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A B S T R A C T   

Continuously measuring the efficiency of wastewater treatment plants is crucial to progress in sanitation man
agement. Regulations for decentralized wastewater treatment plants (WWTP) can include rudimentary specifi
cations for sporadic sampling, unencouraging continuous monitoring, and missing crucial domestic wastewater 
(DW) variability, especially in low- and middle-income countries. However, few studies have focused on 
modeling and understanding spatiotemporal DW variability. We developed and calibrated an agent-based model 
(ABM) to understand spatial and temporal DW variability, its role in estimated WWTP efficiency, and provide 
recommendations to improve sampling regulations. We simulated DW variability at various spatial and temporal 
resolutions in Santa Ana Atzcapotzaltongo, Mexico, focusing on chemical oxygen demand (COD) and total 
suspended solids (TSS). The model results show that DW variability increases at higher spatiotemporal resolu
tions. Without a proper understanding of DW variability, treatment efficiency can be overestimated or under
estimated by as much as 25% from sporadic sampling. Sensor measurements at 6-min intervals over 3 hours are 
recommended to overcome uncertainty resulting from temporal variability during heavy drinking water demand 
in the morning. Reporting of sewage catchment areas, population sizes, and sampling times and intervals is 
recommended to compare WWTP efficiencies to overcome uncertainty resulting from spatiotemporal variability. 
The proposed model is a useful tool for understanding DW variability. It can be used to estimate the impact of 
spatiotemporal variability when measuring WWTP efficiencies, support improvements to sampling regulations 
for decentralized sanitation, and alternatively for designing and operating WWTPs.   

1. Introduction 

Despite untreated wastewater being a serious hazard for humanity 
and the environment, the global percentage of treated domestic waste
water (DW) is low. According to the United Nations, only 56% of DW 
flow worldwide is treated (UN-Water, 2020). The percentage is lower in 
lower middle-income countries (28%) and even lower in low-income 
countries (8%) (Sato et al., 2013), meaning that 3.5 billion people 
worldwide are not using safely managed sanitation (The World Bank, 
2020). Financing is a critical issue for DW management (Ujang and 
Mogens, 2006) because adequate financing for the operation of DW 
infrastructure is essential to avoid abandonment and deterioration of 
DW treatment facilities and inefficiencies in DW treatment. The United 
Nations Statistics Division (2020) suggests that efforts to increase and 
sustain sanitation must quadruple, and reporting wastewater treatment 
plant (WWTP) efficiency is vital for tracking progress. 

Measuring WWTP efficiency can be defined by the difference in 
percentage between the pollutant’s concentrations at the inflow and 
outflow of a treatment plant (Di Cicco et al., 2021), which is not a trivial 
task. Because of rudimentary (or lacking) regulations for DW sampling, 
the infeasibility of continuous monitoring through laboratories, and the 
substantial DW dynamics of pollutant loads, WWTP efficiencies are 
mostly unknown and undocumented (UNSTATS, 2022). First, sampling 
regulations often do not consider using specific sensors that fully cover 
higher temporality to capture pollutant loads of DW in WWTPs. The 
regulation gap exists in European countries and Mexico (European 
Union law, 2014; European Commission, 2019; SEGOB, 2022a), where 
sampling is mostly based on laboratories. Specifically, such regulations 
should be complemented in low-middle income countries, allowing DW 
sensors to make monitoring WWTP efficiency economically feasible in 
the long term. Second, laboratory analysis for continuous monitoring is 
economically unfeasible for many countries. Decentralized WWTPs 
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increase the complexity of measuring treatment efficiencies, which can 
have a dozen WWTPs at peri-urban and rural localities without access to 
certified laboratories. In contrast, centralized urban treatment at larger 
and gauged WWTPs allows better access to continuous monitoring. DW 
sampling frequencies must differentiate centralized and decentralized 
treatment to provide long-term monitoring of efficiencies. Lastly, the 
substantial DW variability (Ujang and Mogens, 2006; Dubois et al., 
2022) questions the representativeness of a few laboratory-based sam
ples. These variations are driven by population behaviors (the use of 
water appliances) and population mobility in time (Atinkpahoun et al., 
2018), i.e., the different numbers of people at a certain location. Hence, 
it is crucial to understand the significant implications of spatial and 
temporal DW variability when assessing DW treatment efficiencies. 
Focusing on temporal variability, Di Cicco et al. (2021) showed that 
strong TSS variability over time calls into question whether sporadic 
sampling truly describes the operating conditions of treatment plants. 
Penn et al. (2017) analyzed small-scale diurnal patterns using data from 
170 households and showed that the flow across a wastewater network 
is highly variable over time. Zhou et al. (2019) demonstrated high 
wastewater variability using two case studies with WWTPs serving 680, 
000 and 141,500 inhabitants, with the smaller treatment plant exhib
iting higher variability. Similarly, high variability has been shown for 
COD (Rodríguez et al., 2013). Ideally, a sampling regulation of treat
ment efficiency must clarify the differences in spatiotemporal resolu
tions between (de)centralized treatment systems and standardized 
sampling resolutions. Modeling DW variability at multiple spatiotem
poral resolutions can contribute substantially to wastewater sanitation. 

Although DW modeling is important for improving wastewater 
management, few studies have focused on modeling DW at multiple 
spatiotemporal resolutions to clarify variability in space and time. 
Dubois et al. (2022) analyzed DW pollution, providing further knowl
edge about DW variability. Still, their study is limited to the household’s 
spatial resolution without modeling DW pollution. De Keyser et al. 
(2010) modeled DW time series, providing different temporal resolu
tions for designing WWTPs without analyzing the relevance of time 
series resolutions and DW variations for measuring WWTP efficiencies. 
Penn et al. (2017) modeled DW volume, which allows for reporting 
multiple spatial sections across the sewage. However, DW pollutants and 
a comprehensive understanding of the resolutions are not provided. 
Although Rodríguez et al. (2013a,b) modeled DW quality and quantity 
and considered sub-catchment areas, they did not analyze multiple 
spatiotemporal resolutions. Jia et al. (2021) reviewed 110 papers pub
lished in the last decade on modeling water quality in sewage and 
suggested that multiple resolutions should be considered in future 
wastewater modeling studies. 

Mexico is a middle-income country that faces many of the problems 
mentioned above. It encounters challenges in sustaining DW treatment, 
with 63% of wastewater treated (Tabla-Vázquez et al., 2020). Since 
1996, a norm for the maximum pollutant concentration of wastewater 
discharge (SEGOB, 2022a) has been applied by the National Water 
Commission (CONAGUA). Operation rules for sanitation also exist 
(SEGOB, 2022b), quantifying DW flow discharge but ignoring the effi
ciency of pollutant removal. The percentage of safely treated wastewater 
(PSTW) is an indicator that refers to pollutant removal in WWTPs. The 
closest sampling regulation linked to PSTW defines instantaneous sam
pling every six months carried out by accredited laboratories with a 
temporal interval of up to 4 h on the sampling day (SEGOB, 2022a). 
Mexico has a combination of centralized and decentralized treatment 
systems. In addition, the lack of cost recovery through user fees puts a 
large financial restriction on wastewater management (OECD, 2010). 

To better understand how the efficiency of decentralized wastewater 
treatment plants should be monitored, we propose creating a model to 
simulate the DW variability focusing on Chemical oxygen demand 
(COD) and total suspended solids (TSS). COD and TSS are among the 
PSTW that are not continuously monitored, thereby preventing the 
generation of statistics on DW treatment status worldwide (WHO et al., 

2020). In this study, i) we investigate spatial and temporal DW vari
ability, ii) illustrate the implications of the spatiotemporal DW vari
ability when measuring WWTP efficiency (percentage of safely treated 
DW), and iii) introduce basic recommendations for sampling regulations 
to measure the efficiency of decentralized and ungauged WWTPs. 

2. Methods 

Fig. 1 presents an overview of the main steps in modeling and 
evaluating spatiotemporal DW dynamics. An agent-based model (ABM) 
is conceptualized and subsequently used to study DW variability. The 
ABM is complemented by spatial microsimulation (SMS), generating the 
required synthetic population for the model. The model is based on the 
DW literature and calibrated with data on sampled DW. Postprocessing 
generates DW time series at various temporal resolutions. The ABM 
model is validated by comparing the results with data collected in situ. 
The following subsections provide more details on each of these steps. 
Using this ABM allowed us to quantify and understand spatiotemporal 
DW variability and discuss implications and recommendations for 
considering DW variability in assessing WWTP efficiencies. Case studies 
with combined sewer systems should consider the potential effects of 
rainfall, as discussed in Section 4. 

2.1. Study area and data 

The selected study area is Santa Ana Atzcapotzaltongo, a rural lo
cality in Hidalgo, Mexico (Fig. 2). Santa Ana has two decentralized 
WWTPs (Shaded areas in Fig. 2). The targeted WWTP is in the south
western catchment area and is based on biodigesters as a secondary 
sanitation treatment so that treated DW can be used for agriculture. The 
census (INEGI-DENUE, 2017) shows that most DW comes from domestic 
activities, where wastewater from economic activities is minimal, and 
there is no production of industrial wastewater. 

Population data were obtained from a census generated by the 
Mexican federal census survey (INEGI, 2020) through the INEGI 
microdata lab. The census contains information related to population 
and neighborhood blocks. Santa Ana has 1678 inhabitants, and an 
estimated 758 people on the southwestern side of the locality are dis
charging DW at the targeted WWTP catchment area that consists of a 
separated sewer system, as seen in Fig. 2. The sewage design was digi
tized via a dedicated field data collection campaign in 2022, in which 
pipe sections, collectors, accessible maintenance holes, catchment 
coverage, and network connectivity were verified. For the digitalization, 
we used topographic data from a digital elevation model based on SRTM 
Tiles acquired via the NASA Server QGIS plugin (Duester, 2021) and the 
Drinking Water, Sewerage and Sanitation Manual (CONAGUA, 2019) that 
provides the design and regulation criteria applicable for Mexico. 

Data on DW from water fixtures and appliances (toilets, kitchen and 
bathroom sinks, showers, and washing machines) were taken from 
Almeida et al. (1999) and Rose et al. (2015). The data represents water 
fixture and appliance discharges (l) and DW pollutants (mg/l), split into 
COD and TSS. Preparations of individual events of pollutant loads for 
feces and urine are required based on literature (Almeida et al., 1999; 
Rose et al., 2015), as literature does not represent events after flushing 
the toilet. Details of estimated urine and feces events that represent 
pollutant loads after flushing the toilet are included in the supplemen
tary materials. DW was sampled between March 19 and 23, 2022, 
matching the study area’s dry season, thus allowing the assessment of 
the pollutant variability from human sources without dilution. The 
sampling focused on simultaneous spatial and temporal measurements 
of COD and TSS at catchment and sub-catchment coverage. Spatially, 
the WWTP catchment and sub-catchments 258 and 39 measured at 
maintenance holes (see Fig. 2 delineated areas) were selected to study 
differences between DW variability based on population and area size. 
Temporally, targeted catchment and sub-catchments were synchro
nously sampled to compare the DW variability at the same time slots. 
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Sampled DW was measured in situ at a frequency of 6 min with a cali
brated spectrometer sensor (scan, 2022). 

2.2. Agent-based modeling 

2.2.1. ABM model description 
ABMs are computational simulations of individual, dynamic, and 

adaptive behavior agents with multiple characteristics providing in
teractions between them and their environment (McLane et al., 2011). 
The ABM model was first conceptually designed (Fig. 3) with a practical 
methodological guide for modeling with ABMs based on Auchincloss 
et al. (2015) and then translated into a computational model in NetLogo 
6.1.1. Information on the production and dynamics of DW in the liter
ature was used to propose the ABM (Almeida et al., 1999; Von Sperling, 
2007; Henze and Comeau, 2008; Mesdaghinia et al., 2015; Penn et al., 
2017; Atinkpahoun et al., 2018). 

Because detailed data from the population census are unavailable 
because of privacy protection, this study uses SMS to generate a syn
thetic population imported in the ABM model (i.e., the number of resi
dents, their gender, and education). Lovelace and Dumont (2018) 
describes SMS as an approach for studying phenomena at multiple 
spatial levels using georeferenced microdata, including the provision of 
detailed geolocated synthetic inhabitants. SMS uses two datasets 
collected by INEGI (2020): i) a non-geolocated inhabitant survey that 
has the advantage of providing detailed individual information on 
mobility (for studying and working purposes), age, and gender, and ii) a 
geolocated inhabitants survey that has the disadvantages of not con
taining individual information but aggregated data by neighborhood 
blocks. The output of SMS is a geolocated inhabitant dataset at the in
dividual level that matches the two initial datasets to provide the best of 
both. 

The description of the ABM is based on a synthesized version of the 
Overview, Design Concepts, and Details protocol (ODD) for describing 
ABMs provided by Grimm and Ayllón (2020). The overall purpose of the 
DW ABM is to simulate the DW variability of pollutants and volume 
discharge at multiple spatial and temporal resolutions. Specifically, we 
are addressing the following question: How understanding can be gained 
by modeling spatial and temporal DW variations that inhabitants pro
duce? To consider our model realistic enough for its purpose, we eval
uate and analyze time series patterns, plotting together the simulations 
and observations and showing Pearson correlations. 

The ABM includes the following entities. Agents: Inhabitants and DW 
particles. Environment: houses, neighborhood blocks, economic points, 
sewage network, maintenance holes, and treatment plant. The infor
mation on the state variables characterizing those entities is listed in 
Table 1. Inhabitants are provided with information to produce DW 
particles and follow working or studying schedules interacting with the 
environment of houses, schools, and economic points. While inhabitants 
move around the locality (i.e., from houses to schools), generate DW 

particles. After producing particles, we simulate their motion in the 
sewer, maintenance holes (nodes), and finishing in the WWTP. All en
vironments are static during the simulation. The sewage consists of pipes 
and maintenance holes (nodes) where DW particles move, simulating 
DW flow. 

Concerning the spatial and temporal resolutions, which are the most 
important design concepts of the model, the model uses the NetLogo 
time extension (Sheppard et al., 2022) for explicitly reporting tempo
rality and generating dynamic discrete event scheduling for simulating 
DW production, mobility, and discharge (see Fig. 3.a). All the events 
apply a probability schedule defining timestamps when an event takes 
place. The model executes every event with dynamic timestamp 
schedules based on hourly probabilistic distributions contrasting with 
the fixed temporal resolution of “ticks” in NetLogo. For instance, DW 
production events for each inhabitant differ from day to day, weekday to 
weekend, hour to hour, and even recorded minutes and seconds of 
execution. The dynamic timestamps allow the processing at multiple 
temporal resolutions of the DW variability. Additionally, the model is 
run and designed to simulate a minimum range of two days. 

Spatially, the simulation coverage is defined by the shapefiles vector 
data from the INEGI census, where the execution of water appliances 
takes place. DW particle timestamps are registered at the catchment and 
sub-catchment through the WWTP and sewage maintenance holes. Due 
to the spatiotemporal records of the dynamic events, each ABM output 
of DW particles at the catchment and sub-catchment levels (two spatial 
resolutions) is aggregated at various temporal resolutions to evaluate 
the DW variability of COD and TSS in mg/l. The postprocessing of DW 
particles consists of aggregating each (sub)catchment and time windows 
(i.e., 60 min) with mean functions resulting in outputs comparable to 
sampled DW. The simulated variance and the analysis between the 
spatial and temporal resolutions are the basis for evaluating results, 
highlighted in the plots as shadow areas, as shown in the results section. 

The process of the model initializes with creating the inhabitant 
agents based on the SMS outcomes. They are located at the houses of 
their respective neighborhood blocks, where households are created 
from the inhabitants of the same house. The inhabitant agent has vari
ables like age and location (see Table 1). Inhabitant agent behavior in
cludes using various water-using fixtures and appliances that produce 
DW events, such as toilets (for urination and defecation), sinks (in 
kitchens and bathrooms), showers, and washing machines. Events 
related to these fixtures and appliances follow occurrence probabilities 
and maximum and minimum uniform distributions of DW events 
(pollutant loads and discharge in liters) according to typical sequences 
of daily water usage activities. For inhabitants’ mobility, first, the agents 
remember their assigned household. The mobility of inhabitant agents 
includes going to and returning from work or school. Work and school 
locations are inside the whole locality (Fig. 2). Inhabitant agents store 
their home, work, and school locations in memory, ensuring they return 
to the same location. The model differentiates between working days 

Fig. 1. Main steps and components to model and evaluate DW dynamics at multiple resolutions linked to results and discussion.  
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Fig. 2. Study area. Left: Numbers 39 and 258 are sampled maintenance hole IDs. A highway divides the locality’s West (brown) and East (grey) sides. West side 
discharges at the WWTP. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and weekends. 
The processes related to the DW particle agents are DW motion and 

discharge to the WWTP. DW particles are simulated to travel from 
houses (at the DW production event) via the sewage network to the 
WWTP, the discharge point where particles disappear. DW particles 
move with an average design velocity of 1.8 m/s in the sewage pipelines 

following Mexican regulations (CONAGUA, 2019). DW particle agents 
store timestamps records and locations in memory, including hatching 
(in households and blocks), dying (in WWTP catchment), and 
sub-catchment (when reaching nodes of maintenance holes). DW par
ticles that reach the WWTP are generated from the western section of the 
locality, as shown in Fig. 2. 

Fig. 3. Theoretical and computational conceptualizations of domestic wastewater. 3.a: Systemic components of the domestic wastewater dynamics 3.b: Translation 
of theory into a Netlogo simulation of the target locality. 
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2.2.2. Robustness analysis and calibration 
The robustness analysis addresses how many simulations are 

required to obtain stable results. The accumulated average method is 
used to evaluate the model stability, targeting the variable production of 
DW particles by inhabitants. After running the model multiple times, the 
accumulated average across all runs is plotted to find the expected 

number of runs for stable results. Cumulative distributions and average 
values from several simulations demonstrate variability effects in ABMs, 
including ABMs with water applications (Zechman, 2011; Gilbert, 
2011). The simulation for robustness quantifies the DW particles pro
duced by inhabitants during five days. At the end of each simulation, the 
DW particles produced are quantified. Fig. 4 shows the cumulative 
average (CA) for a simulation (n) based on the total DW particles (TP). 
The Y axis is the CA at each simulation (n). For instance, from Heckert 
(2003), the first simulations are: CAn=1 = (TPn=1); CAn=2 = (TPn=1 +

TPn=2)/2; CAn=3 = (TPn=1 + TPn=2 + TPn=3)/3, etc. Fig. 4 shows that 
the model does not significantly change between 25 and 100 runs of the 
simulations. We reckon that the model is stable starting from 25 
simulations. 

The calibration requires calculating the Pearson correlation between 
the simulated and observed DW time series. The Pearson correlations are 
also useful for analyzing minimum and maximum input value ranges. 
Calibration deals with identifying ranges of realistic input values to 
improve the results. The variation between DW pollutants of a simulated 
and observed day is analyzed by considering data inputs of urine and 
feces pollutant events based on input data from the literature (See sec
tion 2.1), which describe loads and distributions of occurrence during 
the day. Pollutant loads from urine and feces (see Section 2.1 and the 
supplementary material) are selected for testing input values, which are 
parameters highly variable in the model. The selection of urine and feces 
is a parameter prioritization testing subsets of inputs, which facilitates 
the analysis of results, as Borgonovo et al. (2022) suggest. Simulated 
time series are calibrated with hourly resolutions to match the model’s 
design of hourly probabilistic distributions and to maintain a 
low-to-moderate computational processing cost. 

The simulation runs as many times as suggested by the robustness 
analysis. Simulated time series outputs are averaged to provide a 
representative time series for each pollutant. Average, maximum, and 
minimum values are provided to visualize the variance in the simula
tions (see shadow areas in Fig. 5.b). We changed the parameter values 
and evaluated the results to obtain values that fit the time series best. 
When simulated and observed DW time series are similar, with corre
lation values greater than 0.6 (Schober and Schwarte, 2018), we 
consider there to be a match in patterns and the model to be calibrated. 
Calibrated values that provide the expected correlations are provided in 
the supplementary material. During calibration, it was sufficient to focus 
on feces and urine distributions; pollutant ranges were maintained as 
suggested by references cited in Section 2.1. 

Fig. 5.b shows the correlations obtained at the inflow of the WWTP. 
At 60 min resolution, the Pearson correlations are 0.89 and 0.86 for COD 
and TSS, respectively. P-values and the number of observed points also 
confirm the reliability of the results during calibration. It is noted that 
the calibration criteria focused on analyzing the WWTP for COD and TSS 
where DW flow (l) was not possible to evaluate for the lack of observed 

Table 1 
List of model entities for the ABM. The “Possible value” column shows an 
example of the information available in the ABM for the entities. For example, 
quantitative and qualitative values are shown for the selected inhabitant based 
on census data and the SMS method. Note that qualitative values, e.g., “Female,” 
are defined as static.  

Entity Variable Description Possible value Units 

Inhabitants Age Age category 18–24 years 
Study Attend school Yes – 
School 
level 

School level Highschool – 

Work Actively 
working 

Yes – 

Gender Inhabitant sex Female – 
CVEGEO Block location 1,302,700,010,105,004 – 
Ind id Individual ID 01,750 – 
Education 
level 

Education grade 2 – 

DW particle DW type Type of water 
appliance 

Toilet urine – 

DW 
quantity 

DW liters 9 l 

DW quality DW pollutants: 
COD and TSS 

453 mg/l 

CVEGEO Block location 1,302,700,010,105,004 – 
Ind id Individual ID 01,750 – 
DW speed Traveling 

particle speed 
1.8 m/s 

Traveling 
path 

Sewage network 
node 

Node 2020 – 

Houses House id House ID 304 – 
CVEGEO Block location 1,302,700,010,105,004 – 

Blocks CVEGEO Block location 1,302,700,010,105,004 – 
Economic 

points 
ID Economic point 

ID 
7,996,840 – 

CVEGEO Block location 1,302,700,010,105,004 – 
Avg. 
workers 

Average 
workers 

3, 5, 15 …. – 

School 
exists 

School in this 
point 

High school – 

Sewage 
network 

Node Connecting 
nodes 

Node 11 – 

Travel path Path to move 
DW particle 

Node 684 – 

Treatment 
plant 

Final 
station 

The final 
destination of 
the traveling 
path 

– –  

Fig. 4. Finding robustness of the DW simulation.  
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data. Fig. 5.a shows an example of the model before the calibration 
process to appreciate the improvement of the modeling process. The 
WWTP is also less susceptible to the strong variability at maintenance 
holes and the possibility of uncertain sewage connections in the pro
posed sewage. 

2.3. Spatiotemporal domestic wastewater variability 

Two pollutants (COD, TSS), five temporal resolutions (6, 12, 30, 60, 
and 180 min), and two spatial resolutions (WWTP catchment and sub- 
catchments 258-39) are evaluated. A 3-hr temporal resolution is 
selected to reflect the sampling interval of a continuous discharge that 
applies to DW from NOM-001-SEMARNAT. The 6-min resolution rep
resents instantaneous samples, and resolutions between 6 min and 180 
min (i.e., 12, 30, and 60 min) reveal details about the trends of the 
temporal resolutions. Spatially, we evaluate the catchment and sub- 
catchment levels. Fig. 2 shows that the catchment splits into two sub- 
catchment areas, including the location of the WWTP and the mainte
nance holes for the sub-catchments. The WWTP catchment covers 
approximately 0.35 km2, with 743 inhabitants. Each sub-catchment 

covers approximately 0.1 km2, and sub-catchments 258 and 39 are 
estimated to have 393 and 215 inhabitants, respectively. We used the 
differences between the DW time series linked to the (sub)catchment 
areas and the number of inhabitants to describe the spatial DW vari
ability (see Fig. 2). 

We examined DW variability by quantifying and comparing the 
differences in pollutant loads (COD and TSS) between spatial levels and 
temporal resolutions. Temporally, the magnitude of DW variability was 
analyzed by comparing the number of events of maximum pollutant 
loads (peaks in time series) between temporal resolutions for a targeted 
(sub)catchment. The spatial magnitude of DW variability was analyzed 
by comparing the areas of variance (indicated by the shaded areas in 
Fig. 6) between the catchment and sub-catchment levels for a given 
temporal resolution. Spatiotemporally, the minimum and maximum 
load ranges were compared between resolutions. The variance areas 
illustrate the spatiotemporal DW variability quantitatively. 

For the comparison, we also refer to spatiotemporal DW variability 
properties visible in the DW time series. One property is the temporal 
resolution trend, where the higher the temporal resolution, the higher 
the DW variability that can be expected, especially at decentralized 

Fig. 5. ABM before (5.a) and after (5.b) calibration. WWTP catchment with a temporal resolution of 60 min. The shaded areas show the DW variability determined 
from 50 simulation runs. r: Pearson correlation, p: P value, N_Obs: number of observed samples. 
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Fig. 6. Model results for DW variability. DW pollutant patterns were simulated at multiple spatial resolutions (sub-catchment areas 258 and 39 and the WWTP 
catchment area) and temporal resolutions (60, 30, and 12 min). The shaded areas show the variance coverage of 50 simulations. 
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treatment. A second property is the spatial resolution trend. The lower 
the spatial resolution is (i.e., from sub-catchment to catchment), the 
lower the DW variability is. The spatial resolution trend is also relevant 
to understanding the relationship between the DW load variability’s 
relations to population and (sb)catchment size. 

2.4. Spatiotemporal variability on treatment efficiency 

Two inputs are required to estimate the treatment efficiency as the 
percentage of safely treated DW at WWTP: The DW modeling results of 
pollutant concentration (COD, TSS) and the discharge limits for instant 
values in the category of infiltration and irrigations from NOM-001, 
which values are TSS: 140 mg/l, COD: 210 mg/l (SEGOB, 2022a). 
Equation (1) defines a treatment plant efficiency as the difference be
tween the pollutant’s concentrations at inflow and outflow, considering 
a constant treatment performance (discharge limit) on a regular 
day—where pstw is the percentage of safely treated DW, and wout ,win are 
outflows and inflows of a pollutants (mg/l), respectively: 

pstw= 100− (100wout /win) (1) 

We demonstrate the implications of DW variability by quantifying 
the PSTW between the catchment and sub-catchment levels at multiple 
temporal resolutions. The following two assumptions were made: i) high 
temporal resolutions (e.g., 12 min) were assumed to represent instan
taneous sampling to resemble NOM-001, and ii) by comparing sub- 
catchment and catchment levels, we can represent smaller and larger 
sanitation systems. PSTW was calculated for each catchment and sub- 
catchment area (see Fig. 2) for temporal resolutions of 12, 30, and 60 
min, and the differences were calculated. 

We introduce basic recommendations by incorporating the quanti
fiable effects of DW variability in the efficiency estimation at decen
tralized and ungauged WWTP. The relevance of the recommendations is 
provided in the context of current regulatory documentation linked to 
monitoring the sanitation situation, i.e., PSTW worldwide and NOOM- 
001 in Mexico (UNSTATS, 2022; SEGOB, 2022a). Temporally, we pro
vide proper sampling duration and intervals to complement laboratory 
sampling limitations and efficiently capture DW variability for future 
regulation updates. The recommendation highlights the early morning 
DW variability as the most pronounced event (Von Sperling, 2007). 
Spatially, we highlight proper variables linked to spatial DW variability 
to make comparable efficiencies between multiple treatment systems. 

3. Results 

3.1. Understanding spatiotemporal variability 

Quantifying the magnitude change between the spatial and temporal 
DW variability at multiple resolutions shows substantial differences. 
When comparing the temporal resolutions (12, 30, 60 min) in the sub- 
catchment 258 from Fig. 6, a low temporal resolution cannot show the 
number of peaks with significant maximum loads. The time series of the 
sub-catchment 258 show two and six significant loads at 60 and 12 min, 
respectively. The six maximum COD loads (12 min resolution) are be
tween 3400 and 3900 mg/l with a high temporal resolution. In com
parison, maximum COD loads are reduced from six to two with a low 
resolution (at 60 min) with maximum loads between 2500 and 3000 
mg/l. 

The simulated variances (indicated by the shaded areas in Fig. 6) 
exhibit substantial differences between the spatial levels of the WWTP 
catchment and sub-catchment 258. The variance area for COD loads is 
up to three times smaller for the catchment than for sub-catchment 258 
at a temporal resolution of 60 min, which reflects the spatial variability 
trend (see Fig. 6). The WWTP catchment has a bigger sewage coverage 
resulting from the dilution of the combined flow from the multiple 
sewage sections, including DW collected from the sub-catchment 258 
(see Fig. 2). 

When comparing DW variability in space and time simultaneously 
(spatiotemporal), we find the biggest difference in the magnitude 
change of pollutant loads. Fig. 6 shows the variance areas where 
pollutant loads’ minimum and maximum ranges change depending on 
the spatial level and temporal resolutions. The difference between a low 
and a high spatiotemporal resolution of the variance area can be up to 
five times less when comparing the WWTP catchment and sub- 
catchment 258. At the same time, the difference between the mini
mum and maximum load ranges can be around double with COD ranges 
that go from 800 to 2200 mg/l at the WWTP (60 min) compared to 
ranges from 400 to 3700 mg/l at sub-catchment 258 (12 min). The 
spatiotemporal resolution is especially relevant when comparing mul
tiple WWTPs. Ensuring that spatiotemporal resolutions are similar al
lows a fair comparison between treatment systems. 

Table 2 shows the evaluation metrics of the observed and simulated 
spatiotemporal DW variability. Table 2 allows comparisons of the COD 
and TTS pollutant loads for spatial catchment and sub-catchment reso
lutions at various temporal resolutions based on Pearson correlations (r) 
and p-values for a confidence interval of 95%. The most significant 
correlations are at 180- and 60-min temporal resolutions, which get the 
best correlation results above 0.75 with a decreasing trend when the 
temporal resolution increases. The best results are r values between 0.7 
and 0.99 for the WWTP and maintenance holes 258 and 39, respectively, 
at a 180-min resolution. P-values also serve as reliability indicators at 
various resolutions. It is noted that the r significantly changes between 
the spatial and temporal resolutions considering (sub)catchment areas 
and the number of inhabitants. No significant change is noticed between 
the DW pollutants (COD and TSS). 

3.2. Implications on treatment efficiency 

The DW variability generates substantial differences when esti
mating treatment efficiency (pstw) based on the proposed scenario (see 
section 2.4). The variance (indicated by shaded bands in Fig. 6) high
lights the variability of input values for equation (1) (win). As a result, 
the estimation of treatment efficiency given in percentages is signifi
cantly affected. 

As seen in Table 3, temporal resolutions implicate that treatment 
efficiency can be inaccurate when ignoring the temporality of DW 
variability. Considering a high temporal resolution (12 min) of COD 
instantaneous sampling at the catchment, the treatment efficiency (pstw) 
can range between 70% and 95% (min.-max.). The instantaneous sam
pling can provide an (over)under-estimated treatment efficiency with an 
uncertainty of up to 25%, depending on the hour that a sample is taken. 
In contrast, when considering a lower temporal resolution (60 min) at 
the catchment, the uncertainty of treatment efficiency reduces. Possible 
COD pstw values only range between 80% and 90% (min.-max) with an 
uncertainty up to 10%. The treatment efficiency uncertainty can be 
reduced from 25% (12 min) to 10% (60 min), showing that temporal 
resolutions provide significant differences in treatment efficiency 
measurements. 

The spatial component also impacts reporting treatment efficiency, 
mainly when considering spatiotemporal resolutions. The spatiotem
poral implication relates to an inadequate comparison of treatment ef
ficiencies between locations. For instance, assuming the efficiency 
estimation from the sub-catchment 258 (higher spatial resolution than 
the catchment) with a COD instantaneous sampling (high temporal 
resolution), the treatment efficiency can vary between 50% and 95% at 
the sub-catchment 258 and between 70% and 95% at the catchment. A 
20% difference between the two spatial levels of catchment and sub- 
catchment misleads the comparison of treatment efficiency of loca
tions with different spatial resolutions. It is required to provide infor
mation on the spatial resolutions regarding the (sub)catchment areas 
and inhabitants covered by WWTPs to compare multiple decentralized 
or centralized WWTPs objectively. 
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4. Discussion 

4.1. Modeling spatiotemporal variability 

The modeling outcomes provide comprehensive insights for 
explaining the DW variability from their source, the human polluters. By 
its detailed spatiotemporal design, we targeted to analyze where, when, 
and how much the DW variability is expected to be higher or lower. 
Temporally, Teerlink et al. (2012) mention that a high sampling fre
quency is required at small spatial scales to detect significant waste
water pollutant concentrations. Our results confirm that significant 
pollutant concentrations are better detected at high temporal resolu
tions. Spatially, Penn et al. (2017) highlight that a low population 
(linked to high spatial resolutions from small catchment areas) relates to 
intermittent DW variations. Friedler and Butler (1996) affirm that DW at 
the source (the high spatial resolution of households) is highly variable. 
Our study also shows that as the spatial resolution increases (from 
catchment to sub-catchment with lower population), the DW pollutants 
concentrations will provide intermittent and strong variations. 

We also find that the ABM performance is comparable with the 
current state of the art, where the reported modeling performance has 
been moderate in the last decade (Jia et al., 2021). As Jia et al. (2021) 
mentioned, studies on modeling DW mentioning spatial resolutions are 
uncommon. Our findings contradict a note from Jia et al. (2021), who 
suggested that once a model is calibrated, it can be applied to multiple 
spatial resolutions. We advise evaluating the methodological principles 
for modeling DW variability to understand which spatial characteristics 
a modeling method can cover, specifically when the method must be 
replicated in real-life conditions in low and middle-income countries. 
The DW variability is linked to sewage catchment features that signifi
cantly affect DW modeling results when having a significant presence, 
such as infiltration in the sewage (from drinking water, spring water, or 

rivers), DW leaking (from old sewage or broken pipes), and water 
shortages (reflected as moderate water appliance usage). We advise 
referring to the population size and catchment area to compare DW 
variability in future literature concerning spatial resolutions. 

The ABM has non-trivial points during the modeling process that 
should be considered. These include that no mobility from/to areas 
outside the locality is simulated. The model focuses on domestic 
wastewater; not all wastewater from economic activities is included. 
However, as the model uses general behaviors, biological rules, and 
reference input data, the model can be replicated in other localities. The 
current model only considers the COD and TSS DW components. Other 
DW components are not evaluated, and the current modeling approach 
does not apply to components whose units are not measured in mg/l as 
ph. Studying DW variability across several weeks requires more data, 
which is beyond the scope of the current study. For instance, studying 
for several weeks allows one to analyze common water shortages that 
are common during the dry season. The potential effects of rainfall in 
this model are not developed as the case study targets a separate sewer 
network between rain and domestic wastewater. Fieldwork for studying 
DW variability at multiple spatiotemporal resolutions represents a 
challenge. Data scarcity and fieldwork challenges can be the strongest 
reasons for rarely studying spatiotemporal DW dynamics. As the model 
is based on hourly probabilistic distributions, the model usage for 
decision-making is not recommended with resolutions lower than 1 h. 
However, the model usage can be recommended to provide a better 
understanding of DW variability at any resolution (including lower than 
1 h), i.e., for understanding the complexity of DW patterns and vari
ability. We note that designing the model using higher probabilistic 
distributions of minutes substantially increases the computational cost, 
where high-performance computing is out of the scope of this study. 

4.2. Recommendations about treatment efficiency 

Our study allows us to propose two general recommendations for 
sampling and reporting treatment efficiency at decentralized and 
ungauged WWTP: i) For covering the temporal trend, sensors are rec
ommended for higher-frequency sampling. Sensors should be regulated 
to guarantee correct use and properly complement current limitations 
with laboratory practices. A few instantaneous samples are not enough 
to represent the realistic temporal trend of DW pollutant loads. Espe
cially for decentralized WWTP (smaller population and catchment 
areas), instantaneous values should be avoided when treatment effi
ciency must be reported. Instead, DW sampling at 6-min intervals over 3 
h, reflecting the time range of major use of water fixtures and appliances 
(i.e., 7:00 to 10:00 a.m.), should be considered. The starting sampling 
time should be adjusted based on intensive water use and DW flow travel 
time from households to WWTP. This basic recommendation ensures 
that the significant DW peaks (produced by early morning population 

Table 2 
Metrics to evaluate simulated DW variability. “r” refers to Person correlations, and “p” for p values.   

Temporal resolution (minutes) r (COD) r (TSS) p (COD) p (TSS) Observations 

Catchment spatial resolution (WWTP: 0.35 km2 

743 inhabitants) 
180 0.942 0.942 0.2184 0.2171 3 
60 0.904 0.876 0.0053 0.0097 7 
30 0.769 0.755 0.0013 0.0018 14 
12 0.684 0.625 0.0000 0.0001 35 
6 0.646 0.595 0.0000 0.0000 70 

Sub-catchment spatial resolution 
(mh.258: 0.1 km2 

393 inhabitants) 

180 0.988 0.994 0.0970 0.0702 3 
60 0.909 0.838 0.0046 0.0186 7 
30 0.698 0.638 0.0055 0.0141 14 
12 0.592 0.560 0.0002 0.0005 35 
6 0.538 0.476 0.0000 0.0000 70 

Sub-catchment spatial resolution 
(mh.39: 0.1 km2 

215 inhabitants) 

180 0.921 0.868 0.2546 0.3308 3 
60 0.635 0.866 0.0146 0.0116 14 
30 0.635 0.738 0.0146 0.0026 14 
12 0.558 0.607 0.0005 0.0001 35 
6 0.469 0.485 0.0000 0.0000 70  

Table 3 
Variability of treatment efficiency linked to spatiotemporal resolutions. Treat
ment efficiency columns (pstw) are given in percentages.   

Temporal 
resolution 
(minutes) 

PSTW 
Min 
(COD, 
%) 

PSTW 
Max 
(COD, 
%) 

PSTW 
Uncertainty 
(COD, %) 

Catchment spatial 
resolution (WWTP: 
0.35 km2 743 
inhabitants) 

60 80 90 10 
12 70 95 25 

Sub-catchment spatial 
resolution 
(mh.258: 0.1 km2 393 
inhabitants) 

12 50 95 45  
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activities) are captured during the sampling, where a WWTP should 
demonstrate that high demands of water appliance usage do not 
compromise the WWTP efficiency.  

ii) To cover spatiotemporal trends, the spatial and temporal resolutions 
of the DW sampling must be reported. This recommendation ad
dresses standardizing the reporting of treatment efficiency to allow 
interpretation and comparison between multiple treatment systems. 
Temporally, the duration and sampled times and intervals must be 
documented. The spatial parameters of the sewage catchment area 
and the number of inhabitants must be recorded in parallel with 
sampling times and intervals. Such parameters are sensitive in
dicators of whether there is substantial variability in the estimated 
treatment efficiency. Reporting the number of inhabitants must 
consider, when possible, how significant population mobility is 
(entering and leaving the catchment). For instance, studying, 
working, and daily tourism can significantly change the population 
in the sewage catchment. It is also necessary to report the sewage 
conditions and maintenance periods of WWTPs, as infiltration from 
clean water or DW leaking from sewage affects pollutant 
concentrations. 

This study contributes to a better understanding of the effect of DW 
variability on estimated WWTP efficiency. We describe the relevance of 
studying DW variations at different spatial and temporal resolutions. 
Highlighting DW variability contributes to addressing regulation issues 
linked to monitoring and improving understanding of the implications 
of reporting WWTP efficiency. Usually, in decentralized sanitation 
management, one or a few laboratory DW samples are collected at the 
WWTP catchment, which complies with current regulations. However, 
detailed simulation is needed to obtain insights into DW dynamics at 
different spatial and temporal resolutions. We detect inaccuracies of up 
to 25% in estimating WWTP efficiencies. We therefore suggest a sam
pling frequency of 6 min over 3 h in the morning to report WWTP effi
ciency, to account for the uncertainty introduced by DW variability. 
Regulations should be upgraded to report treatment efficiency using 
modern technologies like DW spectrometer sensors. 

Studies on DW sampling for reporting treatment efficiency require 
more attention, and this research can be used as a starting point. Mexico 
is not alone in having regulations, such as NOM-001-SEMARNAT 
(SEGOB, 2022a), with DW sampling specifications that lack consider
ation of the effects of spatiotemporal DW variability. The European 
Union law (2014) has also documented regulations linked to sampling 
WWTP that allow sampling frequencies between 12 and 365 per year, 
omitting the relevance of DW spatiotemporal variability. This research 
shows that studying multiple resolutions is useful and that reporting 
spatiotemporal resolutions must be required, specifically for decentral
ized sanitation. A report by the European Commission (2019) on an 
evaluation of wastewater treatment mentions the promotion of research 
on the fit-for-purpose sampling frequency to assess whether WWTPs 
comply with regulations where our findings show a starting point. 

Monitoring DW treatment efficiency is not affected by DW variability 
alone. Reporting WWTP efficiency requires considering the feasibility of 
continuous data collection, social aspects, and the local environment, 
which can determine how regulations should be updated. For instance, 
planning the logistics for sampling DW can require significant time co
ordination between technical teams, local WWTP design and manage
ment experts, municipal authorities, and citizens. Highlighting 
implications and recommendations for measuring WWTP efficiencies 
alone does not answer how to improve regulations to overcome the 
challenges of continuously reporting WWTP efficiencies. 

5. Conclusions 

We successfully developed, implemented, and evaluated an ABM to 
simulate DW variability reproduced at various spatial and temporal 

resolutions. The model provided correlations above 0.7 between COD 
and TSS at distinct locations and performed better at temporal resolu
tions of 30, 60, and 180 min. For high resolutions (less than 1 h), we 
recommend using the model to understand DW variability better and not 
for decision-making, for which high-performance computation can 
provide better correlations. The results of this study help to explain DW 
dynamics at multiple time resolutions and two spatial resolutions 
(catchment and sub-catchment). DW variability increases at higher 
temporal and spatial resolutions. Such knowledge is key for examining 
practices of instantaneous sampling and addressing the limitations of 
sampling with sporadic measurements when reporting treatment effi
ciency, which are common practices in Mexico and worldwide. Even 
with limited human and technical resources, it was possible to collect 
valuable data that support DW modeling for low- and middle-income 
rural and peri-urban localities. This is a relevant point for decentral
ized sanitation systems, where efforts should be increased to report 
treatment status. Our work highlights the relevance of understanding 
spatiotemporal DW variability at multiple resolutions. Without a proper 
understanding of DW variability, treatment efficiency can be over
estimated or underestimated by up to 25%. We recommend sensor 
measurements at 6 min intervals over 3 h during heavy drinking water 
demand in the morning. Finally, data on sewage catchment areas, 
population sizes, sample times, and intervals are required to objectively 
compare WWTPs efficiencies and overcome misestimations due to DW 
variability. Because the current model is not easily transferable to other 
localities, our next research efforts will be focused on generating a 
model that can be easier to implement in other localities. 
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