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a b s t r a c t

Forensic analyses are performed by skilled forensic practitioners who require reliable, state-of-the-art
tooling and ongoing training. To provide both, education and academia rely on realistic training data-
sets. Those datasets are crucial to teaching investigators, validating forensic tools, advancing algorithms,
and pursuing research. At the same time, the forensic community faces a shortcoming of realistic
datasets, mainly due to ethical and legal reasons. To overcome this challenge, prior work introduced
several frameworks aiming to create unproblematic replications of real evidence. Those frameworks
generate synthetic datasets by populating disk images with traces of emulated user behavior. However, it
is general consent that existing frameworks have some drawbacks concerning the quality of generated
datasets, particularly due to the incorporation of unrealistic traces in GUI-based environments.
Reviewing the implementation details of common frameworks, we found that current solutions miss
realistic trace synthesis, reducing the quality and usefulness of synthesized datasets.

By leveraging computer vision, this paper introduces a novel approach aiming to enhance the quality
of synthetic datasets. We propose an architecture and provide an open-source implementation utilizing a
hypervisor for creating Human Interface Device (HID) input, which is controlled by computer vision
algorithms to imitate human-like user actions. In this way, we provide external GUI automation capa-
bilities that enable more realistic trace synthesis than existing solutions and open up the applicability to
a wide range of GUI-based operating systems. In contrast to previous research results, our approach is
independent of software running in virtual machines, further optimizing the quality of generated
datasets by omitting automation artifacts. Our experiments indicate that using external GUI automation
for user action emulation results in a greater amount and a more widespread distribution of traces.
Therefore our approach may refine the quality of datasets in this field.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The quality of research outcomes, the successful education of
forensic practitioners as well as the technological development of
reliable, state-of-the-art tooling depends on how realistic under-
lying training datasets are. Focusing on applications in digital fo-
rensics, training datasets can be used to teach future investigators
(Moch and Freiling, 2009), validate forensic tools, techniques and
algorithms (Garfinkel et al., 2009) or advance machine learning
models aiding in forensic investigations and forensic analysis (Du
de (L. Schmidt), s.kortmann@
nster.de (T. Hupperich).

er Ltd on behalf of DFRWS This is a
et al., 2020). When utilizing datasets in academia, the quality of
datasets plays a crucial role, as outcomes are directly affected by the
quality of underlying data (Abt and Baier, 2014; Grajeda et al., 2017;
Garfinkel et al., 2009). At the same time, the forensic community
suffers from limited availability of appropriate datasets. Also
referred to as the dataset gap problem (Gonçalves et al., 2022),
recent research highlights that available datasets are often of poor
quality, containing outdated examples and unrealistic content.

A main cause of the dataset gap problem lies in ethical and legal
concerns regarding the exchange of real evidence, also confined by
insurmountable requirements for privacy protection due to the
nature of forensic investigations. Notably, sharing of datasets may
lead to copyright infringements, further narrowing down any ex-
change of datasets. With this in mind, the majority of datasets used
in academia are held private (Grajeda et al., 2017; Abt and Baier,
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Table 1
Trace generation techniques of existing frameworks.

Framework Populated System Trace Generation Guest Agent GUI Interaction

Forensig2 (Moch and Freiling, 2009) Linux Shell SSH-Server e

ForGeOSI (Krüger, 2014) Linux, Windows Powershell, Shell VirtualBox e

ForGe (Visti et al., 2015) NTFS Partition Python e e

ForGen (Keighley, 2017) Windows Shell, Puppet Puppet, VirtualBox e

EviPlant (Scanlon et al., 2017) Windows e e e

VMPOP (Park, 2018) Windows Powershell VirtualBox e

hystck (G€obel et al., 2020) Linux, Windows Python Hystck Agent e

TraceGen (Du et al., 2021) Windows Python VirtualBox pywinauto (Win32-API)
ForTrace (G€obel et al., 2022) Windows Python, Powershell ForTrace Agent e

Fig. 1. User action loop.

Fig. 3. TM_CCOEFF_NORMED - OpenCV.

Fig. 4. Externally controlled user input.
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2014), and even though some datasets containing real-world data
exist (Garfinkel et al., 2009), access to these data sources is
restricted. The shortcoming of realistic datasets negatively affects
the whole field, hindering rapid research outcomes and only
allowing inadequate scientific comparison of research results
(Garfinkel, 2007; Abt and Baier, 2014). Prior work introduced un-
problematic replication of real-world evidence as solution for the
dataset gap problem (Garfinkel et al., 2009), synthesizing traces in
disk images by manually conducting user actions. Considering that
creation of synthetic datasets by hand is a resource- and time-
intensive task, manual techniques evolved into various powerful
frameworks aiming at automating and scaling the creation of
realistic datasets (Moch and Freiling, 2009; Du et al., 2021; G€obel
et al., 2022). Those frameworks usually emulate user actions in
virtual machines to populate disk images with synthetic traces.

Although streamlining the creation process and lowering the
costs for synthesizing datasets, it is general consent that the usage
of those frameworks has some drawbacks concerning the quality of
generated data, particularly due to incorporation of unrealistic
traces (Moch and Freiling, 2009; Du et al., 2021). Unrealistic traces
mainly originate from insufficient Graphical User Interface (GUI)
Fig. 2. Template match

2

automation capabilities, so that the emulation of user actions be-
comes inaccurate, creating fewer and less diverse traces compared
to real-world data. Furthermore, all proposed frameworks rely on
additional software to implement user action emulation. This
software, also known as guest agent, offers required control
mechanisms while running in the virtual machine. However, the
usage of guest agents leads to installation artifacts and unwanted
traces polluting the generated disk images, further lowering the
quality of datasets.

By introducing a novel method for trace synthesis, we provide a
way to incorporate truly realistic traces in artificially-created
datasets. Optimizing the quality of synthetic datasets, we aim to
positively affect future efforts in research, education and practice.
More detailed, this work makes the following contributions:
ing with OpenCV.



Fig. 6. Methodology - trace analysis.

Fig. 5. Pyautoqemu.
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� We develop an architecture and open-source framework for
user action emulation using computer vision (Sec. 3), improving
the synthesis of realistic traces. In contrast to existing ap-
proaches, our proposed solution provides hypervisor-assisted,
externally controlled emulation of user actions and is there-
fore Operating System (OS) agnostic. Being independent of any
additional software running in guest machines, our approach
omits automation artifacts and allows for the emulation of
human-like user activities.

� We show that our solution creates more realistic traces,
measurable in a greater amount and a more widespread distri-
bution of traces compared to common approaches (Sec. 5). The
results strongly indicate that our approach improves the quality
of synthetic datasets.

� To the best of our knowledge, our study is the first to compare
the traces generated by commonly used emulation techniques,
allowing to reason about their quality and closeness to reality. In
so doing, we propose a novel method for evaluating trace-
generation (Sec. 4), based on differential analysis of disk im-
ages using open-source forensic tooling (Garfinkel et al., 2012).

� Furthermore, we identified traces that may provide additional
value in forensic investigations. We found traces pointing out to
human-like GUI-interactions as well as program execution,
whose content is currently missed by the parsers used for trace
extraction (Sec. 5).

In the remainder of this article, we review related work,
providing an overview about the state of the art in synthetic trace-
generation and the demand for realistic datasets (Sec. 2). We
3

evaluate our approach (Sec. 6) and finally draw a conclusion
including an outline of future work (Sec. 7).
2. Related work

2.1. Missing realistic datasets

The field of digital forensics is missing a vital piece of scientific
groundwork (Garfinkel et al., 2009): publicly available, standard-
ized and realistic forensic datasets. A primary reason for the
shortage of datasets is that sharing of real-world data is hampered
due to ethical and legal reasons (Garfinkel, 2007; Garfinkel et al.,
2009; Grajeda et al., 2017), further amplified by demands on pri-
vacy protection and the threat of possible copyright infringements
when publishing datasets. Inhibiting the reproducibility of results
and wasting valuable resources in obtaining custom datasets
(Garfinkel, 2007; Woods et al., 2011), the absence of appropriate
datasets adversely affects research and education efforts. Being a
well known obstacle in forensic science, the shortcoming of avail-
able datasets is commonly referred to as the dataset gap problem
(Garfinkel, 2007; Gonçalves et al., 2022).

In case real-world data is not available, the usage of realistic
synthetic data is argued to be a valid alternative (Abt and Baier,
2014). When being representative of real-world evidence, syn-
thetic datasets can be used as a substitute in forensic research,
education and development. While leading the way to synthetic
dataset creation, the aspect of realism is of fundamental impor-
tance, directly affecting the intended purpose. Thereby, realistic
datasets can be seen as an indicator of “transferability of research
results” (Abt and Baier, 2014). In a similar vein, Grajeda et al. (2017)
emphasize the quality of datasets depend on their conformity with
real-world data. Summarized, the use of realistic training data
correlates with quality of research outcomes. Being of central
importance for optimal results in teaching forensic practitioners,
the need for realistic datasets “is difficult to overstate” also from
training and educational perspective (Garfinkel et al., 2009). To
achieve optimal outcomes, forensic practitioner education needs
realistic data. The advent of machine learning and artificial intel-
ligence in digital forensics further amplified the demand for real-
istic datasets. The reliability of pre-trained models depends on the
quality of the training dataset, deciding over the usefulness in real
world scenarios, which further establishes the relevance of realistic
datasets (Du et al., 2020).

Realistic datasets should be representative of data found in real-
world cases, ensuring tools and algorithms work in the field
(Garfinkel, 2007). In the past, Woods et al. (2011) found existing
data corpora to be “insufficiently realistic” for education and
research purposes, defining the characteristics of realistic data
corpora. Data should be of “realistic wear and depth”, containing
traces created by realistic user actions and usage patterns, intro-
ducing background noise with traces of typical user behaviour like
application usage or web browsing. Furthermore, datasets can be
considered to be realistic when being consistent, not only from a
technical perspective, but also with regard to setting, fictitious in-
teractions and linked background data, introducing another layer of
realism. Distinguishing between the two layers of realism Woods
et al. (2011) described, the logical realism defines the overall
sense of a forensic scenario and may not always be technical,
considering sociological and criminalistic facets. Furthermore, the
technical realism results from the appearance of traces in computer
systems. This work is about improving the technical realism of
synthetic datasets, focusing on how realistic traces can be artifi-
cially created to support dataset generation.
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2.2. Challenges of manual trace generation

Populating disk images with synthetic traces not containing any
private or otherwise protected data is a widely accepted way to
address the dataset gap problem in forensic science (Garfinkel,
2007). Trace synthesis can be carried out manually, but creating a
plausible and consistent disk image this way is challenging. Due to
replaying user actions by hand, themanual generation also requires
carefully planning. Being complex and resource-intensive tasks, the
manual generation binds valuable human time and effort (Woods
et al., 2011).

Due to the effort required to replay actions by hand, synthetic
datasets may suffer from suboptimal quality, e.g. missing realistic
wear and tear like background noise (G€obel et al., 2022). Arguably,
the amount of work needed to create a dataset may be why re-
searchers stop updating and further diversifying datasets after their
first release (Grajeda et al., 2017), resulting in a shortage of current
datasets. This is why several frameworks for trace generation and
disk image population evolved, aiming to ease and scale the dataset
creation process through automation. Another advantage of syn-
thetic trace generation is the ability to log actions for establishing
ground-truth and labeling data.

2.3. State of the art in synthetic trace generation

G€obel et al. (2022) presented an overview of currently available
dataset-synthesis frameworks. Evaluating the published ap-
proaches, the overall idea behind dataset-synthesis frameworks
consists of populating virtual machines with synthetic traces.
Synthetic traces are created by emulation of user actions, with
emulation techniques differing in underlying technology, capabil-
ities and supported operating systems.

Moch and Freiling (2009) introduced a framework named For-
ensig2, producing traces inside Linux-based virtual machines
executing shell commands over the SSH-protocol, whereas the or-
der of execution is controlled by Python scripts.

The framework VMPOP (Park, 2018) uses the VirtualBox
hypervisor, virtualizing Windows machines with preinstalled Vir-
tualBox Guest Additions. Consisting of a software agent running in
the guest, the Guest Additions offer advanced control mechanisms,
which VMPOP utilizes to execute Powershell scripts emulating user
actions.

In a similar manner, the TraceGen framework (Du et al., 2021)
also sets on VirtualBox to run and control guests. Optimizing trace
synthesis capabilities, a Python interpreter is installed inside guest
machines, which can be used for executing custom Python scripts.
Utilizing the Win32-API with the pywinauto Python package,
TraceGen is able to create traces by emulating user actions using the
GUI.

The Hystck framework (G€obel et al., 2020) builds on the KVM-
hypervisor to run virtual machines, implementing a custom agent
written in Python to control the guests. This agent called ”Inter-
action Manager“ allows for executing arbitrary Python scripts
responsible for trace generation, which opens the possibility to
write plugins and use the rich Python ecosystem in the generation
process. To date agents for Windows and Linux are available.

ForTrace (G€obel et al., 2022) is a Python3 rewrite of the Hystck
framework, mainly focusing on Windows 10 guests. At the core,
ForTrace is producing traces the same way as Hystck; guest Ma-
chines run a custom Python agent, able to generate traces through
the execution of Python scripts. Explicitly mentioned is the possi-
bility of executing Powershell scripts for more versatility in trace
creation.

Further listed by G€obel et al. (2022) are two data synthesis tools
not backed by peer-reviewed papers. Similar to VMPOP and
4

TraceGen, the tool ForGeOSI (Krüger, 2014) runs virtual machines
with VirtualBox, employing the VirtualBox guest additions to
control machines and processes inside the guest. Traces are created
by Powershell or Shell command execution in Windows and Linux
environments. The second tool mentioned is named ForGen
(Keighley, 2017), using Puppet to provision virtual machines
executed with VirtualBox. The open-sourced code of ForGen offers
two providers for trace generation, the Puppet Agent and Shell
commands. To date, only software package installation modules
built on Puppet are publicly available.

While also mentioned by G€obel et al. (2022), the ForGe frame-
work and the EviPlant approach do not implement trace synthesis
comparable to the other frameworks. ForGe (Visti et al., 2015) is a
framework for creating NTFS disk images, intended for researching
data-hiding techniques. Disk images are constructed by mounting
NTFS partitions in a Linux host system, then using Python for
distributing files and applying data hiding techniques in the
mounted filesystem. Rather than generating traces, the framework
EviPlant (Scanlon et al., 2017) provides mechanisms for extracting
already created traces and injecting these trace packs into running
virtual machines. This allows for an easier exchange of forensic
datasets, but does not aid in trace synthesis.

3. Emulation of user actions using computer vision

Reviewing the implementation details of already published
trace-generation frameworks (Table 1), we come to the conclusion
that none of the solutions is able to reproduce perfectly realistic
traces in GUI-based operating systems. Only one of the published
frameworks can control the operating system GUI (Du et al., 2021),
and even though GUI control capabilities can be considered as a big
step forward, the chosen proof-of-concept implementation utiliz-
ing theWin32-API has its limits. As an example, Windows provides
multiple ways to create GUI-elements, but the Win32-backend can
only control a subset of them. Hence we infer that existing
emulation techniques can only partly reproduce real-world user
actions, which we expect to result in unrealistic traces.

Furthermore, existing frameworks rely on guest agents to
emulate user actions (Table 1). With great abstraction, user agents
consist of software running inside virtual guest machines. These
agents execute small programs mimicking user actions, thus
generating the desired traces inside the guest. After finishing the
trace population of the guest, the disk images of the guest machines
can be used as training data. In context of forensic dataset syn-
thesis, the usage of guest agents has some disadvantages. The
installation of guest agents pollutes the resulting disk images with
additional software artifacts, while interactions with guest agents
lead to even more unwanted traces, like network traces or script
execution artifacts. Another point to consider is, that the usage of
guest agents raises the bar for supporting multiple operating sys-
tems. Supporting an operating system implies a customized guest
agent with appropriate trace generation features, which may result
in a lot of implementation work. Therefore trace generation
frameworksmainly focus onMicrosoftWindows, some on Linux. To
date, other sytems like MacOS or mobile operating systems are
rather ignored, also mirroring in availability of corresponding
datasets (Gonçalves et al., 2022).

In the following, we propose a solution to overcome the
mentioned disadvantages through hypervisor-assisted, externally
controlled user input generation, combined with computer vision
algorithms for GUI-automation.

3.1. Design choices

Daily users usually interact with computer systems through the



L. Schmidt, S. Kortmann and T. Hupperich Forensic Science International: Digital Investigation 45 (2023) 301557
GUI. So traces created through GUI actions occur commonly and can
be considered to be of great significance for creating realistic
datasets (Moch and Freiling, 2009; Du et al., 2021). At the same
time, the artificial creation of consistent GUI traces is hard to ach-
ieve (Du et al., 2021), caused by the fact that GUI interactions and
side effects create consistent traces in various parts of the operating
system. Replicating consistent traces spread to multiple locations
such as registry hives, plain files and event logs is a challenge. In
particular, because manifestation of traces is seldom known in
advance.

So instead of developing a replication mechanism for side ef-
fects and corresponding traces, this study presents a GUI-
automation solution that can mimic real-world user behavior,
generating perfectly realistic traces.

Our solution focuses on offering improved trace synthesis, ready
for integration in existing dataset-synthesis frameworks. As those
frameworks are commonly implemented in Python, we provide a
Python package to further facilitate integration.

In general, our ambition is to provide an OS-independent solu-
tion and omit the usage of guest agents. We therefore rely on the
QEMU/KVM-hypervisor to run virtual machines, which is custom-
izable and allows fine-grained control using the Qemu Machine
Protocol (QMP).
Snippet 1: Start a browser using GUI-automation.
1 https://docs.opencv.org/4.x/df/dfb/groupGUIautomationect.html.
3.2. Concepts of user action emulation

Human behavior is a loose concatenation of several human ac-
tions. An action can be self-contained, e.g. a click on an icon, or a
compound action consisting of several sub-actions (Du et al., 2021).
Examples include a user opening a website, entering some search
string, and finally conducting a browser session.

GUI-based humanecomputer interaction can be seen as a loop
iterating between two steps (Fig. 1). First, a user recognizes a GUI
element, which signals some state or functionality. In response to
GUI-element identification, the user performs certain input to drive
the user action further, e.g. click a button or enter text. Finally, the
user identifies the next GUI element, repeating the described
behavior until a (compound) action is finished.

With our solution, we aim to replicate human behavior using
software. To achieve this, we provide GUI-element identification
using computer vision algorithms combined with external creation
and control of user input utilizing the hypervisor. That allows for a
virtual replication of user action loops and artificially mimicking
real-world human behavior, without creating any additional traces
inside guest machines.

3.3. GUI-element recognition

Existing GUI-automation solutions can be loosely divided into
two categories. On the one hand, tools that allow for controlling
user input using the OS Application Programming Interface (API).
On the other more capable frameworks incorporating GUI-element
recognition and scriptable execution of subsequent actions. A
prominent example of the second category is SikuliX (Yeh et al.,
2009), which uses OpenCV to identify GUI-elements in
5

screenshots of the running system, followed by the execution of
predefined actions. While having clear advantages in functionality,
SikuliX runs locally, relying on OS-APIs to control user input. Con-
cerning forensic dataset creation, using solutions such as SikuliX
would lead to the creation of unwanted additional traces. Further
constraints can be encountered when creating complex datasets
with multiple systems running in parallel or when populating
systems over a long period of time, which may prove useful for
future use cases of GUI-automation in digital forensics and cyber
security.

This leads us to develop a headless system, a system indepen-
dent of graphical interfaces. Thus, our solution can run on servers
without desktop environment. To the best of our knowledge, we
did not find any evidence of an existing, comparable solution.

Employing the same computer vision algorithms used by Siku-
liX, we use the template matching functionality provided by the
OpenCV framework to identify GUI-elements in screenshots.
Template matching is used to determine the position of a smaller
image, called template, inside a larger image (Fig. 2). The matching
procedure subsequently moves the template, calculating the simi-
larity between the template and the given image section for every
move.

Given that a minimum similarity is reached by at least one
image section, the area with the maximum similarity score can be
considered equal to the template. We use the TM_CCOEFF_NORMED
algorithm1 for template detection (Fig. 3), as we found this algo-
rithm to be sufficiently fast and reliable to emulate human
behavior.

3.4. External emulation of user input

One of the key challenges of trace synthesis frameworks is to
omit traces of itself (G€obel et al., 2022). To avoid any traces of
automation, we chose to generate user input externally, controlled
and emitted from outside of the guest virtual machine. Despite
being a generally favored strategy, also referred to as the gold
standard (Du et al., 2021) for avoiding automation artifacts, we are
not aware of any implementation. So to the best of our knowledge,
our solution is the first enabling external GUI-automation.

We incorporated a QMP client, which runs on the host machine
and can communicate with the QEMU-/KVM-hypervisor to use the
QEMU API (Fig. 4). In this way, we can instruct QEMU to generate
input events of virtualized devices, which results in corresponding
updates of the memory-queues of the emulated HID-USB devices.
Thus controlling attached devices is completely transparent from
within the virtual guest machine. As soon as the input events are
successfully written into the HID-device memory regions, the OS
driver recognizes input from the emulated HID-device similar to
every other HID-device. As a result, no guest agent is needed to
control user input events.

3.5. Combining pieces in the pyautoqemu-package

In order to facilitate the use of the introduced functionality, we
provide a Python package named pyautoqemu. The pyautoqemu-
package wraps our low-level implementation in easy-to-use high-
level APIs, lowering entry barriers and allowing to reuse the
package in dataset-generation frameworks (Fig. 5). To control the
user interface, our API offers two functions using template
matching to identify and determine the coordinates of a chosen GUI
element in a screenshot of the corresponding virtual machine’s
desktop.

https://docs.opencv.org/4.x/df/dfb/groupGUIautomationect.html
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cv_find(template_path) This function returns the coordinates of
the template in a screenshot of the virtual machine’s desktop,
which is useful for determining the coordinates of a GUI-
element.
cv_wait(template_path, seconds) For the provided timespan in
seconds, this function searches for the template to appear on the
virtual machine’s desktop, which is useful for waiting for a state
or event to appear.

Combined with high-level functions for generating user input,
e.g. leftclick(x,y), doubleclick(x,y) and send_keys(keys), the overall
workflow using these functions is rather simple. We can identify
GUI-elements by providing a template, then calling one of the GUI-
recognition functions. Conditional to the output, we can control the
GUI in conducting appropriate user input emulation. At this point, it
is possible to virtually replicate user action loops with pyautoqemu,
finally allowing to emulate realistic human behavior.
Snippet 2: Emulating file creation with Notepad.

4. Synthesizing traces

To evaluate our Computer Vision approach, wewant to compare
the created traces with those generated by other emulation tech-
niques. The performed literature and source code review (Sec. 2)
shows that user action emulation is mostly performed using
Powershell or Python. The TraceGen framework (Du et al., 2021)
stands out, as it is the only framework capable of emulating GUI-
actions. It does so using Python and the pywinauto-package with
Win32-backend. So we decided to emulate user actions with
Powershell and Python, and where applicable use the same GUI-
automation like TraceGen. To maximize comparability, we
execute the same imaginary user scenario for each emulation
technique:

1. Implement the user actions necessary for scenario execution.
2. Populate disk images in executing the user scenario.
3. Extract traces.
4.1. Execution environment

Each emulation variant is used to execute the same imaginary
scenario, running in a virtual machine based on the same initial
disk image. This disk image contains a system running the Win-
dows 11 OS, which we already configured and also comes with
necessary software preinstalled. Regardless of whether the
6

emulation technique needs all software, the disk image contains
the same software for all approaches.

We configured useful settings to ease automation, like AutoLo-
gon, disabling Windows Update or deactivating screensavers. This
ensures virtual machines come up flawlessly each boot cycle.

Using Powershell or Python emulation, we need to initiate and
control the emulation of user actions externally. Being a light-
weight alternative to guest agents of VirtualBox, we choose an SSH
server in the guest machine as the control instance, which can
transfer data to the guest and execute programs within the guest.
Worth to bementioned SSH servers have no access to the GUI of the
Windows OS, so without adjustments pywinauto can not be used to
control the GUI. As a workaround, we call the tool psexec to run the
Python interpreter over SSH, allowing more privileged execution of
Python scripts and access to the graphical environment.We initially
set the default shell to Powershell, so switching the shells for every
SSH command can be avoided.

4.2. Emulated user actions & scenario

Due to the significant amount of possible user actions, we can
only implement a representative subset of actions to reason about
the applicability of our approach and allow a comparison of the
three emulation variants. Actions should preferably be compound
user actions (Du et al., 2021), which consist of multiple steps,
different complexity and GUI interactions. We construct an exem-
plary imaginary scenario, emulating typical user actions whose
traces are interesting to evaluate. The following enumeration de-
scribes the scenario and the high-level implementation.

1. Search session using the Edge browser, searching the term
largest financial institutions on duckduckgo.com.

2. The url https://sqlmap.org is opened using the Edge browser.
3. Download of the file https://github.com/sqlmapproject/sqlmap/

zipball/master.
4. A text file with suspicious content is created using Notepad.
5. The downloaded file sqlmap.zip gets unzipped.
6. The unzipped tool sqlmap gets executed via the CLI using the

destination IP 127.0.0.1.

Technical constraints sometimes led to small differences in
implementation and the resulting emulated behaviour. As these
deviations are relevant for later trace evaluation, we shortly
describe these differences. In recently published research, user
action emulation with Powershell is based on the execution of
Powershell built-in commands and scripts; therefore no GUI-
behaviour emulation takes place. While we tried to automate
GUI-actions when using Python, this was not always possible. In
contrast to our Computer Vision approach, we found the Win32-
backend of pywinauto had no way to control the Edge browser.
This is why we chose to download files via the Python standard
library. Similarly, unpacking archives using the Windows Explorer
was straightforward using Computer Vision, but rather complex
using pywinauto. So we also used the standard library to extract
archives, resulting in different traces.

We execute the scenario in a virtual machine. For each emula-
tion technique, we initially reset the used virtual machine to the
snapshot of the base image, then use the chosen emulation variant
to execute the scenario and save the populated disk image for later
evaluation.

5. Results: Trace Analysis

Evaluating which traces are the most relevant traces to analyze
and compare, we came to the conclusion that it does not provide

http://duckduckgo.com
https://sqlmap.org
https://github.com/sqlmapproject/sqlmap/zipball/master
https://github.com/sqlmapproject/sqlmap/zipball/master


Table 2
Overview - extracted traces.

Parser Computer Vision (CV) Powershell (Ps) Python (Py)

winreg 711 630 675
sqlite 62 13 49
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much value to analyze evident additional traces like installation
artifacts of a Python interpreter or other software packages.
Instead, we focus on evaluation of traces which can considered to
be realistic side effects of user actions, like entries in registry hives,
event logs or prefetch files. To extract traces we use Plaso,2 which is
a Python-based engine used to create timelines based on traces
found in a computer system, for example log files taken from a disk
image. Plaso comes with parsers for many publicly known files and
formats. Apart from usage in incident response and forensic in-
vestigations, Plaso has been used in previous scientific publications
for trace evaluation (Du et al., 2021), which is why we also choose
Plaso. Using Plaso, we explore the following file types in the created
disk images, parse them and store the extracted traces in plaintext
format for later analysis: Windows registry hives (winreg), Object
Linking and Embedding Compound File format files (olecf), sqlite
databases (sqlite), Windows Event Log files (winevtx), link files
(lnk) and prefetch files (prefetch).

5.1. Methodology

To statistically explore the synthesized traces, we conduct a
differential analysis of the previously extracted traces using Python
and Pandas (Fig. 6).3 A differential analysis is a well known research
instrument in digital forensics (Garfinkel et al., 2012). which allows
to compare feature sets in computing the feature delta, showing
any changes between the features. We consider the traces created
through emulated user actions to be our features and the sets of
extracted traces to be our feature sets.

Preparing the data for analysis, we clean the trace sets using the
following steps:

1. Removal of traces without timestamps in every trace set.
2. Removal of duplicate entries equal in timestamp and content for

each trace set.
3. Generate the union of all trace sets, then remove all duplicate

entries in the union.

Cleaning the data in this way ensures all equal traces spread
over the trace sets are cleared, so we can focus on analyzing traces
which are unique for each emulation approach. As a lot of the
extracted traces contain dynamic content like hash values, time
stamps or user IDs, direct comparison is not always feasible. So we
normalize the data in extracting unique identifiers unambiguously
identifying traces and corresponding events for each category, like
tuples of event id and logsource in the Windows Event Log. To
reason about the quality of traces our computer vision approach
creates, we analyze the traces synthesized by each emulation
approach with regard to amount and distribution of traces as well
as automation artifacts. Furthermore, we point out which traces are
only created using computer vision.

5.2. Overview

Initially, we compare the amount of extracted traces split by file
format and trace set. The usage of GUI-automation leads to an in-
crease of created traces (Table 2), where the computer vision
approach creates even more traces compared to GUI-automation
with Python.

This is true except for events in the Windows Event Log, which
may be the case due to automation artifacts (Sec. 5.3).

Plaso provides various parsers for the different file formats,
2 https://plaso.readthedocs.io/en/latest/.
3 https://pandas.pydata.org/.
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allowing to enrich traces with additional information. We use the
output of these parsers to compare the different emulation ap-
proaches with regard to the distribution of generated traces. As we
see in table 3, emulation of GUI-based user actions not only creates
a greater amount of traces, but also results in a greater distribution
of traces.

5.3. Automation artifacts

It is rather obvious, that the installation of automation software
and guest agents produces datasets of lower quality, as disk images
get polluted with unwanted artifacts like executables, libraries and
more files. So we are more interested in additional automation
artifacts the trace synthesis approaches create. In order to analyze
these artifacts hinting to user action emulation, we evaluate which
traces do not come up as part of the computer vision trace set. As a
result, we found no artifacts of automation extracted by the sqlite-,
lnk- and olecf-parsers, but traces in the event log, in the registry
and in prefetch files strongly indicate usage of automation solutions
in the Powershell- and Python-generated images (Tables 4, 5 and
6).

A lot of event log entries in the audit log correspond to remote
logins, hinting to the execution of emulated user actions using the
SSH protocol. As we configured Powershell to be the default login
shell, remote logins lead to Powershell artifacts alsowhen using the
Python emulation approach. The traces found in the prefetch files
also refer to emulation, as the execution of Python, Powershell,
Psexec and SSH/SFTP show.

5.4. More realistic traces using computer vision

Both GUI-interaction approaches generate more widely
distributed traces (Table 3) compared to the Powershell trace set.
Browser operations result in a greater amount of cached pages and
saved cookies, Windows Timeline artifacts in the registry contain
traces of executed programs, and traces of file usage can be found in
link files, OLECF files (AutomaticDestinations) and registry keys
(MostRecentlyUsed). To evaluate in which way the usage of our
computer vision approach result in even more realistic traces, we
explore which traces are created when only using computer vision.

The contents extracted by the Plaso parsers show (Table 3), that
the usage of our computer vision approach results in the creation of
unique traces. The registry keys parsed with the winreg/userassist
parser prove execution of programs via the GUI (Table 7), addi-
tionally documenting which programs were executed in using the
Windows Task Bar. As those traces only show up in the computer
vision trace set, we conclude that UserAssist entries can also be
used as a proof of manual program execution. Moreover, we think
those traces can be considered to be a good indicator for human-
like interactions on a system, as automation solutions rarely run
programs by clicking on items in the Task Bar, Quick Launch Menu
or Start Menu.

In a similar manner, the results of the winreg/window-
s_typed_urls registry parser prove that typed input happened in the
olecf 33 e 9
winevtx 954 844 1066
prefetch 69 53 68
lnk 6 e 2

https://plaso.readthedocs.io/en/latest/
https://pandas.pydata.org/


Table 3
Distribution of GUI-Traces.

Parser CV Ps Py

olecf/olecf_automatic_destinations 8 e 3
olecf/olecf_automatic_destinations/lnk 14 e 2
olecf/olecf_automatic_destinations/lnk/shell_items 8 e 1
olecf/olecf_default 3 e 3
sqlite/chrome_27_history 18 1 15
sqlite/chrome_66_cookies 50 13 50
sqlite/windows_timeline 9 e 5
winreg/amcache 1 1 2
winreg/mrulistex_shell_item_list 2 e e

winreg/mrulistex_string 4 e 4
winreg/mrulistex_string_and_shell_item 4 e 3
winreg/mrulistex_string_and_shell_item_list 1 e e

winreg/userassist 8 e e

winreg/windows_typed_urls 1 e e

Table 4
Traces of automation - event log.

Event ID Event Log Source CV Ps Py

400/0x0190 PowerShell e 7 8
403/0x0193 PowerShell e 7 6
40961/0xa001 Microsoft-Windows-PowerShell e 7 8
40962/0xa002 Microsoft-Windows-PowerShell e 7 8
4097/0x1001 Microsoft-Windows-CAPI2 e e 1
4103/0x1007 Microsoft-Windows-PowerShell e 2 e

4634/0x121a Microsoft-Windows-Security-Auditing e 4 12
4717/0x126d Microsoft-Windows-Security-Auditing e 2 2
4718/0x126e Microsoft-Windows-Security-Auditing e 2 2
53504/0xd100 Microsoft-Windows-PowerShell e 7 8
600/0x0258 PowerShell e 42 48
7045/0x1b85 Service e e 6
800/0x0320 PowerShell e 2 e

Table 5
Traces of automation - registry keys.

Parser CV Ps Py

HKLMnSecuritynPolicynAccountsndefault e 1 1
HKLMnSecuritynRXACTndefault e 1 1
AMCACHE - PSEXESVC.exe e e 1

Table 6
Traces of automation - prefetch files.

Process CV Ps Py

POWERSHELL.EXE e 2 3
PSEXEC.EXE e e 1
PSEXESVC.EXE e e 3
SFTP-SERVER.EXE e e 2
SSHD.EXE e 2 2
PYTHON.EXE 1 1 4

Table 7
Computer Vision - winreg/userassist

Executed Program

%APPDATA%nMicrosoftnInternet ExplorernQuick LaunchnUser PinnednTaskBarn
%APPDATA%nMicrosoftnInternet ExplorernQuick LaunchnUser PinnednTaskBarn
%APPDATA%nMicrosoftnWindowsnStart MenunProgramsnSystem ToolsnComma
MSEdge
Microsoft.Windows.Explorer
Microsoft.WindowsNotepad_8wekyb3d8bbwe!App
nProgram FilesnWindowsApps nMicrosoft.WindowsNotepad _10.2103.6.0_x64
nWindowsnSystem32ncmd.exe

Table 8
Computer Vision - winreg/windows_typed_urls

Program Value CV

Explorer C:nUsersnwinnsqlmap.zip 1
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Windows Explorer (Table 8), in this case typing the path of the
sqlmap.zip file.

We further explored which traces are not supported by Plaso
parsers, but are nonetheless part of the computer vision trace set.
We identified unique traces in the Windows Registry (Table 9), and
manually examined the content to filter out those with forensic
value.

As a result, we found the AppCompatFlags registry key to contain
traces of program execution, in our case the execution of Micro-
soft’s Edge browser. Moreover, the CloudStore registry key contains
a lot of user configuration settings. The subkeys related to win-
dows.data.unifiedtile.localstartvolatiletilepropertiesmap seem to hold
current settings of the Windows Start Menu, including traces of file
usage and run programs. In our computer vision trace set, the
registry key contains traces which indicate the execution of
Notepad andWindows Explorer as well as recently used files. Saved
in a binary format not fully known to us, we suppose the key may
hold additional forensic value.

Other registry keys of forensic value are those found as child
keys of
HKCUnSoftwarenMicrosoftnWindowsnCurrentVersionnExplorer (Table
10), which may contain further traces about the usage of files and
programs. In our case, the FeatureUsagenAppLaunch subkey also
hints at the execution of the Microsoft Edge browser.

In contrast to the analysis of the Windows Registry, analysing
the Windows Event Log led to no unique traces of forensic value.
Similarly, we found no unique traces of notable forensic content to
be extracted from the other file formats.
6. Evaluation and discussion

As discussed previously, the quality of research outcomes, the
successful education of forensic practitioners as well as the devel-
opment of forensic tooling depends on how realistic underlying
training datasets are. At the same time, the forensic community
suffers limited availability of appropriate datasets, also known as
the dataset gap problem. To overcome this challenge, previous
work proposed to artificially create appropriate datasets by repli-
cating real-world evidence. In general, those datasets are created by
synthesizing traces in disk images utilizing user action emulation.
Earlier studies presented different approaches for trace synthesis.
However, we reasoned that common approaches provide inaccu-
rate user action emulation, resulting in traces differing from those
created by real-world user actions. It is important to reiterate even
CV

File Explorer.lnk 1
Microsoft Edge.lnk 1
nd Prompt.lnk 1

1
1
1

__8wekyb3d8bbwe nNotepadnNotepad.exe 1
1



Table 9
Computer vision - unique registry keys.

Registry Key CV

HKCUnSoftwarenMicrosoftnWindows NTnCurrentVersionn
AppCompatFlagsnCompatibility AssistantnStore

1

HKCUnSoftwarenMicrosoftn
WindowsnCurrentVersionnCloudStorenStorenCachen
DefaultAccountn$de${SID}$$windows.data.
unifiedtile.localstartvolatiletile
propertiesmapnCurrentnData

1

Table 10
Computer vision - explorer registry keys.

Registry Key CV

nExtractionWizardnShowFiles 1
nFeatureUsagenAppLaunchnMSEdge 1
nWallpapersnBackgroundHistoryPath0 1

4 https://wiwi-gitlab.uni-muenster.de/itsecurity/pyautoqemu.
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partly unrealistic traces negatively affect outcomes when used in
research or for educational purpose. Sowith this work, we intended
to improve trace synthesis by introducing a novel way of GUI-
automation. Combining hypervisor features and computer vision
algorithms to perform user action emulation, we developed a so-
lution to replicate human-like user actions and synthesize truly
realistic traces.

In this study, we showed that our solution was able to create
more realistic traces than common approaches and may refine the
quality of datasets in digital forensics. As groundwork for evalua-
tion, we compared the resulting traces of our computer vision
approach to those created by using Powershell or Python (Sec. 5). In
line with the expectations of previous studies (Moch and Freiling,
2009; Du et al., 2021), we can observe that the usage of GUI auto-
mation creates a greater amount and more diversified traces. This
holds to be true when using Python for GUI-automation, but we see
these effects are even increased using our computer vision
approach. Interpreting amount and distribution of traces as mea-
sures for realism of traces, we see this as a strong indicator for
providing more realistic trace synthesis. Further evidence for this
can be found in the creation of unique traces, proving human-like
GUI interactions took place. These traces were only generated us-
ing our computer vision approach, providing realistic traces un-
achieved by other approaches. As we only implemented a small
subset of user actions, we expect these effects to grow even further,
the more actions we emulate for dataset synthesis. Complemen-
tary, the absence of traces in the Powershell- and Python-generated
trace sets may be considered an artifact on its own, proving a rather
unrealistic system usage without GUI interactions.

In contrast to other approaches, we can see that our computer
vision solution beneficially omits the creation of traces hinting to
automation. Similar to the incorporation of realistic traces, avoid-
ance of automation artifacts results in higher-quality datasets,
which is a further advantage. One may argue that other emulation
variants may achieve the same, as occurring automation artifacts
strongly depend on the emulation techniques brought to action.
Nevertheless, we see the traces created in the context of emulation
as exemplary, clarifying that avoidance of automation artifacts is
hard to achieve when using in-system automation approaches. In
conclusion, deploying other automation backends such as Sele-
nium, Windows UI Automation or the usage of other guest agents
would presumably lead to a similar amount of automation artifacts.

After providing the initial implementation, we found GUI-
automation using computer vision surprisingly easy to handle.
Emulating user actions mainly consists of taking screenshots of
9

GUI-elements as templates, then emulating user input with a few
lines of easy-to-understand code. We claim our computer vision
approach is not only easier to use, but can emulate more actions
than common API-based emulation. Our assumption is based on
the fact that not all programs can be controlled by APIs, which can
result in fundamental obstacles using current approaches. Using
computer vision, we do not rely on any system APIs, and can even
react to events that GUI-changes notify.

This way, our proposed solution offers away to synthesize traces
for all virtualizable GUI-based operating systems: e.g. MacOS,
Linux, Windows and especially mobile operating systems, which
are to date not supported by any of the existing trace synthesis
frameworks (Gonçalves et al., 2022).

An apparent limitation of our method lies in the treatment of
GUI-updates, as often introduced as part of software updates. Mi-
nor changesmay not negatively influence the implemented actions,
but as soon as GUI-changes become strongly visible, new templates
for every action have to be provided. Even though the emulation of
user actions becomes easier to handle using computer vision, there
is still manual work required.

While we can emulate user actions and dynamically provide
user input, there is currently no way to recognize successfully
emulated actions. Of no consequence in our setting, this may affect
long-term dataset creation, as undetected emulation failures could
lead to useless datasets. It is not possible to read or interpret any
textual output appearing as part of GUI-elements, limiting flexi-
bility in the emulation of user actions. As both features would be
helpful in long-running scenarios, they may be implemented in
future releases.

It is important to highlight the fact that user action emulation
may solve the problem of creating realistic datasets, but dataset
exchange can still be narrowed down due to copyright restrictions
of software contained in disk images. A solution to this would be to
create and exchange evidence packs, as presented by Scanlon et al.
(2017).

7. Conclusion

Digital forensics still faces a dataset gap problem (Gonçalves
et al., 2022), negatively affecting research, education, and practi-
tioner work due to insufficient training data.While prior work tried
to overcome this challenge by synthesizing datasets, realistic traces
of high quality are difficult to create and low quality affects further
research. To tackle this issue, we introduced a novel way of user
action emulation, optimizing the quality of synthetic datasets. By
combining hypervisor features with computer vision algorithms,
we have demonstrated that realistic user action emulation can be
achieved. We have shown that our approach results in realistic
trace synthesis, measurable in the amount and distribution of
created traces and the absence of automation artifacts. Providing a
way to populate datasets with realistic traces, we expect our pro-
posed solution may be able to refine the quality of datasets used in
forensics research and education.

To further validate this promising approach in larger settings
and in long-running, automated data synthesis, our computer
vision approach could be integrated into existing dataset-synthesis
frameworks, combining the advantages of different solutions. In
order to ease integration, we provide an open-source framework
written in Python, available as pyautoqemu-package,4 encouraging
and empowering future work in the field.

In order to produce the most realistic results, the synthesis of
datasets should take into account sociological and criminological

https://wiwi-gitlab.uni-muenster.de/itsecurity/pyautoqemu


L. Schmidt, S. Kortmann and T. Hupperich Forensic Science International: Digital Investigation 45 (2023) 301557
facets as well as true-to-life settings. It would be useful to explore
in which way these characteristics mirror in digital evidence, and
then transfer the results to synthetic data creation. This may
include future studies on typical user behavior and device usage,
e.g. to answer how emulated user actions should get chained
together to create realistic scenarios.
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