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Abstract
Quantifying the number of molecules from fluorescence microscopy measurements is an important topic in cell biology and medical research. 
In this work, we present a consecutive algorithm for super-resolution (stimulated emission depletion (STED)) scanning microscopy that provides 
molecule counts in automatically generated image segments and offers statistical guarantees in form of asymptotic confidence intervals. To this 
end, we first apply a multiscale scanning procedure on STED microscopy measurements of the sample to obtain a system of significant regions, 
each of which contains at least one molecule with prescribed uniform probability. This system of regions will typically be highly redundant and 
consists of rectangular building blocks. To choose an informative but non-redundant subset of more naturally shaped regions, we hybridize our 
system with the result of a generic segmentation algorithm. The diameter of the segments can be of the order of the resolution of the microscope. 
Using multiple photon coincidence measurements of the same sample in confocal mode, we are then able to estimate the brightness and 
number of molecules and give uniform confidence intervals on the molecule counts for each previously constructed segment. In other words, 
we establish a so-called molecular map with uniform error control. The performance of the algorithm is investigated on simulated and real data.
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Introduction
Super-resolution microscopy
In fluorescence microscopy, structures of interest inside a spec-
imen are labeled with fluorescent markers and then imaged 
using visible light illumination. Only the fluorescence itself 
and thus the labeled structures are detected, making it pos-
sible, for example, to investigate details inside living cells 
with unrivaled contrast. The tremendous development of 
super-resolution fluorescence microscopy in recent decades 
has extended spatial resolution beyond the diffraction limit 
of conventional microscopy to the nanometer scale.

All super-resolution light microscopy concepts rely on dis-
tinguishing fluorophores locally by consecutively transferring 
them between a dark (non-fluorescent) and a bright (fluores-
cent) state using light to induce these transitions [1,2]. The 
transitions between these states can be performed in either 
a spatially controlled or stochastic manner, with the latter 
denoted here as single-molecule switching microscopy [3]. 
In both approaches, only a small subset of molecules is left 
in the bright state at each measurement step and the final 
image is assembled by repeating the experiment many times. 
A well-established spatially controlled method uses stimu-
lated emission depletion (STED) [4,5]. Thereby, a red-shifted 

light spot featuring a central intensity minimum is co-aligned 
with the excitation light spot. It induces strongly saturated 
stimulated emission, effectively inhibiting the fluorophores 
from emitting fluorescence in the periphery of a focused exci-
tation light spot. The very small spot of effectively allowed 
fluorescence emission can be scanned over the sample, where 
each scanning position in a rectangular grid corresponds to 
a pixel in the final image. For example, the STED principle 
has been used in the past to reveal the distribution of synap-
tic proteins in living mice [6] or the dynamics of membrane 
lipids in living cells [7]. Recently, a combination of stochas-
tic switching and excitation light patterns with at least one 
isolated intensity zero, called minimal photon fluxes, was 
used to achieve isotropic resolution on the order of a few
nanometers [8].

From a statistical perspective, the recovery of spatial inten-
sity and specimen distribution from super-resolution fluores-
cence microscopy images leads to sophisticated convolution 
models with Poisson or Binomial data distributions, which in 
themselves present a number of challenges (see, e.g. [9–12] 
and references therein).

In many biological contexts, however, it is not only the 
precise localization of structures that is of interest but also 
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the determination of the exact number of fluorescent markers 
at a given location, especially if this number can be related 
to the local number of proteins or other biological targets 
of interest. Such quantitative knowledge of target structures 
at the nanoscale has the potential to greatly improve the 
understanding of many biological processes. Knowledge of 
the absolute number of molecules can provide the basis for 
structural models of protein complexes or determine thresh-
olds for the number of molecules required to produce a partic-
ular effect. For example, estimating the number of constituent 
proteins in kinetochores reported unexpectedly high numbers 
of proteins present [13], whereas quantifying the number of 
proteins used for flagellar regeneration helped refine models 
for flagellar assembly [14].

Toward molecule counting
In general, the mean recorded fluorescence signal in a micro-
scope is proportional to the number of active fluorescent 
markers. If we denote by f N a spatial function assigning 
each location (or pixel) the corresponding number of mark-
ers, and by f p their corresponding brightness ( i.e. probability 
to emit a photon after an excitation pulse was applied), then 
the observed quantity is mathematically given by a spatial 
convolution of the product fN ⋅ fp with the so-called point 
spread function (PSF) h, which is determined by the micro-
scope (see the ‘Modeling, notation and prerequisites’ section 
for details). This already shows that the observations can-
not be readily used to infer the absolute number of markers, 
since the brightness of a fluorophore depends on the local 
environment, and thus, f p is unknown and not constant. If 
the microscope could guarantee that each fluorophore was 
perfectly separated, counting fluorophores would be a triv-
ial task, but in almost all current applications, this is not the 
case. Robust statistical modeling of the contributions of the 
fluorophores to the acquired image data and, in particular, a 
method for calibrating the local brightness of molecules are 
therefore required. This calibration is ideally performed dur-
ing the measurement itself, since the molecular brightness also 
depends on the microscope configuration used and the sample 
conditions.

In the super-resolution techniques that leave only iso-
lated markers in the bright state (as it is, e.g. the case in 
single-molecule switching microscopy), counting can be per-
formed by a careful analysis of the localization events (see 
e.g. [15–18]). From a statistical perspective, this is mainly 
based on the temporal Markovian dynamics of the transition 
between bright and dark states of the fluorophores [19,20] 
and requires detailed knowledge about the fluorescent state 
transition kinetics.

In the case of spatially separating super-resolution 
microscopy, e.g. for STED as considered in this work, a sim-
ilar approach is not possible. Instead, the single molecule 
brightness has traditionally been estimated by observing single 
photon bleaching steps, which is challenging in dense samples. 
For the case of repeatedly activatable markers, one can also 
determine an excess variance, which was used to determine 
the molecule brightness [21,22]. Despite its practical rele-
vance, stochastically sound methods for counting molecules 
from scanning microscopy images remain elusive till now.

Our approach
In this work, we will address this issue by means of a dif-
ferent path. To this end, we will perform counting based 
on the photon emission statistics, specifically the number of 
photons that are emitted simultaneously. This has recently 
emerged as a tool for intrinsically calibrating the molecular 
brightness and to infer on the number of molecules present. 
The physical effect affecting the photon emission statistics is 
called photon antibunching, i.e. an excited fluorophore can-
not emit more than one photon during the lifetime of the 
excited state. First measurements showed that the number of 
markers can be inferred from the photon emission statistics 
[23]. Termed antibunching microscopy, it has been imple-
mented later in STED mode and could, for example, count 
the number of internalized receptors within small vesicles 
in HEK293 cells [24]. This technique is able to account for 
locally varying molecular brightness: given that the event of 
observing a single photon has a probability proportional to 
fN⋅fp as argued earlier, the probability that two photons are 

measured simultaneously must be proportional to (fN ⋅ fp)2

minus the physically impossible contribution that both pho-
tons stem from the same molecule, which is itself proportional 
to fN⋅f 2

p . So, after a linear transformation, we obtain obser-
vations proportional to fN⋅fp, fN⋅f 2

p , …, which, in principle, 
allows decoupling the (local) number of markers f N from 
their brightness f p. For details, see Theorem 1 and its proof 
in the Supplementary Material. A scheme of an antibunching 
STED microscope is shown in Fig. 1. It provides simulta-
neous detections of multiple photons, i.e. the measurement 
of photon coincidences. State-of-the-art single-photon detec-
tors (avalanche photo diodes) still feature considerable times 
where they are insensitive after each photon detection (on the 
order of  50 ns), rendering them incapable of detecting photon 
coincidences. This limitation is effectively overcome by paral-
lel detection, i.e. by splitting the emitted light equally among 
multiple detectors. 

At each scan position (the scan covers the whole sam-
ple equally), a fixed number t of excitation light pulses is 
applied and the statistics of detected number of photons are 
recorded. This can be seen as repetitions of a multinomial 
experiment with an additional twist that multiple photons 
arriving at the same detector after each excitation light pulse 
are only registered as a single detection event. The accessi-
ble observable is indeed only the number of active detectors 
for each excitation light pulse, which depends on the number 
of emitted photons and the number of the available detec-
tors. In the ‘Modeling, notation and prerequisites’ section, 
we develop an explicit multinomial model that encodes the 
photon emission and detection probabilities and is given by 
convolutions and products of the local brightness, the local 
number of markers and the effective PSF of the microscope 
itself. The accuracy of the estimation of the multinomial prob-
abilities of our model increases with increasing number t of 
excitation light pulses. Therefore, our theoretical considera-
tions assume an asymptotic viewpoint as this number tends 
to infinity. Typical numbers of t in applications easily reach 
t = 10,000, such that the approximation by the asymptotic 
results is rather accurate. Utilizing this model, measuring mul-
tiple photon coincidences allows for inference on the (local)
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Fig. 1. Microscope scheme and example images for detecting multiple photon coincidences. (a) Schematic of a confocal/STED fluorescence light 
microscope capable of detecting multiple photon coincidences. Excitation, depletion and fluorescence light are combined with dichroic mirrors. A 
specific phase distribution is imprinted on the depletion beam in order to create a doughnut-shaped intensity distribution of depletion light at the focal 
point. Effectively, the spot in the sample that is allowed to fluoresce is reduced to a sub-diffraction extent. In the detection unit, the fluorescence light is 
split by three beam splitters (BS) in four equal intensity paths and directed on four identical detectors (Dk,k = 1, ..,4). Such a microscope has been built 
and used for antibunching microscopy in [24]. (b) Example object (molecule density) and corresponding simulated photon coincidence measurement 
images YC,k,k = 1, ..,4 in confocal mode (excitation pulses per pixel t = 3000); see the ‘Modeling, notation and prerequisites’ section for details on the 
model and data. The scaling of the colorbar is indicated by the value H in each image.

number of markers, as the simultaneous arrival of two pho-
tons implies that the two photons must originate from at 
least two different fluorophores. We will show later on that 
the empirical distribution of the number of active detectors 
depends uniquely on the number and location of molecules 
present. An estimation of the local molecular number and 
brightness by a penalized maximum likelihood-based recon-
struction algorithm (without statistical guarantees) was imple-
mented in [24]. Besides the lack of statistical guarantees for 
the local molecular numbers, the statistical model therein is 
limited to two simultaneously arriving photons at most.

Our contribution
As the goal of counting the number of fluorescent markers in a 
sample would greatly benefit from both being able to calculate 
error bounds on the numbers and considering higher-order 
photon coincidences, in this work, we will extend the existing 
approach in these directions. First of all, we derive a detailed 
and sound statistical model for the observations obtained 
from the antibunching microscope including contributions of 
arbitrarily high photon coincidences. One major contribution 
is that instead of globally estimating the number of markers 
inside the specimen, we construct a so-called molecular map
with uniform error control. This is a collection of family-wise 
error rate (FWER) controlled, distinct segments in the speci-
men together with uniform confidence intervals (CIs) for the 
number of markers contained in each segment. The diameter 

of these segments can be of the order of the resolution of the 
microscope. To derive this molecular map with a given total 
error level 𝛼 ∈ (0,1), the method performs three steps:

S1: Segmentation. We first construct a segmentation of the 
image space such that each segment contains at least one 
molecule with uniform probability at least 1 − 𝛼/2 and, at 
the same time, has a suitable shape. All image pixels that 
are not contained in any of the segments are no longer 
considered in steps S2 and S3.

S2: Estimation. Given M (say) segments from S1, we estimate 
(locally) the number of molecules, i.e. segment by segment.

S3: Confidence. Based on a central limit theorem, we con-
struct 1 − 𝛼/(2M) CIs for each of the M local (segment-wise) 
numbers of molecules.

The outcome of this procedure is a collection of distinct 
segments, estimated marker counts in these segments and 
CIs such that asymptotically (as the number t of excitation 
light pulses tends to infinity) the following statement is true 
(Theorem 4): 

ℙ⎡⎢
⎣

Each CI contains
the correct number of
markers in its segment

⎤⎥
⎦

≥ 1 − 𝛼. (1)
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The provided MATLAB® code implements the approach 
described earlier, and we investigate its performance in numer-
ical simulations as well as real data examples in the ‘Numer-
ical study’ and ‘Counting molecules in a DNA origami mea-
surement’ sections.

Let us discuss some immediate issues and the rationale 
behind this three-step approach. In principle, the measured 
photon coincidences do allow for a pixel-wise estimation of 
the number of markers and hence also for pixel-wise con-
fidence statements. This is also possible with the aforemen-
tioned three-step approach by considering each pixel as a 
separate segment. However, to obtain a uniform coverage 
as in (1), the corresponding CIs (e.g. as constructed in step 
S3) will then be unfavorably large due to the large number 
of pixels (in practical applications on the order of 105 − 106) 
and its corresponding multiplicity correction. To overcome 
this burden, we exploit the fact that in many samples, the 
molecules are concentrated in parts of the measurement vol-
ume and our algorithm estimates on relevant regions only. 
Consequently, it neglects a substantial fraction of all pixels 
before performing the estimation. If the segments are still 
chosen reasonably small (e.g. in the order of the microscope 
resolution rather then single pixels), local information is main-
tained, while at the same time, the number of confidence 
statements to be made is reduced significantly. Therefore, 
a reasonable segmentation in step S1 will strongly ease the 
estimation and confidence procedure afterwards. Such a seg-
mentation will be achieved by a hybridization of an estab-
lished segmentation approach from image processing such as, 
e.g. the watershed segmentation, with a hot spot detection 
procedure that provides rigorous statistical guarantees such 
as the Multiscale Inverse SCAnning Test (MISCAT) proce-
dure introduced in [25], which is a method based on multiple 
statistical hypothesis testing. Such a hybrid approach to seg-
mentation is new and offers a lot of flexibility in the choice 
of methods while providing a strong theoretical justification. 
Note that even though the number M of segments in step 
S2 is random, this does not cause problems in step S3, as 
it can be considered deterministic conditional on the data 
used for step S1. Moreover, in our asymptotic considerations, 
the number of pixels, which is an upper bound for M, is
fixed.

The three-step approach is visualized in Fig. 2. In the exam-
ple shown there, the images have 512 × 512 = 262,144 pixels, 
but M, the number of identified segments containing markers, 
is only 18. 

We investigate the introduced methodology both in simu-
lations and on experimental data. The former gives a precise 
description of the abilities and limitations, and the latter 
shows the high practical value of our approach.

The remainder of the paper is organized as follows: in 
the ‘Modeling, notation and prerequisites’ section, we state 
the statistical model for raw photon counts in antibunching 
microscopy and their relation to the local number of mark-
ers inside the sample. The technical derivation of this model 
is deferred to Section B.1 of the Supplementary Material. 
‘Segmentation’ and ‘Statistical molecule counting’ sections are 
devoted to the three steps of our inference algorithm. Detailed 
numerical simulations are provided in the ‘Numerical study’ 
section. In the ‘Counting molecules in a DNA origami mea-
surement’ section, we discuss the applicability on real-world 
data. We end with a short conclusion in the ‘Discussion and 
outlook’ section.

Modeling, notation and prerequisites
Throughout this work, we denote by [n] the set {1,… ,n}. Vec-
tors and multi-indices will be written in bold face, where, 
with a slight abuse of notation, we denote the vector of 
component-wise ratios ik/nk by i/n.

In the following, we denote by N the total (unknown) 
number of fluorescent markers in our specimen of interest. 
Without loss of generality, we can assume that all markers 
are contained in the unit square [0,1]2, which is discretized 
by the grid x(i1,i2) = xi = ( i1

n
, i2

n
) , i ∈ [n] × [n] . The jth marker 

has a position x𝜓(j) on this grid (where the true position is 
just assigned to the closest grid point), which is encoded in 
terms of the mapping 𝜓 : [N] → [n] × [n] that assigns to the 
j-th marker, j ∈ [N], its position on the grid. Furthermore, 
the j-th marker has an individual brightness pj. The individual 
brightness of a marker j is its probability to collect a photon 
after an excitation light pulse focused to x𝜓(j) was applied, see, 
e.g. [9].

The antibunching microscope shown in Fig. 1 works as 
follows. The specimen is scanned spatially along the grid 
xi, i ∈ [n] × [n]. For each grid point xi, the following experi-
ment is repeated a total number of t times: A short excitation 
pulse with a duration much shorter than the excited state’s 
lifetime is applied to the sample (focused on the current grid 
point xi), and afterwards the fluorescence is recorded at the 
detectors. Between two experiments, there is a certain waiting 
time, which takes into account the dead time of the detec-
tors after recording a photon (typically around 100 ns) and 
the typical fluorescence lifetime of the markers (typically ≤ 10
ns). In each experiment, the number of detected photons, k, is 
recorded.

It is important to note that a pulse centered at the point x
will also illuminate neighboring grid points due to diffraction, 
however, with a lower intensity. This implies that the probabil-
ity 𝔭j(x) to detect an emission from the j-th marker in a single 
excitation pulse when scanning at position x ∈ [0,1]2 is given 
by 

𝔭j(x) = pj ⋅ h(x − x𝜓(j)). (2)

Here, h is the PSF of the microscope, which reaches its 
maximal value at 0, and therefore, a detection at the correct 
position is most likely. However, relation (2) shows that mark-
ers collectively contribute to the measured signal at a specific 
scanning position x, even though they are located at different 
grid points. The shape of h depends on various experimental 
parameters in the microscope. As a rough guidance, h has a 
larger extent when using conventional (i.e. not super-resolved) 
microscopy (as more surrounding markers are also excited) 
and a smaller extent in the case of STED measurements cor-
responding to a smaller or larger resolution. An often used 
measure describing the shape of h and also of the microscope’s 
resolution is its full width at half maximum (FWHM), cf. 
Kulaitis et al. [12] for an explanation in statistical terms. In 
the case of a Gaussian peak PSF h with variance 𝜎2, one has 
FWHM = 2√2log2𝜎.

As a consequence of (2), we obtain by superposition a 
convolution model 

g (x) =
N

∑
j=1

𝔭j(x) = ∫
[0,1]2

fN(y)fp (y)h (x − y) dy, (3)
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Fig. 2. Three-step analysis workflow. (a) Simulated one-photon STED image with high spatial resolution (top left) and one- and two-photon detection 
images in confocal mode (center left and bottom left) for the example object depicted in Fig. 1b. (b) The STED image YS

1 is used for a combined 
watershed and MISCAT segmentation that results in an effective hybrid segmentation, where each segment contains at least one molecule with 
uniform probability. Color scale for MISCAT is inverse to the box area, and smaller boxes are drawn on top of larger boxes. (c) Using the one- and 
two-photon statistics obtained in confocal mode YC,1, YC,2 and the hybrid segmentation in (b), the number of molecules and confidence bounds can be 
obtained for each segment. The segments are enumerated, and the fill color (on a gray scale) indicates the estimated local molecule density within a 
segment. The true location of markers is shown on the right. (d) Segment number, confidence bounds (𝛼 = 0.1) and true number of molecules for each 
of the 18 obtained segments.

where g (x) denotes the probability to detect at least one pho-
ton when scanning at x ∈ [0,1]2, fN : [0,1]d → ℝ denotes the 
spatial number of markers, and fp : [0,1]2 → ℝ their bright-
ness at x ∈ [0,1]2. Note that formally f N is a (finite) sum of 
dirac measures (located at the molecule positions) rather than 
a function, and hence, the integral in (3) is in fact just a sum. 
The same applies to all integrals involving f N. As an alterna-
tive, one could model f N as a density as well, which underlies 
all classical (continuous) convolution models in microscopy. 
Using the notation in (3), we stay in line with these mod-
els, and essentially, all subsequent derivations work in both 
models.

The convolution model in (3) is most commonly used 
for standard fluorescence microscopes to recover the prod-
uct fN ⋅ fp, see e.g. [9]. However, our modified microscope 
sketched in Fig. 1 does not only measure the total number 
of photons when scanning at xi, i ∈ [n] × [n] but furthermore 
measures the number of coincidences, i.e. k detected photons 
at the same time for 0 ≤ k ≤ md, where md denotes the num-
ber of parallel detector units present in the microscope (Fig. 1). 
This allows us to finally decouple f N and f p. The data for the 
current grid point xi consequently consist of integers, with 
Yk

i  being the number of k-photon events at xi, 0 ≤ k ≤ md. 
This immediately implies that our (ideal) data will consist of 
(pixel-wise) multinomial observations, i.e. 

Yi = (Y0
i , ...,Ymd

i ) ∼ ℳ(t,E0 (xi) , ...,Emd
(xi)) , i ∈ [n] × [n],

(4)
where ℳ denotes the multinomial distribution with a total 
number of t experiments per image pixel and the numbers 

Ek(xi) denote the probabilities to observe k photons at posi-
tion i. Note, that in the notation of (3), we have g(xi) =
∑k≥1 Ek(xi), and due to multinomial distribution, it holds 
t = ∑md

k=0 Yk
i  for each pixel i ∈ [n] × [n].

Throughout this work, we assume that the observations 
for different grid points xi are independent, which means that 
we assume that the observations Yi, i ∈ [n]2 are independent, 
multinomially distributed random variables. This is a reason-
able assumption as long as markers do not come so close to 
each other that they interact. Note that model (4) does not 
incorporate external noise sources such as detector read-out 
errors. However, such statistical thinning as it might be caused 
by loss of photons in the detectors can be included by re-
defining the brightness pj of the individual molecules, cf. [11]. 
In conclusion, the model (4) can be considered as highly accu-
rate if the number of repetitions per pixel, t, is of the order of 
several thousands, which corresponds to typical experimental 
conditions.

A detailed model for the probabilities Ek,k = 0,… ,md, in 
dependence on the unknown quantities of interest such as the 
local number of markers f N and their brightness f p, is devel-
oped in the Supplementary Material. To describe it briefly, let 
us introduce the function s : [0,1]2 → ℝmd , defined by 

s(xi) = (
N

∑
j=1

(𝔭j(xi))
k)

k=1,…,md

= (∫
[0,1]2

fN(x)fp(x)kh(x − xj)
k dx)

k=1,…,md

. (5)
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Then, s can be related to the probabilities E = (Ek)k=0,…,md

– which can themselves be estimated from the available 
observations—as stated in the following theorem.

Theorem 1. (Statistical model for the antibunching 
microscope) Let md denote the number of detectors, 
N the total number of fluorescent markers in the 
specimen and 𝜅 = 𝜅(x) the number of emitted photons 
in one excitation pulse at position x. Assume that 
N > md. Let E(xi) := (E0 (xi) ,…,Emd

(xi)) denote the 
multinomial probabilities defined in model (4). 
Assume that, for any x ∈ [0,1]2, there exists a 
𝛾 = 𝛾(x) ∈ (0,1) such that for any 𝜅 > md it holds that 

ℙ⎛⎜
⎝

more than 𝜅(x) photons
emitted at position x
during one pulse

⎞⎟
⎠

≤ 𝛾(x)𝜅. (6)

Then, there exists an explicitly known differentiable, 
invertible map T : [0,1]md → ℝmd  such that 

E(xi) = T(s(xi)) + O(𝛾md+1) as 𝛾 → 0 (7)

for all i ∈ [n] × [n].

For an explicit formula for T, see the proof of Theorem 1.
Note that assumption (6) will be satisfied as soon as the local 
number of molecules around a position x and/or their bright-
ness is not too large compared to the number of detectors md. 
As a consequence, for sufficiently large md, we can neglect the 
remainder term in (7) and obtain (approximately) a non-linear 
forward model 

E = (Ek)0≤k≤md
= F (fN, fp) , (8)

with F given by the concatenation of T and the mapping 
(fN, fp) ↦ s (recall (5)), from which we aim to determine local 
information on the spatial number f N (and the spatial bright-
ness f p) of molecules from empirical measurements Y as in (4). 
This can be seen as a nonlinear inverse problem, which is 
also ill-posed due to convolution with the PSF h.Note that 
the model (8) does not take background contributions into 
account, e.g. from out-of-focus planes. This is for simplicity 
mostly, as the following considerations can immediately be 
adjusted to a spatially varying background intensity 𝜆, which, 
however, leads to even more technical results. In principle, 
this would allow us to determine not only f N and f p from the 
available data but also 𝜆. In practice, this corresponds to a 
highly underdetermined problem, which is why typically the 
background intensity is pre-estimated and then used to cor-
rect the data. To keep the theory concise, we have therefore 
decided to neglect all background contributions in the main 
document for the sake of simplicity. A more refined model 
including the estimation of 𝜆 is presented in the implementa-
tion (cf. ‘Counting molecules in a DNA origami measurement’ 
section).

In practice, we are able to obtain the measurements Y in 
different imaging modes. As shown in Fig. 1, the microscope 
has an additional STED laser, which can either be turned on or 
off, yielding different effective PSFs h. This allows us to image 
the specimen once via classical confocal microscopy (where 
the STED laser is turned off) and once via super-resolution 
STED microscopy. In total, this means that we collect and 

analyze both STED data YS = (YS,0,…,YS,md) consisting of 
matrices containing the pixel-wise k-photon counts YS,k =

(YS,k
i )

i∈[n]×[n]
 as well as confocal data YC = (YC,0,…,YC,md)

consisting of similar matrices YC,k = (YC,k
i )

i∈[n]×[n]
. The prop-

erties, advantages and disadvantages of both imaging modes 
will be discussed in more detail later on.

Segmentation
If we tried to construct pixel-wise CIs for the local number 
of molecules everywhere in the image (comparable to (1)), we 
would not obtain meaningful results due to the large num-
ber of pixels, as the necessary multiplicity adjustments would 
inflate the results. Therefore, it is important to first select 
regions of interest (RoIs) in the image, on which we afterwards 
analyze the local number of molecules. The aim of this section 
is to introduce a both intuitive and statistically rigorous data-
driven segmentation of the given image into ‘active’ regions 
(i.e. containing molecules) and ‘inactive’ regions (i.e. contain-
ing no or only a very few molecules). To make this useful, we 
aim to select a system of RoIs such that

(R1) all interesting clusters of molecules are contained in one 
of the RoIs,

(R2) with high probability, each RoI contains at least one 
molecule,

(R3) the RoIs do not intersect (i.e. form a valid segmentation),
(R4) the RoIs are reasonably small and
(R5) the RoIs have suitable shapes.

A standard approach to this problem would be the usage 
of a standard data-driven segmentation algorithm on the 
STED data YS,1 (offering a much better resolution com-
pared to a confocal image), which—using suitable tuning 
parameters—hopefully yields reasonable RoIs satisfying (R1) 
and (R3)–(R5). However, strong statistical guarantees such 
as (R2) do typically not hold. On the other hand, systems 
of sets satisfying (R2) are often overlapping and thus (pos-
sibly highly) redundant, i.e. violate (R3), and furthermore do 
not satisfy (R5). Our approach is therefore to profit from the 
strengths of two different approaches, creating a hybrid ver-
sion that inherits the positive aspects of both ingredients. A 
theoretical guarantee of property (R1) is very difficult and is 
not provided by our method. This can still be justified by a lib-
eral choice of the selection method, e.g. in terms of a smaller 
probability in (R2). However, even with 90% confidence in 
(R2), our simulations show very good coverage properties of 
our final segmentation.

Hybridization
Suppose that the set ℬ̃ is a (possibly complex and highly 
redundant) system of sets satisfying (R2). The hybrid proce-
dure is based on the important yet simple observation that 
(R2) remains valid if sets from ℬ̃ are removed or enlarged. 
Therefore, to reduce the complexity (and redundancy) of ℬ̃, 
we first neglect all sets that completely contain smaller sets. 
This might cause a loss of information, but on the other hand, 
we are mostly interested in smaller sets as they contain the 
highest spatial information. This step yields a system ℬ ⊂ ℬ̃
of sets still obeying (R2).
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Fig. 3. Illustration of the hybridization algorithm: boxes B (gray), 
segments W  to be validated (blue) and final segments (green).

In the following, we describe how the system ℬ can be 
hybridized with a segmentation 𝒲 ( i.e. a system of disjoint 
connected subsets of [n] × [n]) such that on the one hand, the 
segmentation property is obeyed, and on the other hand, (R2) 
is kept valid. There is a lot of freedom in choosing the segmen-
tation algorithm, which allows the user to apply any method 
of choice and hence to generate a system of RoIs consisting of 
more naturally shaped segments. Possible examples include 
the famous Watershed segmentation algorithm (see later for a 
brief description), k-means clustering or more recent AI-based 
techniques. Xie et al. [26] provide a comprehensive review on 
spatial hot-spot detection methodology.

In the hybridization step, we try to validate each segment 
W ∈ 𝒲 using one (or more) of the sets B ∈ ℬ. Thus, let W ∈
𝒲. If there exists a B ∈ ℬ such that B ⊂ W, then W is already 
valid (in the sense of (R2)). If no such B exists, then we merge 
W with one of the intersecting sets to generate an enlarged 
valid segment. This step does, however, cause complications, 
as the chosen set ̂B ∈ ℬ might intersect with other segments in 
𝒲. This issue is resolved as follows:

1. We generate a set of validation sets ℬW := {B ∈ ℬ ∣ W ∩
B ≠ ∅} for each W ∈ 𝒲.

2. If ℬW = ∅, then W has to be dropped.
3. If ℬW ≠ ∅, we check for each B ∈ ℬW  if B ∈ ℬW′ for 

another W′ ∈ 𝒲. This yields a list {B ∈ ℬW ∣ ∄W′ ∈
𝒲,W′ ≠ Ws.th. B ∈ ℬW′} of candidates for validating 
W. Every box B in this list of candidates can now be 
used only to validate W (and not to validate any other 
segment).

4. From the list, we choose the one B̂ yielding the smallest 
new valid segment R = ̂B ∪ W.

5. If no such B is found, we merge W with another seg-
ment W′ ∈ 𝒲, which is again done such that the new 
resulting segment is as small as possible.

The process described earlier is repeated iteratively until 
all segments have been validated or dropped, i.e. until (R3) is 
satisfied. The final, hybridized segmentation is then given as a 
set of regions R denoted by ℛ̂𝒪ℐ. We illustrate this procedure 
in Fig. 3. 

The next theorem guarantees that the hybrid selection ℛ̂𝒪ℐ
provides a valid segmentation in the sense of (R2) and (R3).

Theorem 2. Let ℛ̂𝒪ℐ be the regions of interest arising 
from the aforementioned hybridization algorithm of 
two systems of subsets ℬ,𝒲 ⊂ 2[n]×[n]. Then the 
following holds true:

1. Let 𝛼 ∈ (0,1). If the system of sets ℬ obeys property (R2) 
in the sense of (11), then also ℛ̂𝒪ℐ does.

2. If 𝒲 is a segmentation, i.e. if the sets in 𝒲 are pairwise 
disjoint, then also ℛ̂𝒪ℐ is a segmentation.

Clearly, the question whether (R1) and (R4)–(R5) are also 
satisfied depends on the choice of ℬ̃ and 𝒲. If those are gen-
erated suitably, then this will be the case as discussed in the 
following section.

Practical implementation
In the following, we will focus on two specific methods to 
generate the sets ℬ̃ and 𝒲, which we used in our implemen-
tation. To generate ℬ̃, we employ the MISCAT procedure 
introduced in [25], which we will briefly describe in the fol-
lowing for convenience (see also [27] for a comprehensive 
review of the MISCAT procedure). We start our segmentation 
by determining rectangular regions of interest via a multiple 
testing approach. The rectangular regions will be referred to as 
boxes, denoted by Bx,h. The subscript x denotes the position of 
the upper left corner of the box within the grid of pixels, while 
the subscript h = (h1,h2) denotes the side lengths of the box. 
For a given h, we consider all Bx,h ⊂ {xi | i ∈ [n] × [n], i + h ∈
[n] × [n]} and furthermore we use several different scales h
ranging from small to large, so that all together, we consider a 
highly redundant system of boxes that guarantees very good 
detection properties of the MISCAT method. To test whether 
a box Bx,h contains markers, we design pairs of functions 
𝜑x,h,Φx,h such that 

⟨f ∗ h,Φx,h⟩ = ⟨f ,𝜑x,h⟩ , (9)

with the fluorescence intensity f = fNfp, where ∗ denotes spa-
tial convolution. The function pairs 𝜑x,h,Φx,h will in practice 
be generated by a kernel somewhat similar to Wavelets, such 
that they form a multiscale system that adapts to the PSF h. 
This ensures optimal detection power of MISCAT by fine-
tuning the kernel, see [25]. Given equation (9) and having 
in mind that YS,1 = (YS,1

i )i∈[n]×[n] consists of the most highly 
resolved measurements available, ⟨YS,1,Φx,h⟩ can serve as a 
local test statistic for testing whether f|Bx,h

≢ 0. The local test 

statistics are then combined by taking the maximum after 
subtracting a scale-dependent penalization (to ensure equal 
contribution of the differently sized boxes). This yields a test 
statistic for a multiple test over all considered boxes with a 
controlled FWER as a consequence of Theorem 4 in [25]. 
It is furthermore shown in Theorem 1 of [25] that quantiles 
of this maximum (or scan) statistic can be simulated using 
a suitable Gaussian approximation, which then gives rise to 
local (taking a suitable scale penalization into account) criti-
cal values ch,𝛼. The outcome of this first step is then a set ℬ̃ of 
candidate RoIs given by 

ℬ̃ = {Bx,h | ⟨YS,1,ΦBx,h
⟩ ≥ ch,𝛼⟩}.

Note that the resulting candidate RoIs are boxes of differ-
ent sizes h. The MISCAT procedure at level 𝛼 is constructed 

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

icro/advance-article/doi/10.1093/jm
icro/dfad053/7438944 by U

niversity of Tw
ente user on 11 D

ecem
ber 2023



8 K. Proksch et al. Toward quantitative super-resolution microscopy

in such a way that 

ℙ[There is a pair (x,h) : Bx,h ∈ ℬ̃ |no markers at all] ≤ 𝛼.
(10)

Furthermore, as the distribution of the maxima of the 
statistics ⟨YS,1,ΦBx,h

⟩ does not depend on the actual positions 
of the N markers in the image, we have subset pivotality, cf. 
[28]. As a consequence, the FWER control (10) for MISCAT 
implies that with high probability, all selected boxes contain 
a marker: 

inf
C∈𝒞N

ℙ[f|Bx,h
≢ 0 for all Bx,h ∈ ℬ̃ |configuration C] ≥ 1 − 𝛼,

(11)
where 𝒞N is the set of all possible configurations (distribu-
tions) of N markers in the image of interest. This is a FWER 
control over the selected system of boxes in the strong sense, 
which in general—more precisely without subset pivotality—
does not follow from the weaker FWER control (10).

For the generation of the segmentation 𝒲, we use here the 
well-known watershed algorithm, whose name is in reference 
to a geological watershed, which separates adjacent drainage 
basins. The algorithm can be applied to gray scale images, 
which are interpreted as a topographic map, with the bright-
ness of each point representing its height. The algorithm finds 
the lines that run along the tops of ridges (see [29] for more 
details).

As a corollary of Theorem 2, we obtain for the particular 
choice of MISCAT at level 𝛼 and the watershed segmentation 
𝒲 with any choice of tuning parameter asymptotically 

inf
C∈𝒞N

ℙ[ Each R̂i ∈ ℛ̂𝒪ℐ contains 
≥ 1marker | config. C

] ≥ 1 − 𝛼.

This means that the so-obtained hybrid segmentation 
inherits the strong control of the FWER from the MISCAT 
procedure.

An illustration of the performance of the segmentation 
step is provided in Fig. 2 and in Fig. 1 in the Supplementary 
Material.

Statistical molecule counting
In this section, we discuss how to estimate the local number 
of molecules inside a region R from the data. Furthermore, 
we provide a central limit theorem for our estimator, which 
immediately allows us to construct (asymptotic) CIs quanti-
fying the precision of our counting method. Later on, we will 
apply the methodology presented here to all regions in the 
previously discussed hybrid segmentation ℛ̂𝒪ℐ.

For the derivation of our estimator, suppose for a moment 
that all the N molecules of the specimen are clustered at a 
single point, this is 𝜓(j) = k ∈ [n] × [n] for all 1 ≤ j ≤ N, with 
some fixed k ∈ [n] × [n]. In this case, it follows immediately 
from the definition that 

∑
i∈[n]×[n]

sl (xi) = ∑
i∈[n]×[n]

N

∑
j=1

𝔭j(xi)
l = ∑

i∈[n]×[n]

N

∑
j=1

pl
j ⋅ h(xi − xk)l.

In the following, we assume that the brightness f p is a func-
tion of the location only and not a function of the individual 
molecules and we further assume a certain regularity of the 
function f p such that it can be assumed constant within suf-
ficiently small regions. As the brightness depends mostly on 

local parameters such as the pH, this is a realistic restriction 
of our original model where each marker was allowed to have 
an individual brightness. We obtain 

∑
i∈[n]×[n]

sl (xi) = plN ∑
i∈[n]×[n]

h(xi − xk)l.

In all practically relevant examples, the PSF h is rapidly decay-
ing and can hence be considered as periodic, which justifies the 
additional assumption that 

Hl := ∑
i∈[n]×[n]

h(xi − xk)l (12)

is independent of the location k ∈ [n] × [n]. Consequently, it 
holds 

N =
H2

H2
1

(∑i∈[n]×[n] s1 (xi))
2

∑i∈[n]×[n] s2 (xi)
. (13)

In the situation of Theorem 1, the quantities s (xi) can be 
immediately estimated, as then 

s(xi) = (T−1(D(xi)) + O(𝛾(xi)
md+1). (14)

This leads to a natural plug-in estimator for the total num-
ber of molecules, where D(xi) is estimated by the relative 
frequencies of detecting 0,1,… ,md photons at position xi.

Let us now return to the general situation that we want to 
estimate 

NR = #{markers in region R} = ∫
R

fN(x)dx

for some region R ⊂ [0,1]2. For this, we pose the following 
physical assumption:

Assumption 3. The brightness within the region R is 
approximately constant if R is sufficiently small and 
the functions Hl defined in (12) do not depend on k.

This assumption is (approximately) valid for many experi-
mental settings as long as R is not too large, as the brightness 
depends mostly on local conditions such as temperature, pH 
value and so on. Under Assumption 3, it seems now natu-
ral to replace the sum over all locations xi in (13) by the 
sum over all xi ∈ R𝜀 with a slightly enlarged segment R𝜀 =
{x ∈ [0,1] | dist(x,R) ≤ 𝜀}. The rationale behind is that the 
rapid decay of the PSF h ensures that molecules inside R will 
only or at least mostly contribute to those xi ∈ R. In prac-
tice, we choose 𝜀 of the order of the FWHM and enlarge only 
as long as R𝜀 does not intersect with any other enlarged seg-
ment. Let us introduce ℐR𝜀

:= {i ∈ [n] × [n] | xi ∈ R𝜀}. Then, 
the aforementioned considerations give rise to the plug-in 
estimator 

N̂R =
H2

H2
1

(∑i∈ℐR𝜀
ŝ1 (xi))

2

∑i∈ℐR𝜀
̂s2 (xi)

with

ŝ(xi) = T−1 (YC,0
i , ...,YC,md

i ) /t.

Note that the inversion of T might introduce uncertainties 
(and actually does, cf. Fig. 4 in our numerical simulations), 
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Fig. 4. Estimation of Sl := ∑i∈[n]×[n] sl (xi) for simulations of single, isolated cluster of N = 20 molecules with brightness p = 0.02 and a Gaussian PSF of 
FWHM=4px and t = 104 pulses per pixel. Histograms of estimated S i  for many repetitions. Vertical lines (black) present the true mean values. Red 
curves represent normal distributions with true variances around the true means.

and as the noise level of ŝk(xi) increases geometrically with k
in view of the f k

p -dependency, we decided to use only ŝ1(xi)
and ŝ2(xi) to infer on NR. Nevertheless, it is in principle 
possible to improve the estimate for NR based on higher-
order contributions sk(xi), k ≥ 2 along the aforementioned
considerations. 

The following central limit theorem for the estimator N̂R is 
based on asymptotics for t → ∞ subject to md = md(t) → ∞. 
Practically, it is clearly unrealistic to build microscopes with 
more and more detectors, but for asymptotic considerations, 
such an assumption is unavoidable, as for t → ∞, arbitrarily 
high photon coincidences will occur and need to be recorded 
appropriately. This has already been observed in the model 
bias (7), and thus by md = md(t) → ∞, we can assume that t
is large enough such that the model bias is irrelevant. Since 
the influence of the size of md is of practical interest, finite 
sample bounds of Berry-Esseen type with respect to t as well 
as md are additionally provided. Practically, we will show in 
our simulation study that md = 4 for suffices for up to N = 40 
molecules, md = 6 for up to N = 100 molecules and md = 8
even for around N = 150 molecules per segment. So only for 
extremely dense objects, an improvement of the experimental 
setup might be necessary.

Denote by Πd
(k1,…,kl)

: ℝd → ℝl the projection of a vector in 

ℝd onto the vector of its coordinates k1,… ,kl.

Theorem 4. Let R ⊂ [0,1]2 and let md = md(t) → ∞, 
such that md ≤ 5log(t). Suppose that the region R
contains at least one fluorescent marker, that 
Assumption 3 is satisfied and that any marker in R
has individual brightness smaller than 0.5 (Remark 5 
(v)). Let 

ΣE(xi) = ({Ej(xi)(1 − Ej(xi)) j = k
−Ej(xi)Ek(xi) j ≠ k

)
md

j,k=1

,

and consider an arbitrary but fixed ordering 
xi1

,… ,xi|R|
 of the points xi ∈ R. Furthermore, define 

the block diagonal matrix ΣR by diag(ΣE(xij
))

j=1,…,|R|

and let Ψ : ℝmd|R| → ℝ be given by 

Ψ (y)

:=
H2

H2
1

⋅
⟨1md|R|,(Πmd

1 T−1(yjmd+1,… ,y(j+1)md
)T)

j=1,…,|R|
⟩

2

⟨1md|R|,(Πmd

2 T−1(yjmd+1,… ,y(j+1)md
)T)

j=1,…,|R|
⟩

.

Assume that the Hessian matrix of Ψ, HessΨ, exists 
and is bound in a neighborhood of ℰ and that 

𝜎2
R = ∇Ψ(ℰ)TΣR∇Ψ(ℰ) > 0, (15)

where ℰ = (E(xij
))j=1,…,|R|. Let Z be a random variable 

following a centered normal distribution with variance 
𝜎2

R. If t is sufficiently large, there exists a constant C > 0 
such that 

sup
s∈ℝ

∣ℙ(
√

t(N̂R − NR) ≤ s) −ℙ(Z ≤ s)∣

≤ C
log(t)

2
3

t
1
6

, as t → ∞. (16)

Remark 5.

(i) In particular, the aforementioned theorem ensures that 

√
t(N̂R − NR)

𝒟
⟶ 𝒩(0,𝜎2

R), as t → ∞,

where 
𝒟

⟶ denotes convergence in distribution.
(ii) Recall that the asymptotic considerations are with 

respect to the number t of laser pulses. As t tends 
to infinity, the number of pixels remains fixed. There-
fore, the collection of regions R considered does not 
change asymptotically and contains only finitely many 
elements. Therefore, naturally, (16) holds uniformly
in R.

(iii) We let md → ∞ as t → ∞, as for a fixed number md, 
the model bias (6) may otherwise asymptotically dom-
inate the quantity 

√
t(N̂R − NR). The upper bound on 

the speed of convergence of md is needed in the proof, 
as with md, the number of events of the multinomial 
distribution tends to infinity. However, this restriction 
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10 K. Proksch et al. Toward quantitative super-resolution microscopy

Fig. 5. Histograms of estimated N and p for simulations of single, isolated cluster of N = 10 molecules with brightness p = 0.02 and a Gaussian PSF of 
FWHM=4px and t = 103 and t = 104 pulses per pixel, respectively.

is irrelevant in practice, where the number of detectors 
that can be realized is limited.

(iv) In this work, the focus is on the estimation of local num-
bers of molecules, NR. However, similar to (13), we 
immediately obtain an expression for pR, the brightness 
in a region R, as pR = H1 ∑i∈ℐR

s2 (xi) /(H2 ∑i∈ℐR
s1 (xi)),

giving rise to a plug-in estimator ̂pR. The theoreti-
cal properties of ̂pR can be analyzed using the same 
techniques as applied in the analysis of N̂R.

(v) We assumed that any marker in R has individual bright-
ness smaller than 0.5. This assumption is needed for 
technical reasons, but it is not restrictive, as typical 
brightness values are of the order of 0.02, as also used 
in our simulations. A brightness of 0.5 would entail that 
a marker emits a photon on average once every two 
pulses, which is unrealistic.

(vi) Given that md → ∞, the model bias vanishes asymptoti-
cally. Our numerical simulations show that as few as six 
detectors suffice to deal with local numbers of molecules 
of about 100 (Fig. 5). The experimental setup we used 
(as shown in Fig. 1) exploits md = 4 detectors, and we 
find from Fig. 5 that it is expected to be accurate to treat 
local molecule numbers of around 30 − 40.

Theorem 4 gives rise to asymptotic CIs for NR: 

[N̂R − 𝜎̂R√
t
,N̂R + 𝜎̂R√

t
] , where 𝜎̂R is the plug-in estimator for the 

asymptotic standard deviation 𝜎R defined in (15), that is, 
𝜎̂R = ∇Ψ( ̂ℰ)TΣR∇Ψ( ̂ℰ), with ̂ℰ = 1/t ⋅ (YC,0

i ,…,YC,md

i )i∈R. 

Numerical study
In this section, we will investigate the finite sample properties 
of our estimation procedure and the overall algorithm. The 
complete MATLAB® code including all examples discussed in 
the manuscript at hand is attached.

As a first step, we assumed a certain number of independent 
and identically behaving molecules with a fixed brightness p
to be located all at the same position and to be imaged with the 
antibunching microscope operating only in confocal mode. 
The recording of the molecule sample is performed by scan-
ning on a square lattice–like grid relative to the molecules’ 
position and the grid spacing is here defined relative to the 
resolution of the microscope, i.e. with a FWHM of the PSF 
given in scanning grid pixel sizes. For a single cluster, segmen-
tation of the data was omitted and the whole measurement 
area was assumed to belong to the single segment represent-
ing the molecule cluster. In Fig. 4, we depict histograms of the 
empirical distributions of Sl := ∑i∈[n]×[n] sl (xi) together with 
the theoretical expectations of Sl. It can be seen that for typ-
ical experimental conditions, the first two orders of Sl are 
reasonably well distributed around their expectations and 
can be used for retrieving the number and brightness of the 
molecules. For higher orders, systematic deviations are visible 
in the distributions of Sl, most probably a side effect of the 
ill-conditioned inversion of T under these circumstances.

This first simulation shows that it is possible to estimate the 
number of molecules in a single, isolated cluster from S1 and 
S2. This is further illustrated in Fig. 5, where we investigate the 
final estimator for the total number of molecules N (and the 
corresponding one for the common brightness p as discussed 
in Remark 4.3 (iv) in the main document) in a similar set-
ting. Again, we use a single cluster with N = 10 molecules with 
common brightness p = 0.02 and omit the segmentation step 
by assuming that the whole measurement area was assumed 
to belong to the single segment representing the molecule 
cluster. Repetition of the simulation results in distributions 
for ̂N and ̂p, which are depicted as histograms. It should 
be noted that the estimated molecule numbers and bright-
nesses are correlated and the joint distribution is concentrated 
along a hyperbola in the number–brightness plane (Fig. 5c), 
i.e. the product of the molecule number and its brightness 
is quite well estimated compared to the knowledge about 
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Fig. 6. Estimated N for simulations of two clusters of molecules with a defined distance dc  (given in multiples of the FWHM) with brightness p = 0.02, 
t = 3000 and a Gaussian PSF of FWHM=4px. (left) Example images of two clusters with five molecules each. The dotted white line represents the 
segment border. (right) Mean estimated number of molecules for each cluster and mean lower and upper bounds of the CIs (thin lines) in dependence 
of the distance dc  between the clusters. The black dotted line represents the true number of molecules in each cluster. Top: two clusters with 
N1 = N2 = 5 and bottom: N1 = 5,N2 = 20.

the single factors. For larger numbers of illumination pulses, 
the distributions of the estimated numbers and brightnesses 
become more concentrated, more symmetric and less biased, 
indicating that the employed estimators converge to the true 
underlying parameters. The precision is mainly limited by the 
number of repetitions, i.e. light pulses, that the sample can 
be illuminated with at every scan position. A few thousand 
excitation pulses per scan position have been reported to be 
possible without significant observable photobleaching of the 
molecules.

To study the influence of boundary effects, i.e. molecules 
residing close to the boundary of an image segment, we simu-
lated two clusters of molecules with a defined distance that is 
on the order of the FWHM of the PSF. In that way, the images 
of the two clusters are partly overlapping. Two segments were 
created such that they fully covered the whole simulated image 
space and the border between the two segments was localized 
in the middle between the clusters. The analysis in each seg-
ment will be compromised by photons that are located in the 
respective other segment. The results depicted in Fig. 6 show 
that for a reasonable cluster distance (of approximately the 
FWHM of the PSF), the systematic boundary effects tend to 
become relatively small. It should be noted that our hybrid 
segmentation naturally tends to avoid large amounts of signal 
close to segment borders.

Another source of systematic bias is very dense accumu-
lations of molecules. Therefore, we performed simulations in 
which we increased the number of detectors. We found that 
the range of molecules that can be estimated without visible 
bias strongly increases already for a number of detectors that 
is increased only moderately. Four parallel detectors, which 
are currently used experimentally, allow us to count up to 
50 molecules per diffraction limited sample volume without 

large bias with our method. With eight parallel detectors, this 
limit could be lifted to approximately 200, cf. the left panel 
in Fig. 7.

The overall performance of our algorithm is tested in a 
simulated arrangement of markers consisting of several clus-
ters of molecules with varying brightness, cf. Fig.  2. It shows 
that the estimation of the local number of molecules is accu-
rate in all segments and that the FWER control (11) is in fact 
kept. It must be said that some of the constructed CIs seem 
to be rather large (indicating a small estimated value ̂p in 
that region), which is, however, unavoidable when asking for 
strong error controls such as (11). In addition, in Fig.  2, the 
true values of NR are located on the boundary of the CIs in 
multiple cases, indicating that any method with smaller CIs, 
which are centered at N̂R, would be susceptible to violations 
of the property (1).

Counting molecules in a DNA origami 
measurement
To establish the validity of the suggested CIs on real data, 
we used DNA origami sheets, which is an artificial structure 
that allows us to attach a relatively well-defined number of 
molecules at defined positions within a diffraction-limited vol-
ume [30]. The designed DNA origami sheet contained up to 
24 fluorophores arranged in two lines of up to 12 fluorophore 
binding sites, and the distance between the two lines was ∼70
nm, which is not resolvable in confocal mode of the micro-
scope. Due to imperfections in the folding efficiency of DNA, 
the expected number of fluorophores per DNA origami was 
only ∼19 [24]. Confocal microscopy cannot spatially resolve 
the single lines of fluorophores, but it allows us to obtain a 
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Fig. 7. Median of the estimated number of molecules for a simulation of 
a single cluster (p = 0.02, t = 2 ⋅ 104) in dependence of the number of 
detectors used md . The visible bias is strongly reduced for larger md . All 
internal orders equal md . Graphs are slightly smoothed.

sufficient statistic on one and two photon detection events. A 
subsequent STED recording with improved lateral resolution 
(five-fold over confocal microscopy) resolved the molecular 
distribution within a single DNA origami sheet. Further exper-
imental details are laid out in [24]. Here, we re-analyzed the 
recorded data to yield estimates and CIs on the number of 
fluorophores in either resolved DNA origami sheets or even 
single lines in these sheets (Fig. 8). The division of the data into 
suitable segments using our hybrid MISCAT and watershed 
segmentation approach was performed on the high-resolution 
STED data, while the molecular number and brightness were 
estimated from the less well-resolved but much brighter one- 
and two-photon confocal images. Before counting, the back-
ground intensity is estimated by a smoothing procedure from 
the data and then included in our refined model. The result is 
a segmentation map of the image area shown in Fig. 8b where 
an estimated number of molecules as well as a CI on the num-
ber of molecules are assigned to each segment. As expected, 
the estimated number of molecules is always within the calcu-
lated confidence bounds. The width of the confidence bounds 
(K) is about as large as the estimated number of molecules. 

Discussion and outlook
Summary
In this work, a comprehensive physical and statistical model-
ing of the coincidence photon statistics encountered in anti-
bunching microscopy has been conducted. The coincidence 
signals recorded from parallel detectors in a high-resolution 
fluorescence microscope intricately depend on the number 
of fluorescent molecules at a specific location as well as 
their brightness. Under the mild assumption that molecules 
locally exhibit the same brightness, and under neglecting all 
background contributions, a rigorous statistical model of the 
problem of estimating the number of molecules within small 

regions of the sample has been developed. Based on this, an 
estimation procedure of the number of molecules was pre-
sented and was shown to converge to the true molecule counts 
for sufficiently long measurement times. Furthermore, CIs for 
the local number of molecules have been constructed. The 
estimation procedure requires choosing regions of the sam-
ple in which molecule numbers are to be estimated. A hybrid 
segmentation has been introduced, which combines a natural 
segmentation approach with guarantees that all segments con-
tain molecules with high probability. In a numerical study, the 
convergence of the estimator has been affirmed. With increas-
ing number t of excitation pulses, the obtained segment sizes 
as well as the size of the CIs has been shown to shrink.

Future work
In previous works, the number of molecules (as well as their 
brightness) was estimated as a continuous density from a 
global fit of the data with a coincidence statistics model up 
to second order [24]. The model presented here includes arbi-
trarily high photon coincidence orders. However, in this work, 
only the lowest two orders of ŝk(xi) were used in the estima-
tion of the local number of molecules. The optimal choice of 
the used number of orders depends on the accuracy of the 
estimation of each ŝk and may be subject to further stud-
ies. An important issue here is the quality of the available 
data (i.e. the possible number of excitation pulses t), as other-
wise the higher-order photon coincidences will not be able to 
provide additional information.

Segmentation-based estimation of local molecular counts 
was essential for the generation of confidence information. 
The importance of choosing an appropriate sample segmen-
tation, which provides statistically sound guarantees (The-
orem 2), for generating useful confidence information is a 
key finding of this work. A very large number of localized 
segments would result in overly large CIs (due to multiplic-
ity), while a small number of extended segments would not 
result in meaningful local information. A balanced approach 
as suggested in this work results in useful molecule count-
ing information. A multitude of different segmentations are 
imaginable, but the hybrid segmentation used in this work 
appears to be working reasonably well. Further work might 
deliver more insights into how segmentations of the sample 
can maximize the usefulness of the counting information in 
these cases.

The enlarged segments used for estimation are in princi-
ple required to contain all the collected fluorescence from all 
molecules within the segment and none from molecules out-
side the segment (segments should contain a molecule-free 
border with a width of at least the FWHM of the PSF). Clearly, 
this is not always the case in practice and is often difficult to 
achieve in densely labeled samples unless one restricts one-
self to rather large segments, which would not result in useful 
local information. This will in general result in an uncontrol-
lable bias in the molecule number estimation. In the case of 
multiple closely spaced segments, lost photon contributions 
from molecules within a segment can be partially compen-
sated by contributions from molecules in adjacent segments. 
In our examples (Figs. 2 and 6), the estimated CIs were not 
compromised. A further careful analysis of segment border 
effects might result in additional contributions to the CI sizes.

The analysis performed in this study also assumed that 
molecules remain intact during the whole measurement. 
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Fig. 8. Application to recordings of DNA origami sheet structures labelled with ATTO 647N molecules (for experimental details, see [24]). The structures 
were immobilized at a low concentration on a glass surface and measured using confocal and STED microscopy. Each DNA origami can accommodate 
up to 24 fluorophores (12 in a line). (a) STED (top) and confocal (number of pulses per pixel t = 2170, pixel size 10 nm) one-photon (center) and 
two-photon (bottom) detection images. (b) Segmentation, estimated number of fluorophores in each segment and CIs for the data in the dotted 
rectangle. (c) Histogram of the estimated number of fluorophores in each segment of the recorded data (top) and histogram of the width of the CI (K ) 
divided by the estimated number of fluorophores (bottom). Scale bars, 500 nm.

Indeed, in every microscopy experiment, fluorophores will 
eventually lose their ability to fluoresce (photobleach). To 
minimize estimation biases, we restricted the duration of 
the experiment to the characteristic time that will leave a 
strong majority of fluorophores intact. Should, nevertheless, 
some molecules photobleach during an experiment, we expect 
the number estimation to effectively approximate the mean 
number of unbleached molecules during the measurement. 
Photobleaching could be included in a more refined statistical 
model.

As discussed in the simulations, a too large number of 
molecules (or more precisely a too large product of local 
number of molecules and their brightness) in comparison to 
the number md of detectors used yield a systematic under-
estimation of the number of molecules. This is due to the 
fact that the bias introduced by the model from Theorem 1 is 
no longer negligible. Our current experimental setup shown 
in Fig. 1 using four detectors is able to count approximately 
50 molecules at a single diffraction limited spot accurately. 
Increasing the number of detectors modestly would increase 
this limit significantly as shown in Fig. 7. Further advances 
in detector technology currently being invented (being able to 
count single photons without significant dead times and there-
fore not limiting the observable coincidence photon order) are 
expected to diminish if not solve the problem completely while 
at the same time simplifying the microscope setup further.

All given examples in this work have been executed in two 
dimensions only, which corresponds to an often used imaging 

mode in scanning microscopy. However, the extension to 3D 
is straightforward and does not require any particular effort.

Supplemental data
Supplementary data are available at Microscopy online.
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