, e.g., Charlier et al. [40]. Finally, instead of searching
over the vector space V , we search over a latent space that defines φ1(·, z)−1 · Tθ. Hence, instead of finding an initial
velocity v ∈ V to define a point y = Expµ(v) on the manifold, we find a latent code z that determines a point on the
manifold.

5 Numerical results

We compare our model that uses the Riemannian integral regularization on the flow (see Equation (13)) to our model
without flow regularization and to our model using the pointwise regularization as presented in Appendix D.2. The
latter model is the baseline model by Sun et al. [29] with a different data fitting term and a different approach to
solving the ordinary differential equation. First, we show that only our Riemannian model can be seen as a nonlinear
PGA. We achieve this by visualizing the learned templates and the learned deformations from the template to the
training shapes, and we argue that only the model with the integral regularization incorporates a Riemannian geometry
aspect in the latent space. Subsequently, we discuss reconstruction generalization and robustness of the reconstruction
procedure to noisy data. This discussion shows the effect of our Riemannian regularizer on the quality and stability of
the reconstruction procedure.

We conducted these experiments on two datasets: a synthetic rectangles dataset and a shape liver dataset [29, 70]. For
details about the data source, the data preprocessing, and the training, we refer to Appendix D.

5.1 Learning shape fréchet means

After training, we obtain the template shapes in Figures 4 and 5. We notice that regularization is necessary to get a
template shape that represents the mean of the data. When using regularization, the templates look almost identical for
the liver dataset. On the other hand, the templates for the rectangles dataset differ. The difference stems from the used
η parameter in Equation (14), where η = 0.05 for the rectangles dataset and η = 50 for the liver dataset. We choose
η = 0.05 for the rectangles dataset as we expect rigid body motions from the template to the training shapes. For the
liver dataset, we do not expect such rigid body motions and pick η larger.

As η = 50 for the liver dataset, ‖·‖V ≈ η‖·‖L2(Ω). The pointwise loss can be interpreted as a non-Riemannian version
of the integral regularization with ‖·‖V = ‖·‖L2(Ω) (see Appendix D.2). Hence, as ‖·‖V ≈ η‖·‖L2(Ω), we expect
similar templates in Figure 5. Contrarily, for the rectangles dataset, the Killing energy plays a more prominent role in
‖·‖V . As a consequence, we expect almost rigid deformations from the template to the training shape. This results
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in the square template in Figure 4. As the pointwise loss does not induce an isometry prior and is a non-Riemannian
version of the integral regularization with ‖·‖V = ‖·‖L2(Ω), we get a spherical template. In summary, the integral
regularization allows more flexibility in learning a template shape that resembles the data.

(a) Model using integral regularization. (b) Model using pointwise loss. (c) Model using no regularization.

Figure 4: The learned template of three different models trained on the rectangles dataset. We use the model learned
using the Riemannian integral regularization (left), the model learned using the pointwise loss (middle), and the model
learned using no regularization on the deformation (right). We use η = 0.05 in Equation (14).

(a) Model using integral regularization. (b) Model using pointwise loss. (c) Model using no regularization.

Figure 5: The learned template of three different models trained on the liver dataset. We use the model learned using the
Riemannian integral regularization (left), the model learned using the pointwise loss (middle), and the model learned
using no regularization on the deformation (right). We use η = 50 in Equation (14).

5.2 Joint reconstruction and 4D registration

In Figure 6 the template is transformed into a reconstructed training shape for each model trained on the rectangles
dataset. We notice that the model without regularization does not provide a smooth deformation. Furthermore, the
pointwise loss model first enlarges the spherical template and at the end compresses the shape to the reconstructed
shape. In contrast, the model with the Riemannian integral regularization smoothly rotates and scales the rectangular
template shape to the final reconstructed shape. Hence, it fits the rigid body motion prior induced by the Killing energy.
As the pointwise loss does not penalize non-smooth deformations and does not use a rigid body motion prior, we get
non-smooth and non-rigid deformations in this case.

In Figure 7 we once more notice that the model without regularization does not ensure smooth deformations of the
template shape. Moreover, we notice that the deformation using the Riemannian integral regularization is much smoother
than with the pointwise loss. The utilization of the pointwise loss results in physically implausible deformations because
it encourages a rapid transition to the target shape followed by a tendency to stay in a nearly identical configuration. In
contrast, with the integral regularization, such rapid transitions are penalized, and it is preferred to gradually get closer
to the target shape. As a consequence, the integral regularization allows for a smooth, physically plausible template
deformation into the reconstructed shapes.

In summary, we need to regularize the deformation to get a decent template shape. The integral regularization is more
flexible in influencing the template than the pointwise loss. Moreover, the integral regularization is needed to obtain
geodesic deformations of the template to the reconstructions. Hence, only the model with the Riemannian integral
regularization is a nonlinear PGA. This model allows us to calculate Fréchet means of the data, to calculate physically
plausible geodesic deformations between the template shape and another shape, and to approximate the Riemannian
distance between the template and a target shape. Hence, we have added Riemannian geometry to the latent space
model.

11
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Figure 6: The deformation of the template into a reconstructed rectangle using the model learned using the Riemannian
integral regularization (top), using the model learned using the pointwise loss (middle), and using the model learned
using no regularization (bottom). The colors represent the matching of the points to their template.

Figure 7: The deformation of the template into a reconstructed liver using the model learned using the Riemannian
integral regularization (top), using the model learned using the pointwise loss (middle), and using the model learned
using no regularization (bottom). The colors represent the matching of the points to their template.

5.3 Generalizability of shape encoding

This section evaluates the reconstruction quality of the three different models by reconstructing the test sets of the
rectangles and liver dataset. We use the Chamfer Distance (CD) and the Earth Mover Distance (EM) as evaluation
metrics. Table 1 shows the reconstruction metrics of the training data. We see that all models perform approximately
equally on the training data.

Table 2 shows the reconstruction metrics on the test sets. We can immediately see that the model with Riemannian
integral regularization performs the best in terms of average Chamfer Distance. In terms of Earth Mover distance, it is
the best on the rectangles dataset and comparable to the model without regularization on the liver dataset. In addition,
we see that the model without regularization performs poorly on the rectangles dataset. This is also illustrated in Figure
8 which shows the same reconstructed test shape for each of the models.
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Table 1: Average value and standard deviation (between brackets) of the Chamfer Distance (CD) and Earth Mover
distance (EM). The values are obtained by reconstructing the training sets of the rectangles (Rect.) and liver dataset.
The Chamfer Distance values and standard deviations are of the order 10−4.

Model Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

No reg. 0.26 (0.078) 0.0183 (0.0041) 0.991 (0.422) 0.0271 (0.0029)
PW 0.24 (0.085) 0.0179 (0.0042) 1.12 (0.515) 0.0273 (0.0031)

Riem. reg. 0.33 (0.095) 0.0188 (0.0044) 1.12 (0.491) 0.0273 (0.0035)

Table 2: Average value and standard deviation (between brackets) of the Chamfer Distance (CD) and Earth Mover
distance (EM). The values are obtained by reconstructing the test sets of the rectangles (Rect.) and liver dataset. The
Chamfer Distance values and standard deviations are of the order 10−4.

Model Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

No reg. 84.03 (144.61) 0.0702 (0.0709) 6.46 (9.52) 0.0380 (0.0143)
PW 5.54 (7.15) 0.0313 (0.0100) 13.13 (33.21) 0.0430 (0.0262)

Riem. reg. 1.83 (1.14) 0.0245 (0.0056) 5.31 (5.22) 0.0385 (0.0128)

(a) Model using integral regularization. (b) Model using pointwise loss. (c) Model using no regularization.

Figure 8: The reconstruction of a rectangle test shape using the model learned using the Riemannian integral reg-
ularization (left), using the model learned using the pointwise loss (middle), and using the model learned using no
regularization (right). The colors represent the matching of the points with their template (see Figure 6).

A plausible reason for these observations is our rough Euler discretization of the ODE in Equation (13). As discussed
in Section 4.4, the Euler discretization during training results in a ResNet architecture similar to the idea in Amor et
al. [12]. If the velocity vector field is not regularized, this discretization is not close to the true solution of the ODE
and may not be a diffeomorphism. For instance, large displacements and non-smooth deformations can destroy the
ODE and diffeomorphism properties. This could explain why the model without regularization fails to generalize on
the rectangles dataset (see Figure 8). Furthermore, the pointwise loss allows large displacements, which can cause
instabilities in the reconstruction process and might yield worse reconstructions. Disallowing such displacements by
applying the Riemannian regularization to the velocity vector fields resolves this problem.

5.4 Robustness to noise

In this section, we investigate how noise affects the reconstruction performance of each of the three models. We
add random Gaussian noise with mean zero and standard deviation 0.01 to the vertices of the meshes in the test
set. Subsequently, we reconstruct these noisy meshes and compare them to the noiseless ground truth meshes. The
reconstruction of a noisy mesh of the rectangles dataset and of the liver dataset is given in Figure 9. The model with
Riemannian integral regularization reconstructs these meshes. The deformation is smooth and the reconstructed shape
is noiseless.

Table 3 contains the average reconstruction errors between the reconstructed shapes and the ground truth noiseless
shapes. We notice that the model with Riemannian integral regularization is affected the least by the noise. The average

13



RSA-INR: Riemannian Shape Autoencoding via 4D Implicit Neural Representations A PREPRINT

values and standard deviations are relatively close to the values in Table 2. Compared to the noiseless case, the models
without regularization and with pointwise regularization have very different average reconstruction metrics or very
different standard deviations. In particular, for the liver dataset, the pointwise loss model has better reconstruction values
when using the noisy data. This shows the instability in the model as noise is needed to stabilize the reconstruction.
Hence, we see that using no regularization or using the pointwise regularization yields unstable reconstructions. On the
other hand, the Riemannian integral regularization stabilizes the problem and has stable reconstructions.

Figure 9: The reconstruction process of two noisy test shapes. The red and blue colors represent the matching of the
points to the template. The meshes are reconstructed using the model with Riemannian integral regularization.

Table 3: Average value and standard deviation (between brackets) of the Chamfer Distance (CD) and Earth Mover
distance (EM). The values are obtained by comparing the noiseless shapes to the reconstructions of their noisy versions.
This is done for the shapes in the test sets of the rectangles (Rect.) dataset and liver dataset. The Chamfer Distance
values and standard deviations are of the order 10−4.

Model Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

No reg. 162.68 (210.15) 0.090 (0.0754) 9.81 (26.71) 0.0409 (0.0262)
PW 14.31 (19.66) 0.040 (0.0176) 9.15 (14.04) 0.0427 (0.0155)

Riem. reg. 2.17 (1.12) 0.0249 (0.0058) 5.84 (5.50) 0.0399 (0.0155)

6 Future work

Our modeling extends LDDMM PGA via neural networks. As a consequence, it allows us to jointly perform shape
encoding and shape analysis. In particular, we achieve joint shape encoding and shape matching by deforming a learned
template via an ordinary differential equation. This yields a latent space of shapes diffeomorphic to the template shape.
This is advantageous when one considers shapes that are topologically equivalent. When dealing with shapes that are
not topologically equivalent, the template-based neural network model by Deng et al. [27] can be used for joint shape
encoding and shape matching. However, their model is not put in a Riemannian framework and does not correspond to
a nonlinear PGA. This means their method is not connected to the Riemannian geometry for deep learning literature. In
particular, their model can not calculate a Fréchet mean, does not allow to argue about geodesics between the template
and a reconstructed shape, and can not be used to calculate a (Riemannian) distance between shapes. In future work, we
want to extend our framework to shapes that are not topologically equivalent.

Moreover, our learned template deformations constitute geodesics between the template and the reconstructed shapes.
This makes it possible to obtain template deformations that fit some prior. However, we reconstruct shapes only using
the end point of such a deformation. Hence, for some shapes in the geodesic, there might not exist a latent code and
corresponding reconstruction. As these shapes fit a modeling prior, we would like these shapes to correspond to a latent
code. To achieve this, we might employ the velocity vector field parameterization from Lüdke et al. [71].

Besides calculating LDDMM geodesics between the template shape and another shape, our approach allows approxi-
mating the LDDMM Riemannian distance between the template shape and another shape. This allows us to quantify
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how much a shape deviates from the Fréchet mean of the data. In the literature, other Riemannian distances exist as
well. One possible shape distance is the fluid-based Riemannian shape distance [72, 73, 74]. We would like to extend
our model to allow for such Riemannian distances.

Finally, our approach combines ideas from Riemannian geometry, shape/image analysis, and deep learning. This
paves the way to more research into combining the strengths of these different fields. For instance, we currently
perform gradient descent on the template and the velocity vector field simultaneously. However, from the Fréchet mean
formulation, we know that the template should minimize the average squared distance of the template to the data points.
As the distance to the data points is given as a minimization problem over the velocity vector fields, alternating between
optimizing the template and optimizing the velocity vector fields might give an improved nonlinear PGA. Moreover, for
each training shape, we use the same regularization constant for the Riemannian integral regularization. Taking the
distance formulation in mind, it might be possible to use a regularization parameter that is shape-dependent, which
might improve the nonlinear PGA. Finally, the LDDMM problem satisfies some necessary optimality conditions. To
possibly improve performance, we can use the geodesic shooting optimality conditions [8, 10] and penalize deviation
from these optimality conditions. This is similar to Ruthotto et al. [61] who penalize deviations from a necessary
optimality condition to solve an optimal transport problem.

7 Conclusion

Modeling the variability of the shape data requires identifying its factors of variation. This inverse problem enables
shape dimensionality reduction and shape reconstruction. Another relevant task is comparing multiple shapes, which one
achieves via shape registration. LDDMM is a shape analysis framework that facilitates diffeomorphic shape registration
and shape dimensionality reduction. Several works recently developed neural network models utilizing this framework,
such as models for pairwise shape registration and algorithms similar to LDDMM PGA for shape variability modeling.
However, some of these algorithms do not perform groupwise registration, while others do not use state-of-the-art
shape encoding models in combination with LDDMM PGA. There do exist neural network algorithms that use the
state-of-the-art implicit shape representation for joint shape encoding and groupwise registration. Unfortunately,
these models do not use the Riemannian geometry of shape space, which is a crucial component of LDDMM PGA.
Consequently, these latent space models do not provide insights about shape Fréchet means, geodesics, and Riemannian
distances between shapes. In summary, existing works do not combine the state-of-the-art of shape/image analysis,
Riemannian geometry, and deep learning, which is essential for achieving the best results.

As a first step towards combining their state-of-the-art, we present a neural network model similar to PGA. Our model
addresses the research gaps mentioned above and can simultaneously perform implicit shape encoding and groupwise
registration. We designed the implicit encoding process as a deformable template model that solves the Fréchet mean
finding problem in LDDMM-based PGA. The main ingredient in this model is the Riemannian regularization on the
neural network that deforms the template. We compare the model to two models: the model without any regularization
on the deformation and the model with a pointwise regularization on the deformation. We show that the Riemannian
regularization is necessary for the model to be a nonlinear PGA. In other words, our model allows calculating a Fréchet
mean of the data, obtaining geodesics between the template and another shape, and approximating the distance between
the template and another shape. Furthermore, we demonstrate that the Riemannian regularization improves shape
reconstruction and stabilizes the reconstruction procedure. In other words, the Riemannian regularization induces a prior
that enables us to find more stable factors of variation. In summary, we show how shape/image analysis, Riemannian
geometry, and deep learning can be connected. This paves the way to more research into how these different disciplines
can reinforce each other.
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Appendices
Appendix A Riemannian geometry

In this appendix, we briefly introduce some key concepts of differential geometry and Riemannian geometry on a high
level. For more in-depth information, we refer to [75].

Manifolds are the main object in Riemannian geometry and differential geometry. Intuitively, a d-dimensional manifold
M is a set that locally looks like Rd. An example of a manifold is the sphere. Moreover, a submanifold N of M is a
subset of M that is also a manifold.

To define differentiability on manifolds and submanifolds, we need a differentiable manifold. An important notion for
differentiable manifolds is the tangent space TpM at a point p ∈M , which can be thought of as the tangent plane to the
manifold at p. More formally, the tangent space can be defined as:
Definition 1 (Tangent space). Assume we have a smooth curve γ : R → M with γ(0) = p. Define the directional
derivative operator at p along γ as

Xγ,p : C∞(M)→ R
f → (f ◦ γ)′(0),

where C∞(M) denotes the set of smooth scalar functions on M . Then the tangent space TpM is defined as TpM :=
{Xγ,p | γ(0) = p, γ smooth}.

These tangent spaces can be used to define shortest paths on manifolds. For defining shortest paths, we need a
Riemannian manifold:
Definition 2 (Riemannian manifold). Let M be a differentiable manifold. Define a Riemannian metric g as a smoothly
varying metric tensor field. This means that for each p ∈M , we have an inner product gp : TpM × TpM → R on the
tangent space TpM . The pair (M, g) is called a Riemannian manifold.

We note that submanifolds N inherit the differential structure and the Riemannian metric structure of M . Using the
metric structure, we define shortest paths between p and q as minimizers of:

dM (p, q) = min
γ

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

s.t.γ(0) = p, γ(1) = q,

(A.1)

where γ̇(t) is the tangent vector at γ(t) generated by γ. In this case, Equation (A.1) defines a Riemannian distance on
M and the minimizer γ∗ is called a (Riemannian) geodesic.
Remark 4. In case M = Rd and gp(a, b) = 〈a, b〉2, we have dM (p, q) = ‖p− q‖2 and γ∗(t) = p+ t(q − p).

Given a geodesically complete manifold, for any point p ∈ M and tangent vector ṗ ∈ TpM , there exists a unique
geodesic γ with γ(0) = p and γ̇(0) = ṗ. The unique solution at t = 1 is given by the exponential map Expp(ṗ) := γ(1).
The exponential map allows mapping tangent vectors in TpM to points on the manifold. Consequently, we can execute
several manifold operations on a tangent space instead of on the manifold. For instance, the exponential map is used in
PGA to obtain a manifold version of PCA.

Finally, the Riemannian distance allows us to define manifold extensions of means in vector spaces and allows us to
define a specific type of submanifold:
Definition 3 (Fréchet mean). Let ρ be a probability distribution on M . The Fréchet mean µ is defined as

µ = arg min
y∈M

∫
M

d2
M (x, y)dρ(x).

If we only have a finite sample {xi}Ni=1 with xi ∈M , the Fréchet mean µ is defined as

µ = arg min
y∈M

1

N

N∑
i=1

d2
M (xi, y).

Definition 4 (Geodesic submanifold). A geodesic submanifold of a Riemannian manifold M is a submanifold N such
that ∀x ∈ N , all geodesics of N passing through x are also geodesics of M .
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Appendix B Killing energy as Sobolev norm

In the LDDMM literature, a commonly used ‖·‖V is the norm induced by 〈v, w〉V = 〈Lv,w〉withL : V → V ∗ and 〈·, ·〉
the canonical duality pairing. In many papers, L = (id− α∆)c for some α ∈ R, c ∈ N, and 〈Lv,w〉 = 〈Lv,w〉L2(Ω).
In this appendix, we show that under certain conditions the Killing energy can be interpreted as an extension of
‖v‖2V = 〈Lv, v〉L2(Ω) with L = (id− α∆):
Theorem 3. Assume we use the following norm:

‖v‖2V =

∫
Ω

1

2
‖Jv + (Jv)T ‖2F + η‖v‖22dx, (B.1)

where Ω ⊂ Rd is a bounded domain. Moreover, assume we only consider v ∈ V such that:∫
∂Ω

〈v, (Jv + (Jv)T )n〉l2dx = 0, (B.2)

where n is the normal to the boundary. Then:

‖v‖2V =

∫
Ω

〈(ηid−∆−∇ · ∇T )v, v〉l2dx =

∫
Ω

〈L̃v, v〉l2dx,

where L̃ := ηid−∆−∇ · ∇T and (∇ · ∇T )v = ∇ · (Jv)T with the divergence taken row-wise.

Proof. First, as the Frobenius norm comes from an inner product and ‖A‖2F = ‖AT ‖2F , we obtain
1

2
‖Jv + (Jv)T ‖2F = ‖Jv‖2F + 〈Jv, (Jv)T 〉F

=

d∑
i=1

〈∇vi,∇vi〉l2 +

〈
∇vi,

∂

∂xi
v

〉
l2

=

d∑
i=1

〈
∇vi,∇vi +

∂

∂xi
v

〉
l2

.

Using this identity, we obtain:∫
Ω

1

2
‖Jv + (Jv)T ‖2Fdx =

∫
Ω

d∑
i=1

〈
∇vi,∇vi +

∂

∂xi
v

〉
l2

dx =

d∑
i=1

∫
Ω

〈
∇vi,∇vi +

∂

∂xi
v

〉
l2

dx.

Subsequently, using∇ · (vi∇vi) = 〈∇vi,∇vi〉l2 + vi∆vi and∇ · (vi ∂
∂xi

v) =
〈
∇vi, ∂

∂xi
v
〉
l2

+ vi∇ · ( ∂
∂xi

v), we get:∫
Ω

1

2
‖Jv + (Jv)T ‖2Fdx =

d∑
i=1

∫
Ω

∇ ·
(
vi

(
∇vi +

∂

∂xi
v

))
− vi

(
∆vi +∇ ·

(
∂

∂xi
v

))
dx.

Applying the divergence theorem yields:∫
Ω

1

2
‖Jv + (Jv)T ‖2Fdx =

d∑
i=1

(∫
∂Ω

〈
vi

(
∇vi +

∂

∂xi
v

)
, n

〉
l2

dx−
∫

Ω

vi

(
∆vi +∇ ·

(
∂

∂xi
v

))
dx

)
.

Doing some rewriting yields:∫
Ω

1

2
‖Jv + (Jv)T ‖2Fdx =

∫
∂Ω

〈
v,
(
Jv + (Jv)T

)
n
〉
l2

dx−
∫

Ω

〈
v,
(
∆ +∇ · ∇T

)
v
〉
l2

dx.

Finally, using our assumption in Equation (B.2) gives:∫
Ω

1

2
‖Jv + (Jv)T ‖2Fdx = −

∫
Ω

〈(
∆ +∇ · ∇T

)
v, v
〉
l2

dx.

Using the above in combination with Equation (B.1), we get:

‖v‖2V =

∫
Ω

1

2
‖Jv + (Jv)T ‖2F + η‖v‖22dx

=

∫
Ω

〈(
ηid−∆−∇ · ∇T

)
v, v
〉
l2

dx

=

∫
Ω

〈
L̃v, v

〉
l2

dx.
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Appendix C Occupancy data versus point cloud data

In the main text, we discuss two data fidelity terms that can be used in our implicit encoding model. One approach uses
occupancy functions with a binary cross entropy data fidelity term, while the other approach uses point cloud data. To
showcase the difference between the two approaches, we perform an experiment on the rectangle data as used in the
numerical results section. The exact same training parameters are used.

In Figures C.1 and C.2, we see the learned templates and an example of a reconstructed training shape, respectively.

(a) Occupancy data. (b) Point cloud data.

Figure C.1: The learned template of the model learned using occupancy functions (left) and the model learned using the
point cloud data (right).

(a) Occupancy data. (b) Point cloud data.

Figure C.2: The reconstructions of a particular training shape when using the model learned using occupancy functions
(left) and the model learned using the point cloud data (right).

Figure C.1 shows that both templates resemble a square. Figure C.2 demonstrates that the reconstructions with the
occupancy data are worse than the reconstructions with the point cloud data. One possible explanation is that the point
cloud loss function encourages the shape’s points to lie on the zero level set of the implicit representation. When using
occupancy values, we focus more on the domain around the shape and train on uniformly sampled occupancy values to
regress the occupancy function. Hence, when working with point clouds, the emphasis is on the shape itself, rather than
the surrounding domain, which is the case with occupancy functions. The focus on the shape itself makes it possible
to better reconstruct its details. As the point cloud method yields better reconstructions, we use this method for the
numerical experiments.
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Appendix D Implementation details

D.1 Neural network architectures

Figure D.1: The architectures for the template neural network fθ and the stationary velocity vector fields vϕk
. The small

red boxes correspond to the latent code input z and the spatial input x. Furthermore, the small blue box corresponds
to an output, while the rectangles are linear layers with dvel or dµ output dimensions. Finally, the ⊕ and ⊗ stand for
elementwise addition and scalar/elementwise multiplication, respectively.

Figure D.1 shows the used neural network architectures. For the template neural network, we use nearly the same
architecture as the template neural network in [27]. The only difference is that we use ReLU activation functions
instead of sine activation functions. In our experiments, we clamp the output of the template neural network to the
interval [−0.5, 0.5]. The stationary velocity vector field neural networks vϕk

use the architecture in [29]. However,
there are some differences. First, we add an extra linear layer at the output. We also add a scalar multiplication with the
function hε. This component ensures the velocity vector field is zero outside Ω, which is needed to let the ODE be a
diffeomorphism on Ω.

D.2 Pointwise loss

The models by [28] and [29] are similar to our model. However, in contrast to our work, they do not use a Riemannian
distance to regularize the time-dependent deformation of the template. Hence, we can not expect a physically plausible
deformation that constitutes a geodesic. They use the pointwise regularization given by:

Lpw =
∑
t∈T

N∑
i=1

M∑
j=1

L0.25 (‖φi(pj , t)− pj‖2) , (D.1)

where L0.25 is the Huber loss with parameter equal to 0.25, T is a set of predefined time instances at which to evaluate
the pointwise loss, and φi(·, t) := φt(·, zi) with d

dtφt(x, z) = vϕ(φt(x, z), t, z) and φ0(x, z) = x. For our purposes,
we follow [28] and [29] and choose T = {bK/4c · i | 1 ≤ i ≤ K/b0.25Kc, i ∈ N} with K the number of stationary
velocity vector fields in vϕ(x, t, z) =

∑K
k=1 χ[(k−1)/K,k/K](t) · vϕk

(x).
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In [29], the model uses the above loss to learn a template shape that has similar features to the training shapes. Hence,
similar to our Riemannian regularization

∫ 1

0
‖v‖2V dt, the pointwise loss is aimed at learning a proper template. Further-

more, note that when choosing ‖·‖V = ‖·‖L2(Ω), we penalize long curves x(t) defined by d
dtx(t) = vϕ(x(t), t, z). As

the pointwise loss penalizes such long curves as well, the pointwise loss can be seen as a non-Riemannian version of
our Riemannian integral regularization.

D.3 Datasets

In our work, we use two datasets: a synthetic rectangles dataset and a shape liver dataset [29, 70].

The synthetic rectangles dataset is created by generating random boxes with edge lengths uniformly distributed in
[0.15, 0.85]. Subsequently, these boxes are rotated using a random rotation matrix. For training the point cloud-based
model, we sample 100 000 uniform points and corresponding normals from the meshes. For training using the occupancy
data (see Section C), we uniformly sample 100 000 points from Ω = [−1, 1]3 and calculate the signed distance to the
boxes. Subsequently, we calculate the occupancy values from these signed distance values. The training dataset consists
of 100 randomly generated parallelograms, while the test dataset consists of 20 parallelograms.

For training the models on the liver dataset, we use the preprocessed data of [29]. The only additional preprocessing
step is a scaling of their point cloud data and their mesh data. We multiply the points and the mesh vertices with a
scaling factor of 0.75. This makes sure that all the livers are present in the unit cube. As training data, we sample 100
000 uniform points and corresponding normals from the meshes. Finally, we use the same train-test split as [29], where
the training dataset uses 145 samples and the test dataset uses 45 samples.

D.4 Training details

We jointly learn the latent codes zi, the template implicit neural representation fθ, and the stationary velocity vector
fields vϕk

(k ∈ {1, . . . ,K}). As the template neural network architecture fθ comes from [27] and the stationary
velocity vector fields vϕk

from [29], we inherit the weight initialization schemes from these works. The latent codes
zi ∈ Rd are initialized by sampling from N (0, 1/d), as in [29].

For each model and dataset pair, we use a batch size of 10 and sample 5000 points for each shape. For the point cloud
data, each sample consists of a point lying on the mesh and its corresponding normal. When using the occupancy data,
the sampled points lie in Ω = [−1, 1]3 and are accompanied by their occupancy value. Half of the points lie inside the
shape, while the other half lie outside the shape. Using the sampled points, we can calculate the loss by approximating
the expectations via Monte Carlo. In addition, we add an l2 penalty on the latent vectors with a regularization constant
equal to 10−4. We update the neural network parameters and the latent codes zi via separate Adam optimizers for the
latent codes, the template NN fθ, and velocity field NN vϕ. The initial learning rate for the latent codes is 10−3, for the
fθ parameters 5 · 10−4, and for the vϕ parameters 5 · 10−4. Moreover, for each Adam optimizer, we use a learning rate
scheduler that multiplies the learning rate with 0.7 every 250 epochs. Finally, we bound the latent codes zi to be within
the unit sphere. For the remainder of the hyperparameters, see Table D.1.

D.5 Inference details

For reconstructing shapes, we solve the following equation:

min
z
Drec(φ1(·, z)−1 · Tθ,S) + γ‖z‖22,

where

• γ ∈ R,
• d

dtφt(x, z) = vϕ(φt(x, z), t, z) and φ0(x, z) = x,

• Drec(φ1(·, z)−1 · Tθ,S) = Ex∈S [|I(x, z, 1)|],
• I(x, z, t) := ((φt(·, z))−1 · fθ)(x) := fθ(φt(x, z)).

We solve this optimization problem by running an Adam optimizer with an initial learning rate of 5 · 10−2 for 800
iterations. At iteration 400 the learning rate is decreased by a factor of 10. Furthermore, we put γ = 10−4 and we
initialize the latent code from N (0, 0.01 · I).
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Table D.1: The hyperparameter values every trained model uses on a specific dataset (rectangles or liver). Here Nh is
the number of linear layers between the first and last linear layer in the template neural network (as presented in Figure
D.1). Furthermore, cPW denotes the regularization constant for the pointwise loss when training the model that uses this
loss as the deformation regularizer.

Hyperparameter Value (Rect.) Value (Liver)

Epochs 4000 3000
Latent dimension 32 32

dvel 512 512
dµ 256 256
ε 0.05 0.05
K 10 10
dµ 256 256
Nh 5 5
σ2 0.025 0.002
τ 0.01 0.01
λ 0.005 0.005
β 1.5 1.5
α 100 100
η 0.05 50
cPW 0.1 0.1
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