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Using network analysis to identify 
leverage points based on causal 
loop diagrams leads to false 
inference
Loes Crielaard 1,2*, Rick Quax 2,3, Alexia D. M. Sawyer 1,4, Vítor V. Vasconcelos 2,3,5,6, 
Mary Nicolaou 1,2,6, Karien Stronks 1,2,6 & Peter M. A. Sloot 2,3,6

Network analysis is gaining momentum as an accepted practice to identify which factors in causal 
loop diagrams (CLDs)—mental models that graphically represent causal relationships between a 
system’s factors—are most likely to shift system-level behaviour, known as leverage points. This 
application of network analysis, employed to quantitatively identify leverage points without having 
to use computational modelling approaches that translate CLDs into sets of mathematical equations, 
has however not been duly reflected upon. We evaluate whether using commonly applied network 
analysis metrics to identify leverage points is justified, focusing on betweenness- and closeness 
centrality. First, we assess whether the metrics identify the same leverage points based on CLDs 
that represent the same system but differ in inferred causal structure—finding that they provide 
unreliable results. Second, we consider conflicts between assumptions underlying the metrics and 
CLDs. We recognise six conflicts suggesting that the metrics are not equipped to take key information 
captured in CLDs into account. In conclusion, using betweenness- and closeness centrality to identify 
leverage points based on CLDs is at best premature and at worst incorrect—possibly causing erroneous 
identification of leverage points. This is problematic as, in current practice, the results can inform 
policy recommendations. Other quantitative or qualitative approaches that better correspond with 
the system dynamics perspective must be explored.

Abbreviations
BMI  Body mass index
CLD  Causal loop diagram

Over the past two decades, the study of complex health problems from a systems dynamics perspective has 
become increasingly widespread. The importance of shifting towards systems thinking to understand how to 
address complex problems has been recognised in mental  health1, public  health2, and planetary  health3. Complex 
problems are characterised by the involvement of many diverse factors from many different domains that relate 
to each other in ways that are difficult to  predict4. Taking a systems dynamics perspective means looking at these 
factors and their interactions as constituting a system that operates across domains, from cells to  society5. The 
causal loop diagram (CLD) is increasingly valued as an approach to graphically represent how factors in a sys-
tem causally relate to each other. It serves as the first step towards understanding the system behind a complex 
problem (see health-related  examples6–14, illustrative examples will also be presented and interrogated in this 
paper) and, accordingly, how to address that problem—typically with a complex  intervention15,16.

The CLD is a “tool to map the feedback structure of complex systems”17—where a feedback loop refers to 
the output of a factor also serving as an input to that  factor18—and can be formulated based on specialised 

OPEN

1Department of Public and Occupational Health, Amsterdam UMC Location University of Amsterdam, 
Amsterdam, The Netherlands. 2Institute for Advanced Study, University of Amsterdam, Amsterdam, The 
Netherlands. 3Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The 
Netherlands. 4MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical 
Medicine, Cambridge, UK. 5POLDER, Institute for Advanced Study, University of Amsterdam, Amsterdam, The 
Netherlands. 6Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands. *email: 
l.crielaard@amsterdamumc.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46531-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21046  | https://doi.org/10.1038/s41598-023-46531-z

www.nature.com/scientificreports/

knowledge, experiential knowledge, and/or literature. The CLD stems from system dynamics  practice17,19 and 
is “most fundamentally (…) a way of surfacing, visualising, and exploring mental models”19. Sterman, a leading 
researcher in system dynamics, describes, in one of the seminal texts of the field, that the term ‘mental model’ 
covers “our beliefs about the networks of causes and effects that describe how a system operates, along with the 
boundary of the model (which variables are included and which are excluded) and the time horizon we consider 
relevant—our framing or articulation of a problem”17. The CLD’s intended uses are “quickly capturing your 
hypotheses about the causes of dynamics”, “eliciting and capturing the mental models of individuals or teams”, 
and “communicating the important feedbacks you believe are responsible for a problem”17.

To achieve this, in a CLD, causal effects of a factor X on a factor Y are depicted as arrows, where the direc-
tion of the arrow indicates which factor is the cause, X, and which factor experiences the effect, Y. The arrows 
are accompanied by polarities to represent positive—if X increases, Y increases—or negative—if X increases, 
Y decreases—effects, respectively indicated with ‘+’ and ‘−’20. Since a CLD is best described as a graphical 
representation of a mental model developed for a specific problem setting, as outlined above, it follows that 
the inferred causal structure of a CLD—consisting of factors, arrows representing causal effects, and polarities 
showing whether causal effects are positive or negative—is dependent on those involved in its formulation and 
the spatial and temporal scales of  interest7,20,21. This sets the CLD apart from causal models that primarily focus 
on delineating the aetiology of a problem, where the CLD—albeit in many cases substantiated with (scientific) 
evidence—first and foremost captures what individuals or teams perceive to be the underpinnings of a problem.

The final objective of developing a CLD is typically to identify places to intervene in the system where “a small 
change could lead to a large shift in [system-level] behaviour”22, referred to as leverage points. Currently in the 
literature relating to the development and analysis of CLDs, the term ‘leverage point’ tends to be used as referring 
to a factor within the CLD “in which change is likely to yield significant shifts elsewhere in the system”23. The 
key premise is that the system depicted in the CLD is producing undesirable system-level behaviour, and that 
there are central drivers in the system that could be influenced in such a way that this undesirable system-level 
behaviour is sustainably  disrupted8,24–30.

Thus far, the identification of leverage points on the basis of CLDs has mostly relied on qualitative interpre-
tation, where based on visual inspection of the causal structure of the CLD researchers can hypothesise about 
system-level behaviour and which factors are most important in explaining  it18,31,32. Many researchers however 
recognise the advantages of quantitatively identifying leverage points based on CLDs: because of the numer-
ous, often non-linear, interactions between the factors involved, computers are better equipped than people to 
systematically observe the entire causal  structure22,33.

Still, quantitatively identifying leverage points based on CLDs has proven difficult. System dynamics mod-
elling and other computational modelling approaches, which translate the CLD into a set of mathematical 
 equations34, can be used to simulate the consequences of intervening on a (set of) factor(s) for system-level 
behaviour and thus to identify leverage  points22—but they come with significant challenges. These stem from 
the specialist computational modelling expertise required to bridge experience, theorisation, and its mathemati-
cal application. This expertise requires substantial resources, is hard to come by, and may not be available at all 
in some contexts in which systems thinking is traditionally applied, such as community  settings20. In addition, 
there is an imbalance between the quantitative data available on individual versus environmental factors, with 
the latter being  underrepresented2.

In seeking alternative methods, network  analysis35 has gained momentum as an accepted practice to quan-
titatively identify leverage points based on  CLDs8,23–30,36–55—for example in public  health24,38,45,50,52,53,55. Here, 
22 of the 29 papers that we identified that adopt this practice were published in 2021 (4  papers23,25,37,50), 2022 
(8  papers27,28,43–45,47,49,52), and 2023 (10 papers to  date26,30,36,38,39,41,42,46,53,55). Network analysis seemingly has the 
potential to mathematically analyse a CLD, which in this context can be considered a network of factors, to sys-
tematically find which factors represent leverage points. It is an attractive alternative to computational modelling 
approaches to quantitatively identify leverage points because it can be conducted based solely on the CLD, can 
be performed using easy-to-use software tools—requiring neither quantitative data nor computational model-
ling expertise—and always produces a result, i.e., a ranking of the CLD’s factors from least to most important 
for intervention. Specifically, network analysis is based on graph theory, a mathematical discipline that aims to 
study the properties of  networks56. Network analysis allows for the quantification of a network’s global proper-
ties, e.g., the overall density of the network, and its local properties, e.g., the importance of single factors within 
the  network56. It is conventionally applied to social networks, where each node represents a person (compare 
factor in the CLD) and each edge represents a social relationship (compare causal effect in the CLD)57 and has 
been extended to e.g., computer networks and biological  networks58.

The overarching approach taken in using network analysis to identify leverage points based on CLDs is to 
translate the CLD’s factors and arrows into an adjacency matrix, after which network analysis metrics can be 
employed. Metrics commonly applied in combination with CLDs are betweenness  centrality8,23–27,29,38–45,48,50–55 
and closeness  centrality8,23,26,29,39,42,43,50,52,53. The factor with the highest betweenness centrality lies on the highest 
number of shortest causal chains between pairs of other factors in the  CLD58, hypothesised to indicate that it is an 
important  mediator8,24,26,29,38,42. The factor with the highest closeness centrality on average has the shortest causal 
chains to other  factors58, reasoned to signal its importance as a spreader of causal  power8,26,29,42. In the context of 
CLDs, the rationale behind using these metrics, which rely on a factor’s position on short causal chains, is that 
one could assume that causal power gradually diminishes while going down a causal  chain8, making interven-
tions on the factors that are involved in short causal chains the most likely to shift system-level behaviour. That 
is, the hypothesis is that the shorter the causal chain between a factor X and a factor Z, the more of the causal 
power from a change in X is left when we get to Z—and, thus, the more causal power is exercised on Z by X.

In current practice, the results obtained from applying betweenness- and closeness centrality, among other 
network analysis metrics, to CLDs have been utilised to inform policy recommendations. Examples of this are 
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given in Table 18,24,42,45,50,52,55. In this context, factors with the highest rankings on betweenness- and/or close-
ness centrality, among other network analysis metrics, are presented as places in the system for which effective 
intervention is likely to have the largest impact on specified system outcomes.

While its supposed advantages have led to a growing trend in the use of network analysis to identify leverage 
points based on CLDs, this application of network analysis has to our knowledge not been duly reflected upon. 
Yet, evaluations regarding the utility of network analysis if applied to a range of other types of networks and 
(causal) models have shown that the assumption that betweenness- and closeness centrality are equally indicative 
of a factor’s importance in for example psychological networks, directed acyclic graphs, and dynamical systems as 
they are in social networks is far from  trivial59–61. Evaluating the utility of network analysis in the identification 
of leverage points based on CLDs is critical as the results provided by this method can, in current practice, form 
the foundation for policy recommendations about how to address complex problems.

In this paper, we evaluate whether it is justified to use betweenness- and closeness centrality to identify lever-
age points based on CLDs. To this end, first, we assess whether betweenness- and closeness centrality identify 
the same leverage points based on CLDs that represent the same system but differ in inferred causal structure. 
In other words, we assess whether the metrics provide reliable results. Second, we consider conflicts between 
the assumptions underlying betweenness- and closeness centrality and CLDs to understand whether the current 
practice of applying these metrics to CLDs is theoretically sound.

Results
Betweenness- and closeness centrality do not provide reliable results
To assess whether betweenness- and closeness centrality provide reliable results, we compute the metrics for five 
CLDs (Fig. 1)—a baseline CLD and four alternative versions of that baseline CLD—that differ in causal struc-
ture but represent the same system. The baseline CLD is a simplified variant of a previously published  CLD62. 
Considering that a CLD is a graphical representation of a mental model developed for a specific problem setting, 
the five CLDs differ in causal structure due to modelling choices that can be made one way or another depend-
ing on the research question as well as the modeller(s)20,21, with each choice being justifiable. Table 2 details the 
modelling choices made in each of the four alternative versions of the baseline CLD: (i) specify mediators, (ii) 
specify mediators and parameters, (iii) simplify, and (iv) prune redundant factors.

Figure 1 shows the highest ranking factors on betweenness- and closeness centrality for the baseline CLD and 
the four alternative versions (the lower ranking factors can be found in Supplementary Table S1 online). Because 
only the factors BMI, group-level BMI, healthy BMI, individual ideal BMI, norm, and socio-cultural ideal BMI 
are included in all five CLDs, we report the highest ranking factors until they include the three highest ranking 
factors from this subset of factors—so that the differences between the CLDs can be compared directly. Still, 
the full rankings are useful to consider as well, as in reality one could argue that all factors would be included 
in the ranking—because it would be unknown how alternative versions of the CLD could look and thus which 
factors would and would not be consistent across all alternative versions. Note that the metrics are normalised to 
account for differences in the number of factors included in the CLDs. The undirected as well as directed variants 
(the directed variants are indicated with *) of betweenness- and closeness centrality are assessed, since both are 
being used to identify leverage points based on CLDs—as is further explained in the next section. Applying the 
undirected variants means assuming that causal effects act in both directions, disregarding the directions of the 
arrows, while applying the directed variants means assuming that causal effects act in one direction, as per the 
directions of the arrows.

Table 1.  Examples of how the results obtained from applying betweenness- and closeness centrality, among 
other network analysis metrics, to CLDs are utilised to inform policy recommendations in current practice.

Citation
How the results obtained from applying network analysis to CLDs are utilised to inform policy 
recommendations

Hoyer et al.42 “through the application of network analysis, we determined the specific properties of the causal loop diagram to 
derive potential intervention points in the network to introduce and spread change more efficiently”

Koorts et al.45

“optimising those types of variables that have interconnectedness with others in a system, and targeting them as 
‘leverage points’ (…), may be one way of effectively changing system outcomes to achieve more sustainable impacts on 
broader population health”; “the rationale being that it enables examination of not only the direct effect of an interven-
tion or exposure on active recreation, but also identifies the indirect effects on active recreation via wider system 
features”

McGlashan et al.24
“for population health problems, the insight of central variables can aid intervention planning by understanding their 
role in the system”; “insight from network analysis can aid community groups in intervention design by considering a 
variable’s position in the network”

Savi et al.50 “the calculation of the metrics combined with the properties of the network enables the identification of potential 
strategies that may guide policy recommendations for better control of malaria”

Smith et al.52 “leverage points can be identified through topological analysis of the system map structure”; “these leverage points 
become the focus of interventions that could promote equitable use of urban blue spaces”

Uleman et al.8 “high centrality for modifiable risk factors such as social relationships and physical activity (…) suggest that they may 
be promising leverage points for interventions”

Zucca et al.55

“rather than trying to intervene across the whole system of nature-based early learning and childcare centres delivery 
it may be most rewarding to invest available resources in subsections of the system, focusing on the small number of 
leverage points identified in this study as being the most important/applicable to the context of the any given early 
learning and childcare centres practice”
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The adjustments made to the baseline CLD to meet the various modelling choices as described in Table 2 

Figure 1.  The baseline CLD and the four alternative versions of the baseline CLD with their highest ranking 
factors on betweenness- and closeness centrality (the undirected and directed (indicated with *) variants). 
The adjustments as compared to the baseline CLD are highlighted in each of the four alternative versions. 
The highest ranking factors are reported until they include the three highest ranking factors from the subset 
of factors that are included in all five CLDs. The highest ranking factor from this subset is indicated in bold. 
Factors that are not included in all five CLDs are indicated in italics.
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shift the rankings for betweenness centrality, betweenness centrality*, and closeness centrality, even though the 
CLDs represent the same system. Notably, the ranking for closeness centrality*—when looking at the highest 
ranking factor and disregarding the factors that are not included in all five CLDs—is consistent over the CLDs, 
except for alternative version (iii).

In addition to the rankings not being consistent over the CLDs, the results also highlight that the ranking 
of the factors for a single CLD is dependent on whether the undirected or directed variants of the metrics are 
used. For betweenness centrality, the undirected and directed variants agree on only two of the five rankings; 
for closeness centrality, they agree on none of the rankings.

The ranking of the factors from least to most important as determined according to betweenness centrality, 
betweenness centrality*, and closeness centrality is thus inconsistent over the CLDs, while closeness centrality* 
is mostly consistent. Betweenness- and closeness centrality, with the exception of closeness centrality*, do not 
provide reliable results: they identify different leverage points based on CLDs that represent the same system.

Betweenness- and closeness centrality are not equipped to take key information captured in 
causal loop diagrams into account
In order to understand whether the current practice of applying the metrics to CLDs is theoretically sound, we 
consider conflicts between the assumptions underlying betweenness- and closeness centrality and CLDs. The 
conflicts we recognise are sixfold, as listed below, and further discussed in the next sections. The fundamental 
issue underlying each of the six conflicts is that betweenness- and closeness centrality are not equipped to take 
key information that is captured in CLDs into account.

1. Undirected variants of betweenness- and closeness centrality are being used, while CLDs rely on arrows to 
describe the directions of causal effects

2. Betweenness- and closeness centrality do not take polarities into account, while CLDs rely on polarities to 
describe whether a causal effect is positive or negative

3. Applying betweenness- and closeness centrality means assuming that what flows through the network takes 
the shortest path, while what flows through CLDs may not take the shortest path

4. Applying betweenness- and closeness centrality means assuming that all factors in the CLD belong to the 
same domain, while CLDs include factors from many different domains

5. Applying betweenness- and closeness centrality means assuming that there is no overlap between the factors 
in the CLD, while CLDs are used to show interactions between lower and higher domains

6. Betweenness- and closeness centrality cannot tell us how interventions on different factors interact, while 
CLDs are developed to inform complex interventions with interacting components

Causal loop diagrams rely on arrows to describe the directions of causal effects
Undirected variants of betweenness- and closeness centrality are occasionally being used to identify leverage 
points based on CLDs, while applying these variants means assuming that edges are undirected. When these vari-
ants are used, each edge is interpreted as a line rather than as an arrow: causal effects act in both directions rather 
than in one  direction58. CLDs, however, characteristically have directed edges, i.e., arrows, which represent the 
causal effect of one factor on another  factor20. Using undirected variants of betweenness- and closeness central-
ity means loss of the information represented by the directions of the arrows. For example (Fig. 2), a CLD may 
indicate that a factor X and a factor Z each assert a causal effect on a factor Y—using two directed edges (Panel 
A). Using the undirected versions of the metrics, these two edges would connect X to Z (Panel B). Reasoning 
from the arrows, however, Z could not be reached from X. In the interest of the identification of leverage points, 
using the undirected variants of betweenness- and closeness centrality could erroneously lead to the conclusion 
that intervening on X could result in a change in Z.

Causal loop diagrams rely on polarities to describe whether a causal effect is positive or negative
Because they do not take  polarities58 into account, betweenness- and closeness centrality do not tell us in which 
direction, increase/positive or decrease/negative, to intervene on a leverage point in order to engender change. 
While the metrics are reasoned to indicate whether a factor is a leverage point, it may not actually be possible 
to intervene on an identified leverage point such that it shifts system-level behaviour in a way that is intended.

To make this concrete, consider three factors in a system: X, Y, and Z (Fig. 3). Suppose that Y is identified as 
a leverage point because it has a causal effect on all other factors, i.e., X and Z. Even though Y has a causal effect 
on both X and Z, the causal effects are not necessarily both in the direction that we intend. X as well as Z are 
positively influenced by Y, i.e., an increase in Y causes an increase in X as well as an increase in Z, but maybe what 
we are looking to achieve is only an increase in X and not in Z. It is then impossible to develop an intervention on 
Y that influences both X and Z in the intended direction. That is, if we increase or decrease Y, we influence either 
X or Z in the opposite direction of what we aimed for: there is one intended and one unintended consequence. 
This means that intervening on a factor that is identified as a leverage point can result in a net intervention effect 
of zero, which implies that it does not qualify as a leverage point as it does not shift system-level behaviour.

What flows through causal loop diagrams may not take the shortest path
Applying betweenness- and closeness centrality relies on the assumption that what is flowing through the net-
work, first, knows the shortest path through the network to reach its destination and, second, takes the shortest 
path to reach that  destination65. When what flows through the network does not abide by these assumptions, the 
metrics may identify a node as important while it is actually not important for the flow process under  study65. 
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Specifically, the importance of a node depends on both the structure of the network and the flow process that the 
edges  represent65. Even though all networks can be demonstrated as a structure of nodes and edges, a node that is 
“structurally important” in one network with one type of flow process is not necessarily “structurally important” 
in another network with another type of flow  process59,60,66. For example, betweenness- and closeness centrality 
have been shown to correctly identify important nodes if the flow process under study is the delivery of a package, 
where the person delivering the package knows where they need to go and the most efficient way to get there. 

Table 2.  The four alternative versions of the baseline CLD with corresponding modelling choices and 
adjustments to the baseline CLD.

Alternative version Adjustments to the baseline causal loop diagram

(i) Specify mediators

Modelling choice: make the underlying mechanisms in the causal chains between discrepancy 
between BMI and individual ideal BMI and BMI explicit by adding mediators to the baseline 
CLD (also carried out in this paper62)
Adjustments:
    Replace food intake and physical activity by total daily energy intake and total daily energy expend-
iture, via physical activity, respectively, to clarify that changing weight-related behaviour impacts 
BMI via a change in energy  balance63: reducing energy intake and increasing energy expenditure, 
which can both be measured and computed in kilocalories
    Include causal effects between BMI and basal metabolic rate and between basal metabolic rate and 
total daily energy expenditure: more energy is required to sustain body function at rest when BMI is 
higher (note that this mechanism is added because you only notice that this mechanism should be 
accounted for once you include total daily energy expenditure as a mediator)64

(ii) Specify mediators and parameters

Modelling choice: make the underlying mechanisms in the causal chains between discrepancy 
between BMI and individual ideal BMI and BMI explicit by adding mediators to the baseline 
CLD and add the parameters that would be necessary to compute the included factors (also 
carried out in this paper62)
Adjustments:
    Replace food intake and physical activity by total daily energy intake and total daily energy expend-
iture, via physical activity, respectively, to clarify that changing weight-related behaviour impacts 
BMI via a change in energy  balance63: reducing energy intake and increasing energy expenditure, 
which can both be measured and computed in kilocalories
    Include causal effects between BMI and basal metabolic rate and between basal metabolic rate and 
total daily energy expenditure: more energy is required to sustain body function at rest when BMI is 
higher (note that this mechanism is added because you only notice that this mechanism should be 
accounted for once you include total daily energy expenditure as a mediator)64

    Include the parameters age and height as factors in the causal structure as, besides weight, they 
are required to compute basal metabolic rate and BMI, respectively
    Alter the causal structure to incorporate weight in addition to BMI because basal metabolic rate is 
numerically estimated based on weight in kg and not BMI in kg/m2

(iii) Simplify

Modelling choice: simplify the baseline CLD
Adjustments:
    Merge the two feedback loops that are present in the baseline CLD, between norm and food 
intake and between norm and physical activity, into one feedback loop between norm and healthy 
weight-related behaviour

(iv) Prune redundant factors

Modelling choice: prune factors from the baseline CLD that are not required for the computa-
tion of the included factors
Adjustments:
    Remove the factor discrepancy between BMI and individual ideal BMI, because this factor is 
merely a redefinition based on two other factors, BMI and individual ideal BMI, that are already 
present in the baseline CLD and is therefore computationally not required to be formulated as a 
separate factor (i.e., it is an auxiliary  variable21)
    Alter the causal structure so that food intake and physical activity are influenced by BMI and 
individual ideal BMI directly, as opposed to via discrepancy between BMI and individual ideal BMI, 
which is numerically equivalent to the baseline CLD, as shown below: if we were to build two sys-
tem dynamics models with mathematical equations, one based on the baseline CLD and one based 
on this alternative version, the system dynamics models would be identical—and, thus, generate 
identical simulation results exemplifying system-level behaviour
baseline*
discrepancy between BMI and individual ideal BMI = BMI − individual ideal BMI
food intake = c1 × discrepancy between BMI and individual ideal BMI
physical activity = c2 × discrepancy between BMI and individual ideal BMI
(iv) prune redundant factors*
food intake = c1 × (BMI − individual ideal BMI)
physical activity = c2 × (BMI − individual ideal BMI)
*c1 and c2 are parameters converting BMI into food intake and physical activity units, respectively

Figure 2.  Using undirected variants of betweenness- and closeness centrality means loss of the information 
represented by the directions of the arrows.
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However, that is not the case if the flow process under study is an infectious disease, where the assumptions of 
knowing and taking the shortest path are  unbefitting65.

As CLDs are graphical representations of mental models of the important feedbacks believed to be responsi-
ble for a  problem17, what flows through a CLD is best described as ‘causality’ or ‘causal impact’, where a change 
in a factor propagates through all allowed paths with different intensities and, at a given timescale, may even 
reinforce or suppress itself. Hence, it may be at best premature and at worst incorrect to use metrics that imply 
the assumption that what flows through a CLD relies on knowing and taking the shortest path. However, this is 
the implicit assumption being made when applying betweenness- and closeness centrality to CLDs. As a result, 
the factors that are identified as mediators by betweenness centrality and as spreaders of causal power by close-
ness centrality may not actually have these roles in the type of flow process that is represented in CLDs and may 
therefore not qualify as leverage points.

Causal loop diagrams include factors from many different domains
Applying betweenness- and closeness centrality means assuming node exchangeability, which is the premise that 
the only reason that a node may be more important than another node for system-level behaviour stems from 
its different position in the network, i.e., there are no other differences in node  characteristics61. Contrary to 
social networks, where each node corresponds to a person, in CLDs the nodes do have different characteristics: 
they represent many diverse factors from many different domains and with various units of measurement. When 
factors from many different domains are included in the network it becomes less likely that the assumption of 
node exchangeability holds. This is because the factors in higher domains may, for example, have a larger or 
faster causal effect on the factors in lower domains—e.g., society on cells or the environment on an individual—
than vice versa—e.g., cells on society or an individual on the environment—while they are connected in the 
same  way67. In CLDs, the importance of a node for system-level behaviour thus does not exclusively stem from 
its position in the network but also from the domain in which it operates. By making the assumption of node 
exchangeability, as we do when we use betweenness- and closeness centrality, factors that presumably are less 
likely to shift system-level behaviour, such as those in lower domains, are regarded as equivalent to factors that 
presumably are more likely to shift system-level behaviour, such as those in higher domains.

Causal loop diagrams are used to show interactions between lower and higher domains
Applying betweenness- and closeness centrality means assuming that there is no conceptual overlap between the 
factors in the CLD, an assumption that is generally required for network  analysis61,68. To use the metrics there 
should be node distinctiveness, where nodes are causally related and independent rather than constitutively 
related and  overlapping68. In social networks this assumption tends to be satisfied because people are distinct 
 entities61. In CLDs, on the other hand, it may be difficult to ensure that nodes do not overlap. Notably, it has 
been argued that guaranteeing node distinctiveness becomes increasingly more difficult as networks include 
factors that operate across a greater variety of  domains68. Yet, the aim of a CLD is exactly this: to graphically 
represent how factors in a system that operates across domains causally relate to each other. For example, a CLD 
could include factors pertaining to the local food environment—e.g., special offers on unhealthy foods in a local 
supermarket—as well as factors pertaining to the global food environment—e.g., global marketing strategies—in 
the same causal structure, where the local food environment could be considered part of the global food environ-
ment. In other words, the global food environment contains the local food environment, but factors pertaining 
to both may be included separately in the network, which is difficult to prevent if many different domains are 
covered. If we do assume node distinctiveness even if there is conceptual overlap between the factors in the 
CLD so that we can use betweenness- and closeness centrality, we may identify leverage points that are not 
independent of other factors in the  CLD68. Accordingly, we may then not be able to intervene exclusively on the 
identified  factor68. For example, suppose we identify global marketing strategies as the factor to intervene on, but 
we have developed the CLD based on the premise that special offers on unhealthy foods in a local supermarket 
are also a component of the global food environment. Then it is unclear how we should separate the global food 
environment from what is happening in local supermarkets and thus what it means that one but not the other 
is identified as a leverage point.

Figure 3.  It may not actually be possible to intervene on an identified leverage point such that it shifts system-
level behaviour in a way that is intended.
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Causal loop diagrams are developed to inform complex interventions with interacting components
If betweenness- and closeness centrality are used to identify leverage points based on CLDs, then it is implic-
itly assumed that leverage points can be computed in isolation. That is, the metrics do not provide us with any 
information about how interventions on multiple factors in the CLD may interact—for example about whether 
two interventions might function in synergy, where the effect of the interventions combined is greater than the 
sum of the effects of each intervention separately. This issue is not resolved by simultaneously intervening upon 
several factors identified as leverage points by the metrics, such as the three highest ranking factors, as applying 
the metrics means assuming that interventions occur in only one leverage point at a time. For example, if a fac-
tor X and a factor Y both score high on closeness centrality, the results only tell us that intervening on X or Y is 
relevant, while an intervention on both X and Y has an unknown result as we do not know how the interventions 
interact with each other—they may even cancel each other out. Betweenness- and closeness centrality thus cannot 
advise us on coordinated interventions that address multiple factors in the CLD at the same time, while CLDs 
are typically used as a starting point for the development of complex  interventions15, which are “interventions 
that contain several interacting components”16.

Discussion
The aim of this paper was to evaluate whether it is justified to use betweenness- and closeness centrality to identify 
leverage points based on CLDs by assessing whether the metrics provide reliable results and considering conflicts 
between the assumptions underlying the metrics and CLDs. We found that, in current practice, this application 
of network analysis is neither reliable nor theoretically sound. First, betweenness- and closeness centrality, with 
the exception of the directed variant of closeness centrality, identify different leverage points based on CLDs 
that represent the same system. While the directed variant of closeness centrality in this case unexpectedly 
showed consistency over the different versions of the CLD, the theoretical conflicts uncovered suggest that this 
might be coincidental. For another set of alternative versions of this CLD it is possible that one of the other 
metrics would be more reliable. The key finding is that network analysis metrics are highly sensitive to changes 
made to a CLD. This means that, when network analysis is used, different leverage points may be identified due 
to modelling choices that can be made one way or another, depending on the research question as well as the 
modeller(s), and that do not alter the system that is represented by the causal structure. It is however natural 
for such differences between CLDs to occur, since CLDs are graphical representations of mental models devel-
oped for specific problem  settings7,20,21. Second, we recognise six conflicts between the assumptions underlying 
betweenness- and closeness centrality and CLDs, where, as we have described, each of these conflicts can result 
in erroneous identification of a factor as a leverage point. Even if betweenness- and closeness centrality were 
to provide reliable results, the six conflicts recognised give us reason to believe that the metrics may still leave 
us with ‘the wrong answer’ in terms of leverage points. Specifically, the fundamental issue underlying each of 
the six conflicts is that betweenness- and closeness centrality are not equipped to take key information that is 
captured in CLDs into account.

Wrongly identifying a factor as a leverage point can have significant implications, as the results provided by 
betweenness- and closeness centrality can, in current practice, form the foundation for policy recommendations 
about how to address complex problems. Consider for example the results for betweenness centrality for the 
baseline CLD and alternative version (i) as an illustration of the consequences of shifts in the ranking for policy 
recommendations. By adding mediators to the baseline CLD, which is the modelling choice made in alternative 
version (i), individual-level BMI becomes a more important leverage point than the group-level norm, while 
BMI appears less important than the norm based on the causal structure of the baseline CLD. If we consider 
that the factors identified refer to potential places to intervene in the system, targeting the group-level norm, for 
example by community-wide campaigns promoting a healthy diet, warrants a fundamentally different course 
of action in terms of policy than targeting individual-level BMI, which could, for example, imply supporting 
people to individually alter their diet.

The problems with the use of betweenness- and closeness centrality to identify “structurally important nodes”66 
are far from unfamiliar, where many of the problems previously detected in other  fields61 also apply to CLDs 
and several papers applying network analysis metrics to CLDs also hint at potential  limitations8,23,24,26,28,36–38,42,52. 
It has already been shown for different types of networks that betweenness- and closeness centrality do not 
provide reliable results over networks that differ slightly in structure, for example when a node is included or 
 excluded61,69,70. As for the conflicts between assumptions, the fact that betweenness- and closeness centrality 
rely on knowing and taking the shortest path has been criticised even for social networks, where a person due 
to social preferences may refrain from sharing information with some people in the network and not others, 
causing information to take a longer path than theoretically  necessary61,65,66. Tellingly, investigating the concep-
tual underpinnings of psychological networks and the associated methods is a discipline in itself in the field 
of  psychology61,71. For social networks and psychological networks, scrutiny of these metrics has even gone a 
step further by testing whether real-world interventions on the nodes that the metrics identified as important 
indeed had a large effect on system-level behaviour, which also did not lead to the anticipated  results61. For 
social networks, it has for example been shown that removing an identified structurally important person did 
not weaken but rather strengthened the  network72, while for psychological networks there are indications that 
an identified structurally important symptom does not necessarily have high predictive power for system-level 
 behaviour73. Challenges regarding the specification of boundaries—i.e., which nodes should be included in 
and excluded from the network—which critically affects betweenness- and closeness centrality results, have 
accordingly also been extensively discussed in other  fields69,74,75. This and other bodies of literature do not seem 
to have been considered in research using CLDs, presumably because, even though network analysis metrics 
are being applied, CLDs are not typically thought of as analysable as networks, with many papers that apply 
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network analysis metrics to CLDs first providing some type of justification for why a CLD could be interpreted 
as a network (e.g.,8,23–25,27–30,37,42,43,47,50,54).

It is important to note that even “off-the-shelf ”65 network analysis metrics that are increasingly readily avail-
able in CLD building tools are subject to these conflicts. In addition, if network analysis is elected as the method 
to identify leverage points based on a CLD despite these conflicts, metrics should still not be used without 
reflection on what they are exactly measuring. For example, in the Python package NetworkX, the function to 
compute closeness centrality assumes that its users are looking for the ‘influenced’ or ‘collector of causal power’ 
rather than the ‘influencer’ or ‘spreader of causal power’, meaning that users attempting to generate results for 
the latter application are required to adapt the function  themselves76. To facilitate such reflection, if network 
analysis metrics are used, as a minimum requirement, the equations used to compute the metrics should be 
given—which is currently not always the case.

From our evaluation, it however seems clear that we should refrain from using betweenness- and closeness 
centrality to identify leverage points based on CLDs. It may be possible to select or develop other network 
analysis metrics that are at least a better match with CLDs. Eigenvector centrality appears to have less restrictive 
 assumptions65 and was shown to correlate with causal influence in directed acyclic  graphs59. A step in the right 
direction could also be the addition of edge weights, which allow a modeller to indicate a larger or faster causal 
effect with higher  weights19,58,61,77. Incorporating edge weights in CLDs could result in network analysis metrics 
being more consistent across CLDs that represent the same system and has the potential to mitigate problems 
with node exchangeability. Polarity could be accounted for as well with negative edge  weights58,77. Methods to 
identify an optimal set of important nodes rather than a single important node have also been  developed78.

Still, technical adjustments such as the incorporation of edge weights do not automatically make network 
analysis correspond better with the system dynamics perspective. The use of betweenness- and closeness central-
ity to identify leverage points based on CLDs, for example, relies on the assumption that causal power gradu-
ally diminishes while going down a causal  chain8. This assumption warrants further scrutiny in its own right, 
especially because in the systems literature it is postulated that it is not just the strength of association, which 
assumes that causes further away from the outcome have increasingly weaker effects on system-level behaviour, 
but rather the structure, which assumes that even causes further away from the outcome can have significant 
effects on system-level behaviour due to feedback loops, that determines system-level  behaviour20. Furthermore, 
network analysis can only interpret a CLD as describing causal effects e.g., of a factor X on a factor Y (pairwise 
interaction)—for example, less cars (X) lead to more cycling (Y). It cannot accommodate the case where the 
causal effect of X on Y depends on the value of a factor Z (higher-order interaction), i.e., a conditional causal 
effect that depends on interaction between X and Z—for example, less cars (X) lead to more cycling (Y) only if 
the built environment accommodates cycling (Z). That means that even if a CLD with edge weights that reflect 
‘the amount of causal impact’ made by each of the included causal effects could be formulated, this in combina-
tion with network analysis would still be a limited representation of reality as it only allows for pairwise and 
not for higher-order  interactions79,80—while computational modelling approaches can account for higher-order 
interactions by combining a set of factors in one equation.

Note that the actions required to transform a system and change system-level behaviour may go beyond 
what is suggested by the term ‘leverage point’, which seems to imply that we should identify and intervene on 
individual factors in CLDs. Still, in her description of high impact leverage points or “places to intervene in a 
system”, Meadows—originator of most of systems thinking’s core concepts—calls attention to “regulating negative 
feedback loops”, “driving positive feedback loops”, “the rules of the system”, “the goals of the system”, and “the 
mindset or paradigm out of which the system arises”81, where arguably none of these can be found in individual 
factors in the network of causes and effects that describes how a system operates. In this sense, the definition of 
the term ‘leverage point’ as it currently tends to be used in the literature relating to the development and analysis 
of CLDs may indeed be too  narrow82.

As such, selecting or developing other network analysis metrics is not just a matter of technicalities, but also 
a matter of conceptual clarification, where the question is whether network analysis metrics pay sufficient regard 
to core characteristics of the system dynamics perspective, such as the importance of mental models, interactions 
between lower and higher domains, feedback loops, and conditional causal effects. Network analysis accordingly 
does not seem to be an adequate alternative to computational modelling approaches to quantitatively identify 
leverage points based on CLDs. On those grounds, efforts have been and should be made to facilitate the devel-
opment of computational models on the basis of CLDs and to overcome some of the described challenges. For 
example, to enable computational modelling qualitative expert knowledge could be leveraged to ‘fill in the blanks’ 
left by the lack of quantitative data available on environmental  factors21. Moreover, CLDs could be refined so 
that conditional causal effects are made explicit, the recording of which can support subsequent computational 
modelling steps because it facilitates the conversion to  equations21.

Conclusion
We conclude that using network analysis to identify leverage points based on CLDs leads to false inference. We 
have shown that the perception that network analysis, because of its ease of use, is an attractive alternative to com-
putational modelling approaches to quantitatively identify leverage points based on CLDs is inaccurate, which is 
exemplified by the bodies of literature dedicated to the potential problems with network analysis in other fields. 
The current practice of using betweenness- and closeness centrality to identify leverage points based on CLDs, 
which is gaining momentum as an accepted practice to quantitatively identify leverage points based on CLDs, is 
at best premature and at worst incorrect. It could cause us to wrongly identify a factor as a leverage point, which 
is problematic as the results provided by this method can, in current practice, form the foundation for policy 
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recommendations about how to address complex problems. Other quantitative or qualitative approaches that 
better correspond with the system dynamics perspective must be explored.

Methods
Baseline causal loop diagram
The baseline CLD is a simplified variant of a previously published  CLD62. It was developed based on specialised 
knowledge (public health, health inequalities, dietary behaviour, sociology, and anthropology) through interviews 
and corroborated and supported by literature. It details two feedback loops between the norm—what BMI is 
regarded as normal—and weight-related behaviour: specifically, between the norm and food intake and between 
the norm and physical activity. BMI refers to body mass index, which is a measurement used at the population 
level to indicate whether a person has a healthy weight relative to their height. It is computed as a person’s weight 
in kilograms divided by the square of their height in meters, i.e., kg/m2. Essentially, the baseline CLD shows that 
the group-level norm affects individual-level weight-related behaviour and vice versa, where if a higher BMI is 
regarded as normal it may be more difficult for people to adopt healthy weight-related behaviour, while a person’s 
weight-related behaviour is also conducive to the norm. The polarities in the causal structure are chosen so that 
the baseline CLD accommodates the scenario where BMI is larger than individual ideal BMI, which represents 
the BMI a person regards as appropriate (this scenario may also be referred to as the context of validity for the 
baseline  CLD21). In this scenario, a person thus believes they should lose weight.

Betweenness centrality and closeness centrality
We computed betweenness- and closeness centrality, the undirected as well as directed variants, for the factors 
in the five CLDs (using the Python package  NetworkX83). Betweenness- and closeness centrality are defined 
according to a node’s position on short paths between other  nodes58.

Betweenness centrality
A node with high betweenness centrality lies on the highest number of shortest paths between pairs of other 
nodes in the  network58. Under the assumptions of knowing and taking the shortest path, what flows through 
the network often passes a node with high betweenness centrality—e.g., betweenness centrality indicates how 
often packages pass a station in a package delivery  system65. For social networks, this has been interpreted as a 
node being a  gatekeeper66 in the network, whose role is to allow what flows through the network to pass from 
one part of the network to the  other84.

In CLDs, the factor with the highest betweenness centrality thus lies on the highest number of shortest causal 
chains between pairs of other factors in the CLD. This is hypothesised to make a factor with high betweenness 
centrality an important mediator (compare gatekeeper in social network analysis) in the  system8,24,29.

The betweenness centrality of a node v is the sum of the fraction of the shortest paths between pairs of other 
nodes in the network that pass through v . This is computed as:

where V  is the set of nodes in the network, σ(s, t) is the number of shortest paths between a node s and a node 
t  and σ(s, t|v) is the number of those paths passing through node v (which is not equal to node s or node t) . 

2

(n−1)(n−2)
 is used to normalise for undirected networks (undirected variant), whereas 1

(n−1)(n−2)
 is used to nor-

malise for directed networks (directed variant), where n is the number of nodes in the network. This difference in 
normalisation comes from the premise that in an undirected network each path between a node s and a node t  
can be taken in two directions (from node s to node t  and vice versa) and thus counts twice, whereas in a directed 
network each path between a node s and a node t  can be taken only in one direction and thus counts once.

Note that the results for the undirected and directed variants of BCv differ because arrows can cause some 
paths between a node s and a node t  to no longer be possible (i.e., if the path is now ‘blocked’ by an arrow point-
ing in the opposite direction).

Closeness centrality
A node with high closeness centrality on average has the shortest paths to other nodes in the  network58. Under 
the assumptions of knowing and taking the shortest path, what flows through the network from a node with high 
closeness centrality quickly reaches other nodes in the network—e.g., closeness centrality indicates how long it 
takes for packages to arrive when they are sent from a station in a package delivery  system65. For social networks, 
this has been interpreted as a node being an  influencer85 in the network, from which what flows through the 
network quickly reaches the rest of the  network58.

In CLDs, the factor with the highest closeness centrality on average has the shortest causal chains to other 
factors in the CLD. This is theorised to make a factor with high closeness centrality an important spreader of 
causal power (compare influencer in social network analysis) through the  system8,29.

The closeness centrality of a node v is the inverse of the average shortest path distance to v over all n− 1 nodes 
in the network reachable from v . This is computed as:

where d(u, v) is the shortest path distance between a node u and node v.

BCv =

1

(n− 1)(n− 2)

∑

s,t∈V

σ(s, t|v)

σ (s, t)

CCv =

n− 1
∑

n−1

v=1
d(u, v)
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Note that the results for the undirected and directed variants of CCv differ because arrows can extend the 
shortest path distance d(u, v) between a node u and node v due to some paths being no longer possible (i.e., if 
the path is now ‘blocked’ by an arrow pointing in the opposite direction).

No human participants were involved in the study.

Data availability
All data generated or analysed during this study are included in this published article.
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