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UAVPal: A New Dataset for Semantic Segmentation
in Complex Urban Landscape With Efficient

Multiscale Segmentation
Abhisek Maiti , Sander Oude Elberink , and George Vosselman

Abstract—Semantic segmentation has recently emerged as a
prominent area of interest in Earth observation. Several seman-
tic segmentation datasets already exist, facilitating comparisons
among different methods in complex urban scenes. However, most
open high-resolution urban datasets are geographically skewed
toward Europe and North America, while coverage of Southeast
Asia is very limited. The considerable variation in city designs
worldwide presents an obstacle to the applicability of computer
vision models, especially when the training dataset lacks significant
diversity. On the other hand, naively applying computationally
expensive models leads to inefficacies and sometimes poor per-
formance. To tackle the lack of data diversity, we introduce a
new UAVPal dataset of complex urban scenes from the city of
Bhopal, India. We complement this by introducing a novel dense
predictor head and demonstrate that a well-designed head can
efficiently take advantage of the multiscale features to enhance
the benefits of a strong feature extractor backbone. We design our
segmentation head to learn the importance of features at various
scales for each individual class and refine the final dense prediction
accordingly. We tested our proposed head with a state-of-the-art
backbone on multiple UAV datasets and a high-resolution satellite
image dataset for LULC classification. We observed improved
intersection over union (IoU) in various classes and up to 2%
better mean IoU. Apart from the performance improvements, we
also observed nearly 50% reduction in computing operations re-
quired when using the proposed head compared to the traditional
segmentation head.

Index Terms—CNN, deep learning, Earth observstion (EO),
semantic segmentation, vision transformer.

I. BACKGROUND

LAND use land cover (LULC) classification, a crucial task in
Earth Observation (EO) utilizing images from airborne or

space-borne platforms. Its significance lies in applications, such
as monitoring, planning, and decision-making. It can be consid-
ered as a specific application of semantic segmentation. Seman-
tic segmentation is a widely studied area in computer vision that
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involves assigning pixels in an image to specific categories. In
recent years, significant advancements have been made in deep
learning based semantic segmentation approaches [1]. These ad-
vancements encompass improvements in architectures, training
techniques, datasets, and loss functions. However, evaluating the
overall progress can sometimes be challenging due to variations
in training methods, datasets, and the overall training process [2].
Moreover, the dominance of the increasingly complex and com-
putationally expensive architectures in the benchmarks creates
a skewed perspective that achieving state-of-the-art (SOTA)
results requires ever-increasing model complexity and computa-
tional resources [3]. Apart from the improvements with respect
to models, the volume and quality of the training data play
a vital role in achieving the desired performance in semantic
segmentation. When it comes to remote sensing platforms, the
number of datasets available for semantic segmentation is much
smaller. This hinders the generalization capability of the models
and makes transfer learning less effective.

In the field of EO, recent research has focused on understand-
ing different aspects of visual scenes through diverse datasets,
aiming to develop improved methods for specific tasks [4].
However, several challenging domain-specific issues persist,
including variations in object scales, overlapping class distribu-
tions, class imbalance, and texture heterogeneity within the same
class. These challenges often lead to biased decisions and high
uncertainty in predictions, even with the best-performing mod-
els [5]. Addressing these problems is an active area of research.
However, most efforts concentrate on designing more complex
and intricate backbones aiming to have more powerful feature
extractors with better generalization capability and improved
robustness to the aforementioned data-related issues [6].

In a typical design, the backbone serves as a deep feature
extractor, resembling an image classifier. The subsequent part of
the architecture, known as the head or decoder, is responsible for
dense prediction using the coarse features generated by the back-
bone [7]. The evolution of backbone architectures, is becoming
deeper and more complex since the early days of VGGs [8],
the model named after Oxford’s Visual Geometry Group. It
has been a major driving factor behind improved performance
in both image classification and semantic segmentation [9]. In
addition to enhancing backbone architectures, improving the
segmentation head also plays a vital role in boosting the overall
performance of semantic segmentation subject to good quality
training data [3].
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The current availability of public semantic segmentation
datasets primarily focuses on common objects found in nat-
ural images captured from the ground. Popular datasets like
MS-COCO [10], Pascal VOC [11], ADE20 K dataset [12]
offer semantic segmentation tasks for recognizing common ob-
jects in typical scenes. These datasets are commonly used for
common object recognition and semantic segmentation tasks.
In contrast, when it comes to remote sensing, the choice of
available datasets for semantic segmentation is very limited.
The images are generally expected to be captured in the nadir
view and usually show only the top of objects. Acquiring
very high-resolution imagery conforming to such criteria from
satellites or UAVs over a sufficiently large area is usually very
expensive. Moreover, preparing the corresponding training la-
bels is a time-consuming process. In this respect, the ISPRS
2D semantic labeling benchmarks [13] provide Vaihingen and
the Potsdam semantic segmentation datasets containing very
high-resolution imagery from UAVs. The LoveDA dataset [14]
provides a semantic segmentation dataset from China contain-
ing very high-resolution Google Earth imagery. However, open
semantic segmentation datasets covering highly populated and
diverse urban regions of Southeast Asian cities are difficult to
find. Due to high variation and distinct spatial patterns, models
trained on images from European or North American regions
perform poorly, and the lack of region-specific data bars the
potential of transfer learning.

By introducing urban scene semantic segmentation tasks for
the UAV platform, researchers can gain valuable insights into
visual understanding in UAV scenes, forming the basis for more
advanced smart applications. In this regard, our contributions
encompass two aspects.

1) A new UAVPal dataset capturing complex urban scenes
from the city of Bhopal, Madhya Pradesh, India.

2) An efficient multiscale segmentation head that reduces
computational load without compromising performance.

The dataset is openly available.1 The associated implementa-
tions of this research are available on Github.2

II. RELATED WORK AND MOTIVATION

Popular semantic segmentation networks employ network
trunks with a low output stride. This design choice allows the
networks to achieve better resolution for capturing details at a
moderate spatial scale. However, it has the drawback of reducing
the receptive field, making it challenging for the networks to
predict relatively large objects in a given scene accurately. Sim-
ilarly, very small objects often consist of intricate details and fine
structures that are not preserved in the feature representations
learned by CNNs. To address this issue, pyramid pooling is
utilized to assemble multiscale context. PSPNet [12] incorpo-
rates a spatial pyramid pooling module, which combines features
from multiple scales obtained through pooling and convolution
operations on the final layer of the network trunk. DeepLab [15]

1[Online]. Available: https://doi.org/10.17026/dans-z55-6gt4
2[Online]. Available: https://github.com/digital-idiot/SemSeg

adopts Atrous Spatial Pyramid Pooling (ASPP), which employs
atrous convolutions with various dilation levels to create denser
features than PSPNet. Overall, these architectures utilize in-
termediate features along with the final layer features of the
network trunk to create a comprehensive multiscale context.

Pyramid pooling techniques focus on fixed, square context
regions due to the symmetric application of pooling and dilation.
In addition, these techniques are usually static and not learned.
On the other hand, relational context methods such as CFNet [16]
establish context by considering the relationships between pixels
and are not restricted to square regions. Moreover, relational con-
text methods can adaptively learn and construct context based
on the composition of the image. However, average pooling may
not be optimal as it equally weights output from different scales.
To overcome this, attention mechanisms have been proposed by
Chen et al. [17], where attention heads are trained across multiple
scales simultaneously to improve contextual information. Such
methods, however, require a fixed set of scales during training
and inference.

Tao et al. [18] introduced a novel attention-based head for
combining multiscale predictions without limiting the number
of scales. We take this idea further by introducing a novel head
that enhances the capabilities of a SOTA backbone with better
efficiency. This enhancement is achieved through the utiliza-
tion of visual-cognition based attention and a more efficient
multiscale feature fusion mechanism. Mehta et al. [19] high-
lighted the importance of the segmentation head of the model
by demonstrating that a simple but optimally designed head not
only reduces compute cost, but also potentially improves the
model performance. The conceptual underpinnings of our work
are rooted in the research conducted by [18] and [19]. However,
unlike [17], our method does not rely on extra scale-specific
supervision.

Apart from the development of better models, several new
EO-related vision datasets have been released over the years.
Many of these datasets focus on various specific tasks, ranging
from object detection [20], and different variants of segmenta-
tions [21] to change detection [22]. Apart from computer vision
datasets of common scenes and terrestrial images, datasets like
UAVid [23], and SpaceNet 4 [24] provide datasets with oblique
or off-nadir imagery. The quintessential Potsdam and Vaihingen
datasets released by ISPRS [13] contain ortho-rectified high-
resolution imagery and DSM. Similarly MiniFrance dataset [25]
contains high-resolution aerial imagery from various cities in
France, where a considerable portion of the images are anno-
tated, enabling both supervised and unsupervised segmentation
tasks. While building detection datasets like [26] covers various
cities in Africa and FloodNet [27] and iSAID [28] datasets
covering parts of China, high-resolution EO datasets from south-
east Asia, including India, is hard to find. This motivates us
to openly release the high-resolution dataset acquired through
drones, with a focus on India to address the aforementioned data
availability issue in the region. A comprehensive comparison
of UAVPal with other popular segmentation datasets in terms
of data characteristics, annotation quality, geographic coverage,
and other relevant factors is presented in Table I.

https://doi.org/10.17026/dans-z55-6gt4
https://github.com/digital-idiot/SemSeg
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TABLE I
COMPARATIVE OVERVIEW OF DATASET SPECIFICATIONS

III. UAVPAL DATASET

Our approach to obtaining and labeling data is specifically
tailored for semantic segmentation in complex urban scenes
from relatively small cities in India. Civilian use of UAVs is
highly restricted in India [31] therefore, it is difficult to acquire
data over a large area in the Indian cities. In our project, we
obtained the opportunity to fly a DJI Phantom 4 over the city
of Bhopal, located in the state of Madhya Pradesh in the central
part of India. In order to avoid motion blur, the drone has been
flown with an average speed of approximately 9 ± 1 m/s at a
height of approximately 90 m above ground. The survey was
carried out around noon to minimize the effect of shadows from
buildings and other vertically large objects.

A. Dataset Properties

In order to acquire a diverse dataset with good-quality labels,
we considered the following aspects:

Resolution: Due to relatively low flying height, the images
are acquired at very high spatial resolution. Each image out
of 1642 raw images is of size 5472× 3648. The pixel size of
these images is approximately 1.9 cm on average. The objects of
interest are visually clear and distinguishable with a lot of details.
Spectrally, the images have three optical RGB channels with
unsigned 8 b discrete intensity levels. The spectral distribution
of the image channels is shown in Fig. 1(a).

Spatial Coverage: The survey has been carried out over the
central part of the city. Before, preprocessing, the spatial cover-
age of the survey is approximately 1.12 × 1.09 km2. The area is
very densely populated and dominated by man-made structures.

Ortho-rectification: The raw images are preprocessed using
a photogrammetric pipeline to generate a high-quality ortho-
mosaic. This preserves the relative distance between the objects
and corrects distortions due to camera perspective, camera orien-
tation, and lens properties. Ortho-rectification of the stack of raw
images results into a high-resolution ortho-mosaic with 2.2 cm
spatial resolution with coverage of 1.01 km2.

Height Map: The height map of the entire area of interest is
generated using a stereo-matching pipeline. First, the images are
processed through Pix4D Mapper [32] generating point clouds
through dense matching. The point cloud from dense matching
is then rasterized to obtain a high-quality digital surface model

Fig. 1. Violin plot of (a) RGB channels of the images and (b) DSM. The
horizontal span represents the probability density, the hollow dot shows the
mean (μ) value, and the thick black line represents quartiles on either side of the
mean. The corresponding mean and standard deviation (σ) values are reported
underneath the figures.(a) Spectral Stat. (b) DSM Stat.

(DSM) of 8.5 cm spatial resolution. The height distribution of
DSM is shown in Fig. 1(b).

Scene Complexity: It is qualitatively evident that our UAVPal
dataset has much higher scene complexity than the other exist-
ing UAV semantic segmentation dataset. An example of such
complexity of the texture in the images is shown in Fig. 2.
Quantitatively, the standard deviation of the pixel values of
the buildings in our dataset is approximately 7 times higher
than the buildings in the Vaihingen dataset [30]. The roads in
our dataset contain various visually distinct objects other than
labeled cars. The background class also has immense textural
variability, and many cases have a similar textural pattern to
other classes making the semantic segmentation task relatively
more challenging.

Annotation: The variability of the texture and nuance present
across different classes make the common automated annotation
tools ineffective. Considering the complexities present in the
scene, all the annotations have been generated manually with-
out any automated tools. To further ensure the accuracy and
reliability of the labels, an additional independent quality check
has been performed. The annotations are first created in a vector
format using GIS software. For training, these vector annotations
are later converted into indexed raster labels matching the spatial
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Fig. 2. Visual complexity of rooftops in the UAVPal dataset: Highlighting the
intricate roof patterns contrasting the developed western regions. (a) A typical
scene roofs from UAVPal dataset. (b) Typical roofs in Vaihingen. (c) Typical
roofs in FloodNet.

resolution of the corresponding images. The annotations consist
of five distinct classes, namely water, road, car, building, and
tree. Pixels not belonging to any of the aforementioned classes
are tagged into an extra background class. The distributions of
the classes are presented in terms of the share of the pixels and the
number of distinct segments in the vector annotation belonging
to each class in Fig. 3(a) and (b), respectively.

B. Dataset Preparation

Following the preprocessing, the dataset is prepared to make it
suitable for model training and inference. First, the DSM mosaic
is resampled to match the resolution of the image mosaic. Both
the image and the DSM are clipped to remove the distorted
regions around the edges of the scene. Finally, the mosaics and
the rasterized annotation are split into 2048× 2048 tiles. The
overlap between neighboring tiles is adjusted to 60 pixels to
avoid tiles slacking beyond the scene extent. There is a total of
529 tiles, each tile spatially covers 45 × 45 m2 area. Among the
529 samples, 159 are randomly picked and reserved for testing,
and the rest of the 70% tiles are available for training. The spatial

Fig. 3. Distribution of (a) pixels and (b) segments among different designated
classes. The highest share of both pixels and segments belongs to the building
class. (a) Pixel Distribution. (b) Segment Distribution.

distribution of the train and test tiles is visually presented in Fig.
2 of the supplementary material.

IV. METHOD

Apart from simplicity and efficiency, the main guiding prin-
ciple of our novel head is that harmonization of the receptive
fields at different scales leads to better object detection and dense
prediction. In a typical multihead segmentation backbone, each
head has different effective receptive fields.

A. Designing Segmentation Head

In a typical backbone, the multiscale features are generated at
different spatial sizes. Therefore, these features are transformed
into the same scale using a scale injection module. In this
module, all features are interpolated into the target spatial size.
Next, the lower-resolution features are injected into subsequent
high-resolution features as shown in (1). The global and the local
semantics are individually passed through 1× 1 convolutions.
Afterward, global semantics are further transformed into seman-
tic weights by applying a subsequent sigmoid activation. These
semantic weights are multiplied with the transformed local token
and added to the global semantic transformed by a separate
1× 1 convolution to generate the scale-specific feature (χ̃). In
(1), f1×1(·) is 1× 1 convolution, [·]N represents batch normal-
ization, ϕ(·) is sigmoid activation, and ◦ represents Hadamard
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Fig. 4. Architecture of our proposed head. First, the features of each head are refined using attention. The features are brought to the target spatial scale using
bilinear interpolation. 2D Group convolution is applied to get class scores from each scale and stacked along a new dimension. Finally, class scores from each scale
are fused together using a 3D convolution operation to predict final class scores reducing the added extra dimension.

product. τ and χ are corresponding local tokens and global
semantics, respectively. This scale injection module helps bridge
the semantic gap between two consecutive scales compared to
just interpolation for scaling the features

χ̃ = [f1×1(χ)]N ◦ ϕ([f1×1(τ )]N ) + [f1×1(χ)]N . (1)

The design of our proposed head architecture is shown in Fig.
4. We apply attention to features at each scale to refine the
features separately at their respective scale. We first aim to
predict dense class scores at each scale and then generate the
weighted average of all these groups of class scores to predict
the final class scores, where the weights are learnable. We do
this by bringing the features to one uniform resolution and then
using group convolution on the concatenated features to predict
class scores for each scale. If there are k heads and c channels
at each head, the concatenated feature will have kc channels.
Assuming the number of possible classes is n, We efficiently
transform this to features with kn channels using a convolution
of 1× 1 kernel and k groups. Each group of adjacent c channels
transforms into subsequent n channels in the resultant feature
without cross-influence. We reshape the output features where
each group is stacked along a new dimension. We apply a 3D
convolution to get the final class scores. The k × 1× 1× 1
kernel weights of the 3D convolution are responsible for learning
the appropriate weights across the scale-specific groups for each
of the n classes.

B. Attention Mechanism

Our proposed head uses two convolution blocks without ad-
ditional computational overhead to the backbone. To keep the
minimal overhead, we adopt the attention mechanism proposed
by [33]. The objective here is to minimize the linear separability

among the neurons so that the target neuron appears more visu-
ally distinctive from the surrounding neurons. A closed-form so-
lution of the related energy function has been obtained, assuming
each channel follows a single distribution. The minimal energy
function for deriving attention is given by (2) [33]. Here, e∗t is
the minimal energy of channel t, with a closed-form solution as
a function of t, it’s channel-wise meanμt and channel-wise stan-
dard deviation σt. The term λ is a free parameter representing
potential bias in the solution. When the energy e∗t is reduced,
neuron t becomes more distinguishable from the neighboring
neurons thus the importance of each neuron is defined by 1/e∗t

e∗t =
4(σt

2 + λ)

(t− μt
2) + 2σt

2 + 2λ
. (2)

In [33], the optimum λ is found using cross-validation search,
which is a time-consuming additional process. We mitigate this
issue by considering λ as a learnable parameter.

V. EXPERIMENT SETUP

Here, we describe how we set up our experiments to test
the performance of our proposed head compared to the default
segmentation heads. We also provide some key details regarding
implementation. We further analyze the effectiveness of the head
through ablation studies.

Apart from UAVPal, we selected four more well-known
datasets to evaluate our method. All the datasets contain very
high-resolution images, but datasets are acquired from either
space-borne (LoveDA) or airborne (FloodNet, Potsdam, Vai-
hingen) platforms. The details of the datasets are provided in
Table II.

For the FloodNet dataset, we resize the images to 1024× 768
for training but perform prediction at full resolution. The pixel
size of the resized training images is approximately 12 cm.
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TABLE II
DETAILS OF DATASETS USED IN THE EXPERIMENTS

Resizing the images makes it possible to input a batch of entire
images into the network. We downsample instead of cropping
mainly because cropping the images into smaller tiles reduces
the effective receptive field [34]. The down-sampling of the
image may reduce unnecessary details, such as transmission
lines, clutter, etc. We use these images from the rest of the
datasets without scaling. Large scenes in Potsdam and Vaihingen
datasets are sliced into 1024× 1024 tiles to facilitate training.
For each experiment, we train the network from scratch. Eval-
uation of the test performance on the LoveDA experiment is
done by submitting the inferred labels to the official portal. In
our experiment, we use the whole training set to train the model
instead of training and fine-tuning the model for rural and urban
scenes separately. When a dataset lacks a designated validation
set, for training, we employ k-fold cross-validation with k = 5,
which entails an 80 : 20 ratio of training to validation data.

Two of the SOTA backbones have been used to test the
effectiveness of our proposed head. Both TopFormer [35] and
UNetFormer [36] share an overall encoder–decoder architecture
with the option for multiscale prediction. While TopFormer
applies a transformer block at the bottleneck, UNetFormer
applies specialized transformers at each scale of the decoder.
While TopFormer utilizes a lightweight transformer block to re-
fine high-level features, UnetFormer exploits global-local trans-
former blocks for future fusion at each scale.

In all of our experimental endeavors, the well-regarded cat-
egorical cross-entropy has been employed as the loss function.
To rectify class imbalances, we have utilized inverse frequency
weighting to ascertain class weights, subsequently incorporat-
ing these within the loss computation. The Rectified Adam
optimizer (RAdam) [37], a refined version of the conventional
Adam optimizer [38], has been selected for the experiments,
owing to its superior performance characteristics. We used the
one-cycle learning rate policy [39] to optimize the learning rate
dynamically, facilitating more rapid and enhanced convergence.
To attain superior generalization capabilities, stochastic weight
averaging (SWA) [40] has been deployed during the training
phase. The strategy of weight averaging serves to smooth the
loss landscape, preventing the optimization procedure from
ensnaring within local minima, which in succession, cultivates
enhanced model performance. The batch size of 24 has been
determined using a grid search subject to available memory and
gradient accumulation strategy.

For the evaluation of performance, we use IoU. We compare
both class-specific IoUs and overall mean IoU (mIoU). In order
to minimize the effect of numerical instability and stochasticity,
we report mean values of five trials for each experiment. The IoU
is a metric used to evaluate the overlap between two segmented

TABLE III
RESULTS OBTAINED ON THE TEST SET OF FLOODNET

areas. Its definition is shown as follows:

IoU =
TP

FP + TP + FN
. (3)

In the context of semantic segmentation, IoU offers a more un-
biased assessment of model performance compared to accuracy.
While accuracy can be misleadingly high if a class dominates the
image, apart from true positives (TP) IoU takes into account both
false positives (FP) and false negatives (FN) in its calculation.
Thus, it ensures that even if a segment is a small portion of the
image, its accurate prediction is crucial for a high IoU score,
promoting balanced model performance across classes [41].

VI. RESULTS

In this section, we present the quantitative and qualitative re-
sults of our experiments and analyze them. Finally, we show the
results of a few essential ablation experiments. We will denote
the TopFormer with its original head as TF and the network
with our proposed Multi-Scale Fusion as MSF. Similarly, UF
represents UNetFormer with its original head. We also measured
the performances of a few well-known semantic segmentation
models on our UAVPal dataset, these measurements are available
in Table I of the supplementary material.

A. Experiments on FloodNet Dataset

Table III shows the IoUs of the experiments on the FloodNet
dataset. It can be readily observed that the network with our
proposed head (MSF) performs equally, if not better, for each
class, along with better mIoU compared to the default heads
of both networks. Scores of the experiment with our proposed
method for the classes with large object sizes, such as grass and
background have improved, along with classes containing small
objects such as pools. In addition, we observe better detection
of linearly shaped roads and flooded buildings.

In Fig. 5(a)–(d), we can observe a test scene with its associated
ground truth labels and the corresponding inferences from each
model. Visually comparing Fig. 5(c) and (d), we observe that
the inference from MSF is less spurious, and the shapes and
boundaries of the objects seem more precise. For a more detailed
visual comparison, we refer to Fig. 5(e)–(h) focusing on a subset
area of a test scene. Here, notable differences can be observed by
comparing the areas highlighted with white rectangles. Both TF
and MSF misclassify the building at the bottom left. However,
the latter correctly labels the building immediately on the right.
On the top right portion, TF fails to detect one of the two vehicles,
but MSF detects both vehicles correctly.
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Fig. 5. Visual comparison of inferences with respect to the ground truth for a test image from the FloodNet dataset. ∗ indicates zoomed scene. (a) Image: 10813.
(b) Ground Truth: 10813. (c) TF: 10813. (d) TF + MSF (ours): 10813. (e) Image*: 7323. (f) Ground Truth*: 7323. (g) TF*: 7323. (h) TF + MSF* (ours): 7323.

TABLE IV
RESULTS OBTAINED ON THE TEST SET OF LOVEDA

B. Experiments on LoveDA Dataset

The test scores for the LovDA dataset have been obtained by
submitting the predicted results to the official leaderboard [14]
for evaluation and are shown in Table IV. We observe that MSF
can outperform the base models for many classes. However, here
we also observe that MSF slightly underperformed with respect
to TF for barren and agriculture classes. Nevertheless, MSF
achieves better mIoU than TF, which agrees with the FloodNet
results. For qualitative and visual analysis, we compare the
predictions in Fig. 6(b) and (c).

Although we cannot qualitatively compare the predictions of
the test set due to the unavailability of the respective ground
truths, we can still intuitively compare the visual quality among
the predictions. In the context of shadows, MSF can produce
more coherent predictions than TF. Shadows of the buildings
are harder to detect due to their low illumination, irregular
shape, size, and orientation. Shadow detection requires more
contextual information. Thus, a larger receptive field compared
to what is required to detect the associated object. In both TF and
MSF, multi-scale features from the backbone help in this regard.
However, MSF learns the importance of features at different

Fig. 6. Visual comparison of inferences for a test image from LoveDA dataset.
Ignore represents no data region. (a) Image. (b) TF. (c) TF + MSF.

scales for each class. Therefore, the likelihood of MSF resolving
shadows is higher than TF. We also observe that the shapes
and boundaries of the objects are better delineated by MSF.
Moreover, MSF seems less likely to introduce spurious noise
in the prediction than TF. We encountered similar patterns and
equivalent observations throughout the predictions for the test
set.

C. Experiment on Potsdam and Vaihingen Dataset

In the field of Earth observation, the ISPRS Vaihingen and
Potsdam datasets are extensively utilized for benchmarking
semantic segmentation tasks. In Table V, we present the per-
formance metrics comparing MSF to the baselines with respect
to both of these datasets. Similar to the FloodNet and LoveDA
experiments, we observe IoU improvements in several classes
due to MSF.

The improvements in mIoU can also be observed in most
cases. In the case of the Vaihingen dataset, the MSF could not
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TABLE V
METRICS FROM THE POTSDAM AND VAIHINGEN EXPERIMENT

Fig. 7. Visual comparison of inferences for a test image from the Vaihingen
dataset. The clutter class is considered as no data and ignored in metrics. (a)
Image. (b) Ground Truth. (c) UF. (d) UF + MSF.

improve overall IoU with the TF backbone. However, in the
case of the UF backbone, the MSF improves the mIoU by more
than 1%. In Fig. 7, we observe that with MSF the spurious
prediction is reduced and the shapes of objects are relatively
better delineated. Similar trends have also been observed for the
Potsdam dataset.

D. Experiment on UAVPal Dataset

Fig. 8 shows the qualitative comparison of the performance
of our proposed model on the UAVPal dataset with the ground
truth. We found significant improvements in the accuracy of in-
dividual classes, particularly in the building class. It can be seen
that the borders of the buildings are very accurately delineated
from other classes. There are a lot of missing road segments
in Fig. 8(d) compared to that of our proposed model results.

TABLE VI
RESULTS OBTAINED ON THE TEST SET OF UAVPAL

Interestingly, a car on the road in the top left of the image in
Fig. 8(e) has shown a proper distinction which is not captured
in UF. Despite the complexity of the UAVPal dataset in terms of
closely clustered buildings and uneven distribution of different
classes, our proposed model outperforms TF and is found to be
strongly aligned with the ground truth.

In Table VI, we see that the IoU of 96.9% is associated with
the building class, which proves to be the highest compared
to other classes. This can also be demonstrated by qualitative
inspection in Fig. 8. Moreover, we observe an increase in IoU
by 3.2% for road class over TF. This is a significant increase,
which is reflected in Fig. 8(d) and (e). Recognition of the water
class is also increased by 2.4% and 3.2%, respectively, over
both TF and UF by using our MSF head. Furthermore, in the car
class, IoU has an overall increase of 3.3% and 1.1% compared to
baseline TF and UF, respectively. A proper demarcation of cars
on the road in Fig. 8(e) is a perfect example of these quantitative
improvements. In the end, we demonstrate that despite the spatial
heterogeneities and imbalanced class distribution, the models
perform well on the UAVPal dataset with the potential to perform
even better with our proposed MSF head.

It is worth noting that, despite the increased scene complexi-
ties compared to the Potsdam and Vaihingen datasets, the overall
performance of the models on the UAVPal is comparable to
the performance on the Potsdam and Vaihingen datasets. We
suspect that in the label rasterization, the nearby buildings with
insufficient separation get merged into a single segment, which
makes it easier for the model to detect a cluster of buildings
instead of delineating well-separated individual buildings in
other datasets. In addition, in the UAVPal, waterbody segments
are relatively large, easy to detect, and very limited, which
improves the mIoU.

E. Ablation Study

To investigate the impact of attention mechanisms used in our
proposed segmentation head, we train a separate network with-
out applying the attention mechanism and observe its behavior to
examine the effect of attention mechanisms used in our proposed
segmentation head. Comparing the loss curves of the models in
Fig. 9, we notice that attention induces faster convergence and
slightly lower expected loss.

Moreover, we observed that without attention, mIoU de-
creases by approximately 0.5%− 1%. These observations are
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Fig. 8. Visual comparison of inferences with respect to the ground truth for a test image from the UAVPal dataset. Sample 14_00 and 07_09 from the test set are
shown in the first and second rows, respectively. The DSM * refers to the DSM where the Z-scores of DSM scaled into [0, 1] range. (a) Image14 00. (b) DSM*:
14 00. (c) Ground Truth: 14 00. (d) TF: 14 00. (e) TF + MSF (ours): 14 00. (f) Image: 07 09. (g) DSM*: 07 09. (h) Ground Truth: 07 09. (i) UF: 07 09. (j) UF +
MSF (ours): 07 09.

Fig. 9. Change of loss with respect to progression of training steps. A com-
parison of both curves highlights the effect of attention. SWA: SWA.

TABLE VII
EFFECT OF ATTENTION

presented in Table VII. In addition, we compare the pro-
posed head with the hierarchical multi-scale attention (HMSA)
head [18] and discover that MSF outperforms the latter.

We also compare the TF with TF + MSF in terms of the number
of trainable parameters, the estimated size of a single pass during
training, and the number of floating point operations per second

(FLOPS), representing the complexity and efficiency of the
models. We use 1024× 1024 input images with three channels
and a batch having a single image for these estimations. In
our implementations, TF has 4.47 million trainable parameters
requiring 50.75 GFLOPS for a single forward pass, and the
estimated size of a single pass is 2.12 GB. When combined
with HMSA the TF has 4.56 million trainable parameters with
2.14 GB pass and 42.71 GFLOPs. In contrast, TF + MSF has
4.41 million trainable parameters with one single pass having
an estimated size of 2.04 GB, and a forward pass requires 25.99
GFLOPS.

Although the number of trainable parameters and the size of
a single pass for TF and MSF are not drastically different, the
FLOPS required for MSF is almost half of what is needed for
TF. We observed a similar trend in these metrics for UF and
UF + MSF as well. This improvement in efficiency is mainly
due to the efficiency of the group convolution operation and the
subsequent reduction of learnable parameters attributed to the
reduced channel depth of the feature groups. The implication
of this faster training and inference time for MSF, compared to
TF, is subject to the computing capability of the hardware. Yet,
setting the parameter λ as learnable does not directly enhance
the model’s efficiency, but it eliminates the necessity for further
hyperparameter tuning for λ.

F. Impact on Inference Time

To provide a clearer understanding of the computational bene-
fits of our proposed approach, we present a direct comparison of
inference times between our method and other relevant methods.
Table VIII showcases the inference times, highlighting the effi-
ciency gains achieved by our approach. Evidently, our MSF head
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TABLE VIII
IMPACT OF PROPOSED MSF ON THE INFERENCE SPEED OF THE MODEL

significantly reduces the inference time. In the case of both TF
and UF, the inference latency decreased by approximately 20%
when used with the proposed MSF. The inference times were
measured with batch size 24 of 1024× 1024 images having four
channels using a single Nvidia A40 GPU. For each experiment,
the latency is measured for 1000 iterations and the mean value is
reported in Table VIII. These measurements have been carried
out in FP32 mode. Depending upon the hardware, a combination
of lower precision modes such as FP16 and adequate model
quantization further optimizes the speed of inference.

VII. DISCUSSION

In this section, we explore the broader implications and con-
text of our study, emphasizing the nuances and potential areas
of interest for future research.

UAVPal in Broader Context: The introduction of the UAVPal
dataset is a step toward rectifying the geographical imbalance
in available datasets for urban scene understanding. Its focus on
Bhopal, India, brings to light the unique urban landscapes of
Southeast Asia, which have been underrepresented in previous
datasets. This dataset’s significance lies not just in its geograph-
ical focus but also in the potential it offers for region-specific
research.

Balancing Efficiency and Performance: Our research under-
scores the possibility of achieving computational efficiency
without sacrificing model performance. The design choices in
our multiscale segmentation head highlight this balance, which
is pivotal for applications where computational resources might
be constrained.

Navigating Challenges: The UAVPal dataset, while valuable,
comes with its set of challenges, including limited spatial cov-
erage. In addition, the regulatory landscape around UAV usage
in regions like India poses challenges for extensive data acqui-
sition. One of the primary challenges is the manual annotation
of images, which is not only time-consuming and cumbersome,
but also expensive. Furthermore, manual annotations are prone
to human errors affecting the quality and reliability. Minimizing
these errors require stringent quality check, which further adds
to the aforementioned drawbacks.

Looking Ahead: The groundwork laid by this study opens
avenues for further exploration. Whether it is expanding the
dataset’s coverage, delving deeper into computational tech-
niques, or applying the insights to other vision tasks. More-
over, The recent surge in popularity of interactive segmentation
models such as segment anything [42] potentially reduces the
effort required for manual annotation. This reduced necessity for

manual intervention, while still retaining the option for manual
refinement can significantly improve both the efficiency and
accuracy of image annotation workflows in the future.

VIII. CONCLUSION

In our study, we focus on providing a new UAVPal dataset,
which expands the overall diversity of the high-resolution open
datasets for urban scene understanding. We describe the data
collection procedure and subsequent preprocessing performed
on the data to prepare it for model training and inference. The
dataset contains very high-resolution images acquired from a
low altitude, making it ideal for understanding the complexities
present in a typical urban scene from a densely populated Indian
city. The precisely annotated labels available with the dataset are
adequate for computer vision tasks like semantic segmentation,
as we have demonstrated through our experiments. However,
the UAVPal dataset has limited spatial coverage. In the future,
we would like to expand the dataset by expanding the spatial
coverage and covering more cities, making it more challenging
and useful.

Furthermore, a new multiscale segmentation head is imple-
mented to reduce computational overhead with the potential to
improve performance. We derive semantics from multiple avail-
able scales separately and fuse them according to scale-specific
inferred importance. The proposed head has been thoroughly
tested on two modern backbones (TopFormer and UNetFormer)
and five high-resolution datasets with different properties show-
casing the applicability of the segmentation head, on images
with different resolutions, object size variabilities, viewing con-
ditions, viewing perspectives, etc. Our experiments show that the
proposed head has improved the IoU of several classes and the
overall mIoU. While a better backbone largely improves overall
feature extraction, our proposed head exploits the extracted
feature better, which results in more stable and better inference.
Moreover, the proposed head has fewer trainable parameters
in the order of 6× 104 and uses nearly 50% fewer compute
operations, resulting in better training and inference times. These
empirical findings underscore the effectiveness of our method
and demonstrate its potential on our newly introduced UAVPal
dataset.
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