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Abstract

Deformable medical image registration has in past years been revolutionized by the use
of convolutional neural networks. These methods surpass conventional image registration
techniques in speed but not in accuracy. Here, we present an alternative approach to
leveraging neural networks for image registration. Instead of using a convolutional neural
network to predict the transformation between images, we optimize a multi-layer percep-
tron to represent this transformation function. Using recent insights from differentiable
rendering, we show how such an implicit deformable image registration (idir) model can
be naturally combined with regularization terms based on standard automatic differentia-
tion techniques. We demonstrate the effectiveness of this model on 4D chest CT registration
in the DIR-LAB data set and find that a three-layer multi-layer perceptron with periodic
activation functions outperforms all published deep learning-based results on this problem,
without any folding and without the need for training data. The model is implemented us-
ing standard deep learning libraries and flexible enough to be extended to include different
losses, regularizers, and optimization schemes.

Keywords: Image registration, neural networks, implicit neural representations, chest CT,
regularization

1. Introduction

With the advent of deep learning in medical image analysis, convolutional neural networks
(CNNs) have been widely applied to deformable image registration (Fu et al., 2020). A
common approach is to use training data to optimize a CNN which, given two new and un-
seen images, predicts a deformation vector field (DVF) on a grid (de Vos et al., 2019; Dalca
et al., 2018; Eppenhof et al., 2018). During training, reference DVFs are available (Eppen-
hof et al., 2018) or obtained indirectly through optimization of an image similarity metric
(de Vos et al., 2019; Balakrishnan et al., 2019). Extensions to this approach include, e.g.,
multi-stage (Hering et al., 2019, 2021) or adversarial (Elmahdy et al., 2019) training. Once
trained, these methods are generally faster than conventional iterative approaches (Sotiras
et al., 2013), but at the cost of reduced accuracy (Hansen and Heinrich, 2021b). Moreover,
learning-based require large training sets. To address this last issue, several works have
aimed to combine deep learning with iterative optimization at inference by optimizing a
CNN for each new image pair (Laves et al., 2019; Fechter and Baltas, 2020).

CNNs are widely used for image registration, but typically as an operator that maps
between an image and a DVF function. Here, we propose to directly optimize the DVF

© 2022 J.M. Wolterink, J.C. Zwienenberg & C. Brune.



Wolterink Zwienenberg Brune

Figure 1: We optimize a multi-layer perceptron (MLP) that implicitly represents the func-
tion Φ mapping coordinates from a moving to a fixed image. The MLP is opti-
mized using gradient descent with a similarity metric and a regularization term,
computed using analytical gradients of the MLP. Periodic activation functions
(Sitzmann et al., 2020) allow the balancing of small and large deformations.

as a function on a spatial domain. We build on recent advances in differentiable rendering
and optimize implicit neural representations, in which a function on a spatial domain is
implicitly represented in the weights of an MLP that operates on (continuous) coordinates
in that domain (Tancik et al., 2020; Mildenhall et al., 2020; Park et al., 2019). For each new
image pair, we optimize a network that takes as input any spatial coordinate and provide
as output a function value. In the case of deformable image registration, we are looking
for a function Φ(x) = u(x) + x that maps each location x in one image to a location in a
second image (Fig. 1).

Parametrizing the function Φ as an INR in a multi-layer perceptron has several advan-
tages for image registration. First, the network represents a function that is continuous or
meshless and not restricted to any particular grid resolution. This allows using the same
lightweight model regardless of image resolution, while a CNN architecture would have to
be adapted for different image sizes. Second, we can exploit functionality in deep learning
libraries such as TensorFlow and PyTorch to numerically compute gradients of the trans-
formation with respect to coordinates. This leads to more accurate gradients than finite
difference approximations (Balakrishnan et al., 2019; de Vos et al., 2019) and allows us to
draw from a vast body of literature on efficient regularizers for medical imaging, e.g. (Burger
et al., 2013; Rueckert et al., 1999). Third, we can modify the activation function used in
the network (Sitzmann et al., 2020) and therewith modify the neural tangent kernel of the
network (Tancik et al., 2020), i.e., its ability to represent (local) large or small deformations.

In this work, we propose an algorithm for intensity-based implicit deformable image
registration (idir) that has sufficient flexibility to include higher-order regularization terms.
We demonstrate its feasibility on 3D deformable image registration in the DIR-LAB 4D
chest CT data set.
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2. Methods

We consider pairwise image registration, in which the goal is to find an optimal spatial
transformation between images F and M . Both images are described in the same domain,
i.e., M : Ω ⊂ [−1, 1]n → R, F : Ω ⊂ [−1, 1]n → R. Our objective is to find a transformation
Φ(x) = u(x) + x on the image coordinates such that coordinate x in image F anatomically
corresponds to coordinate Φ(x) in image M , i.e., (M ◦ Φ) (x) = F (x) ∀x ∈ Ω.

Finding this transformation can be posed as an optimization problem

Φ̂ = argmin
Φ

Ldata (M ◦ Φ, F ) + αLreg (Φ) , (1)

where Ldata is a similarity metric between the fixed image F and the deformed moving
image M , Lreg is a regularization term on the transformation Φ, and α is a weighing term.
The key insight of our work is that we represent the transformation Φ as a neural network
(Fig. 1). In contrast to CNN-based image registration methods (Dalca et al., 2018; de Vos
et al., 2019; Hering et al., 2021; Fechter and Baltas, 2020), this network does not take
image intensities as inputs, but a coordinate x ∈ Ω. As output, it returns a new coordinate
Φ(x) = u(x) + x. Hence, the network parameters defining the transformation can be
optimized using standard stochastic gradient descent methods based on an image similarity
loss. The network is a lightweight multi-layer perceptron, whose input x is a (continuous)
coordinate from the image domain, u(x) is a deformation vector predicted by the neural
network, and the addition required to obtain Φ(x) is simply a residual connection.

2.1. Implicit neural representation

By the universal approximation theorem (Hornik et al., 1989), any well-behaved function
can be described with arbitrarily high accuracy by an appropriate neural network. In our
application, the network may vary in depth or width, but always has n input nodes and n
output nodes for transformations in n-dimensional Euclidean space. Hence,

Φ(x) = u(x) + x = Wi (ϕi−1 ◦ ϕi−2 ◦ . . . ◦ ϕ0) (x) + bi + x, xi 7→ ϕi (xi) = σ (Wixi + bi) .
(2)

Here, ϕi : RMi 7→ RNi is the i-th layer in the network, Wi ∈ RNi×Mi is a weight matrix,
xi ∈ RMi is an input vector, and bi ∈ RNi is a trainable bias. A standard choice for
the element-wise activation function σ is the commonly used rectified linear unit (ReLU)
σ(x) = max(0, x). However, ReLUs have a bias towards low-frequency signals (Mildenhall
et al., 2020; Tancik et al., 2020). This means that the model might find it difficult to
represent small local deformations in image registration.

Two common approaches to overcome the low-frequency bias of ReLU activation func-
tions are to pre-process the input coordinates with periodic activation functions (Fourier
feature mapping) (Mildenhall et al., 2020; Tancik et al., 2020) or to replace the ReLU acti-
vation function with a periodic activation function (Sitzmann et al., 2020). In this work, we
choose the latter, and for σ choose a periodic activation function to obtain a siren model,
i.e. σ(x) = sin(x). An added benefit of periodic activation functions in siren networks
is that they can be differentiated multiple times. This substantially expands the set of
regularization terms that can be used in the network, as we will demonstrate in Sec. 3.
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2.2. Regularization

Because deformable image registration is an ill-posed problem, it is common practice to
regularize the DVF to avoid unrealistic deformations. CNN-based registration methods
represent DVFs as samples on a voxel grid, and thus can only approximate spatial gradients
with finite-difference schemes (Balakrishnan et al., 2019; de Vos et al., 2019). For example,
a partial derivative ∂x′

∂x in the Jacobian matrix in Fig. 1 would be approximated as ∂x′

∂x ≈
u(x+ δx, y, z)− u(x, y, z), where δx is equal to the voxel size, which can be in the order of
millimetres. This leads to numerical errors that might in turn affect registration (Fig. 3).

In idir, all operations in the neural network (Eq. 2) are differentiable, and we can
instead analytically compute gradients of the output deformation vector with respect to
the input coordinates using modern deep learning libraries like PyTorch or Tensorflow. For
example, we can easily fill the Jacobian matrix row-wise by taking the analytical gradients
of the network output w.r.t. each coordinate (x, y, z). This matrix can be computed for any
point in the image domain Ω, not just for points on a voxel grid. While the network using
a ReLU activation function is differentiable once, the network using a periodic activation
function is differentiable more than once. Therefore, we can compute any number of common
regularization terms and include them in the optimization of the network. We here illustrate
this concept with three regularization terms that can be added as Lreg to Eq. 1.

Jacobian regularizer The Jacobian determinant det∇Φ at location x is an indicator of
local expansion and shrinkage, where a negative determinant indicates folding and the loss
of invertibility. While shrinkage and expansion should occur locally, we want to limit large
deviations from 1.

S jac[Φ] =

∫
Ω
|1− det∇Φ|dx.

Hyperelastic regularizer Additional constraints on the DVF can be imposed in a hy-
perelastic regularization term (Burger et al., 2013). It consists of a length, surface area, and
volume term to control variations in all of these aspects. The length is controlled by the
Jacobian matrix of the deformation u. The cofactor matrix and the determinant of the Ja-
cobian matrix of the transformation control the area and volume respectively. The function
ϕc penalizes the expansion of area, and ψ is a convex function that satisfies ψ(v) = ψ(1/v)
and hence penalizes growth and shrinkage equally.

Shyper[Φ] =

∫
Ω

[
1

2
αl|∇u|2 + αaϕc(cof∇Φ) + αvψ(det∇Φ)

]
dx,

with the convex functions: ϕc(C) =
∑3

i=1max
{∑3

j=1C
2
ji − 1, 0

}2
and ψ(v) = (v−1)4

v2
.

Bending energy penalty Smoothness of the deformation vector field can be further
imposed using the bending energy penalty proposed in (Rueckert et al., 1999). This requires
that the second derivatives of the deformation are small everywhere in the domain.
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(a) (b)

Figure 2: (a) Cumulative distribution of TRE in DIR-LAB set for different settings of our
idir model. (b) Example deformation vector field obtained on landmarks in DIR-
LAB 4DCT 08, with target landmarks in red and deformation vectors in green.
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For a network that uses ReLU activation functions, it would be pointless to compute
this term: The second derivative of a ReLU is 0, and thus this term is 0 everywhere. In
contrast, in a siren network, the second derivative can be computed as the derivative of a
periodic function, and we can include the regularizer.

3. Experiments and Results

To evaluate the potential of our method, we perform 3D deformable image registration in
the DIR-LAB data set (Castillo et al., 2009). In this set of 4D CT images of ten patients,
the task is to register inspiration images to expiration images. This is a challenging problem
due to superposition of cardiac and respiratory motion that substantially exceed the scale of
the small lung structures. The data set has been widely used to evaluate image registration
methods, including deep learning-based ones, e.g. (de Vos et al., 2019; Eppenhof et al., 2018;
Hering et al., 2021). As is common practice (Rühaak et al., 2017), we only optimize the
transformation for the points within a lung mask obtained in the inspiration image using
a deep learning algorithm (Hofmanninger et al., 2020). Images have varying resolution,
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Table 1: Mean (standard deviation) DIR-LAB target registration error (TRE) in mm of the
proposed idir framework, 1a state-of-the-art iterative algorithm using isotropic
total variation regularization (Vishnevskiy et al., 2017), 2a CNN-based iterative
algorithm (Fechter and Baltas, 2020), 3the current state-of-the-art in deep learning
DIR (Hering et al., 2021), 4the TRE before registration (Castillo et al., 2009).

Scan IDIR (ours) isoPTV1 CNN2 VIRNet3 Displacement4

4DCT 01 0.76 (0.94) 0.76 (0.90) 1.21 (0.88) 0.99 (0.47) 4.01 (2.91)
4DCT 02 0.76 (0.94) 0.77 (0.89) 1.13 (0.65) 0.98 (0.46) 4.65 (4.09)
4DCT 03 0.94 (1.02) 0.90 (1.05) 1.32 (0.82) 1.11 (0.61) 6.73 (4.21)
4DCT 04 1.32 (1.27) 1.24 (1.29) 1.84 (1.76) 1.37 (1.03) 9.42 (4.81)
4DCT 05 1.23 (1.47) 1.12 (1.44) 1.80 (1.60) 1.32 (1.36) 7.10 (5.14)
4DCT 06 1.09 (1.03) 0.85 (0.89) 2.30 (3.78) 1.15 (1.12) 11.10 (6.98)
4DCT 07 1.12 (1.00) 0.80 (1.28) 1.91 (1.65) 1.05 (0.81) 11.59 (7.87)
4DCT 08 1.21 (1.29) 1.34 (1.93) 3.47 (5.00) 1.22 (1.44) 15.16 (9.11)
4DCT 09 1.22 (0.95) 0.92 (0.94) 1.47 (0.85) 1.11 (0.66) 7.82 (3.99)
4DCT 10 1.01 (1.05) 0.82 (0.89) 1.79 (2.24) 1.05 (0.72) 7.63 (6.54)
Average 1.07 0.95 1.83 1.14 8.52

ranging from 256 × 256 pixel to 512 × 512 pixel in-plane resolution. Because our INR is
resolution independent, we use the same network and hyperparameters for each image.

For each image pair, a model is optimized for 2500 epochs. In each epoch, 10,000 points
are randomly sampled from the masked image domain. Networks are optimized with Adam,
with a learning rate of 10−4. The idir framework allows for any differentiable metric to
be used as loss term Ldata, but we here use the normalized cross-correlation between sam-
pled intensities in the fixed image and corresponding intensities in the moving image. The
algorithm is implemented in Python using PyTorch1. Gradients are computed using the
PyTorch autograd functionality. The second derivatives in Eq. 3 are computed by taking
the gradient of the Jacobian matrix elements with respect to the input variables. Sub-
voxel image intensity values are computed through trilinear interpolation. The total time
required to register two 3D image volumes increases with the number of backward passes
per epoch, namely 15 sec (no regularization, 1 pass/epoch), 1 min (Jacobian regularization,
4 passes/epoch), 2 min (hyperelastic regularization, 5 passes/epoch), or 5 min (bending
energy penalty, 13 passes/epoch) on an NVIDIA RTX 2080 Ti GPU.

3.1. Quantitative Evaluation

As in other works, we evaluate in the DIR-LAB 4D CT dataset by computing the target
registration error (TRE) for 300 predefined anatomical landmarks per CT scan pair (Castillo
et al., 2009). Figure 2(a) shows a cumulative distribution of TRE values across all 3,000
landmark points in the data set. In this visualization, adapted from (Rühaak et al., 2017;
Hering et al., 2021), lines that are shifted towards the left represent higher accuracy.

1. Code is available on https://github.com/MIAGroupUT/IDIR
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(a) (b) (c)

Figure 3: Jacobian matrix determinant at each point in the lung mask, for networks with (a)
a ReLU activation function and (b) a periodic activation function. (c) Difference
between numerically approximated and analytically computed determinants.

First, a comparison between a ReLU model with 3 layers consisting of 128 hidden units
and one with 256 hidden units shows that adding units leads to an increase in performance.
Second, we compare ReLU and siren activation functions in the 3 layer, 256 hidden units
network. The siren model without regularization results in several large errors in DIR-
LAB 4DCT 08 and 09. This is likely due to the tendency of the network to fit high-
frequency signals, or small local deformations. However, with each of the three proposed
regularization terms, the siren network outperforms the standard ReLU model by a margin,
while regularization barely has any effect on the ReLU model. All three generalization
strategies perform similarly in the siren network. Figure 2(b) visualizes deformation vectors
predicted on the landmarks in DIR-LAB 4DCT 08, showing that the model captures both
small and large deformations.

Table 1 lists DIR-LAB results obtained with siren activation functions and a bend-
ing energy penalty (idir), a state-of-the-art iterative approach (Vishnevskiy et al., 2017),
a CNN-based one-shot registration approach (Fechter and Baltas, 2020), the most accu-
rate published deep learning approach evaluated on this problem (Hering et al., 2021),
and the displacement prior to registration. These results show that our multi-layer per-
ceptron outperforms existing deep learning methods, which often include multiple stages,
pre-alignment, and require large training data sets with annotations. Moreover, the model
outperforms one-shot learning with a CNN. Conversely, TRE values are still slightly higher
than those reported by the best conventional iterative registration method.

Figure 3 visualizes the determinants of the Jacobian matrix resulting from a network
trained with ReLU activation functions and a siren network. The low-frequency ReLU
activation function results in a composition of coarse piecewise linear deformations, while
the high-frequency siren activation function results in more localized deformations. In both
these cases, as in all registration results of our method included in Table 1, all determinant
values were non-negative. Hence, we did not observe any folding in any of the image pairs,
i.e., ∇Φ > 0 for all voxels in the lungs. Figure 3(c) shows the difference between Jacobian
determinants of the siren model obtained with analytical gradients, and those obtained
using numerical approximation with a finite difference scheme as in CNN-based methods.
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4. Discussion and Conclusion

We have presented idir, a novel approach to deformable medical image registration that uses
a multi-layer perceptron to implicitly represent a transformation function. We regularize
the optimization of this function by analytically computing gradients with respect to any
location in the image domain. This allows us to compute, e.g., the determinant of the
Jacobian matrix directly, without the use of finite differences. We have demonstrated the
feasibility of this approach to 4D CT registration in the DIR-LAB data set.

Our work shows how a DVF between images can be optimized and implicitly represented
in a lightweight neural network that outperforms all published deep learning registration
methods on the DIR-LAB data set. While we use a multi-layer perceptron as implicit neural
representation, previous works (Laves et al., 2019; Fechter and Baltas, 2020) have aimed to
integrate CNNs in iterative registration. A direct comparison on DIR-LAB shows that our
work might have benefit over using a CNN to output a discrete voxel-based DVF (Fechter
and Baltas, 2020). Part of this may be due to improved precision in the continuous function
that we optimize, and the ability to compute accurate analytical gradients.

We found that the activation function is an important design choice that affects registra-
tion. A network using ReLU activation functions was able to provide reasonable registration
results due to its bias to low-frequency functions, which is suitable for chest CT registra-
tion. However, explicit regularization barely had effect on the ReLU network. This might
be because there is a lower limit to the scale of deformations that the ReLU network can
fit. The bias of neural networks with ReLU activation functions towards low-frequency
functions (Mildenhall et al., 2020) can be addressed with Fourier feature mappings Tancik
et al. (2020) or periodic activation functions (Sitzmann et al., 2020). Our siren experiments
showed that periodic activation functions allowed the network to represent high frequency
signals, and thus small local deformations. For image registration in general, being able to
balance between small and large deformations is a desirable property.

We have here demonstrated a basic single-stage version of idir on a benchmark regis-
tration data set with a standard normalized cross-correlation loss. Exciting future research
directions remain, as the model is sufficiently flexible that it can be combined with other
differentiable losses, regularization terms, and multi-stage approaches, and data sets. More-
over, our implementation could be further accelerated using recent advances in implicit
neural representations (Müller et al., 2022) and frameworks like JAX. While we found the
Jacobian determinant to be non-negative in our transformations – indicating diffeomorphic
registration – the model, and thus the transformation, is not directly invertible. In future
work, this might be overcome by using invertible networks (Jacobsen et al., 2018).

In contrast to deep learning-based registration methods, idir does not require large sets
of training data, and instead optimizes a new network for each image pair. However, there
are ways to embed idir as a deformation model in a learning framework. For one, MLPs
could be pretrained on population data so that they only require fine-tuning at inference.
Moreover, the MLP could be conditioned on latent vectors that describe the moving and
fixed image. Finally, it would be interesting to investigate regularization of the DVF on
sparsely sampled keypoints using, e.g., graph networks (Hansen and Heinrich, 2021a).

In conclusion, neural networks are a feasible approach to implicitly representing a con-
tinuous transformation function for deformable medical image registration.
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Staring. Adversarial optimization for joint registration and segmentation in prostate CT
radiotherapy. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 366–374. Springer, 2019.

Koen AJ Eppenhof, Maxime W Lafarge, Pim Moeskops, Mitko Veta, and Josien PW Pluim.
Deformable image registration using convolutional neural networks. In Medical Imaging
2018: Image Processing, volume 10574, page 105740S. International Society for Optics
and Photonics, 2018.

Tobias Fechter and Dimos Baltas. One-shot learning for deformable medical image reg-
istration and periodic motion tracking. IEEE transactions on medical imaging, 39(7):
2506–2517, 2020.

Yabo Fu, Yang Lei, Tonghe Wang, Walter J Curran, Tian Liu, and Xiaofeng Yang. Deep
learning in medical image registration: a review. Physics in Medicine & Biology, 65(20):
20TR01, 2020.

Lasse Hansen and Mattias P Heinrich. Graphregnet: Deep graph regularisation networks
on sparse keypoints for dense registration of 3d lung cts. IEEE Transactions on Medical
Imaging, 40(9):2246–2257, 2021a.

Lasse Hansen and Mattias P Heinrich. Revisiting iterative highly efficient optimisation
schemes in medical image registration. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 203–212. Springer, 2021b.

9



Wolterink Zwienenberg Brune

Alessa Hering, Bram van Ginneken, and Stefan Heldmann. mlVIRNET: Multilevel varia-
tional image registration network. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 257–265. Springer, 2019.
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