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A B S T R A C T   

Assessing a patient’s musculoskeletal function during over-ground walking is a primary objective in post-stroke 
rehabilitation, due to the importance of walking recovery for everyday life. However, the quantitative assessment 
of musculoskeletal function currently requires lab-constrained equipment, and labor-intensive analyses, which 
hampers assessment in standard clinical settings. The development of fully wearable systems for the online 
estimation of muscle–tendon forces and resulting joint torque would aid clinical assessment of motor recovery, it 
would enhance the detection of neuro-muscular anomalies and it would consequently enable highly personalized 
treatments. 

Here, we present a wearable technology that combines (1) a soft garment for the human leg sensorized with 64 
flexible and dry electromyography (EMG) electrodes, (2) a generalized and automated algorithm for the local
ization of leg muscle sites, and (3) an EMG-driven musculoskeletal modeling framework for the estimation of 
ankle dorsi-plantar flexion torques. 

Our results showed that the automated clustering algorithm could detect muscle locations in both healthy and 
post-stroke individuals. The estimated muscle-specific EMG envelopes could be used to drive forward person- 
specific musculoskeletal models and estimate resulting joint torques accurately across all healthy and post- 
stroke individuals and across different walking speeds (R2  > 0.82 and RMSD  < 0.16). 

The technology we proposed opens new avenues for automated muscle localization and quantitative 
musculoskeletal function assessment during gait in both healthy and neurologically impaired individuals.   

1. Introduction 

In post-stroke rehabilitation, the recovery of walking capacity is a 
primary objective (Richards et al., 1993). Optimal gait rehabilitation 
requires the accurate and continuous assessment of a patient’s motor 
capacity as well as its variation over time. Currently, clinical tools for 
evaluating gait function post-stroke rely on the visual assessment of a 
10-meter walking task (Chan and Pin, 2019; Mehrholz et al., 2007), as 
well as on the visual assessment of additional simple motor tasks such as 
walking-by-turning around obstacles or walking on uneven surfaces 
(Daly et al., 2009; Hafsteinsdóttir et al., 2014). In addition to observa
tional gait function assessment, clinicians may also use 3D gait labora
tory analysis to record quantitative data on joint kinematics (using 3D 
motion capture systems), kinetics (using in-ground force plates), and 

muscle activation (using surface electromyography - EMG). In this 
context, advances in musculoskeletal models informed by laboratory- 
measured EMGs and joint angles (referred to as EMG-driven musculo
skeletal models), have enabled the non-invasive estimation of individual 
muscle–tendon force in both healthy (Durandau et al., 2018) and 
neurologically impaired individuals (Knarr et al., 2014; Manal et al., 
2012), in a variety of dynamic tasks (Tagliapietra et al., 2015), with 
direct validation at the level of joint torque (Sartori et al., 2014) and 
stiffness (Cop et al., 2022). 

Because human movement emerges from muscle–tendon forces 
accelerating biological joints, the ability to non-invasively estimate 
muscle–tendon force in patients would enable monitoring and quanti
fying a person’s walking capacity and design personalized rehabilitation 
intervention. EMG-driven musculoskeletal models have been largely 
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validated on healthy subjects (Sartori et al., 2014; Cop et al., 2022) and 
were driven by muscle activations derived by manually placed EMG 
electrodes. However, manual muscle localization and electrode place
ment are time-consuming and error-prone procedures (Hermens et al., 
2000), hampering daily clinical use of such technologies. These pro
cedures are particularly challenging for post-stroke individuals, who 
may have undergone structural changes in muscle–tendon tissue 
composition due to tissue remodeling following stroke (Scherbakov 
et al., 2013). Moreover, stroke patients often undergo surgeries such as 
tendon transfer interventions, which alter muscle–tendon unit paths in 
the attempt of restoring mechanical balance in a given joint (de l’Es
calopier et al., 2022). These factors hamper the repeatability, accuracy 
and time-efficacy of muscle localization in post-stroke individuals, 
limiting the possibility of estimating underlying muscle–tendon forces 
via EMG-driven modeling technologies. Therefore, the development of a 
fully wearable technology could enable quantitative musculoskeletal 
function analysis outside of fully equipped laboratories such as general 
clinics and hospitals. We hypothesized that by using EMG-sensorized 
wearable technologies we could in the future (1) spare the manual 
human labor required for the muscle localization and electrode place
ment by enabling a fully automated muscle localization as well as (2) a 
subsequent extraction of muscle-specific activations in both healthy and 
post-stroke individuals. Furthermore, we hypothesized that (3) the 
automatically derived muscle activations could drive a musculoskeletal 
model and allow the estimation of dorsi-plantar ankle torques in both 
populations with accuracy comparable to the output of a 3D gait 
laboratory. 

This paper proposes an automated algorithm for the spatial locali
zation of leg muscles from 64 EMG channels embedded in a novel 
wearable garment as well as subsequent EMG-driven musculoskeletal 
model-based estimation of ankle muscle–tendon forces and resulting 
plantar-dorsi-flexion torques during walking in post-stroke individuals. 
To the best of the authors’ knowledge, no previous studies are achieving 
the proposed target. Factorization or dimensionality reduction 

algorithms, such as principal component analysis or non-negative ma
trix factorization (NNMF), were previously applied to process EMG 
signals measured from neurologically impaired subjects (Ivanenko et al., 
2004; Clark et al., 2010) to identify commonalities in multiple specific 
muscle activations. In our previous work (Simonetti et al., 2022), we 
demonstrated the ability to automatically extract spatial locations of 
seven leg muscles from 64 EMG electrodes using an NNMF-based two- 
step algorithm. However, our previously presented methodology relied 
on the a priori assumption that a gradient-based NNMF of EMGs can 
capture contiguous electrode clusters that cover a limited region of the 
grid. 

This assumption did not explicitly enforce locality in the extracted 
electrode clusters. In the case of large spatially spread co-activation 
among electrodes, the previous algorithm could potentially lead to the 
detection of a single large contiguous electrode area potentially covering 
more than a single muscle. Although this issue did not manifest in our 
previous study involving healthy subjects, this aspect could become 
limiting in the case of spastic patients such as post-stroke individuals 
who display abnormal muscle co-activation (Canning et al., 2000). 

With this study, we propose a new garment and develop a new 
muscle localization algorithm that addresses these limitations and 
therefore generalizes across musculoskeletal anatomies and neuromus
cular control strategies of both healthy subjects and post-stroke 
individuals. 

In the subsequent sections, we first detail the experimental proced
ures, the newly developed garment, the structure of the new clustering 
algorithm together with the similarity maps used to enforce contiguity 
and locality, and the concurrent estimation of musculoskeletal force via 
EMG-driven modeling (Section 2). Then, we present results on new 
muscle localization algorithm performances on post-stroke individuals 
walking at two different speeds. Furthermore, we show how well the 
automatically derived muscle activations in post-stroke individuals 
translated in dynamically consistent EMG-driven plantar-dorsi-flexion 
ankle torque (Section 3). Finally, we discuss the results including study 

Fig. 1. Beta-series leg garment. (A) External view; (B) inside-view; (C) garment worn by a post-stroke subject.  

Table 1 
Post-stroke subjects’ information.  

Subject Monthssince stroke Affected side Dominant side Type of lesion FAC* Garment size 

S1 42 left right ischemic 5 M 
S2 18 left left ischemic 5 S 
S3 37 left right bleeding 5 L 
S4 59 left right ischemic 4 S 
S5 3 right right ischemic 5 S 
S6 3 left right ischemic 4 S 
S7 5 left left bleeding 5 S 
* Functional Ambulation Categories  
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limitations and future work (Section 4). 

2. Methods 

2.1. Experimental procedures 

The regional medical ethics committee of Eastern Netherlands 
(METC Oost-Nederland) approved the study procedures (reference 
number 2022–13658). Seven hemiparetic post-stroke individuals (age 
= 57 ± 8.7 years, height  = 179 ± 5.1 cm, weight  = 88.9 ± 16.5 kg) 
were recruited by the Sint Maartenskliniek (Nijmegen, The 
Netherlands). After signing an informed consent, EMG, 3D kinetic and 
kinematic data were recorded during three main tasks: a static standing 
pose, walking at a self-selected comfortable speed and walking as fast as 
possible. All participants were instrumented with the wearable garment 
(Fig. 1) embedded with a grid of 64 EMG electrodes, 37 retro-reflective 
markers recorded by an optical motion system and performed the task 
on two floor-embedded force plates. A more detailed description of the 
experimental setup and procedures is presented in the supplementary 
material Section 6.1.1. 

2.2. Sensorized wearable garment 

The textile part of the garment (beta-series prototype) was made, in 

the outer part, of polyester (90%) and elastomer-filled woven material 
(10%), while on the inside it was made of white thermo lycra (85% PA, 
15% EA). The sleeve was wrapped around the leg and closed using 
Velcro. The positions of the tibial tuberosity and anterior crest were used 
as reference points to align the garment consistently across individuals. 
Moreover, this also prevented having electrodes on prominent bony 
areas where no muscle activation could be recorded. The sleeve was 
produced in four sizes related to the different EMG grid lengths and leg 
circumferences (Table 2). 

To enable modularity, custom EMG grids were designed to be 
interchangeably placed/removed in the inner part of the sleeve via 
Velcro straps. In this way, the sleeve could be reused while the elec
trodes could be easily disposed of and, if necessary, re-organized to in
crease or decrease electrode density in specific parts of the sleeve. The 
EMG electrodes were made of Ag/AgCl and screen-printed in grids of 8 
electrodes each (10 mm in diameter). The grids were made of flexible 
printed circuit board (PCB) material and designed in three lengths 
(Table 2). The grids allowed stretch (Table 2) in the longitudinal axis to 
improve applicability to a wide range of leg lengths. Therefore, specific 
inter-electrode distance (IED) in the longitudinal axis may be longer or 
shorter, depending on how the grids were placed into the sleeve. 

In our previous work in Simonetti et al. (2022), we developed the 
first prototype for a textile-embedded 64-channel EMG leg garment. The 
previous version of our EMG-embedded garment had some drawbacks, 
such as being difficult to wear due to the compression sock design that 
included the heel and foot and being available in only one size. The 
garment also had a fixed number of electrodes that were sewn into the 
fabric in predetermined locations and were connected to a desktop 
amplifier through 64 hanging cables. To address these issues, the new 
garment features an open-sleeve design with velcro straps that can easily 
wrap around the leg. The sleeve comes in multiple sizes to accommodate 
various leg lengths and circumferences. Furthermore, we replaced the 
individual electrodes with 8-EMG grids that can be easily attached and 
removed to the sleeve using velcro. As a result, we were able to reduce 

Table 2 
Garment sizes.  

Size Circumpherence (cm) length (cm) IED*  
under knee calf ankle EMG grid (cm) 

XS 22–27 25–30 17–19 26 3.71 
S 26–31 29–34 18–20 26 3.71 
M 30–35 32–37 20–23 28 4.0 
L 34–39 35–40 23–26 30 4.03 
* inter-electrode distance  

Fig. 2. Schematic of the pipeline including the 
multi-channel EMG clustering (a) and the 
clusters-to-muscle mapping (b). The EMG clus
tering processes the 64 EMG envelopes during a 
slow walking task to obtain localized and 
continuous similarity maps. Those are given 
input to the NNMF to extract seven final clus
ters. The output of the EMG clustering is used in 
the cluster-to-muscle mapping to associate each 
of the extracted clusters to a specific leg muscle 
and extract average EMG envelopes (b.1). 
Anatomic information, as well as references 
dorsi and plantar-flexion, averaged primitives 
and center of activations are extracted (b.2) and 
used to map the clusters to specific muscles. 
Figure b.2 was adapted from (Simonetti et al., 
2022).   
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the number of hanging cables from 64 to 8 while maintaining the same 
level of functionality. 

2.3. Data processing 

Signal processing of the raw EMG, kinetic and kinematic data was 
done on MatlabR (Matlab2020a, MathWorks, Natick (MA), USA). 

Kinematic and kinetic data: the data were low-pass filtered at 6 Hz 
with a zero-lag 2nd order Butterworth filter. Kinetic and kinematic data 
were used to extract the gait cycles and the post-stroke individuals’ 
walking speed as detailed in the supplementary material 6.1.2. 

EMG data: Detection of noisy and silent channels: raw EMG signals 
were amplified with a gain of 23 (SAGA 64+, TMSi, The Netherlands) 
and automatically inspected to identify channels with large voltage 
fluctuations due to movement artifacts as here described. The inspection 
process encompassed all tasks, including both static standing poses and 
walking tasks. To remove the drift and the signals’ offset, the raw EMG 
signals were high-pass filtered at 1 Hz with a zero-lag 2nd order But
terworth filter. The standard deviation (std) of each filtered EMG signal 
and the median among all 64 std values were computed. All channels 
with std greater than five times the computed median were labeled as 
noisy. All channels with a std value lower than 0.001 mV were noted as 
silent, i.e., channels with a flat line signal. All detected noisy and silent 
channels were set to zero. Re-referencing: raw EMG signals measured 
from the remaining channels went through re-referencing processing to 
remove the noise introduced by the noisy channels during the average 
reference amplification modality (Freeman et al., 2003). In the re- 
referencing processing, two average reference signals were computed. 
One for the electrodes underlying dorsi-flexor muscles (first two col
umns or last two columns of the electrode grids according to the affected 
side, left or right, respectively) and one for the electrodes underlying 
plantar-flexor muscles (remaining electrodes). The division between 
electrodes underlying dorsi- and plantar-flexor muscles to extract the 
two average reference signals was based on the assumption that the 
garment and the electrode grids were aligned consistently across in
dividuals (2.2). The re-referenced EMG signals were obtained by sub
tracting the dorsi- or plantar-flexor average reference signal from the 
raw EMG signals if belonging to the dorsi- or plantar-flexor groups 
respectively. Filtering: The re-referenced EMG signals were processed to 
extract linear envelopes. First, the re-referenced EMG signals were high- 
pass filtered at 20 Hz using a zero-lag 4th order Butterworth filter and 
fully rectified. Afterward, the rectified EMG signals went through a 
moving median filter with a moving window length of 0.16 s. to obtain 
an equivalent behavior to a low-pass filter with a 6 Hz cut-off frequency 
(Conforto et al., 1999). The moving median filter allowed removing the 
remaining spikes due to movement artifacts. Normalization: the result
ing linear envelopes were normalized against the maximum linear en
velopes’ value observed across all performed tasks for each respective 
channel (Cheung et al., 2009; Neckel et al., 2006). 

2.4. Multi-channel EMG clustering 

The multi-channel EMG clustering applies NNMF to extract a fixed 
number of localized and contiguous active areas. The number of active 
areas was chosen by assuming that there are seven superficial muscles in 
the human leg (Netter, 2014). 

2.4.1. Similarity maps 
64 maps of similarity, one for each electrode, were computed using 

the Euclidean distance and k-nearest neighbor clustering (Fig. 2) (Cai 
et al., 2011). The EMG signals measured from three gait cycles at a 
comfortable walking speed were used to compute the Euclidean distance 
between a given electrode envelope (target electrode) and all the 64 
EMG envelopes. This was iterated by changing the target electrodes from 
the first to the 64th. Therefore, 64 sets of 64 Euclidean distance values, i. 
e. 64 similarity maps, were obtained. Then, a k-nearest neighbor 

algorithm (k  = 8) was applied to each similarity map (Cai et al., 2011) 
to keep the eight most similar electrodes to each target electrode, i.e. the 
eight lowest Euclidean distances, (Fig. 2.a.2). In each similarity map the 
target and the eight most close electrodes were set to one and all the 
other electrodes were set to zero. Eight was chosen since it is the number 
of electrodes necessary to fully surround a single electrode. In each 
resulting similarity map, the selected electrodes (target electrode and 
the eight most similar ones) could all potentially belong to the same 
cluster. However, the electrodes had to be adjacent (i.e., sharing an 
edge) and cover a defined, contiguous area in the 8 by 8 grid to belong to 

Fig. 3. Masks applied on all 64 similarity maps to ensure locality (a) and 
continuity (b) among the active channels included in each of the maps. 

Table 3 
Anatomical information.  

Muscle Function Electrode position 
SENIAM 

Adopted from 
SENIAM to 
grid position for 
the proposed 
method 

Tibialis anterior dorsi-flexion ”the electrodes need 
to be placed at 1/3 on 
the line between the 
tip of the fibula and 
the tip of the medial 
malleolus” 

upper half of the 
grid 

Gastrocnemius 
lateralis 

plantar- 
flexion 

”the electrodes need 
to be placed at 1/3 of 
the line between the 
head of the fibula and 
the heel” 

upper half of the 
grid and adjacent to 
the peroneus longus 

Gastrocnemius 
medialis 

plantar- 
flexion 

”the electrodes need 
to be longitudinally on 
the muscle belly of the 
lateral head” 

upper half of the 
grid and adjacent to 
the gastrocnemius 
lateralis 

Soleus plantar- 
flexion 

”the electrodes need 
to be placed at 2/3 of 
the line between the 
medial condylis of the 
femur to the medial 
malleolus” 

lower half of the 
grid 

Peroneus longus Eversion and 
assistance in 
plantar- 
flexion 

”the electrodes need 
to be placed at 25% on 
the line between the 
medial condylis of the 
femur to the medial 
malleolus” 

upper half of the 
grid and adjacent to 
the tibialis anterior 

Peroneus brevis Eversion and 
assistance in 
plantar- 
flexion 

”the electrodes need 
to be placed anterior 
to the tendon of the 
peroneus longus at 
25% of the line from 
the tip of the lateral 
malleolus to the 
fibula-head” 

lower half of the 
grid 

Extensor 
hallucis 
longus* 

dorsi-flexion ”distal two-thirds of 
the lower leg, between 
the middle and lower 
third of tibia” 

lower half of the 
grid, below the 
tibialis anterior 

* The electrode placement was not taken from SENIAM recommendation but 
following an anatomy book (Marieb and Hoehn, 2007)  
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the same cluster. This was enforced by sequentially applying two masks 
on the resulting 64 similarity maps (Fig. 3). To ensure that electrodes 
within each of the 64 similarity maps covered a limited area of the grid 
we assumed that the eight most similar electrodes had to be at a 
maximum distance of two adjacent electrodes from the target electrode 
(in all directions, mediolateral and distal-proximal). Each similarity map 
was arranged in an 8 by 8 grid and the mask from Fig. 3.a was applied. 
The electrode falling outside the first mask was set to zero. To ensure 
continuity, the remaining electrodes had to be adjacent by creating a 
contiguous area. The mask from Fig. 3.b was applied and the non- 
adjacent electrode was set to zero. The resulting similarity maps were 
64 sets of 64 values with the target electrodes and the close and adjacent 
electrodes set to one, while all the remaining electrodes were set to zero. 

2.4.2. Factorization of similarity maps 
The resulting 64 similarity maps were combined in a single matrix 

where each row contained a given similarity map. NNMF was applied to 
the non-negative matrix and decomposed low dimensional features 
(seven) represented by two non-negative matrices, synergies and 
weights. The weight matrix contained seven sets of 64 values, giving the 
seven final local and contiguous active clusters (Fig. 2.a). 

2.5. Clusters-to-muscle mapping 

Each active cluster resulting from the multi-channel EMG clustering 
(Section 2.4) was associated with a specific leg muscle (Fig. 2.b.1). We 
assumed that each active cluster corresponded to an active area of a 
single muscle. We defined anatomical information (Table 3) based on 
SENIAM electrode placement recommendations (Stegeman and Her
mens, 2007; Hermens et al., 2000). 

We defined reference information for plantar and dorsi-flexion 
functions to discern the muscle function of each active cluster during 
the mapping process. We applied NNMF on 64 EMG envelopes of three 
gait cycles at a comfortable walking speed to extract two walking muscle 
synergies (Ivanenko et al., 2004) related to the leg muscles. The NNMF 
decomposed the 64 EMG envelopes in primitives and weights related to 
the dorsi and plantar-flexors muscle groups (Fig. 2.b.2). The primitives 
were averaged across the three gait cycles to obtain the reference 
averaged activation profiles for dorsi- and plantar-flexor muscles. Both 
plantar and dorsi-flexors clusters, were arranged in a 8 x 8 map and the 
spatial distribution, i.e. the position in the medio-lateral and vertical 
directions, was computed using the center of activation (CoA) as pro
posed by (van Elswijk et al., 2008). The CoA was a position in an 8 by 8 
grid, where each channel was a square pixel of length equal to one, and 
the distance between the center of two adjacent pixels was equal to one. 
We used the anatomical information (Table 3), dorsi- and plantar-flexors 
reference activation profiles and their CoA to associate each cluster to a 
specific muscle (Fig. 2.b.2). The cluster-to-muscle mapping followed the 
steps below sequentially:  

• The CoA for each active cluster was computed. The EMG envelopes of 
the active clusters’ channels were averaged to obtain the active 
clusters’ envelopes during the three gait cycles at a comfortable 
walking speed. The active cluster envelopes were averaged across the 
three gait cycles. Two coefficients of correlation (R) were computed 
to obtain the similarity between the active cluster averaged enve
lopes and reference dorsi (Rdf ) and plantar-flexor activations (Rpf ).  

• The active cluster(s) with CoA located in the upper half of the grid, 
and with Rdf greater than 0.9 was labeled as tibialis anterior cluster 
(s).  

• The active cluster(s) with CoA located in the lower half of the grid, 
and with Rdf greater than 0.8 was labeled as extensor hallucis longus 
cluster(s).  

• The active clusters(s) with CoA located in the lower half of the grid, 
and with Rpf greater than 0.9 was labeled as soleus cluster(s).  

• The active cluster with CoA located in the upper half of the grid, and 
farthest to the tibialis anterior CoA was labeled as gastrocnemius 
medials cluster.  
- The active cluster with the CoA located in the lower part of the grid 

was labeled as peroneus brevis.  
- The active cluster with the CoA located higher in the upper part of 

the grid was labeled as peroneus longus.  
- The remaining cluster(s) was labeled as gastrocnemius lateralis. 

Finally, we applied a threshold to extract the most active channels 
from each labeled cluster. In each cluster, the channels with a weight 
over 75% of the maximum cluster weight were kept. The weighted 
average of the normalized EMG envelopes of the kept electrodes for each 
labeled cluster was considered as the final automatically selected 
muscle-specific EMG envelope. 

2.6. Manual clustering and mapping 

To validate (Section 2.9) the automatic cluster selection we manually 
selected pairs of channels for five specific leg muscles (tibialis anterior, 
gastrocnemius lateralis and medialis, peroneus longus and soleus). The 
muscle-specific EMG envelopes derived from manually selected chan
nels were obtained by subtracting the raw monopolar EMG signal of the 
muscle-specific electrode pairs, and by processing the resulting muscle- 
specific EMG signals as explained in Section 2.3. We did not manually 
select a pair of electrodes for the peroneus brevis and the extensor 
hallucis longus because we experienced major difficulties in the manual 
detection of these muscle sites for post-stroke individuals. 

2.7. Multi-body dynamics pipeline 

We analyzed filtered kinetic and kinematic data to obtain joint ki
nematics and dynamics. Using the open-source software OpenSim (Delp 
et al., 2007) and marker trajectories from a static task, we scaled a 
generic musculoskeletal geometry model (gait 2392) to the subject- 
specific musculoskeletal geometry. From the scaled model, we identi
fied initial person-specific values of optimal fiber length and tendon 
slack length for each modelled muscle–tendon unit, using a previously 
developed optimization algorithm (Modenese et al., 2016). Marker 
trajectories and ground reaction forces (GRFs) during the dynamic tasks 
were used to solve inverse kinematics (IK) and dynamics (ID) to obtain 
ankle plantar-dorsi flexion angles and reference torques, respectively. 

2.8. EMG-driven musculoskeletal modelling 

The alternative path for the estimation of ankle plantar-dorsi flexion 
torques as well as underlying muscle–tendon force was via EMG-driven 
musculoskeletal modelling (Durandau et al., 2018; Sartori et al., 2012). 

For each subject, we carried out a calibration process to optimize the 
musculoskeletal model parameters that do not vary linearly across in
dividuals to match each individual’s force-generating capacity. This 
optimization aimed to minimize the mean squared error between the 
reference and EMG-driven model estimated torques normalized by the 
variance of the reference torque over the first two gait cycles performed 
at a comfortable speed. We performed two calibrations for each subject 
using manually and automatically derived EMG envelopes, respectively. 
After calibration, the person-specific EMG-driven musculoskeletal 
model can be used to estimate muscle–tendon force and resulting ankle 
plantar-dorsi flexion torque using input joint angles and normalized 
EMG linear envelopes during novel trials that were not used for 
calibration. 

2.9. Validation procedures 

For each hypothesis we stated in the introduction we performed a 
test. 

D. Simonetti et al.                                                                                                                                                                                                                               



Journal of Electromyography and Kinesiology 72 (2023) 102808

6

Test 1 assessed the ability of our algorithm to automatically select 
muscle-specific electrode clusters with spatial proximity to the ones 
selected manually. The spatial proximity was computed using two 
metrics: the number of manually selected muscle-specific electrodes 
included in the automatically selected muscle-specific cluster, and the 
Euclidean distance (in pixels) between the manually and automatically 
selected muscle-specific clusters’ CoA. 

Test 2 evaluated the shape and amplitude similarity between 
manually and automatically derived muscle-specific EMG envelopes 
output from the proposed clustering. Across all subjects, muscles and 

walking tasks, the coefficient of determination (R2) for shape similarity, 
and root mean squared differences (RMSD) for amplitude similarity 
were computed, along with median and percentiles (25% and 75%), 
between muscle-specific EMG envelopes derived from automatically and 
manually selected channels. 

Test 1 and Test 2 (see supplementary material Section 6.2), as well as 
additional tests, were performed on the output of two algorithms, i.e., 
the one proposed by (Simonetti et al., 2022) and the one here proposed, 
to assess (1) the ability of both algorithms to extract similar clusters on 
healthy subjects, (2) to assess the ability of the newly proposed clus
tering to better identify muscle-specific clusters as limited regions of the 
grid on post-stroke individuals with respect to the previously developed 
algorithm. 

Test 3 compared reference, manually and automatically derived 
EMG-driven plantar-dorsi flexion ankle torque for post-stroke in
dividuals walking at two different self-selected speeds. In this way, we 
further assessed whether our algorithm provided EMG envelopes with 
the accuracy needed to drive an EMG-driven modeling framework and 
estimate dynamically consistent ankle torque. The average across all 
gait cycles of manually and automatically selected EMG-driven torque 
estimations for both comfortable and fast speeds were compared with 
the average reference torque using R2 and normalized root mean square 
error (NRMSE). 

All the retrieved biomechanical signals were compared on a 
continuous level using statistical parametric mapping (SPM) (Pataky, 

Table 4 
Distance (in pixels) between manually and automatically selected muscle- 
specific clusters’ center of activation, for all post-stroke subjects. The number 
of manually selected electrodes included in the automatically selected clusters is 
shown in brackets.  

Subject TA PR GM GL SOL 

s01 0.87 (1) 0.38 (2) 1.53 (2) 0.69 (2) 0.38 (2) 
s02 0.69 (2) 1.00 (2) 0.59 (1) 1.63 (1) 1.86 (1) 
s03 1.21 (2) 1.00 (2) 1.12 (2) 1.05 (2) 1.13 (0) 
s04 1.17 (1) 0.41 (2) 0.72 (1) 1.27 (1) 2.17 (0) 
s05 1.74 (1) 0.67 (1) 0.82 (2) 1.03 (1) 2.09 (0) 
s06 0.51 (2) 1.21 (1) 0.37 (1) 1.53 (1) 1.83 (0) 
s07 1.89 (0) 1.53 (0) 1.97 (0) 1.82 (0) 0.34 (2)  

1.15 ± 0.48 0.89 ± 0.39 1.02 ± 0.5 1.29 ± 0.4 1.4 ± 0.73  

Fig. 4. Manually (Em - blue lines) and automatically (Ea - red lines) derived normalized EMG envelopes (E). The mean across all gait cycles and for all post-stroke 
subjects (rows), walking speed (darker colors for comfortable walking speed and lighter colors for fast walking speed) and muscles (columns) are plotted. Data are 
reported over the gait cycle event with 0% being heel-strike and 100% the following heel strike. 
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2012). SPM was used to compare all gait cycles of manually and auto
matically derived EMG envelopes in each post-stroke subject and across 
all subjects during comfortable and fast walking. Similarly, SPM was 
employed to compare the waveform of manually and automatically 
derived EMG-driven ankle torque estimates with respect to the reference 
torque at both comfortable and fast speeds. All SPM analyses were 
implemented in Matlab using a free open-source package, SPM1D 
(Pataky, 2012). 

3. Results 

The number of zeroed channels (noisy and silent channels) across all 
post-stroke individuals and tasks ranged between 0 and 6 with an 
average of 2.1 ± 1.9. 

Test 1: the results on proximity between manually and automatically 
selected clusters for and post-stroke individuals are presented in Table 4. 
The table presented the distance, in % of the garment surface, between 
the CoA of both manually and automatically selected clusters, and in 
brackets, the number of manually selected electrodes (two for each leg 
muscle) that were included in the automatic muscle-specific electrode 
selection. The distance across all muscles, for post-stroke subjects, 
ranged between 0.34 and 2.17 pixels with a mean (± std) of 1.15 ± 0.18 
pixels. 

Test 2: Fig. 4 shows the mean profile of automatically and manually 
derived EMG normalized envelopes across all gait cycles of comfortable 

and fast walking tasks for each post-stroke individual and muscle. Fig. 5 
displays the distribution R2 and RMSD values across all gait cycles for 
each muscle and walking condition. In each box, the central line in
dicates the median while the bottom and top edges indicate the 25th and 
75th percentiles, respectively. The R2 and RMSD median values for 
comfortable and fast speeds were ranging between 0.72 and 0.93, and 
0.15 and 0.25, respectively. Supplementary Table 5 and supplementary 
Table 6 report mean (± std) R2 and RMSD values in detail for post-stroke 
individuals. 

Fig. 6 shows for each muscle and speed, the mean across all gait 
cycles of all post-stroke subjects for manually and automatically derived 
EMG envelopes. Furthermore, the gait cycle’s regions with a statistical 
difference (p < 0.05) between the two EMG envelope waveforms were 
highlighted. For comfortable and fast walking the percentage of the gait 
cycle with a statistical difference was, respectively, 77% and 61% for 
tibialis anterior, 61% and 52% for peroneus longus, 74% and 50% for 
gastrocnemius medialis, 100% and 88% a for gastrocnemius lateralis, 
and 50% and 36% for soleus. A subject-specific significance throughout 
the gait cycles and for each walking speed is shown in supplementary 
Fig. 3 and Fig. 4. 

Test 3: Fig. 7 displays for all post-stroke subjects the manually and 
automatically derived EMG-driven ankle torque estimates together with 
the ankle torque reference profiles across all gait cycles for comfortable 
and fast walking. Furthermore, the gait cycle’s instances where there 
was a statistical difference (p < 0.05) between the reference and both 

Fig. 5. Box plots displaying the distribution of R2 and 
RMSD values computed between manually and auto
matically derived normalized EMG envelopes of each 
muscle, across all post-stroke subjects and gait cycles 
of comfortable (red) and fast (blue) walking. On each 
box (thick lines), the horizontal line indicates the 
median value, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respec
tively. The whiskers (thinner lines) extend the boxes 
to the most extreme data points not considered 
outliers.   

Fig. 6. Manually (Em - blue lines) and automatically 
(Ea - red lines) derived normalized EMG envelopes 
(E). The mean across all gait cycles and post-stroke 
subjects for all muscles (columns) and for comfort
able (first row) and fast (second row) walking are 
plotted. Data are reported over the gait cycle with 0% 
being heel-strike and 100% the following heel-strike. 
On the bottom of each plot, a red horizontal line 
represents the gait cycle’s region where there is a 
statistical difference (p < 0.05) between the auto
matically and manually derived EMG envelopes 
waveforms.   
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manually and automatically derived EMG-driven estimated ankle tor
ques were highlighted for each subject. For manually derived EMG- 
driven ankle torque estimates the percentage of the gait cycle with a 
statistical difference with respect to the reference torque profile ranged, 
for comfortable walking, between 0% (subject 4) and 64% (subject 1) 
with a mean (± std) of 32% ± 24%. For fast walking, the percentage of 
the gait cycle with a statistical difference ranged between 6% (subject 4) 
and 55% (subject 5) with a mean (± std) of 35% ± 21%. For automat
ically derived EMG-driven ankle torque estimates the percentage of the 
gait cycle with a statistical difference with respect to the reference tor
que profile ranged, for comfortable walking, between 0% (subject 4) and 
64% (subject 1) with a mean (± std) 32% ± 23%. For fast walking, the 

percentage of the gait cycle with a statistical difference ranged between 
6% (subject 4) and 70% (subject 2) with a mean (± std) of 41% ± 23%. 

Fig. 8 shows the distribution R2 and NRMSE values across all gait 
cycles of all subjects for both walking speeds and for both manually and 
automatically derived EMG-driven estimates. In each box, the central 
horizontal line indicates the median while the bottom and top box edges 
indicate the 25th and 75th percentiles, respectively. The R2 median 
values for comfortable and fast speeds were respectively, 0.87 and 0.82 
for the manually derived EMG-driven torque estimates, and 0.88 and 
0.81 for automatically derived EMG-driven torque estimates. The 
NRMSE median values for comfortable and fast walking were 0.14 and 
0.17, and 0.13 and 0.16 for the manually and automatically derived 
EMG-driven torque estimates, respectively. Supplementary Table 7 and 
Table 8 report mean (± std) R2 and NRMSE values in detail. 

4. Discussion 

Our study proposed an automated algorithm for the spatial locali
zation of leg muscles from 64 EMG channels embedded in a novel 
flexible leg garment as well as linked to an EMG-driven musculoskeletal 
model for the estimation of ankle muscle–tendon forces and resulting 
plantar-dorsi-flexion torques during walking. 

The results showed the ability of the proposed NNMF-based EMG 
clustering to generalize across healthy and post-stroke populations, as 
well as the ability to extract the position of the main leg muscles by using 
64-electrode activations during a few gait cycles of slow walking (Test 
1). Then we used the automatically muscle-specific electrodes derived 
from the new proposed clustering and obtained electrophysiologically 
consistent muscle-specific envelopes during all walking speeds (Test 2) 
for both populations (see supplementary results 6.2). Finally, we eval
uated plantar-dorsi flexion ankle torques resulting from a model driven 
by automatically derived EMG envelopes in post-stroke individuals (Test 
3). 

We compared our new clustering algorithm against the previously 
proposed algorithm (Simonetti et al., 2022). When applied on healthy 
subjects (Supplementary material Section 6.3), we showed that the new 
clustering extracts muscle-specific clusters with a similar number of 
comprising electrodes (number of electrodes per muscle-specific cluster 
between 1 and 10) with respect to (Simonetti et al., 2022). However, 
when applied on post-stroke individuals, the clustering proposed in this 
work obtained between 3 and 9 electrodes per muscle-specific cluster 
and the clustering from (Simonetti et al., 2022) obtained between 1 and 
18 electrodes per muscle-specific cluster. Therefore, the new clustering 
led to more realistic clusters, i.e. limited in a confined area of the grid 
because part of a single muscle. Therefore, the proposed algorithm is 
able to generalize from healthy to post-stroke individuals. 

Test 1 showed that the proposed clustering and mapping pipelines 
could extract muscle-specific clusters whose center of activation had a 
mean Euclidean distance to the manually selected electrode pair varying 
between 0.9 and 1.8 pixels for both populations (see Table 4 for post- 
stroke individuals and supplementary Table 3 for healthy subjects). 
For both healthy and post-stroke individuals, the automatically derived 
electrodes for the soleus showed the lowest spacial proximity to the 
manual selection. However, the soleus is a large muscle covering almost 
the entire calf area (Netter, 2014). The SENIAM sensor placement rec
ommendations (Stegeman and Hermens, 2007), are used to select the 
manual electrode pairs, restricting the recording area of the soleus to a 
small fraction of its surface. However, the higher electrode density of the 
64-EMG grid can cover a wider area and hence allowing the recording of 
the soleus activation from the medial and lateral sites. 

Test 2 showed that the automatic clustering was able to use 64 
electrode activations during a few gait cycles (three) of a single walking 
task and output electrophysiologically consistent muscle-specific EMG 
envelopes for all walking tasks in both healthy and post-stroke pop
ulations (see Fig. 4). A bigger difference with respect to the manually 
derived EMG envelopes was always obtained for tibialis anterior and 

Fig. 7. Ankle joint torques retrieved via inverse dynamics (black lines) and 
estimated via EMG-driven NMS modeling using both automatically (red lines) 
and manually derived EMG envelopes (blue lines). The plots report mean (solid 
lines) and standard deviation (shaded areas) values across all gait cycles for all 
post-stroke subjects (rows), and for both comfortable (left column) and fast 
(right column) walking. On the bottom of each plot, a horizontal line represents 
the gait cycle’s region where there is a statistical difference (p < 0.05) between 
the automatically (red) and manually (blue) derived EMG-driven torque esti
mates with respect to the reference torque. 
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peroneus longus in both populations (see Fig. 5, supplementary Table 5 
and Table 6 for post-stroke individuals and Table 4 for healthy subjects). 
The higher variability can result from the increased spatial proximity 
between these two muscles resulting in possible EMG cross-talk. Future 
work should assess whether using electrodes with a smaller area and 
increasing the electrode density in the leg, i.e., smaller IED, can improve 
the discrimination between the tibialis anterior and the peroneus 
longus. 

Test 3 showed two key results: (1) the EMG clustering and cluster-to- 
muscle mapping pipelines provided EMG envelopes with the accuracy 
needed to drive a musculoskeletal modeling framework and estimate 
dynamically consistent ankle torques. This was visible in the torque 
estimates during the comfortable speed walking task used for the EMG- 
driven model calibration as well as for the ankle torque estimates ob
tained for the unseen (i.e., not used for the EMG-driven model calibra
tion) fast walking task. (2) Even when using abnormal muscle 
activations from post-stroke individuals, the EMG-driven model output 
estimated ankle torque with similarity with the reference torque (see 
Fig. 7). Only a subset of post-stroke participants (subjects 1, 3 and 5) 
noticeably increased their walking speed across conditions (see sup
plementary Fig. 1 and supplementary Table 1). For them, both manually 
and automatically derived EMG-driven ankle torque estimates show an 
earlier plantar-flexion peak with respect to the reference torque profile 
(see Fig. 7). The possible shift could be due to the synchronization of 
motion tracking and EMG systems (see 2.1) during the data recording as 
well as a different electromechanical delay (EMD) with respect to the 
other subject showing more impaired walking movements. Grosset et al. 
(Grosset et al., 2009) stated that the higher the stiffness is in the mus
culotendinous units, the lower the EMD, and vice versa. Son et al. (Son 
and Rymer, 2021) revealed that the EMD in paretic muscles was signifi
cantly longer than in non-paretic muscles. Future works should quantify the 
delay introduced by the hardware synchronization trigger as well as compute 
a subject-specific EMD delay and investigate how this affects the EMG-driven 
model outcome. 

In contrast to our previous work (Simonetti et al., 2022), the sen
sorized garment and the EMG clustering technique were generalized to 
facilitate their use on neurologically impaired individuals. First, the 
straightforward application process of the sensorized garment allowed 
for a simple setup. Secondly, the computation of similarity maps 
together with k-nearest neighbor clustering and the applied masks (see 
Section 2.4) enforced the extraction of localized and continuous clusters 
in healthy subjects as well as in post-stroke individuals with different 
degrees of impairment (Table 1). However, the newly proposed meth
odology still relies on the a priori assumption that post-stroke individuals 
control the leg muscles through two walking muscle synergies (Ivanenko 
et al., 2006; Cappellini et al., 2006) and that there are seven active su
perficial muscles in the leg. 

This study includes limitations that should be addressed in future 

works. The automatically derived EMG envelopes were compared with 
manually derived EMG envelopes. The manual selection included pairs 
of electrodes within the garment separated by a variable distance (2) 
while the SENIAM recommendation suggests 2.0 cm IED in bipolar 
configuration and De Luca et al. (De Luca et al., 2012) suggested that an 
IED of 1.0 cm is optimal to reduce cross-talk during walking. Further
more, the manual electrode selection can be affected by a systematic 
error (Hermens et al., 2000), even more, when the muscle belly is 
atrophied or not as evident as in healthy individuals. This study included 
seven post-stroke individuals for the initial validation of a smart wear
able technology. Future work should include more subjects to enhance 
the statistical power to the presented study and further assess the 
generalization capacity of our proposed methodology. Furthermore, the 
healthy and post-stroke populations involved in this work presented 
differences in age and BMI, thereby limiting the comparison of results. 
To ensure that our methodology is generalizable across ages and body 
compositions, future work should include more participants in both 
populations with a more diverse range of ages and BMI. Additionally, 
future research should focus on assessing the clinical relevance and 
practical application of our results. In this study, the EMG-driven 
modeling was validated at the level of joint torque. However future 
work should include validation also at the level of muscle forces. The 
study showed the capacity of the developed technology to be suitable for 
a specific impaired population, i.e., post-stroke individuals. This opens 
the possibility to test its efficacy on diverse populations, such as SCI 
patients or injured athletes. The clustering and mapping pipelines were 
applied to a specific limb. Future work should generalize across different 
body parts, including the upper leg as well as the upper limb. Further
more, the present study presented a technology not yet fully portable. 
Future studies should remove the need for laboratory-based technolo
gies, such as force plates and camera-based tracking systems, and 
employ wearable sensors for kinetics and kinematics to go toward fully 
wearable and portable technology. 

5. Conclusion 

We show how to go from a multi-channel EMG-sensorized garment to 
ankle plantar-dorsi flexion torque by means of automatic NNMF-based 
EMG clustering and EMG-driven modeling techniques. The de
velopments made in this study open new avenues for fast and quanti
tative musculoskeletal function assessment in post-stroke individuals 
and potentially for any injured population. 
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Fig. 8. Box plots displaying the distribution of R2 and 
NRMSE values computed between reference ankle 
torques, and manually (blue) and automatically (red) 
derived EMG-driven ankle torque estimates across all 
post-stroke subjects and gait cycles for both 
comfortable (red) and fast (blue) walking. On each 
box (thick lines), the horizontal line indicates the 
median value, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respec
tively. The whiskers (thinner lines) extend the boxes 
to the most extreme data points not considered 
outliers.   
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