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General Article

Researchers frequently use the responses of individuals 
in clusters to measure constructs at the cluster level. For 
example, student evaluations may be used to measure 
the teaching quality of instructors, patient reports may 
be used to evaluate social skills of therapists, and resi-
dents’ ratings may be used to evaluate neighborhood 
safety. In these three examples, the target construct is 
something that (in theory) varies only at the cluster level; 
the individuals within one cluster all share the same 
instructor, therapist, or neighborhood.

A contrasting type of cluster-level constructs can be 
defined as constructs that theoretically differ across indi-
viduals within the same cluster. Examples are reading 
skills of students in a classroom, depressive symptoms 
of individual patients of a therapist, and number of years 

that individuals live in a particular neighborhood. 
Although the target construct here is defined at the indi-
vidual level, it is quite likely that the averages across 
clusters will also vary because of cluster-level factors. For 
instance, the average reading skills of students in differ-
ent classrooms may differ because of differences of 
teaching styles across classrooms, the average amount of 
depressive symptoms of patients may differ across thera-
pists because of differences in therapists’ approaches, 
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and some neighborhoods may have a higher turnaround 
of residence than other neighborhoods because of dif-
ferences in local council policies and amenities.

When multiple items are used to measure cluster-level 
constructs with individual-level responses, multilevel 
confirmatory factor models are useful (Muthén, 1989, 
1994). These models allow for the evaluation of the factor 
structure at the cluster level (modeling the variances or 
covariances among item means across clusters) and at 
the individual level (modeling the variances or covari-
ances across individuals within clusters). How to model 
constructs across levels is still an active area of research 
(Bardach et al., 2020; Jak & Jorgensen, 2017; Morin et al., 
2022; Stapleton et al., 2016; Stapleton & Johnson, 2019) 
in which competing methods are available to capture 
what can be interpreted as a valid representation of cluster- 
level phenomena. Moreover, the terminology used for 
the cluster-level constructs in such models varies across 
researchers (see Table 1 in the following section).

In this article, we therefore provide a comprehensive 
framework for classifying and modeling cluster-level con-
structs that are operationalized through individual-level 
responses. We start with an overview of different terminol-
ogy used for multilevel constructs, and we classify these 
constructs based on whether (a) the target of measurement 
is at the cluster level or the individual level and (b) the 
construct requires a measurement model. Next, we discuss 
various two-level factor models that have been proposed 
for multilevel constructs that require a measurement 
model, and we show that the so-called doubly latent 
model with cross-level invariance of factor loadings is 
appropriate for all types of constructs that require a mea-
surement model. We provide two illustrations using empir-
ical data from students and from organizational teams and 
end with a reflection on some issues related to modeling 
cluster-level constructs with individual-level responses.

Terminology for Cluster-Level Constructs

As indicated in the introduction, one can differentiate 
between (a) cluster-level constructs that target a cluster-
level attribute that is shared among the individuals within 
a cluster and (b) constructs that target an individual attri-
bute, which can be decomposed into individual- and 
cluster-level components. Moreover, one can think of 
constructs that are easily observable or directly measur-
able, in contrast with latent constructs that are only indi-
rectly observable so that they need a measurement 
model. Crossing these two factors leads to four types of 
constructs. For ease of discussion, we use the example 
setting of students who are nested within classrooms and 
who share one teacher per classroom. In this example, 
one can imagine cluster-level constructs that are easy to 
observe or directly measure, such as a teacher’s years of 

teaching experience or the percentage of boys in the 
classroom, and constructs that are harder to operational-
ize, such as teaching skills of the teacher and average 
student achievement in the class. The fourth column in 
Table 1 provides an overview of the labels that research-
ers have used to refer to these four example constructs. 
We discuss these types one by one.

Targeting the cluster and no measurement 
model is required: global constructs

Years of teaching experience (see first row of Table 1) 
is a cluster-level construct that targets the cluster and is 
objectively quantifiable. One can directly ask the teacher, 
who is in the best position to provide an accurate mea-
sure of this construct. For these types of objective con-
structs, it would not be sensible to ask all the students 
to report on this variable, nor would it be necessary to 
use multiple items to operationalize the construct (i.e., 
no measurement model is required). Constructs such as 
years of experience, gender, or age of the teacher would 
be considered “global constructs” by Klein and Kozlowski 
(2000). They defined global constructs as follows (using 
the term “unit” where we use “cluster”):

Global constructs pertain to the relatively objective, 
descriptive, easily observable characteristics of a 
unit that originate at the unit level. Global unit 
properties do not originate in individuals’ percep-
tions, experiences, attitudes, demographics, behav-
iors or interactions, but are a property of the unit 
as a whole. (p. 29)

These authors also stressed that within-clusters vari-
ability should not exist for global constructs:

There is no possibility of within-units variation 
because lower-level properties are irrelevant; indeed, 
any within-units variation is most likely the result of 
a procedure that uses lower-level units to measure 
the global property. If, for example, group members 
disagree about the size of their group, someone has 
simply miscounted. Unit size has an objective stand-
ing apart from members’ characteristics or social-
psychological processes. In contrast, “perceived 
group membership” is an entirely different type of 
construct. (Klein & Kozlowski, 2000, p. 30)

In global constructs, there should thus not be any 
variation at the individual level. If responses are gath-
ered at the cluster level (which is to be expected), there 
is no variation possible at the individual level. If 
responses are gathered through individuals, the variation 
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at the individual level must be measurement error. 
Because one does not need a measurement model for 
global constructs, we do not discuss the modeling of 
global constructs in this article.

Targeting the cluster and a measurement 
model is required: shared constructs

Teaching quality is an example of a construct that targets 
the cluster level but is not directly quantifiable (see 
second row in Table 1). Teaching quality could, for 
example, be measured through students’ ratings of their 
teachers using multiple items. The literature uses the 
term “shared” when a cluster-level characteristic is oper-
ationalized by asking individuals to report on the cluster-
level construct. The definition of shared constructs is a 
bit ambiguous because some authors use this terminol-
ogy for constructs that could also be considered global 
constructs. That is, some authors use the term “shared” 
for constructs that theoretically exclude the possibility 
of within-clusters variation, whereas other authors  
refer to shared constructs as constructs for which within-
clusters variation can be expected. Because these differ-
ences in the definition of shared constructs have 
consequences for the type of statistical models that 

would be appropriate, we discuss the different positions 
on within-clusters variation below.

Position 1: within-clusters variation 
should not exist for shared constructs

Bliese (2000) considered a construct to be shared only 
if there is complete within-clusters agreement. For a 
shared construct, the individual responses to the items 
should be interchangeable with perfect (interrater) reli-
ability (IRR). In other words, for such a measure to be 
valid, individuals within a cluster should respond in an 
identical way. In the example of teaching quality, accord-
ing to this position, all students rating the same teacher 
would completely agree about the teaching quality. 
Stapleton et  al. (2016) adhered to this definition and 
stated that “there should be minimal variability found at 
the within-cluster level for a truly shared construct”  
(p. 492). These authors mentioned that criteria (e.g., high 
IRR) can be used to decide whether a construct can be 
considered shared. So their definition of shared con-
structs pertains to objective cluster properties about 
which all individuals in a cluster should theoretically 
give the same responses (when the measurements used 
are valid). If individuals do not agree, the construct is 

Table 1.  Overview of Four Theoretically Different Types of Cluster-Level Constructs and Their Characteristics

Target of 
measurement

Measurement 
model 

needed? Example Terminology

Theoretical 
variation 

possible at

Source of 
cluster-level 

variation
Source of individual-

level variation

Cluster No Years of 
experience 
of teacher

Global 
constructa

Truly-shared 
constructb,c

True level-two 
measured

Cluster level 
only

Construct 
under study

None

  Yes Student ratings 
of teacher 
quality

Shared 
constructa

Not-truly shared 
constructb,c

Climate constructd

Reflective 
constructe

Cluster and 
individual 
levels

Shared 
perceptions 
of construct 
under study

Individual differences 
in experiences, 
attitudes, 
perceptions, 
values, cognitions 
about cluster-level 
construct

Individual No % of boys in a 
classroom

Configural 
constructa

Cluster and 
individual 
levels

Aggregate of 
individual-
level 
construct

Individual differences 
in construct

  Yes Class average 
of students’ 
achievement

Configural 
constructa,c

Contextual 
constructd

Formative 
constructe

Cluster and 
individual 
levels

Aggregate of 
individual-
level 
construct

Individual differences 
in construct

Note: Terms in bold are the terminology used in this article for this type of construct.
aKlein and Kozlowski (2000). bBliese (2000). cStapleton et al. (2016). dMarsh et al. (2012). eLüdtke et al. (2008).
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not “truly” shared (at least, measurements are not 
composed only of the truly shared factor), and Bliese 
and Stapleton et al. argued that it is questionable whether 
the construct can be considered a shared one. The strict 
definition of shared constructs by Bliese and Stapleton 
et al.—which involves no variability in the responses at 
the within-clusters level—actually corresponds to the 
definition of global constructs by Klein and Kozlowski 
(2000). Thus, Bliese and Stapleton et al. did not make a 
distinction between global and shared constructs, 
whereas Klein and Kozlowski did.

Position 2: within-clusters variation 
can exist for shared constructs

Klein and Kozlowski (2000) defined shared constructs 
as constructs that are shared by the members of a cluster 
and for which there should be some level of within-
clusters agreement among cluster members. Shared con-
structs originate from the individual cluster members’ 
experiences, attitudes, perceptions, values, cognitions, 
or behaviors and converge among cluster members. 
Klein and Kozlowski mentioned organizational climate, 
collective efficacy, and group norms as examples. 
According to this definition, shared constructs are thus 
constructs that target the cluster, for which ratings of the 
individuals in the cluster may differ. Given evidence of 
adequate agreement within clusters (e.g., high IRR), the 
aggregate value of the measure can be assigned to the 
cluster. This way, effectively, the shared perceptions of 
individuals in a cluster are interpreted as a proxy for the 
cluster-level attribute.

In the context of educational research, Marsh et al. 
(2012) introduced the term “climate constructs” for 
shared constructs. These authors acknowledged that 
although in a school context all students within the same 
class may be rating the same classroom climate, there 
may still be systematic differences among the ratings by 
students within each class:

From this perspective, classroom climate is based 
on the shared perceptions among different students 
within the same class, whereas differences among 
students within the same class (residual L1 [i.e., 
individual-level] differences after controlling for 
shared agreement) are a source of unreliability in 
the L2 [i.e., cluster-level] climate construct. This is 
not to say that there are no systematic individual 
differences among the ratings by L1 students within 
each class, but merely that these individual differ-
ences do not reflect the L2 classroom climate of 
interest (i.e., the shared agreement among students 
from the same class). This point was made in the 
classic 1976 article by Cronbach, who noted that 
studying individual differences in the perceptions 

of different students within the same classroom 
might be interesting but does not reflect classroom 
climate. From this conceptual perspective, it fol-
lows that if there is no agreement among students 
within the same class in relation to the classroom 
climate variable, then the aggregated measure of 
climate is completely unreliable and probably 
should not be considered further. (p. 110)

From this perspective, the more agreement there is 
within the clusters, the more reliably the shared construct 
is measured, but the agreement does not have to be 
perfect (as would be the case for global constructs).

Definitions and terminology used  
in this article

We adhere to the position stating that shared constructs 
are likely to show variation at the individual level. The 
individual-level variation represents the differences in 
individual cluster members’ experiences, attitudes, per-
ceptions, values, cognitions, or behaviors. In the remain-
der of this article, we adhere to the definitions of global 
and shared constructs as proposed by Klein and 
Kozlowski (2000).

Targeting the individual:  
configural constructs

The proportion of boys in a classroom is an example of 
a cluster-level construct that targets the individual and 
for which one would not need a measurement model 
(see third row in Table 1). Although one needs individual 
information to be able to aggregate the individual scores 
to the cluster level, it is not necessary to obtain that 
information from the individuals themselves. For exam-
ple, the school administration can provide information 
about the proportion of boys in each classroom. Individual- 
level variation in such configural constructs likely exists, 
reflecting within-clusters differences in the construct of 
interest. Because one does not need a measurement 
model for directly quantifiable configural constructs, we 
do not further consider these types of constructs in this 
article, reserving the term “configural construct” to the 
type explained in the next section (i.e., not directly quan-
tifiable constructs that target the individual).

The average mathematical achievement of students in 
a classroom or the average job satisfaction in organiza-
tional teams are examples of cluster-level constructs that 
target the individual and that are not directly quantifiable 
(see last row of Table 1). Researchers will operationalize 
such constructs using multiple indicators. Configural 
constructs that are measured with multiple indicators, 
so that they need a measurement model, are also referred 
to as “contextual constructs” (Marsh et  al., 2012) or 
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“formative constructs” (Lüdtke et  al., 2008). Stapleton 
et al. (2016) defined configural constructs as constructs 
based on an aggregate of the measurements of individu-
als who comprise the cluster. This matches the configural 
construct as defined by Klein and Kozlowski (2000), who 
stated that configural properties capture the array, pat-
tern, or configuration of individuals’ characteristics 
within a unit. The configural constructs are often based 
on the cluster averages, but configural constructs can 
also be represented by other quantities, such as the 
dispersion (standard deviation), minimum, maximum, or 
median values of the individuals in the cluster.

In this respect, the contextual constructs in the exam-
ples provided by Marsh et al. (2012) represent a specific 
type of configural construct, that is, a configural con-
struct that is formed using the cluster averages of indi-
vidual responses in which the target of the measurement 
is the individual. Stapleton et al. (2016) described model-
ing cluster differences in dispersion and in means, but 
Stapleton and Johnson (2019) later focused only on clus-
ter averages of individuals, similar to Marsh et al. (2012). 
In this article, we too focus only on using cluster aver-
ages to represent configural cluster-level constructs. 
Configural constructs are likely (and intended) to show 
variation at the individual level. The individual-level 
variation represents the individual cluster members’ dif-
ferences on the construct of interest, and the cluster-
level component is merely an aggregate that captures 
average between-clusters differences.

Other terms for configural and shared 
constructs

In the terminology of Marsh et al. (2012), the difference 
between climate or contextual constructs is dictated by 
the item referent. If the referent of the item is the indi-
vidual (e.g., “I like going to school”), then the cluster 
aggregate represents a contextual (i.e., configural) con-
struct. If the referent of the item is the cluster (e.g., “My 
school is fun to go to”), then the cluster aggregate rep-
resents a climate (i.e., shared) construct.

Lüdtke et al. (2008) referred to configural constructs 
as formative constructs. The terms “formative” and 
“reflective” used by Lüdtke et al. are based on the con-
cept of formative and reflective indicators of constructs 
(see Bollen & Diamantopoulos, 2017; Diamantopoulos 
& Siguaw, 2006; Edwards & Bagozzi, 2000). With reflec-
tive indicators, one single latent variable is assumed to 
cause the item responses, similar to how a shared cluster 
construct (e.g., how fun a school is to attend) causes 
the responses of the individuals in the cluster. With 
formative indicators, the item responses together form 
or cause the construct, similar to how responses of indi-
viduals (e.g., how much they like going to school) in a 
cluster can comprise a formative cluster-level construct 
(e.g., the average amount of enjoyment students in a 
school experience). Figure 1 shows a conceptual graphi-
cal display of the two types of aggregation processes 
described by Lüdtke et al. In the remainder of the article, 

Shared Construct Configural Construct

a b

Fig. 1.  Conceptual depiction of the relationship between the cluster-level construct and the individuals in the cluster for (a) shared con-
structs and (b) configural constructs. Given the similarity to the relation of items and latent variables in a reflective measurement model and 
formative model (see Edwards & Bagozzi, 2000), shared constructs are also denoted as “reflective constructs,” and configural constructs are 
also denoted as “formative constructs” (Lüdtke et al., 2008).
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we use the term “configural constructs” to refer to forma-
tive or contextual constructs. The term “configural” is 
also used in the measurement-invariance literature, in 
which a “configural model” refers to a model in which 
the pattern of free and fixed factor loadings is equal 
across groups (Horn et al., 1983). The meaning of “con-
figural” in that context has nothing to do with the con-
figural constructs as defined by Klein and Kozlowski 
(2000). To avoid confusion, we refer only to configural 
constructs and not to configural models.

Constructs that are not easily classified 
as configural or shared

So far, we have distinguished two types of cluster-level 
constructs that require a measurement model: shared 
constructs that target a cluster-level attribute and con-
figural constructs that target an individual-level attri-
bute. However, it may not always be possible to directly 
classify constructs as either configural or shared. Klein 
and Kozlowski (2000) illustrated a gray area in between 
shared and configural constructs using an example of 
leadership research, in which there is debate on whether 
perceptions of a team leader can be shared among team 
members. Some scholars have suggested that a leader 
is likely to treat his or her subordinates in a similar way, 
whereas other researchers have countered that team 
leaders are likely to adjust their behavior to the specific 
team member they are interacting with (e.g., Henderson 
et al., 2009). For example, the team leader may be more 
friendly to more productive team members or more 
considerate to newer team members. In the latter cases, 
although the referent in an item may be the team leader, 
the individual perceptions may not truly tap into exactly 
the same cluster-level attribute. Similar processes may 
play a role when students report on behavior of teach-
ers; the teacher may show different behavior to different 
students by adapting to their individual needs.

Using the item referent seems a natural way of defining 
constructs as being either shared or configural. However, 
in practice, one may encounter scales that consist of items 
that vary with respect to the target of measurement. For 
example, the Engaging Teaching scale from the Trends in 
International Mathematics and Science Study (TIMSS) 2015 
data set consists of six items, of which five refer to the 
teacher (e.g., “My teacher is easy to understand”) and one 
refers to the individual: “I know what my teacher expects.” 
This scale was used as representing the measurement of 
a shared construct in Stapleton and Johnson (2019).

Such examples illustrate that it may not always be 
evident whether a construct should be viewed as shared 
or configural. Lüdtke et al. (2008) indicated that although 
their research was focused on shared and configural con-
structs (respectively, formative and reflective constructs 

in their terminology), these two types of constructs may 
actually represent opposite ends of a continuum. In prac-
tice, with data on multiple items rated by multiple cluster 
members, it is quite likely that constructs should be 
placed somewhere in the middle of the continuum from 
shared to configural. That is, for shared constructs, the 
individual perceptions of the cluster-level property will 
likely vary across cluster members. Even for an item such 
as “My school is fun to go to,” a response provided by a 
student in a school will reflect that student’s perception 
of the school. An item in which the referent is the indi-
vidual, such as “I have fun at school,” is unlikely to tap 
into a very different construct. The empirical effects of 
changing the item referent could be evaluated by gather-
ing data based on two versions of items, one referring 
to the individual and one referring to the cluster (Keyton, 
1991; Kirkman et al., 2001; Van Mierlo et al., 2009).

For configural constructs, in which the aggregate of 
the individual attributes differs across clusters, one may 
also argue that the actual cause of the cluster-level vari-
ance in the individual attributes is some cluster-level 
property. For example, one might be measuring students’ 
mathematical achievement (clearly an individual-level 
construct) and find significant variance in the average 
mathematical achievement across classrooms. Possible 
causes of these differences can be classes having teach-
ers who use different methods or have varying experi-
ence. If the cluster-level factor indirectly reflects such 
cluster-level properties, one would place the construct 
more to the middle than purely configural constructs on 
the continuum.

Suitability of using intraclass 
correlations to classify constructs

In practice, researchers sometimes use statistical criteria 
such as values of intraclass correlations (ICCs; Bliese, 
2000) to decide whether a construct can be considered 
shared. We do not think this is always appropriate. If a 
scale is designed to target a cluster-level construct, 
researchers may indeed hope that the majority of varia-
tion in the observed individual responses may exist at 
the cluster level rather than the individual level. In other 
words, one might hope that the IRR of the individuals 
rating the cluster construct is high. However, the ICC 
can also be relatively high for a configural construct. 
Consider, for example, students’ socioeconomic status 
(SES). School populations can be very segregated on 
SES, leading to a large amount of variance at the school 
level (i.e., a large ICC). Thus, configural constructs may 
(however seldom) show higher proportions of cluster-
level variance than shared constructs. Therefore, the ICC 
would not be an appropriate measure to classify con-
structs as shared or configural.
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In the following sections, we illustrate that there is 
no need to specify different statistical models to repre-
sent a cluster-level construct as shared or configural and 
discuss how the ICCs can be interpreted instead. Similar 
to standard single-level factor analysis, the labeling and 
theoretical status of a latent variable should be based 
on theory, not on statistics. It is up to the researcher to 
determine how the common item variance at the cluster 
level can be interpreted and, therefore, what the theo-
retical status of the cluster-level constructs (measured 
through individual responses) is.

Measurement Models for Cluster-Level 
Constructs With Individual-Level Data

Both shared and configural constructs are cluster-level 
constructs that are measured through individual-level 
responses and that require a measurement model. So 
far, we have discussed the shared and configural con-
structs separately. However, in this section, we show that 
from a statistical-modeling perspective, it is irrelevant 
whether a construct is thought to be shared or configural 
because the same statistical model can apply. Still, on 
the basis of the different definitions of configural, shared, 
and global constructs, several measurement models have 
been proposed to model cluster-level constructs with 
individual responses. In the next section, we therefore 
begin with a detailed explanation of the different pro-
posed measurement models for cluster-level constructs 
that are operationalized by administering multiple items 
to the individuals in the cluster.

What all these methods have in common is that they 
account for the two-level structure in the data—originat-
ing from the individuals nested in clusters—using a mul-
tilevel extension of structural equation modeling (SEM). 
With multilevel modeling, an observation on variable y 
for individual i in cluster j can be decomposed into a 
cluster component y yj j

( )B = , representing the (latent) 
cluster mean on the variable, and an individual compo-
nent, y y yij ij j

( )W = − , representing an individual’s devia-
tion from the cluster mean. The cluster component y j

( )B  
reflects an unobserved cluster mean that takes the unreli-
ability of the cluster mean (sampling error at the cluster 
level) into account (Lüdtke et al., 2008). Using the cluster 
means of the observed variables directly would not take 
sampling error into account because cluster means 
obtained from few individuals from actually large clus-
ters would be regarded equally informative as cluster 
means obtained from a large proportion of individuals 
from large clusters.

SEM can account for measurement error in observa-
tions by incorporating a measurement model with mul-
tiple indicators y of a construct. In the multilevel 
extension of SEM (Muthén, 1989, 1994; Schmidt, 1969), 

each individual item score in the vector yij can be simi-
larly decomposed into independent individual and clus-
ter components. The covariance matrix of the individual 
components yij

( )W  is denoted ΣW, and the covariance 
matrix of the cluster components y j

( )B  is denoted ΣB. That 
is, the total covariance matrix ΣT  is decomposed into 
two orthogonal covariance matrices:

Σ Σ ΣT W B= + .

With two-level SEM, one can fit factor models to 
explain the covariances at the individual and cluster 
levels. See Hox et al. (2017) for an introduction to two-
level factor models.

Measurement models proposed  
for configural constructs

Stapleton et al. (2016) explained that for configural con-
structs, the appropriate factor model is a two-level model 
with cross-level equality constraints on the factor load-
ings. The cross-level invariance of factor loadings is nec-
essary to interpret the individual- and cluster-level 
common factors as reflecting the individual- and cluster-
level components of the same construct (Asparouhov & 
Muthén, 2012; Hox et al., 2017; Kim et al., 2016; Lüdtke 
et al., 2011; Mehta & Neale, 2005; Muthén, 1990; Rabe-
Hesketh et al., 2004; Stapleton et al., 2016). Cross-level 
invariance of factor loadings is implied by invariance of 
factor loadings across clusters ( Jak et al., 2013). Hence, 
when metric invariance across clusters would be violated, 
then one would not be able to make valid comparisons 
across clusters because a 1-unit change in the (compo-
nent of a) factor would not be linked with the same 
expected change in the (components of) indicators 
across clusters (or levels). Suppose that students’ math 
achievement was measured with five tests completed by 
students in several classes, and the five tests are indica-
tive of one common factor, “math achievement.” One can 
make valid comparisons on math achievement across 
classes only when the factor loadings are invariant across 
classes, implying equal factor loadings across clusters in 
the two-level factor model. With cross-level invariance 
of factor loadings, the individual-level factor scores  
can be interpreted as individual deviations from the aver-
age math achievement in a class, and the cluster-level 
factor scores represent the average math achievement of 
each class.1

The doubly latent model proposed by Marsh et  al. 
(2009) is equivalent to the measurement model proposed 
by Stapleton et al. (2016) depicted in Figure 2. The name 
“doubly latent” comes from the fact that the doubly 
latent model uses latent aggregation to take sampling 
error into account and uses latent variables with multiple 



8	 Jak et al.

indicators to take measurement error into account. Marsh 
et al. did not explicitly state that cross-level invariance 
of factor loadings is necessary.2 However, in a recent 
article on doubly latent multilevel procedures, Morin 
et al. (2022) did stress this requirement for a valid inter-
pretation. Note that the cross-level invariance of factor 
loadings is testable, for example, by comparing the fit of 
a model with invariance constraints with a model without 
invariance constraints. If such a test indicates that cross-
level invariance does not hold, this finding complicates 
the interpretation of the factors at the two levels. How-
ever, in practice, the assumption holds frequently, match-
ing the finding that metric invariance across groups often 
holds (Boer et al., 2018; De Roover, 2021).

Measurement models proposed  
for shared constructs

A large source of confusion surrounding the statistical 
modeling of shared constructs is that there seems to 
be a mismatch between how some authors define a 
shared construct in theory (i.e., as global constructs 
discussed earlier) and what is actually encountered in 
empirical research (i.e., some level of shared individual 
perceptions of cluster-level constructs). Imposing the 
statistical properties of global constructs on the mea-
surement of what actually are shared constructs has led 
to the development of some questionable measurement 
models.

Marsh et al. (2012) used the doubly latent model for 
both shared (climate) and configural (contextual) con-
structs, which we also advocate. They used an identical 
statistical model with different interpretations about the 
type of construct at the cluster level, depending on the 
item wording. If the referent of items is the cluster (e.g., 
class or teacher), it represents a shared (climate) con-
struct, and if the referent of the item is the individual 
(e.g., student), it represents a configural (contextual) 
construct. For shared constructs, the between-level con-
struct represents the shared perceptions of the individu-
als in the cluster, and the individual-level construct 
represents individual deviations from the average per-
ception in the cluster. Morin et al. (2022) and Jak (2019) 
noted that for shared constructs, cross-level invariance 
on the factor loadings in the doubly latent model should 
be imposed.

Initially, Stapleton et al. (2016) proposed fitting a satu-
rated structure at the individual level for shared con-
structs because modeling the structure of individual-level 
responses should not be of interest for a cluster-level 
phenomenon. We argue that although this idea seems 
intuitive, such a model would indirectly accommodate 
violations of metric invariance across clusters, meaning 
that if a construct were measured in each cluster, its 
interpretation might differ across clusters. If this is the 
case, the cluster-level common factor becomes uninter-
pretable. In later work, Stapleton and Johnson (2019) 
abandoned the saturated model and advocated the 
“simultaneous shared-and-configural model” for shared 
constructs, originally proposed in Stapleton et al. Figure 
3 shows an example of such a model with five items.

The simultaneous shared-and-configural model con-
sists of one configural construct (with an individual- and 
cluster-level component3) and an additional orthogonal 
construct that exists only at the cluster level, intended 
to represent the truly shared construct. The configural 
construct is viewed as a nuisance construct, representing 
individual responses stemming from a construct that is 
unrelated to the shared construct and that may differ 
systematically across clusters. Stapleton and Johnson 
(2019) used the example of measuring neighborhood 
safety with items administered to residents in different 
neighborhoods. They stated that for such an example, 
an individual’s responses to these items could reflect 
two dimensions: actual objective safety of the neighbor-
hood (the target shared construct) and individual’s toler-
ance for unsafe conditions (the nuisance configural 
construct). Note that a construct such as “actual objective 
safety” would be considered a global construct by Klein 
and Kozlowski (2000), so no measurement model would 
be needed. In accordance, Stapleton and Johnson stated 
that “in theory, a good measure of neighborhood safety 
would elicit the same response from all residents within 

V1 V2 V3 V4 V5

V1 V2 V3 V4 V5

Factor
Between

Factor
Within

Between

Within

Fig. 2.  Graphical illustration of the doubly latent model on five indi-
cators. Factor loadings that share the same line type are constrained 
to be equal.
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the same neighborhood” (p. 314), or in other words, a 
perfectly reliable measure of a shared construct would 
constitute a (truly shared) global construct.

We see multiple problems with the simultaneous 
shared-and-configural model. First, for objectively mea-
sured global properties, it would not make sense to oper-
ationalize them using ratings of all individuals in a cluster. 
One observation would be sufficient, yielding a manifest 
cluster-level variable. Second, objectively measured global 
properties will not be operationalized by several indica-
tors that reflect a latent construct. Objective properties, 
such as the actual crime rate in a neighborhood, can be 
operationalized with a single variable or potentially as a 
formative construct using a combination of objective mea-
sures (Bollen & Bauldry, 2011). Third, even if the shared 
factor would indeed capture an objective property, there 
is no reason to assume that the within-clusters differences 
would reflect a single construct (e.g., “acquiescence” in 
Stapleton and Johnson’s, 2019, illustrative example). Nui-
sance constructs need not be one-dimensional, given that 
each item could be affected by different, uncorrelated 
nuisance factors. Finally, modeling a shared construct as 
an additional between-level factor—orthogonal to a con-
figural construct—does not necessarily extract the vari-
ance because of an objective, global construct from 
individual-level indicators. The shared construct might 
instead simply capture other noise or unmodeled multi-
dimensionality, and its interpretation would be difficult. 

This seems to be related to why Stapleton and Johnson 
(2019) suggested the alternative approach of “us[ing] addi-
tional items, measured at the cluster level and not at the 
individual level” (p. 325).

In our view, when using multiple items and the 
responses of residents to measure neighborhood safety, 
one would be measuring individuals’ perceptions of the 
neighborhood safety rather than objective neighborhood 
safety. Nonetheless, objective properties of neighbor-
hoods, such as the actual crime rates, will influence the 
residents’ perceptions, leading to shared perceptions 
within neighborhoods. Therefore, the shared perceptions 
may indeed provide information about neighborhood 
properties. However, we contest the interpretation of the 
shared factor in the shared-and-configural model as a 
purely objective cluster-level property, nor would we inter-
pret the aggregate of perceptions about neighborhood 
safety as purely subjective or as reflecting acquiescence.

We argue that the doubly latent models from Marsh 
et  al. (2012) are less conceptually problematic than  
Stapleton and Johnson’s (2019) shared-and-configural 
model. Even if an item refers to the cluster, individuals’ 
answers still reflect their perception of the cluster con-
struct. The distinction between shared and configural 
constructs is therefore a theoretical one (when the con-
figural construct is operationalized by aggregating cluster 
means), not a statistical one. In other words, researchers 
can use the doubly latent model to model both configural 
and shared constructs.

Quantifying the proportion of cluster-
level variance in constructs

The doubly latent model is flexible in the distribution 
of factor variance across levels. The more agreement 
there is, the higher is the proportion of cluster-level fac-
tor variance, and so the stronger is the shared part of 
the construct. One could quantify the amount of shared-
construct variance by calculating the ICC of the common 
factors (Mehta & Neale, 2005), referred to as “ICCL” by 
Kush et al. (2021):

ICC ICCL
C

C I

= ( ) =
+

1
Ψ

Ψ Ψ
,

with ΨC  and ΨI  representing the cluster- and individual-
level factor variances, respectively. This ICCL may be 
useful to see how much of the construct’s variance, as 
operationalized by the common factor, is shared across 
the cluster members. Although it might be tempting to 
use such a statistic to try to determine whether a con-
struct is shared or configural, we believe it would be 
more useful to interpret it as a sort of IRR coefficient 
(McGraw & Wong, 1996; Shrout & Fleiss, 1979), as might 
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Fig. 3.  Graphical representation of a simultaneous shared-and- 
configural model on five indicators. Factor loadings that share the 
same line type are constrained to be equal.
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be applied to factor scores (if they could be observed). 
Still, it may be informative to see, for example, what part 
of students’ perceptions of teachers is shared among 
students because very low agreement may mean that 
asking the students may not be the most informative way 
to measure the specific property of the teacher.

Illustrations

We illustrate the modeling of cluster-level construct 
using two examples. The first example involves data on 
students’ evaluations of lecturers. The second example 
uses data of individuals’ perceptions of conflict within 
their organizational team. The modeling procedures 
involve reflecting on the target of the items, quantifying 
the amount of variation in the observed variables at the 
individual and cluster levels, establishing an appropriate 
measurement model, evaluating the doubly latent model, 
and quantifying the proportion of construct variance at 
the team level. These data are available on OSF (https://
osf.io/mzba8) with R syntax to replicate the analyses in 
lavaan (Rosseel, 2012).

Illustration 1

Knol et al. (2016) designed a questionnaire to measure 
the quality of university lectures, called the Instructional 
Skills Questionnaire. The target of measurement is the 
lecture, the quality of which is evaluated by asking for 
ratings from multiple students attending the same lec-
ture. The data were obtained for 5,422 students and 73 
lectures. The response rate was 90.5% (Knol et al., 2016). 
For our illustration, we use the four items designed to 
measure the dimension “Stimulation,” which are shown 
in Table 2. The items were scores on a 7-point Likert 
scale ranging from 1 (strongly disagree) to 7 (strongly 
agree). Two of the items are contra-indicative (“hard to 
stay focused” and “lecture is boring”), and the scores on 
these items were recoded before analysis. The items’ 
ICCs ranged from .232 to .300, indicating that roughly 
75% of the items’ variance was attributable to differences 
between students’ perceptions of the same lecture and 

that around 25% was attributable to differences across 
lectures. Looking at the item content, it is not surprising 
to find substantial variance at the individual level. For 
example, it is quite likely that the same lecture is per-
ceived as more boring by one student than by another 
student. Maybe some students are better prepared than 
others, or maybe students differ in their personal inter-
ests. The item referent is the instructor or lecture for 
three of the items, whereas Item 3 has no clear referent 
(“It is hard to stay focused on the lecture”). Students 
could either be answering this item referring to their 
own experience or trying to make an estimate of how 
hard it is for students in general to stay focused. The 
item with the highest ICC (Item 2) seems to allude less 
to personal experiences than the other three items. That 
is, the item refers to the instructor “enlivening the subject 
matter” and not to boredom, focus, or interest at the side 
of the student.

All in all, the items seem to measure students’ indi-
vidual perceptions of a lecture. Part of these perceptions 
is expected to be shared among students, and those 
shared perceptions may be indicative for the quality of 
lectures. Knol et al. (2016) applied factor analysis to the 
between levels only, with a saturated within-level model, 
using the argument that only the between-level model is 
of interest. This is not in line with our interpretations 
involving differences in student perceptions of lecture 
quality at the within levels and the shared part of those 
perceptions at the between levels. We cannot interpret 
the between-level construct as reflecting shared percep-
tions without modeling the individual perceptions con-
struct at the student level. We therefore apply the doubly 
latent model to evaluate the student-level (within-level) 
and lecture-level (between-level) models.

Analysis

The first step of the analysis was to identify a reasonable 
measurement model. There are multiple ways to 
approach this. One option is to immediately fit the dou-
bly latent model. Alternatively, one could first establish 
a measurement model at the within levels while specify-
ing a saturated model at the between levels or start with 
finding a measurement model at the between levels 
while fitting a saturated structure to the within levels. 
We think that modeling the between levels with a satu-
rated within part is not sensible because the interpreta-
tion of the between-level construct depends on the 
within-level construct. This implies that when a measure-
ment model is established at the between-parts only 
(with a saturated within-level model), then if in a next 
step the same factor structure is applied at the within 
level, the interpretation of the between-level constructs 
will change. Our advice is therefore to either consider 
the two levels together or to establish the measurement 

Table 2.  Instructional Skills Questionnaire (Knol et al., 
2016) Items and Intraclass Correlations Measuring the 
Dimension “Stimulation”

Instructional Skills Questionnaire item
Intraclass 
correlation

1.  The lecture is boring (R) .232
2.  The instructor enlivens the subject matter .300
3.  It is hard to stay focused on the lecture (R) .241
4.  The instructor interests you in the subject matter .240

Note: (R) denotes contra-indicative items.

https://osf.io/mzba8
https://osf.io/mzba8
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model at the within level with a saturated between-level 
model. The latter approach is also in line with Bryk and 
Raudenbush’s (1992) two-phase approach in ordinary 
multilevel regression and with the stepwise-modeling 
approach of multilevel mediation effects of Preacher 
et al. (2010). We therefore fitted a two-level model with 
a saturated model at the cluster level and the theoreti-
cally expected model structure at the individual level. 
This enabled us to calculate fit indices specific to the 
within-level model (Ryu & West, 2009). Next, we fitted 
the doubly latent model with cross-level invariance con-
straints on the factor loadings. If this model fitted the 
data well, we tested whether the residual variances at 
the cluster level could be constrained at zero. Zero resid-
ual variances at the cluster level in a model with cross-
level invariance on factor loadings reflects scalar 
invariance across clusters ( Jak et al., 2013). We tested 
hypotheses about equivalence (loadings) and fixed 
parameters (residual variances) using α = .05 as criterion 
for statistical significance.

Model fit was evaluated using the χ2 test of exact fit, 
which will be rejected when the χ2 value is statistically 
significant at α = .05. Approximate fit was evaluated 
with the root mean square error of approximation 
(RMSEA; Steiger & Lind, 1980), the comparative fit index 
(CFI; Bentler, 1990), and the level-specific versions 
when applicable. RMSEA values smaller than .05 were 
interpreted as indicating close fit, and values smaller 
than .08 were considered satisfactory (Browne & 
Cudeck, 1992). CFI values over .95 were interpreted as 
indicating reasonably good fit (Hu & Bentler, 1999).  
In case of inacceptable model fit, we evaluated modi-
fication indices (Chou & Bentler, 1990) and added 
model parameters only when they seemed theoretically 
reasonable.

Results

Finding a measurement model.  We first fitted a one-
factor model to the within level with a saturated model at 
the between level. In this model, all misfit stems from the 
within level. For the calculation of the within-level CFI, 
we needed to fit the independence model to the within 
level with a saturated between level. This model, however, 
was unable to provide a converged solution. We therefore 
report only the level-specific RMSEA and the overall CFI 
instead of the level-specific CFI (i.e., we used the default 
independence model at both levels). The one-factor model 
did not fit the data adequately, χ2(2) = 120.94, p < .05, CFI = 
.98, RMSEAW = .105, 90% confidence interval [CI] = [.089, 
.121]. The largest modification index pertained to adding a 
covariance between Item 1 and Item 3 or between Item 2 
and Item 4. These are actually the pairs of negatively and 
positively formulated items, respectively. The unmodeled 
covariance likely shows a wording effect (Horan et  al., 

2003). We therefore added a covariance between the resid-
uals of Item 1 and Item 3. This model fitted the data ade-
quately. Exact fit was not rejected, χ2(1) = 1.82, p = .177, 
and approximate fit indices show values associated with 
good fit: CFI = 1.00, RMSEAW = .012, 90% CI = [.000, .041]. 
The one-factor model with added residual covariance was 
considered the final measurement model.

Fitting the doubly latent model.  We fitted the doubly 
latent model with cross-level invariance based on the 
measurement model from the previous step. The fit of this 
model was good: χ2(5) = 9.73, p = .083, CFI = .999, RMSEA4 = 
.013, 90% CI = [.000, .026]. For Item 4, the estimated resid-
ual variance at the between level was negative and not 
significantly different from zero (θ = −.006, SE = .006, p = 
.326). The between-level residual variance of the other 
three items was statistically significant according to the 
univariate Wald z tests. We therefore fixed only the resid-
ual variance of Item 4 at the between level to zero. The 
overall fit of this final model was good: χ2(6) = 10.59, p = 
.102, CFI = .999, RMSEA = .012, 90% CI = [.000, .023]. A 
graphical display of the doubly latent model with param-
eter estimates is provided in Figure 4.

The common factor at the within level represents 
what is common in the stimulation items but differs 
across students attending the same lecture. We label the 
construct “student perception of stimulation.” Because 
of the cross-level invariance of the factor loadings, the 
between-level construct can be interpreted as the “clus-
ter average student perception of stimulation,” which 
represents what is common to the four items and com-
mon to students attending the same lecture. In other 
words, we interpret the between-level common factor 
as shared perceptions of stimulation. The ICCL of the 
stimulation factor was .775 / (.775 + 1) = .437, indicating 
that around 44% of the variance in the latent variable 
student perceptions of stimulation is shared among stu-
dents attending the same lecture.

We stop the analysis here, but the model could be 
extended by adding within- or between-level variables 
to explain part of the variance in the common factor. 
For example, if one has an operationalization of how 
prepared students were for the lecture, one could add 
this variable as a predictor of the common factor at the 
within level. Or one could add variables related to the 
instructor (e.g., gender, motivation, level of burnout) at 
the between level to explain differences in perceived 
stimulation across different instructors.

The nonzero residual variances at the between level 
represent cluster differences on the items that are not 
attributable to the common factor shared perceptions of 
stimulation. There must be other variables unique to 
Item 1, Item 2, and Item 4 that caused structural differ-
ences on these items at the lecture level. In the terminol-
ogy of Jak et  al. (2013, 2014), the three items show 
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cluster bias. A follow-up analysis could also involve 
trying to explain the cluster bias using other between-
levels variables. For example, the item “It is hard to stay 
focused on the lecture” could elicit different responses 
across lectures because of the timing of the lectures 
(Friday afternoon vs. Monday morning) or the physical 
circumstances, such as the temperature in the lecture 
hall; such factors have nothing to do with how stimulat-
ing the instructor made the lecture.

Illustration 2

This illustration focuses on organizational teams instead 
of educational setting. We used data on eight items ask-
ing about the extent of relationship conflict and task 
conflict within organizational teams ( Jehn, 1995). Exam-
ple items are “How much friction is there between team 
members?” and “How often are there conflicting opinions 
about the work that has to be done?” The first four items 
reflect the construct “relationship conflict,” and the last 
four items reflect the construct “task conflict.” The items 
targeted the team, and the construct was not objectively 
quantifiable. Theoretically, the researchers thus assessed 

a shared construct, and a measurement model is required. 
Data were gathered from 228 employees who were 
employed in 113 teams. The included employees were 
selected by the team leaders. The response rate of 
employees was 88%. On average, the size of the teams 
was 15.66. The cluster size was two in 111 of the teams 
and three in two of the teams. The sampling ratio was 
therefore approximately .13. All items were scored on a 
5-point Likert scale ranging from 1 (none) to 5 (very 
much). With these small cluster sizes and five response 
categories, there were multiple clusters in which the 
members completely agreed, resulting in zero variance 
within the cluster. For each item, complete agreement 
was observed in approximately 40 to 50 clusters. The 
proportion of cluster-level variation in the observed item 
scores was substantial and ranged from ICCs = .209 to 
.392 across items (see Table 3), indicating that despite 
the referent being the team, the largest part of the vari-
ance existed at the individual level for all items. We 
followed the same analysis procedure as in the previous 
illustration.

Results

Finding a measurement model.  We started with fitting 
the two-factor model at the individual level, with a satu-
rated cluster-level model. This way, all misfit arises from 
constraints at the individual level. As with the previous 
example, the within-level CFI could not be calculated 
because the independence model did not converge to a 
solution. We therefore provide the within-level RMSEA 
and the overall CFI. The two-factor model showed good 
fit to the data: χ2(19) = 3.65, p = 1.00, CFI = 1.00, RMSEAW = 
.00, 90% CI = [.00, .00]. The correlation between the two 
factors was substantial (r = .72, p < .001). We used the 
two-factor model as the final measurement model. The 
two individual-level factors model the within-teams differ-
ences in perceived relationship and task conflict or how 
members of the same team can have different perceptions 
of the conflicts in their team.

Fitting the doubly latent model.  Because the two-fac-
tor model at the individual level fitted the data well, we 
imposed the same structure at the cluster level. This two-
level model with cross-level invariance on the factor load-
ings fitted the data well according to the approximate fit 
indices: χ2(44) = 50.11, p = .024, CFI = .99, RMSEA = .025, 
90% CI = [.000, .053]. The cluster-level factors in this model 
represent the average perceived conflict within teams. The 
variance of the cluster-level factors represents differences 
in the team averages of perceived conflict. Residual vari-
ances at the cluster level reflect so-called cluster bias ( Jak 
et al., 2013): team differences in item scores that cannot be 
fully attributed to team differences in the common factors. 
According to the univariate Wald z tests with α = .05, none 
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Fig. 4.  Unstandardized parameter estimates of doubly latent model 
with cross-level invariance on four stimulation items. Factor loadings 
that share the same line type are constrained to be equal.
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of the eight indicators has statistically significant residual 
variances at the cluster level. Consistent with scalar invari-
ance across clusters ( Jak et  al., 2013; Jak & Jorgensen, 
2017), fixing these residual variances to zero did not sig-
nificantly deteriorate model fit, Δχ2(8) = 12.74, p = .12, and 
showed good overall fit, χ2(52) = 62.85, p = .14, CFI = .99, 
RMSEA = .030, 90% CI = [.000, .054]. In this model, the 
ICCL of the first factor was .81 / (.81 + 1) = .45, and the 
ICCL of the second factor was .49 / (.49 + 1) = .33, indicat-
ing that, respectively, 45% and 33% of the variance in the 
common factors exists at the cluster level. This finding 
suggests that there was more agreement among team 
members on relationship conflict than on task conflict. 
Figure 5 shows a graphical display of the doubly latent 
model with unstandardized parameter estimates. As in the 
previous example, the analysis could be extended by add-
ing individual-level variables or team-level variables to the 
model. For example, one could test whether there are 
gender differences in the individual perceptions of conflict 
within teams by adding gender as a predictor of the 
within-level constructs. Or if one has an operationalization 
of the type of the leadership style employed by the man-
ager, one could test whether differences in perceived con-
flicts between teams depend on leadership style.

Discussion

In this study, we aimed to show that cluster-level con-
structs operationalized through individual-level 
responses hardly ever represent purely shared or purely 

configural constructs. We also argued that the distinction 
between the two types of cluster-level constructs is theo-
retical, not statistical. That is, one does not need different 
measurement models for constructs that are hypothe-
sized to be shared or configural: The doubly latent 
model is suitable to both shared and configural con-
structs and anything ambiguously in between. In addi-
tion, we tried to disentangle the use of different 
terminology for the same type of constructs in the litera-
ture. In the following sections, we reflect on some issues 
related to modeling cluster-level constructs with individual- 
level responses.

Different types of cluster-level constructs 
from a theoretical perspective

The main aim of this article was to dissuade the applica-
tion of different models for theoretically shared versus 
configural constructs. We did not provide a solution to 
the question of how one can evaluate whether a cluster-
level construct represents a theoretically shared or con-
figural construct, but we advised against using statistical 
criteria (e.g., ICCL) to do so. One could describe the 
models for shared and configural constructs as statisti-
cally equivalent but having different interpretations. 
Because the data are generally unable to provide direct 
information about the interpretation of cluster-level 
latent variables, it would instead be appropriate to focus 
on the meaning of cluster-level latent variables given the 
data (e.g., by carefully considering item content, as we 
demonstrated here). For comprehensive discussions of 
the conceptual status of cluster-level constructs, we refer 
to Klein and Kozlowski (2000), Chan (1998, 2019), and 
Morgeson and Hofmann (1999).

Estimation and specification issues  
in the doubly latent model

Estimation issues are a common problem when modeling 
latent variables at multiple levels (e.g., Li & Beretvas, 
2013; Lüdtke et al., 2011). Applying cross-level invariance 
on factor loadings, which is needed for interpretable 
common factors at both levels, already improves the like-
lihood of obtaining a converged solution using either 
frequentist or Bayesian estimation methods (Depaoli & 
Clifton, 2015; González-Romá & Hernández, 2017; Jak, 
2019), even when cross-level invariance is not exactly 
true in the population (Kim & Cao, 2015). However, when 
there is a large difference in population factor loadings 
across levels, the doubly latent model with cross-level 
invariance is clearly misspecified. Researchers could then 
relax the equality constraint on the factor loadings for 
certain items, thereby allowing partial cross-level invari-
ance of factor loadings (see e.g., Spilt et al., 2012). In 

Table 3.  The Conflict Items (Jehn, 1995) and Intraclass 
Correlations

Item
Intraclass 
correlation

Relationship conflict  
1. � How much friction is there among 

members in your work unit?
.392

2. � How much are personality conflicts 
evident in your work unit?

.359

3. � How much tension is there among 
members in your work unit?

.384

4. � How much emotional conflict is there 
among members in your work unit?

.298

Task conflict  
5. � How often do people in your work unit 

disagree about opinions regarding the 
work being done?

.214

6. � How frequently are there conflicts about 
ideas in your work unit?

.209

7. � How much conflict about the work you 
do is there in your work unit?

.231

8. � To what extent are there differences of 
opinion in your work unit?

.252
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situations in which even partial cross-level invariance 
does not hold, the decomposition of the construct into 
within-clusters and between-clusters components is dubi-
ous because the interpretation of the between-level con-
struct becomes problematic (i.e., it does not necessarily 
represent the aggregate of something interpretable at the 
within level). Our advice would then be to stop the 
analysis and collect new data using a different measure-
ment instrument.

A large source of estimation issues is related to the 
cluster-level residual variances. Specifically, convergence 
problems and negative variance estimates can be 
expected when population cluster-level residual vari-
ances are zero. Some software programs do not allow 

negative residual variances (Mplus; Muthén & Muthén, 
1998–2017), but others do (lavaan; Rosseel, 2012). A 
recent evaluation of convergence issues in these two 
programs was conducted using data simulated from the 
configural (or doubly latent) model and from the simul-
taneous shared-and-configural model, either with zero 
or nonzero residual variances at the between level ( Jak 
et al., 2021). It showed that convergence rates could be 
very different across algorithms, depending on whether 
the cluster-level residual variances were zero in the 
population or in the fitted model. For all conditions, 
lavaan either converged more often than Mplus, or 
both packages converged in 100% of samples. Mplus 
never converged in conditions in which cluster-level 
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Fig. 5.  Unstandardized parameter estimates of the doubly latent model with cross-level invariance on eight conflict items. 
Factor loadings that share the same line type are constrained to be equal.
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residual variances were freely estimated while they were 
zero in the population. Rejection rates of the normal-
theory χ2 test statistic were as expected and identical 
across packages, whereas rejection rates of the scaled 
test statistic were seriously inflated in several conditions. 
This inflation led the authors of Mplus to propose a cor-
rection on the robust chi-square statistic (Asparouhov & 
Muthén, 2021), implemented in Mplus Version 8.7.

Influence of the sampling ratio  
of individuals from clusters

Two-level data often arise from a two-stage sampling 
design. In a two-stage design, researchers first sample 
the clusters and then sample individuals from clusters. 
One can imagine that increasing the number of individu-
als being sampled from each cluster leads to more reli-
able estimate of the cluster means. For example, if each 
cluster represents a school class with 25 children and 
one is interested in the average mathematical achieve-
ment in each school class, one would get better esti-
mates when sampling 15 children from each class 
(sampling ratio of 15 / 25 = .60) than when sampling 
five children from each school class (sampling ratio of 
5 / 25 = .20). Lüdtke et al. (2008) found that in the so-
called multilevel latent covariate model, estimates of 
contextual effects suffered in situations with a low sam-
pling ratio and a small number of individuals per cluster 
but were appropriately estimated in conditions with 
either large sampling ratios or large numbers of individu-
als per cluster. Guo et al. (2021) proposed and evaluated 
a finite population correction that leads to increased 
performance with medium-size sampling ratios. These 
results were obtained with a model that aggregates over 
the observed indicators instead of specifying a latent 
variable. A simulation study by Kush et al. (2021) focus-
ing on the doubly latent model showed that lower sam-
pling ratios have negative effects on parameter estimation. 
Specifically, the authors found bias in estimates of factor 
loadings and standard errors, although the size of the 
bias was considered negligible. In our first empirical 
illustration, the data came from 5,422 students nested in 
73 lectures, so the cluster size was rather large (approxi-
mately 74). In this study, all students attending a lecture 
were invited to participate in the study, so the sampling 
ratio was 100%. In the second example, the cluster sizes 
were very small (teams of two or three employees), and 
only 13% of the participants were selected to participate 
in the study. With clusters as small as two or three and 
items that are scored on Likert-type scales, it is quite 
likely to find perfect agreement on items in some clus-
ters. As a result, the cluster-level variance may be rela-
tively large. It is important to realize that this might be 
the result of limited response options and a small cluster 

size in addition to cluster-level variability in the con-
struct of interest.

It has been stated that the sampling ratio could be an 
important aspect when modeling configural constructs, 
but not for shared constructs, because for those con-
structs, the individual responses should (theoretically) 
be seen as exchangeable. Because we do not believe 
that in real research the individual responses about 
shared constructs can ever be seen as exchangeable 
(because then one would be evaluating a global con-
struct rather than shared construct, so there would be 
no need to ask multiple individuals in a cluster), we 
argue that the sampling ratio could likewise be relevant 
for constructs that use individual perceptions of cluster-
level properties (i.e., shared constructs). In other words, 
because the distinction between shared and configural 
constructs is potentially of theoretical value but not rel-
evant to the statistical modeling of both types of con-
struct, the sampling ratio would play a similar role for 
both types of theoretical constructs.

The emergence of shared constructs

Shared constructs reflect agreement across group mem-
bers, and it may be interesting to reflect on the develop-
ment of the agreement among group members. One may 
expect that in newly formed groups, there may be less 
agreement than in longer existing groups. The process 
of group members increasing their agreement or similar-
ity over time is referred to as “emergence” in the litera-
ture (Dansereau et  al., 1999). Lang and Bliese (2018) 
developed the consensus-emergence model (CEM), 
which is essentially a three-level model of time points 
nested in individuals nested in organizations, specifying 
an exponential variance function on the within-groups 
variances. This function takes into account the expected 
decrease in within-groups variances as the group mem-
bers agree more over time. The CEM currently focusses 
on single-indicator measurements of constructs. An inter-
esting avenue for future research would be to extend 
the CEM to model emergence in common factors over 
configural time.

Conclusion

Different terms have been used to point to the same type 
of cluster-level constructs (e.g., “configural,” “contextual,” 
and “formative” constructs), while at the same time, iden-
tical terms have been used to refer to different cluster-
level concepts (e.g., the shared construct as defined by 
Stapleton et al., 2016, vs. the shared construct as defined 
by Klein & Kozlowski, 2000). We provided an overview 
of terminology and disentangled how the different terms 
are used in the literature. On the basis of this overview, 
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we argued that researchers do not need different models 
for theoretically shared versus configural constructs. The 
doubly latent model (Marsh et al., 2009) with cross-level 
invariance is the appropriate model for both types of con-
structs, whereas the simultaneous shared-and-configural 
model (Stapleton & Johnson, 2019) is ill defined and has 
uncertain interpretation.
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Notes

1. With cross-level invariance of factor loadings, the factor can 
be scaled by fixing the factor variance at 1 at one of the lev-
els and freely estimating the factor variance at the other level. 
Alternatively, the factor variance can be estimated at both levels, 
under the constraint that they sum to 1; in this case, the between-
levels variance equals the ICC of the factor scores.
2. Marsh et al. (2009) did apply the equality constraint in their 
presented analysis examples.
3. Stapleton and Johnson (2019) fixed the distribution of the con-
figural factor’s variance over levels, but this restriction is actually 
not needed (see Jak et al., 2021).
4. Level-specific fit indices are not meaningful for doubly latent 
models because it is impossible to combine cross-level invariance 

of factor loadings with fitting a saturated model at one of the  
levels. The reported RMSEA is therefore the overall RMSEA.
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