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Abstract: Water scarcity is a prominent consequence of global climate change, presenting a significant
challenge to the livelihoods of wide parts of the world, particularly in arid and semi-arid regions.
This study focuses on Erbil Province in Iraq, where the dual effects of climate change and human
activity have significantly depleted water resources in the past two decades. To address this challenge,
rainwater harvesting (RWH) is explored as a viable solution. The purpose of this study is to make a
suitability zone map that divides the study area into several classes based on the features of each
area and its ability to collect rainwater. The map will then be used to find the best place to build
different RWH structures. Seven different layers are used to make the RWH suitability zone map:
rainfall, runoff, land use/cover (LU/LC), soil texture, slope, drainage density, and the Topographic
Wetness Index (TWI). Each layer was assigned specific weights through the Analytical Hierarchy
Process (AHP), considering its relevance to RWH. Results revealed four suitability classes: very highly
suitable 1583.25 km2 (10.67%), highly suitable 4968.55 km2 (33.49%), moderately suitable 5295.65 km2

(35.69%), and lowly suitable 2989.66 km2 (20.15%). Notably, the suitability map highlights the
northern and central regions as particularly suitable for RWH. Furthermore, the study suggested
three suitable locations for constructing medium dams, six for check dams, and twenty-seven for
farm ponds, according to the requirements of each type. These findings provide valuable insights
for the strategic planning and effective management of water resources in the study area, offering
potential solutions to the pressing challenges of water scarcity.

Keywords: rainwater harvesting; geographic information systems; Analytical Hierarchy Process;
multi-criteria decision analysis

1. Introduction

Water is an essential and indispensable resource that plays a crucial role in all aspects
of our lives, particularly agricultural production [1]. Numerous nations around the world
are currently dealing with a serious water crisis, particularly those in arid and semi-
arid climates like Egypt, Iraq, Iran, and Syria [2]. Climate change, global warming, and
population growth have all exacerbated this issue, resulting in severe water scarcity on
a global scale [2,3]. The diminishing availability of water can have adverse effects on
agricultural land in various regions worldwide, which poses a major obstacle to food
production [4]. Given that agriculture is the primary consumer of water, it is likely to
face conflicts with other water users in the future due to escalating demand [4,5]. In the
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future, ensuring an adequate water supply, particularly for agricultural irrigation in arid
and semi-arid areas, will be a challenging task [6].

Erbil Province in Iraq has experienced severe droughts over the past two decades,
which have significantly impacted its water resources [7]. Water wells in Erbil province
are under stress due to both drought conditions and human activities. In some areas,
the groundwater level has dropped by over 54%, leading to the complete drying up of
some wells, particularly in the southern and central parts. These wells are crucial sources
of drinking water and irrigation [8,9]. Insufficient rainfall during the growing season in
the past rendered a significant portion of agricultural land unproductive. Limited water
resources also challenged villagers engaged in livestock farming, forcing some to migrate
elsewhere [10]. Furthermore, the security instability in some parts of the north and south
and the mismanagement of water resources contribute to water scarcity in the study area.
Therefore, in response to these challenges, it is crucial to explore strategies for reducing
water outflow and increasing water retention [11].

Rainwater harvesting (RWH) is a traditional method used to collect, store, and reuse
rainwater for various purposes, with an emphasis on supplementary irrigation [12]. It
has recently regained attention in many parts of the world as a viable option for water
supply. RWH represents a comprehensive approach to supporting agriculture in regions
with limited precipitation during the period of crop growth and scarce water resources [13].
For easier and more cost-effective access to water for irrigation purposes, it is important to
scientifically identify appropriate locations for RWH [14].

Various methods have been employed to identify potential locations for RWH. Remote
sensing (RS) and geographic information systems (GISs) are currently among the most
valuable tools for managing ecosystems and natural resources [15]. Additionally, multi-
criteria decision analysis (MCDA) plays a significant role in selecting suitable zones for
RWH [16]. The integration of MCDA with GIS, which combines spatial data layers, has
been widely utilized in the RWH process [17]. Many authors have created or improved
MCDA methods in the last few decades. The Fuzzy Analytic Hierarchy Process (FAHP),
the Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS), the Analytic
Network Process (ANP), the Analytic Hierarchy Process (AHP), and others are some of
these. The key distinctions among these methodologies pertain to algorithmic complexity,
criteria weighting methods, the approach to representing preference evaluation criteria,
handling uncertain data, and the type of data aggregation [18]. Saaty introduced the
Analytical Hierarchy Process (AHP) in 1977 [19], which is a notable example of MCDA. AHP
is a highly regarded decision-supporting technique for addressing complex problems [15].
It has been recognized as the most suitable decision method for identifying appropriate
RWH locations. Numerous studies have employed GIS-based MCDA in various countries
to identify suitable locations for RWH. Notable examples include the work of Aziz et al.
(2023) in Iraq [10], Modak and Das (2022) in India [15], Jha et al. (2014) in Saudi Arabia [20],
and Ezzeldin et al. (2022) in Egypt [21]. These studies have demonstrated that combining
RS and GIS techniques with MCDA is the most effective approach in the RWH process.

The aim of this study is to implement a robust methodology for generating a suitability
zone map for rainwater harvesting (RWH) in the study area. This approach will be tailored
to the existing environmental, economic, and social conditions of the region. The study also
seeks to determine optimal locations for constructing different RWH structures, including
medium dams, check dams, and farm ponds. The utilization of Remote Sensing (RS),
Geographic Information System (GIS), and Multi-Criteria Decision Analysis (MCDA)
techniques will be employed to tackle water scarcity issues specifically in Erbil Province,
Iraq. In this study, updated data, such as satellite images and climate data, were utilized to
prepare thematic layers. This study makes use of the Topographic Wetness Index (TWI)
criteria, which Beven and Kirkby developed in 1979 [22] and are crucial for determining the
best locations to hold water [23]. TWI criteria can enhance the accuracy of the suitability
zone map for RWH. On the other hand, it is important to highlight that this study covers the
entirety of Erbil Province, in contrast to previous studies that typically focused on specific
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parts of the province. The proposed methodology is illustrated through a case study. The
research outputs demonstrate the potential of RWH to achieve various objectives, including
mitigating the impacts of water scarcity, reviving surface water resources, increasing
groundwater levels, and fostering agricultural development. This study provides an initial
overview of the potential of RWH in the study area, and the results are intended to assist
decision-makers and local officials in future planning and water resource management.

2. Materials and Methods
2.1. Study Area

Erbil Province, situated in the northeast of Iraq, covers an area of 14,837 km2 and is
positioned between 44◦ and 45◦ E longitude and 36◦ and 37◦ N latitude (Figure 1a). Its
internal borders are the governorates of Sulaymaniyah to the east, Kirkuk to the southeast,
Salahaddin to the southwest, Ninawa (Mosul) to the west, and Dohuk to the northwest.
It shares international borders with Turkey to the north and Iran to the northeast. Erbil
Province contains ten administrative districts, as shown in Figure 1b. The population is
about 2.25 million, which is mostly Kurdish [24]. The region experiences a Mediterranean
weather pattern characterized by arid and semi-arid conditions, with high temperatures
during the summer months and cool, damp winters. According to data obtained from
the Ministry of Agriculture and Water Resources (KRG) for the period 2014–2023, the
average annual rainfall ranges from 250 mm to 1400 mm. Topographically, the northern
parts are high and comprise the most famous chains of mountains called Zagros, with
the peak of Hasarost being the highest peak in the region with a height of 3607 m above
sea level [25]. These heights decrease gradually towards the central portions until they
reach the plains in the southern parts, which make up most of the agricultural land in the
study area. The soil in the northern areas is shallow to medium chestnut soil that has been
created from the original rocks; it has a low potential for agriculture, but it is rich in the
natural rangeland, whereas the plain areas consist of dark brown and black soils and are
favorable for agriculture due to their great depth, good texture, and high content of organic
matter [26]. Wheat and barley are the main crops in the winter season, depending on
the rainfall, while many other agricultural crops grow depending on underground water
resources during the summer [27].
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2.2. Dataset

To prepare the criteria that are fundamental for generating the RWH suitability zone
map, the required data were collected from various resources, including the following:
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• Remote sensing data, including a Landsat 8 Operational Land Imager (OLI) satellite
image dated 14 April 2023, and a Digital Elevation Model (DEM) sourced from the
Shuttle Radar Topography Mission (SRTM) with a 30 m resolution, were accessed on
15 June 2023, from https://earthexplorer.usgs.gov [28].

• Rainfall data for 10 years (2014–2023) were obtained from 23 meteorological stations
belonging to the Ministry of Agriculture and Water Resources (KRG).

• Soil data were retrieved from the digital soil map of the world (DSMW) developed by
the Food and Agriculture Organization (FAO) and the United Nations Educational,
Scientific, and Cultural Organization (UNESCO) (FAO-UNESCO 2008) [29], accessed
on 10 July 2023.

2.3. Criteria Selection and Preparation

The FAO guidelines, earlier studies, and the availability of data on the study area all
played a role in the selection of various criteria used to create the suitability zone map. The
criteria that were selected and generated are listed below:

2.3.1. Rainfall

Rainfall is a critical factor in the RWH process. The FAO recommends the adoption of
RWH technology (RWHT) in regions with annual rainfall ranging from 100 mm to 1000 mm.
In areas receiving less than 100 mm of yearly rainfall, there is no incentive to implement
RWH [30]. The rainfall intensity in the study area was assessed using daily rainfall data
collected over a 10-year period (2014–2023) from twenty-three meteorological stations
within the study area. The geostatistical method known as Inverse Distance Weighted
(IDW), commonly used for interpolating rainfall variables, was employed to estimate the
spatial distribution of rainfall data. By considering the geographical direction and distance
of existing data points, rainfall values for unobserved locations were approximated.

2.3.2. Soil Texture

The texture of the soil plays a significant role in the RWH process [31]. Soils with
a higher water-holding capacity are more suitable for RWH [32]. The soil map was ob-
tained from the FAO/UNESCO DSMW (2008) [29], with a scale of 1:5,000,000. However,
the Natural Resources Conservation Service (NRCS) of the United States Department of
Agriculture (USDA) defined soil characteristics related to water retention and infiltration
in 2007 [33]. Based on these characteristics, the different types of soil texture have been put
into Hydrological Soil Groups (HSGs).

2.3.3. Land Use and Land Cover (LU/LC)

The LU/LC map was created using Landsat 8 OLI satellite imagery from the year 2023.
The classification process involved a supervised image classification approach employing
the maximum likelihood algorithm. The image was categorized into six classes: forest,
rangeland, barren land, urban or built-up area, agricultural land, and water bodies. To
evaluate the accuracy of the classification, the study employed a confusion matrix. Addi-
tionally, cross-referencing was conducted using a Google Earth map, random points, and
actual ground points.

2.3.4. Runoff Depth

Estimating runoff depth is a crucial step in identifying suitable locations for RWH [6].
Several methods are available for estimating runoff depth, with two commonly used ones
being the Rational Method and the Soil Conservation Service Curve Number (SCS-CN). In
both methods, it is important to consider the characteristics of the watershed, such as land
use, soil type, and antecedent moisture conditions. Additionally, rainfall data—whether
observed or estimated—is a key input for runoff estimation. In this study, the SCS-CN
approach, originally established by the USDA-SCS in 1972 (now known as the Natural
Resources Conservation Service—NRCS) [34,35], was utilized to evaluate potential runoff

https://earthexplorer.usgs.gov
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in the study area. This method calculates direct runoff from rainfall events in a watershed
or catchment area for each pixel [36,37]. The equation used to estimate runoff in the study
area is as follows:

Q =
(P − Ia)2

(P − Ia) + S
f or p > Ia (1)

where Q is the depth of the runoff (mm), P is the amount of precipitation (mm), S is the
maximum amount of water that could be kept after the runoff starts (mm), and Ia is the
initial abstraction (mm) that includes all the water that was lost before the runoff started
through infiltration, evaporation, and water interception by vegetation. Ia is highly variable
but is generally correlated with soil and cover parameters. Through studies of many small
agricultural watersheds, researchers approximated Ia as 0.2 [38]. The value of 0.2 for Ia has
also been mentioned in previous studies on Erbil province, including Hameed (2013) [26],
Babir and Ali (2016) [39], Hameed (2017) [40], and Majeed (2023) [41]. This means that the
amount of precipitation (P) is greater than the initial abstraction (Ia) and the amount of
water after the runoff starts (S) is suitable for harvesting in the study area. Therefore, in
this study, the same value is employed, and the equation can be expressed as:

Q =
(P − 0.2S)2

(P + 0.8S)
(2)

The potential maximum retention (S) can be computed by using the estimated CN [42]
as follows:

S =
25400
(CN)

− 254 (3)

CN is reflecting the surface runoff’s response to a given rainfall, which ranges from
0 to 100. High CN values show that much of the rainfall is transformed into surface
runoff and vice versa [32,43]. The CN values were taken from the USDA-NRCS National
Engineering Handbook based on the integration of land cover classes and HSGs with
respect to hydrological conditions [32,44], reflecting the surface runoff’s response to a given
rainfall ranges from 0 to 100. High CN values show that much of the rainfall is transformed
into surface runoff and vice versa [32,43].

2.3.5. Drainage Density (DD)

DD is a fundamental geomorphological parameter used to assess the density and
complexity of a river or stream network within a specific geographic area. It is a critical
morphometric parameter that plays a vital role in the RWH process [10,45]. Areas with
higher DD tend to yield greater runoff for harvesting [46]. In this study, the DEM data
were employed in ArcGIS 10.8 software to create a flow direction map, which illustrates the
movement of water across the landscape, and a flow accumulation map, which highlights
areas with a high potential for water flow. By applying a threshold value >1000 to this map,
the stream network was identified. DD was subsequently calculated by dividing the total
stream length by the size of the study area [47–49].

2.3.6. Slope

The slope of the land has a big effect on hydrological aspects, like runoff generation,
recharge facilitation, sedimentation modulation, and water flow velocity. In this context, the
slope map plays a crucial role in selecting suitable locations for RWH [32,48,50]. The slope
ranges of the study area were calculated using SRTM-DEM data projected in the Universal
Transverse Mercator (UTM), Zone 38N, and the WGS84 horizontal datum. The resulting
slope map was categorized into five slope percentage values following FAO guidelines.

2.3.7. Topographic Wetness Index (TWI)

The TWI measures the balance between water accumulation and drainage on sloped
land by looking at the connection between upslope areas and the local slopes [51]. It
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provides insights into how topography influences water movement, runoff generation,
and accumulation [23]. The TWI map was used to evaluate the impact of topography
on hydrological processes within the study area. The TWI map was generated using
DEM data, which are a representation of the Earth’s surface in a gridded format, and the
values were calculated using spatial analyst tools in ArcMap 10.8.2 software. The values
were categorized into five groups, with higher TWI values indicating a larger drainage
area, implying greater water availability for harvesting, and lower values suggesting the
opposite [22,52]. The formula for calculating the TWI is often expressed as:

TWI = log(
α

tan(β)
) (4)

where α is the upslope contributing area represents the total area draining through a certain
point on the landscape and tan(β) is the tangent of the slope [23].

2.4. Criteria Prioritization

To generate a suitable zone map for RWH in the study area, seven criteria were
identified as thematic layers. Professionals and experts from the area were asked to rate
and weight the importance of each criterion using Saaty’s basic scale [53], which goes from
1 to 9, with 9 being the most important and 1 being the least important (Table 1). Experts
were selected for the interviews due to their comprehensive understanding of the research
area and prior experience in recognizing the significance of RWH. All selected experts have
resided in Erbil Province, Iraq, for more than 30 years. Additionally, a literature review
was conducted to validate the selection criteria and rankings for accuracy, such as Berhanu
and Bisrat 2018 [54], Adham et al. (2022) [32], Alene et al. (2022) [55], Gebremedhn et al.
2023 [56], and Noori et al. 2023 [6].

Table 1. The fundamental scale for evaluating the relative importance of criteria in AHP.

The Intensity of
Importance Scale

Relative Importance
Intensities Description

1 Equally important Two activities make an equal contribution
to the objective.

3 Moderate important One activity is slightly preferred
over another.

5 Strong important One activity is greatly preferred
over another.

7 Very strong important
One activity is very strongly preferred over

another, resulting in its dominance
in practice.

9 Extremely Important
The evidence supporting one activity as

compared to another is of the highest level
of confirmation.

2, 4, 6, 8 Values between two
adjacent judgments

Additional subdivision or compromise
when required.

Note: Source: [53].

2.5. Multi-Criteria Decision Analysis (MCDA)

MCDA involves the selection of criteria and decision options [57]. It is a method
used to assess the importance of various parameters within a project. The significance of
these criteria in determining suitable sites can vary based on their respective weights, and
the outcome of the decision-making process heavily depends on these criterion weights.
Therefore, ensuring the objectivity of criterion weights is a critical step in the MCDA
process [58].

In order to determine the weights of the thematic layers in this study, Saaty’s AHP
method from 1977 [19] served as the MCDA method. AHP is a popular method that
involves setting up a hierarchy of selection criteria and comparing two items in a matrix
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pairwise to find out and normalize the weights of each element. The Pairwise Comparison
Matrix (PCM) serves as a tool for assessing the relative importance of each criterion in
comparison to all others. In this step, the weights of each criterion in the rows were
compared to themselves in the columns, where the relative importance is equal and the
value “1” is treated as a constant. Subsequently, these weights were compared to all
other criteria, where the relative importance varies based on each criterion’s weight. To
normalize the PCM, the sum of each column was calculated, and then each cell in the
column was divided by its column total to obtain the eigenvectors of the matrix. The
average weights for each criterion were found by adding up all the values in the PCM
rows and then dividing that number by the number of criteria. In the AHP approach, the
consistency ratio (CR) of expert judgments plays a pivotal role in making sound decisions.
It is imperative for the decision-maker to closely monitor the consistency of these judgments
because inconsistent assessments can potentially lead to erroneous results. Saaty 1984 [53]
recommended, through CR calculations, that CR values should ideally be 0.1 or less,
indicating a satisfactory reciprocal matrix. Conversely, if the CR is greater than 0.1, it means
that the PCM is not consistent and needs to be re-evaluated. In this study, the AHP-CR
was computed to assess the consistency of the weights assigned to different layers. This
calculation was performed using the following equations:

CR =
CI
RI

(5)

CR is a consistency ratio; CI is a consistency index; it is a factor that measures the
consistency of diagonal comparison matrices calculated by Equation (6). RI is a random
index; it is a standard value determined by Saaty (1984) [53], and the RI values are variable
depending on the number of parameters listed in Table 2.

CI =
λmax − n

n − 1
(6)

CI is the consistency index. λmax is the largest eigenvalue of the comparison matrix
calculated as the sum of products between each priority value element and the total of
columns of the reciprocal matrix. λmax was computed in Equation (7). n is the number
of criteria.

AX = λ max (7)

A is the comparison matrix of size for the criteria. X is the Eigenvector of size 1.

Table 2. Random Index values.

Order 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Note: source: [53].

2.6. Generating the RWH Suitability Zone Map

To generate the RWH-suitable zone map, a standardization process was applied to
the initial criteria layers, which had varying units. This standardization was crucial for
enabling weighted overlay analysis. Initially, the criteria layers were converted from vector
to raster format using the reclassify tool in ArcMap 10.8. Subsequently, each raster layer was
assigned internal values on a scale of 1 to 5, indicating their relative importance. A value
of 1 represented the lowest importance, while 5 denoted the highest. These assignments
were determined based on expert recommendations, previous studies such as Adham et al.
(2016) [59], Tahera et al. (2022) [60], and Surve et al. (2022) [61], and the characteristics of
each criterion. The ‘weighted overlay’ tool in ArcMap, commonly used for multi-criteria
overlay analysis in site selection and suitability modeling tasks, was then applied. This tool
integrated all the raster layers, facilitating the identification of suitable zones within the
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study area. The resulting map was categorized into four classes: ‘very high suitability’,
‘high suitability’, ‘moderate suitability’, and ‘low suitability’.

2.7. Suitable Sites Selection for Different RWH Structures

Effective RWH relies on prudent land management practices and the construction
of appropriate structures [61]. In this study, the resultant suitability zone map was used
to determine potential RWH locations within the study area. Factors will have different
degrees of impact on finding the best sites for each RWH structure. In this regard, multiple
layers were added to the ArcGIS environment based on the characteristics of the RWH
structures. As per previous studies, each RWH structure necessitates specific characteristics.
For instance, Mahmood et al. (2020) [44] recommended that sites suitable for farm ponds
should have a slope of less than 5% and belong to the first or second stream order. The
LU/LC should be predominantly agricultural with low infiltration, and runoff depth
should be moderate to high. Check dams, following Singh et al. (2009) [62], are best
situated in barren lands and riverbed areas with a slope of less than 15%, third-order stream
drainage, low infiltration, and moderate runoff. Furthermore, Ibrahim et al. (2019) [63]
emphasized that areas with complex topography and extensive drainage networks are
ideal for constructing large or medium embankments, relying on a substantial amount
of precipitation and runoff as primary prerequisites. Considering these guidelines and
the characteristics of each RWH structure, three types of RWH structures were proposed:
medium dams, check dams, and farm ponds.

2.8. Validation

The validation process is an important part of making sure that the suitability map
made for building different RWH structures is correct and to see how well the methods and
techniques used worked. Assessing the RWH suitability zone map is mostly based on a
mix of field studies, existing data, and analysis using geospatial technology [15]. The RWH
suitability zone map was compared to the study area’s existing functional RWH structures
to see how well the method worked. The existing RWH structure points were identified
and gathered from the Ministry of Agriculture and Water Resources (KRG), where they
represent eleven farm ponds, eleven check dams, and one medium dam. All coordinate
points were overlaid on the RWH suitability zone map using the ArcMap platform to
determine their respective suitability classes.

3. Results and Discussion
3.1. Thematic Layers

In this study, seven fundamental criteria have been identified that are essential to
producing a suitable zone map for RWH. These criteria were meticulously selected based on
considerations of data availability and adherence to the guidelines established by the FAO.
Notably, these criteria have also been previously utilized in studies with similar objectives
conducted in diverse geographical regions. For instance, Ezzeldin et al. (2022) [21] applied
them in Egypt, Adham et al. (2022) [32] in Palestine, Wu et al. (2018) [57] in Guatemala, and
Yegizaw et al. (2022) [64] in Ethiopia. To create these thematic layers, relevant information
was extracted by thoroughly analyzing both remote sensing (RS) data and data collected
from field surveys [65]. The criteria employed in this study are outlined below:

3.1.1. Rainfall

The generated rainfall map reveals that the average annual rainfall falls within the
range of 250–1400 mm for the period 2014–2023. Following Modak and Das (2022) [15], the
rainfall values were categorized into five groups: very low (250–400 mm), low (400–600 mm),
moderate (600–800 mm), high (800–1200 mm), and very high (1200–1400 mm). These
categories occupy specific areas within the study region, covering 4201.37 km2 (28.32%),
3193.66 km2 (21.52%), 2877.27 km2 (19.39%), 3810.31 km2 (25.68%), and 754.39 km2 (5.08%),
respectively (Table 3). The rainfall distribution map shows that the lowest average rainfall



Water 2023, 15, 4093 9 of 27

values are in the southern parts of the study area, gradually increasing towards the north
to reach the highest level in the mountainous areas (Figure 2).

Table 3. Rainfall categories with their ranges and areas.

Rainfall Categories Average Annual Rainfall (mm) Area (km2) Area (%)

Very low 250–400 4201.37 28.32
Low 400–600 3193.66 21.52

Moderate 600–800 2877.27 19.39
High 800–1200 3810.31 25.68

Very High 1200–1400 754.39 5.08
Total 14,837 100

Water 2023, 15, x FOR PEER REVIEW 9 of 27 
 

 

applied them in Egypt, Adham et al. (2022) [32] in Palestine, Wu et al. (2018) [57] in Gua-
temala, and Yegizaw et al. (2022) [64] in Ethiopia. To create these thematic layers, relevant 
information was extracted by thoroughly analyzing both remote sensing (RS) data and 
data collected from field surveys [65]. The criteria employed in this study are outlined 
below: 

3.1.1. Rainfall 
The generated rainfall map reveals that the average annual rainfall falls within the 

range of 250–1400 mm for the period 2014–2023. Following Modak and Das (2022) [15], 
the rainfall values were categorized into five groups: very low (250–400 mm), low (400–
600 mm), moderate (600–800 mm), high (800–1200 mm), and very high (1200–1400 mm). 
These categories occupy specific areas within the study region, covering 4201.37 km2 
(28.32%), 3193.66 km2 (21.52%), 2877.27 km2 (19.39%), 3810.31 km2 (25.68%), and 754.39 
km2 (5.08%), respectively (Table 3). The rainfall distribution map shows that the lowest 
average rainfall values are in the southern parts of the study area, gradually increasing 
towards the north to reach the highest level in the mountainous areas (Figure 2). 

Table 3. Rainfall categories with their ranges and areas. 

Rainfall Categories Average Annual Rainfall (mm) Area (km2) Area (%) 
Very low 250–400 4201.37 28.32 

Low 400–600 3193.66 21.52 
Moderate 600–800 2877.27 19.39 

High 800–1200 3810.31 25.68 
Very High 1200–1400 754.39 5.08 

Total  14,837 100 

 
Figure 2. Rainfall distribution according to metrological stations.

3.1.2. Soil Properties

The study region displays diverse soil texture categories, encompassing silty clay, loam,
silty loam, sandy loam, sandy clay loam, and clay loam. These groups take up different
amounts of the total area, with 2597.69 km2 (17.51%), 2594.19 km2 (17.48%), 3337.28 km2

(22.49%), 1649.88 km2 (11.12%), 1438.50 km2 (9.70%), and 3219.46 km2 (21.70%), respectively
(Table 4). Notably, silty loam is the most common type of soil texture in the study area. It
is mostly found in the central region but can also be found in some parts of the southern
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region (Figure 3). In addition, the soil texture map shows three Hydrologic Soil Groups
(HSGs) based on their water infiltration rates: B, C, and D (Figure 4). These groups occupy
distinct regions, covering 4285.84 km2 (28.9%), 7398.93 km2 (49.9%), and 3152.23 km2

(21.2%), respectively (Table 5).

Table 4. Soil texture classes with their areas.

Class No Texture Area (km2) Area (%)

1 Silty Clay 2597.69 17.51
2 Loam 2594.19 17.48
3 Silty Loam 3337.28 22.49
4 Sandy Loam 1649.88 11.12
5 Sandy Clay Loam 1438.50 9.70
6 Clay Loam 3219.46 21.70

Total 14,837 100
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Table 5. HSG classes with their areas.

Class No HSG Area (km2) Area (%)

1 B 4285.84 28.9
2 C 7398.93 49.9
3 D 3152.23 21.2

Total 14,837 100

3.1.3. LU/LC

The supervised image classification process yielded six distinct LU/LC classes. The
analysis of the confusion matrix revealed an overall accuracy of 91.6% and a high overall
kappa statistic of 90.04, signifying a high level of precision in the classification process. The
resulting map illustrates that the predominant land in the study area is agricultural land,
covering an area of 4011.22 km2 (27.04%), primarily concentrated in the southern regions.
Following closely is rangeland, extending over 3880.98 km2 (26.16%), with a predominant
presence in the northern areas (Figure 5). Interestingly, barren land, occupying 3109.89 km2

(20.96%), emerges as the most suitable category for RWH structures. In contrast, water
bodies account for only 41.26 km2 (0.28%) of the study area. Urban/built-up areas and
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forests comprise 856.19 km2 (5.77%) and 2937.46 km2 (19.80%) of the total area, respectively
(Table 6).
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Table 6. LU/LC classes and their areas.

LU/LC Class Area (km2) Area (%)

Forest 2937.46 19.80
Rangeland 3880.98 26.16
Barren land 3109.89 20.96

Urban/Built-Up 856.19 5.77
Agricultural land 4011.22 27.04

Water Bodies 41.26 0.28
Total 14,837 100

3.1.4. Runoff Estimation

The runoff potential map was generated using CN grid values as an empirical parame-
ter. It was possible to estimate the CN values by putting together information from LU/LC,
HSG, and precipitation [3]. The results reveal a CN value range of 55 to 100 across the entire
study area (Figure 6). The highest CN value observed in the study area is 100, primarily in
water bodies. On the other hand, forests in good condition with HSG (B) have the lowest



Water 2023, 15, 4093 13 of 27

CN value of 55. This is because the forest cover and mostly loam soil texture make it easy
for water to pass through [58]. Detailed CN values for each hydrologic soil group and
corresponding land use class can be found in Table 7. The resulting runoff potential map
shows four suitability categories: ‘low’ (150–400 mm), ‘moderate’ (400–800 mm), ‘high’
(800–1000 mm), and ‘very high’ (>1000 mm). This classification aligns with earlier studies,
such as those by Rajasekhar et al. (2019) [65] and Saha et al. (2021) [66]. In terms of area
coverage, the ‘very high’ runoff potential class spans 2752.50 km2 (18.6%) of the study
area, while the ‘high’ class covers 6781.20 km2 (45.7%). The ‘moderate’ and ‘low’ runoff
classes occupy 1733.60 km2 (11.6%) and 3569.62 km2 (24.1%) of the total area, respectively
(Table 8). The runoff potential map illustrates that the northern portion, which is char-
acterized by mountains with steep slopes and higher rainfall, is a significant contributor
to runoff generation (Figure 7). In contrast, the central study area, mainly composed of
flat agricultural and barren lands, predominantly falls under the ‘high runoff potential’
class. The southern region, characterized by flat agricultural lands, is classified under the
moderate runoff coefficient’ category. To provide a visual representation, Figure 7 displays
the spatial distribution of runoff potential classes across the study area.
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Table 7. CNs according to LU/LC classes and HSGs.

LU/LC Class
HSGs CN

B C D

Forest 55 73 60
Rangeland 63 86 93
Barren land 67 85 88

Urban/Built-Up 62 91 95
Agricultural land 69 83 87

Water Bodies 100 100 100

Table 8. Runoff potential classes.

Class No Runoff (mm) Area (km2) Area (%)

Very high >1000 mm 2752.50 18.6
High 800–1000 6781.20 45.7

Moderate 400–800 1733.60 11.6
Low 150–400 3569.62 24.1
Total 14,837 100
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3.1.5. Drainage Density

The DD map results demonstrate a range of values from 0.21 to 0.94. Following Al-
Ghobari and Dewidar 2021 [43] and Setiawan and Nandini 2022 [46], the DD values were
put into five groups based on their suitability for RWH: “Very High” (0.62–0.94), “High”
(0.47–0.61), “Moderate” (0.34–0.46), “Low” (0.22–0.33), and “Very Low” (0–0.21) (Table 9).
The predominant DD category within the study area is ‘low’, covering a substantial area
of 4729.72 km2 (31.88%). It is widely distributed across all parts of the study area, with a
notable concentration in the northern and eastern central regions. Conversely, the ‘very
high’ DD category occupies a relatively smaller area, specifically 1391.80 km2 (9.38%). It is
primarily situated in the central and southern portions of the study area, with a narrow
strip in the northern portion (Figure 8). Areas categorized as ‘high’, ‘moderate’, and ‘very
low’ DD cover 2552.12 km2 (17.20%), 4074.23 km2 (27.46%), and 2089.13 km2 (14.08%),
respectively. Sites with ‘very high’ DD values are particularly suitable for RWH due to
their lower infiltration rates and higher surface flow velocities, facilitating more efficient
rainwater capture. This observation has been supported by various studies, including those
by Balkhair and Rahman (2021) [45], Ahmed et al. (2023) [49], Dragievici et al. (2019) [67],
Khudhair et al. (2020) [68], and Alene et al. (2022) [55].
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Table 9. Drainage density classes with their values and areas.

Class Value Area (km2) Area (%)

Very High 0.62–0.94 1391.80 9.38
High 0.47–0.61 2552.12 17.20

Moderate 0.34–0.46 4074.23 27.46
Low 0.22–0.33 4729.72 31.88

Very Low 0–0.21 2089.13 14.08
Total 14,837 100

3.1.6. Slope

The slope map shows that slope degrees within the study area vary from 0 to 80%. The
slope degrees are classified into five categories based on percentage values: (0–5) nearly
level, (5–10) gentle slopes, (10–20) moderate slopes, (20–40) high slopes, and (40–80) very
high slopes (Table 10). The central and southern parts of the study area predominantly fall
within the (0–5%) and (5–10%) slope categories, covering a combined area of 6952.37 km2

(46.85%) and 2342.32 (15.78%), respectively. These two categories are generally considered
more suitable for RWH, in accordance with findings from Modak and Das (2022) [15] and
Adham et al. (2022) [32]. The ‘moderate slope’ category spans 2759.55 km2 (18.59%), while
the ‘high slope’ and ‘very high slope’ categories encompass 2555.39 km2 (17.25%) and
227.37 km2 (1.53%), respectively. These steeper slopes are primarily concentrated in the
northern portions of the study area (Figure 9).

Water 2023, 15, x FOR PEER REVIEW 16 of 27 
 

 

(17.25%) and 227.37 km2 (1.53%), respectively. These steeper slopes are primarily concen-
trated in the northern portions of the study area (Figure 9). 

Table 10. Slope classes with their degrees and areas. 

Slope Classes Slope Degree (%) Area (km2) Area (%) 
Nearly Level 0–5 6952.37 46.85 

Gentle 5–10 2342.32 15.78 
Moderate 10–20 2759.55 18.59 

High 20–40 2555.39 17.25 
Very High 40–80 227.37 1.53 

Total  14,837 100 

 
Figure 9. Classified slope degrees in the study area. 

3.1.7. TWI 
The TWI map displays a range of values spanning from 1 to 25, which have been 

categorized into five distinct classes: ‘Very High’ (20–25), ‘High’ (15–20), ‘Moderate’ (10–
15), ‘Low’ (5–10), and ‘Very Low’ (1–5). Among these classes, the ‘Very Low’ TWI class 
claims the largest area, covering 4266.42 km2 (28.75%), while the ‘Very High’ TWI class 
has the most limited coverage, accounting for just 321.66 km2 (2.17%). The ‘Low’ TWI class 
encompasses 6034.47 km2 (40.67%), ‘Moderate’ TWI extends over 2787.57 km2 (18.79%), 
and ‘High’ TWI covers an area of 1426.88 km2 (9.62%). It is worth emphasizing that higher 
TWI values signify a heightened potential for RWH, as they indicate an increased capacity 
for water accumulation, as elucidated by Berhanu and Bisrat (2018) [54]. Table 11 and Fig-
ure 10 show a comprehensive view of the distribution of TWI values in the study area. 

Figure 9. Classified slope degrees in the study area.



Water 2023, 15, 4093 17 of 27

Table 10. Slope classes with their degrees and areas.

Slope Classes Slope Degree (%) Area (km2) Area (%)

Nearly Level 0–5 6952.37 46.85
Gentle 5–10 2342.32 15.78

Moderate 10–20 2759.55 18.59
High 20–40 2555.39 17.25

Very High 40–80 227.37 1.53
Total 14,837 100

3.1.7. TWI

The TWI map displays a range of values spanning from 1 to 25, which have been
categorized into five distinct classes: ‘Very High’ (20–25), ‘High’ (15–20), ‘Moderate’ (10–15),
‘Low’ (5–10), and ‘Very Low’ (1–5). Among these classes, the ‘Very Low’ TWI class claims the
largest area, covering 4266.42 km2 (28.75%), while the ‘Very High’ TWI class has the most
limited coverage, accounting for just 321.66 km2 (2.17%). The ‘Low’ TWI class encompasses
6034.47 km2 (40.67%), ‘Moderate’ TWI extends over 2787.57 km2 (18.79%), and ‘High’ TWI
covers an area of 1426.88 km2 (9.62%). It is worth emphasizing that higher TWI values
signify a heightened potential for RWH, as they indicate an increased capacity for water
accumulation, as elucidated by Berhanu and Bisrat (2018) [54]. Table 11 and Figure 10 show
a comprehensive view of the distribution of TWI values in the study area.
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Table 11. TWI classes with their values and areas.

TWI Classes Value Area (km2) Area (%)

Excessively high 20–25 321.66 2.17
High 15–20 1426.88 9.62

Moderate 10–15 2787.57 18.79
Low 5–10 6034.47 40.67

Very low 1–5 4266.42 28.75
Total 14,837 100%

3.2. Criteria Prioritization and the MCDA Process

The prioritization of criteria revealed that the ‘Runoff’ criterion obtained the highest
rank with a value of 9, showing its significant influence on the selection of suitable sites for
RWH. Following this, ‘Rainfall’ received a value of 7. The criteria ‘LU/LC’, ‘Slope’, and
‘Soil Texture’ were equally important, each assigned a value of 5. ‘DD’ and ‘TWI’ were
considered the lowest priority criteria, both having a value of 3 (Table 12). To determine
the relative importance of each criterion with respect to the others, the PCM, an integral
part of the AHP, was utilized. The normalized values obtained from the PCM were used
to calculate numerical weights and corresponding percentages for each criterion. These
calculations revealed that the ‘Runoff’ criterion carries the highest weight at 38%, while
‘DD’ and ‘TWI’ have the lowest weights at 6%. ‘LU/LC’, ‘Slope’, and ‘Soil Properties’
all share an equal weight of 10%, and ‘Rainfall’ is assigned a weight of 20% (Table 12).
Subsequently, after assigning weights, the CR was computed to assess the relative priority
of each criterion, following the method employed by Modak and Das (2022) [15]. The
results indicated a principal eigenvalue (λ Max) of 7.0135, a CI of 0.0023, and a CR of 0.0017.
A CR below 0.1 signifies that the comparison matrix is consistent and the expert judgments
are considered acceptable.

3.3. RWH Suitable Zone

The RWH-suitable zone map delineates four suitability classes: ‘Very High’, ‘High’,
‘Moderate’, and ‘Low’. The results indicate that the ‘Moderate’ suitability class dominates,
covering 5295.65 km2 (35.69%) of the study area. This class is distributed widely, with
a significant presence in the southern part, primarily comprising agricultural land. The
‘High’ suitability class, the second largest, encompasses 4968.55 km2 (33.49%), mainly
situated in the central area from east to west. These areas include settlement zones and
barren lands. The ‘Very High’ suitability class occupies 1583.25 km2 (10.67%), primarily
in the northern part. In contrast, 2989.66 km2 (20.15%) of the total study area is less
suitable for RWH, concentrated in the uppermost northern regions covered by forest and
the lower southern regions, which mostly comprise agricultural lands (Figure 11 and
Table 13). The analysis highlights that the northern and central areas are particularly ideal
for RWH. This RWH-suitable zone map is vital for planning RWH structures and artificial
recharge strategies. Harvested rainwater can alleviate pressure on existing water sources
by recharging groundwater and serving various purposes, like irrigation and livestock [69].
Additionally, it has the potential to mitigate drought, recharge wells and springs, and
reduce groundwater salinity levels [3]. The scientific method used to make this RWH-
suitable zone map is also used in earlier research by Jha et al. (2014) [20], Singh et al.
(2009) [62], and Tiwari et al. (2018) [70]. Therefore, it serves as a crucial foundation for the
development of an efficient and effective water management strategy in the study area.
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Table 12. Criteria used to generate a suitable zone map for RWH and their properties.

Criteria Criteria Ranking Unit Class Suitability Ranges Class Value Weight (%)

Runoff 9 Mm

>1000 Very high 5

38
800–1000 High 4
400–800 Moderate 3
150–400 Low 2

Rainfall 7 mm

250–400 Very High 5

20
400–600 High 4
600–800 Moderate 3

800–1200 Low 2
1200–1400 Very Low 1

LULC 5 Class

Barren Land Very High 5

10

Grassland High 4
Cultivated Land Moderate 3

Forest Low 2
Urban/Built-Up Area Not Suitable 0

Snow Not Suitable 0
Shadow Not Suitable 0

Water Bodies Not Suitable 0

Slope 5 Degree

0–5 Very high 5

10
5–10 High 4

10–20 Moderate 2
20–40 Not suitable 0
40–80 Not Suitable 0

Soil Texture 5 Type

Clay Loam Very high 5

10

Silty Clay High 4
Sandy Clay Loam Moderate 3

Silty Loam Moderate 3
Sandy Loam Moderate 3

Loam Low 2

Drainage
Density 3 Value

Very High 0.62–0.94 5

6
High 0.47–0.61 4

Moderate 0.34–0.46 3
Low 0.22–0.33 2

Very Low 0–0.21 2

TWI 3 Value

20–25 Very High 5

6
15–20 High 4
10–15 Moderate 3
5–10 Low 2
1–5 Very Low 1

Table 13. RWH suitability classes and their areas.

S.n Suitability Classes Area (km2) Area (%)

1 Very High Suitable 1583.25 10.67
2 High Suitable 4968.55 33.49
3 Moderate Suitable 5295.65 35.69
4 Low Suitable 2989.66 20.15

Total 14,837 100



Water 2023, 15, 4093 20 of 27

Water 2023, 15, x FOR PEER REVIEW 19 of 27 
 

 

situated in the central area from east to west. These areas include settlement zones and 
barren lands. The ‘Very High’ suitability class occupies 1583.25 km2 (10.67%), primarily in 
the northern part. In contrast, 2989.66 km2 (20.15%) of the total study area is less suitable 
for RWH, concentrated in the uppermost northern regions covered by forest and the lower 
southern regions, which mostly comprise agricultural lands (Figure 11 and Table 13). The 
analysis highlights that the northern and central areas are particularly ideal for RWH. This 
RWH-suitable zone map is vital for planning RWH structures and artificial recharge strat-
egies. Harvested rainwater can alleviate pressure on existing water sources by recharging 
groundwater and serving various purposes, like irrigation and livestock [69]. Addition-
ally, it has the potential to mitigate drought, recharge wells and springs, and reduce 
groundwater salinity levels [3]. The scientific method used to make this RWH-suitable 
zone map is also used in earlier research by Jha et al. (2014) [20], Singh et al. (2009) [62], 
and Tiwari et al. (2018) [70]. Therefore, it serves as a crucial foundation for the develop-
ment of an efficient and effective water management strategy in the study area. 

Table 13. RWH suitability classes and their areas. 

S.n Suitability Classes Area (km2) Area (%) 
1 Very High Suitable 1583.25 10.67 
2 High Suitable 4968.55 33.49 
3 Moderate Suitable 5295.65 35.69 
4 Low Suitable 2989.66 20.15 

Total  14,837 100 

 
Figure 11. Spatial distribution of RWH suitability classes in the study area. 

  

Figure 11. Spatial distribution of RWH suitability classes in the study area.

3.4. Appropriate Sites for RWH Structures

The features of the study area and the building requirements for each type of RWH
structure helped find 36 good places for three different types of RWH structures (Table 14).
The results indicate that most parts of the study area are suitable for check dam and farm
pond construction. Accordingly, 27 locations for farm ponds and six locations for check
dams were proposed, primarily situated in the central and southern portions of the study
area from east to west, as shown in Figure 12. All farm ponds are situated on agricultural
land with nearly level slopes, adjacent to 1st and 2nd-order streams. Out of the 27 farm
ponds, only two sites are in the northern parts of the study area. The potential sites for
check dams are located close to agricultural lands and can be useful for supplementing
irrigation during the dry season and controlling the speed of flow during stormwater
events. Overall, all the check dams are situated in riverbeds with 3rd and 4th stream orders,
and the land cover is predominantly barren land. Generally, farm ponds and check dams
are both located in highly and moderately suitable zones. The results indicate that the
northern parts of the study area are ideal for constructing medium-sized dams due to
the high amount of precipitation and runoff potential, in addition to the land cover types
and topography. This area exhibits the most complex topography, with a deep drainage
network. In this context, three suitable locations have been suggested for constructing
medium dams, which fall within the very highly suitable class and are positioned across 4th
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and 5th-order streams to provide better water access for the dams. These three suggested
dams offer a well-distributed solution within the study area and can be utilized for an
extended period, providing significant benefits to northern settlements. The outcomes of
this research will provide essential guidance for decision-makers responsible for planning
reservoir construction within the study area. Equipped with this information, they can
make well-informed decisions and ensure the accuracy of their project outcomes. In the
end, the research results have effects on many areas, such as better management of water
resources, lessening the effects of water shortages, supporting agricultural progress, making
sustainable development easier, and improving people’s lives in Erbil Province, Iraq.

Table 14. Appropriate locations for RWH structures.

S.No Structure Type Latitude Longitude

1 Medium dam 36.6373 44.4924
2 Medium dam 36.8123 44.5312
3 Medium dam 36.5872 44.7966
4 Check Dam 36.0178 44.4388
5 Check Dam 35.8459 44.2902
6 Check Dam 36.4203 43.9298
7 Check Dam 36.5783 44.1114
8 Check Dam 36.0895 43.5968
9 Check Dam 36.0797 43.7136
10 Farm Pond 35.6295 43.5572
11 Farm Pond 35.6177 43.6601
12 Farm Pond 35.6884 43.3768
13 Farm Pond 35.8599 43.4097
14 Farm Pond 36.0570 43.5075
15 Farm Pond 36.1631 43.8435
16 Farm Pond 36.1350 43.9112
17 Farm Pond 36.2995 43.7578
18 Farm Pond 36.0185 43.6387
19 Farm Pond 35.8341 44.0945
20 Farm Pond 36.0403 44.3263
21 Farm Pond 36.0454 44.0596
22 Farm Pond 36.0441 44.1104
23 Farm Pond 36.0122 44.1259
24 Farm Pond 36.0038 44.7385
25 Farm Pond 35.9517 44.7632
26 Farm Pond 36.0223 44.6762
27 Farm Pond 36.5956 44.2806
28 Farm Pond 36.5556 44.2965
29 Farm Pond 35.9817 43.9354
30 Farm Pond 35.9711 43.9674
31 Farm Pond 35.9659 43.5463
32 Farm Pond 35.9640 43.6035
33 Farm Pond 35.5290 43.5719
34 Farm Pond 36.2770 43.8913
35 Farm Pond 36.2519 43.7665
36 Farm Pond 36.2472 43.8114

3.5. Validation

The validation results indicated that all existing RWH structures were classified as
‘successful’ as they conformed to the criteria associated with each structure type. The
agreement statements between existing RWH structure sites and the suitability map are
presented in Table 15. The findings reveal that 13.04% of existing RWH structures were in
areas classified as very highly suitable, 60.87% in highly suitable areas, 21.74% in moderately
suitable areas, and only 4.35% in areas classified as lowly suitable. Based on the overlay
results, among the 11 check dams, 10 were situated in highly suitable areas, with only
one in a moderately suitable area. However, of the 11 farm ponds, five were in highly
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suitable areas, five in moderately suitable areas, and only one in a lowly suitable area.
Regarding the medium dam, the single-identified dam is situated in a very highly suitable
area. It is noteworthy that, from the overlaid map, most existing structures fell within the
highly suitable zone (Figure 13). The validation results suggest that the produced maps
provide a reliable representation of the spatial distribution of suitable areas, aligning with
existing rainwater harvesting practices in the study area. Similar validation approaches
have been employed in other studies, including Nyirenda et al. (2021) [30], Rajasekhar
et al. (2019) [65], Alene et al. (2022) [55], Kumar and Jhariya (2017) [71], and Haile and
Suryabhagavan (2019) [72]. In conclusion, these validation results underscore the value of
the database and methodology used for generating the RWH suitability zone map in the
context of effective water resource management within the study area.

Water 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

22 Farm Pond 36.0441 44.1104 
23 Farm Pond 36.0122 44.1259 
24 Farm Pond 36.0038 44.7385 
25 Farm Pond 35.9517 44.7632 
26 Farm Pond 36.0223 44.6762 
27 Farm Pond 36.5956 44.2806 
28 Farm Pond 36.5556 44.2965 
29 Farm Pond 35.9817 43.9354 
30 Farm Pond 35.9711 43.9674 
31 Farm Pond 35.9659 43.5463 
32 Farm Pond 35.9640 43.6035 
33 Farm Pond 35.5290 43.5719 
34 Farm Pond 36.2770 43.8913 
35 Farm Pond 36.2519 43.7665 
36 Farm Pond 36.2472 43.8114 

 
Figure 12. Map of appropriate locations for RWH structures. 

3.5. Validation 
The validation results indicated that all existing RWH structures were classified as 

‘successful’ as they conformed to the criteria associated with each structure type. The 
agreement statements between existing RWH structure sites and the suitability map are 
presented in Table 15. The findings reveal that 13.04% of existing RWH structures were in 
areas classified as very highly suitable, 60.87% in highly suitable areas, 21.74% in moder-
ately suitable areas, and only 4.35% in areas classified as lowly suitable. Based on the 

Figure 12. Map of appropriate locations for RWH structures.



Water 2023, 15, 4093 23 of 27

Table 15. Agreement between suitable zone map and the existing RWH structures.

S.No Latitude Longitude Structure Type Agreement

1 35.87378 43.82843 Check Dam Agree
2 35.89254 43.84918 Farm Pond Agree
3 36.14142 44.34366 Check Dam Agree
4 36.1028 44.21511 Check Dam Agree
5 36.10235 44.59953 Check Dam Agree
6 35.90128 44.75567 Check Dam Agree
7 36.17284 44.38198 Check Dam Agree
8 35.98385 44.58115 Check Dam Agree
9 36.2823 44.1516 Farm Pond Agree
10 36.30324 44.13427 Farm Pond Agree
11 35.88617 44.76812 Farm Pond Agree
12 36.10897 44.31211 Farm Pond Agree
13 36.01644 44.56986 Farm Pond Agree
14 35.9228 44.87123 Farm Pond Agree
15 36.16533 44.58236 Check Dam Agree
16 36.95956 44.34863 Check Dam Agree
17 36.63323 44.19097 Farm Pond Agree
18 36.62282 44.19402 Check Dam Agree
19 36.60145 44.13792 Farm Pond Agree
20 36.27569 44.28037 Check Dam Agree
21 36.16454 44.58246 Medium Dam Agree
22 35.53305 43.41075 Farm Pond Agree
23 36.52808 43.95224 Farm Pond Agree
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4. Conclusions

Water scarcity presents a significant challenge to communities and ecosystems in arid
and semi-arid regions, impacting agricultural productivity and overall sustainability. Over
the past two decades, Erbil Province in Iraq has faced issues related to drought waves and
water scarcity, particularly in its southern areas. This study underscores the importance
of implementing rainwater harvesting (RWH) as a promising and sustainable solution to
address the challenges encountered in the study area.

A Geographic Information System (GIS) and Multiple Criteria Decision Analysis
(MCDA) were used to create a suitability zone map and look for possible locations for
various RWH structures in this study. The study looked at a lot of different factors, such
as soil texture with Hydrologic Soil Group (HSG) characteristics, slope, drainage density,
topographic wetness index (TWI), and rainfall and runoff potential. The results revealed
that only 1583.25 km2 (10.67%) of the total area is highly suitable for RWH, mainly in the
northern parts of the study area. However, the ‘High’ suitability class covers 4968.55 km2

(33.49%), primarily in the central area from east to west. The ‘Moderate’ suitability, dom-
inating the study area at 5295.65 km2 (35.69%), is distributed widely, with a significant
presence in the central and southern parts. In contrast, 2989.66 km2 (20.15%) of the total
study area is less suitable for RWH, concentrated in the uppermost northern regions and
the lower southern regions. Furthermore, the study indicated that the central and southern
parts of the study area are suitable for constructing check dams and farm ponds, while the
northern parts are ideal for constructing medium-sized dams. The findings highlight the
effectiveness of utilizing remote sensing (RS) data and MCDA in the GIS environment to
identify suitable zones and select optimal locations for constructing various RWH struc-
tures. The study outcomes propose potential solutions for various issues in the study area,
such as water shortages, desertification, and flood risk. The maps that were made can
be used to make good decisions and plans for RWH projects. They can help improve the
management of water resources and make farming more sustainable in Erbil Province, Iraq,
now and in the future. These results may also assist planners in managing rainwater in
other regions of the country.

Finally, it’s important to remember that finding the right places for the RWH process
based only on environmental and geophysical factors is not enough for it to work. There is
a need to intensify research efforts to gain a deeper understanding of these systems’ ability
to meet water needs in different contexts, as well as their socio-economic and financial
feasibility. Factors such as land ownership, investment and maintenance costs, and labor
input should be thoroughly investigated before implementing planned projects.
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