
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On the non-efficient PAC learnability of conjunctive queries

ten Cate, B.; Funk, M.; Jung, J.C.; Lutz, C.
DOI
10.1016/j.ipl.2023.106431
Publication date
2024
Document Version
Final published version
Published in
Information Processing Letters
License
CC BY

Link to publication

Citation for published version (APA):
ten Cate, B., Funk, M., Jung, J. C., & Lutz, C. (2024). On the non-efficient PAC learnability of
conjunctive queries. Information Processing Letters, 183, Article 106431. Advance online
publication. https://doi.org/10.1016/j.ipl.2023.106431

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:24 Jan 2024

https://doi.org/10.1016/j.ipl.2023.106431
https://dare.uva.nl/personal/pure/en/publications/on-the-nonefficient-pac-learnability-of-conjunctive-queries(7216504c-8904-4875-a554-6cd3b18d0f39).html
https://doi.org/10.1016/j.ipl.2023.106431

Information Processing Letters 183 (2024) 106431

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

On the non-efficient PAC learnability of conjunctive queries

Balder ten Cate a,∗,1, Maurice Funk b, Jean Christoph Jung c, Carsten Lutz b

a ILLC, University of Amsterdam, Postbus 94242, Amsterdam, 1090 GE, the Netherlands
b Leipzig University, Augustusplatz 10, Leipzig, 04109, Germany
c TU Dortmund University, August-Schmidt-Straß e 1, Dortmund, 44227, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2022
Received in revised form 21 July 2023
Accepted 24 July 2023
Available online 28 July 2023

Keywords:
Computational learning theory
Conjunctive queries
Inductive logic programming
Databases

This note serves three purposes: (i) we provide a self-contained exposition of the fact
that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct
(PAC) model, paying clear attention to the complicating fact that this concept class lacks
the polynomial-size fitting property, a property that is tacitly assumed in much of the
computational learning theory literature; (ii) we establish a strong negative PAC learnability
result that applies to many restricted classes of conjunctive queries (CQs), including acyclic
CQs for a wide range of notions of acyclicity; (iii) we show that CQs (and UCQs) are
efficiently PAC learnable with membership queries.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Conjunctive queries (CQs) are an extensively studied
database query language that plays a prominent role in
database theory. CQs correspond precisely to Datalog pro-
grams with a single non-recursive rule and to the positive-
existential-conjunctive fragment of first-order logic. Since
the evaluation problem for conjunctive queries is NP-
complete, various tractable subclasses have been intro-
duced and studied. These include different variants of
acyclicity, such as α-acyclicity, β-acyclicity, γ -acyclicity,
and Berge-acyclicity, which form a strict hierarchy with
Berge-acyclicity being most restrictive [15]. A landmark re-
sult by Grohe states that a class of CQs is tractable if and
only if the treewidth of all CQs in it is bounded by a con-
stant (under certain assumptions) [18,24].

In this note, we consider the learnability of CQs from
labeled examples, in Valiant’s well-known Probably Approx-

* Corresponding author.
E-mail address: b.d.tencate@uva.nl (B. ten Cate).

1 Research supported by the European Union’s Horizon 2020 research
and innovation programme (MSCA-101031081). We thank Victor Dalmau
for helpful feedback on an early version of this note.
https://doi.org/10.1016/j.ipl.2023.106431
0020-0190/© 2023 The Author(s). Published by Elsevier B.V. This is an open acce
creativecommons .org /licenses /by /4 .0/).
imately Correct (PAC) learning model [28]. We give a self-
contained proof that the class of all CQs as well as all
classes of acyclic CQs mentioned above are not efficiently
PAC learnable. While the general idea of our proof is due
to [23,19], we strengthen the result in several respects and
present it in a form that is easily accessible to modern-day
database theorists.

The result q(I) of evaluating a k-ary CQ q on a database
instance I is a set of k-tuples of values from the active
domain of I . An example, then, is most naturally taken to
be a pair (I, a) where I is a database instance and a is a
k-tuple of values from the active domain of I . The example
is positive if a ∈ q(I) and negative otherwise.

An efficient PAC algorithm is a (possibly randomized)
polynomial-time algorithm that takes as input a set of ex-
amples drawn from an unknown probability distribution D
and labeled as positive/negative according to an unknown
target CQ q∗ to be learned, and that outputs a CQ q, such
that, if the input sample is sufficiently large, then with
probability at least 1 − δ, q has expected error at most
ε , meaning that if we draw an example e from D , then
with probability 1 − ε , q and q∗ assign the same label to e
(cf. Fig. 1). The required number of examples must further-
more be bounded by a function polynomial in |q∗|, 1/δ,
1/ε , and the example size. We give a precise definition in
ss article under the CC BY license (http://

https://doi.org/10.1016/j.ipl.2023.106431
https://www.sciencedirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2023.106431&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:b.d.tencate@uva.nl
https://doi.org/10.1016/j.ipl.2023.106431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431

e1 · · · en unlabeled examples drawn from some example distribution D
| |

(e1, lab1) · · · (en, labn) the same examples labeled according to some target CQ q∗
| |

PAC algorithm

|
q hypothesis produced by PAC algorithm
|

errorD,q∗ (q) expected error of q on examples drawn from D and labeled according to q∗

Fig. 1. Graphical depiction of a PAC algorithm.
Section 2. Note that since a PAC algorithm does not know
the example distribution D , it must perform well for all
distributions D . In this sense, the PAC model captures a
strong form of distribution-independent learning.

Our main result is the following, stated, for simplicity,
for unary CQs:

Theorem 1.1. (assuming RP �= NP) Let C be any class of unary
CQs over a fixed schema S that contains at least one binary
relation symbol and one unary relation symbol. If C includes
all path-CQs, then C is not efficiently PAC learnable, even
w.r.t. single-instance example distributions.

Here, RP denotes the class of problems solvable by a
randomized algorithm with one-sided error that runs in
polynomial time, and by a path-CQ we mean a unary CQ
of the form

q(x1) :− ∃x2 . . . xn(R(x1, x2) ∧ · · · ∧ R(xn−1, xn)

∧P (x j1) ∧ · · · ∧ P (x jm))

where R is a binary relation symbol and P is a unary rela-
tion symbol. That is, a path-CQ is a very simple type of CQ
that describes an outgoing directed path decorated with a
single unary relation symbol.

With a single-instance example distribution, we mean an
example distribution D such that for some database in-
stance I , D assigns non-zero probability mass only to ex-
amples of the form (I, a). This captures the natural sce-
nario of learning CQs from positive and negative exam-
ples that all pertain to a single given database instance.
Clearly, efficient PAC learnability w.r.t. all example distribu-
tions implies efficient PAC learnability w.r.t. single-instance
distributions.

Note that efficient PAC learnability is not an anti-
monotone property of query classes, and Theorem 1.1 says
more than just that path-CQs are not efficiently PAC learn-
able. In particular, Theorem 1.1 implies that the class of all
CQs is not efficiently PAC learnable, and the same is true
for all classes of acyclic CQs mentioned above since path-
CQs belong to all of these classes. Theorem 1.1 also implies
non-efficient PAC learnability of concept expressions in the
description logics EL and ELI (even in the absence of a
TBox), see e.g. [17] and references therein.

It is worth comparing the notion of a PAC learning al-
gorithm to that of a fitting algorithm. Both types of algo-
rithms take as input a set of labeled examples. A fitting
algorithm decides the existence of a CQ that agrees with
the labels of the input examples. The fitting problem is
coNExpTime-complete for CQs [29,5] and, in fact, is known
2

to be hard already for some more restricted classes of
acyclic CQs [5,16,17]. A PAC algorithm, on the other hand,
produces a CQ that, with high probability, has a low ex-
pected error, but is not required to fit the input examples.
Despite these differences, it is well-known that for con-
cept classes that are both polynomial-time evaluable and
have the polynomial-size fitting property (defined in Sec-
tion 2), NP-hardness of the fitting problem implies the
non-existence of an efficient PAC learning algorithm [26],
see Proposition 2.6 below. Unfortunately, the concept class
of CQs has neither of these properties. A main difficulty of
our proof of Theorem 1.1 (which is nevertheless based on
a reduction from an NP-hard fitting problem) is to find a
way around this.

We also prove that PAC learnability of CQs can be re-
covered by extending the PAC model with membership
queries, known from Angluin’s [1] model of exact learning.
In a membership query, the learner chooses an example
(I, a) and asks an oracle to provide, in unit time, the pos-
itive or negative labeling of (I, a) according to the target
query. In Angluin’s model of exact learning, CQs are known
to not be efficiently learnable with membership queries
alone, but they are efficiently learnable when also equiva-
lence queries are admitted (the learner may give a hypoth-
esis query to the oracle and ask whether it is equivalent to
the target query, requesting a counterexample if this is not
the case). The latter is implicit in [6], an explicit proof can
be found in [7], cf. also [3].

As pointed out in [6], the fact that CQs are effi-
ciently exactly learnable with membership and equivalence
queries implies PAC learnability with membership queries
and an NP-oracle (cf. [1]), where the NP-oracle is used
for evaluating hypotheses on examples. It was left open
whether CQs are efficiently PAC learnable with member-
ship queries without an NP-oracle. We give an affirmative
answer to this question and show that it also extends to
UCQs, that is, to disjunctions of conjunctive queries.

Theorem 1.2. Fix any schema S and k ≥ 0. The class of all k-ary
CQs over S is efficiently PAC learnable with membership queries.
The same is true for the class of all k-ary UCQs over S.

1.1. Related work

Haussler [19] shows that the class of Boolean CQs over
a schema that contains an unbounded number of unary
relation symbols is not efficiently PAC-learnable (unless
RP = NP). The essential part of the proof is to show that
the fitting problem for the same concept class is NP-
complete. Over a schema that consists of unary relation

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
symbols only, every CQ is trivially Berge-acyclic. There-
fore, this implies that efficient PAC learnability fails for
acyclic Boolean CQs, for any of the aforementioned no-
tions of acyclicity. The fact that Haussler’s result is stated
for Boolean CQs and Theorem 1.1 is stated for unary CQs
is an inessential difference (cf. [23]). The fact that the
proof in [19] uses an unbounded number of unary rela-
tion symbols, however, is an important difference. Indeed,
if one was to consider Boolean queries over a fixed finite
schema that consists of unary relation symbols only, then
the resulting concept class would be finite and trivially PAC
learnable.

Kietz [23] proves that the class of unary CQs over
a schema that contains a single binary relation symbol
and an unbounded number of unary relation symbols is
not PAC-learnable (unless RP = NP). Again the essential
part of the proof is to show that the fitting problem is
NP-complete. Kietz’s result already applies to path-CQs of
length 1 with multiple unary relation symbols. This is only
possible because of the infinite schema, as, otherwise, the
concept class is again finite and trivially PAC learnable.

Cohen [12] proves that the class of unary CQs over a
schema that contains two binary relation symbols is not
PAC-predictable unless certain assumptions from the field
of cryptography fail. In PAC prediction, the output of the al-
gorithm is not required to be a concept from the concept
class, but instead must be any polynomial-time evaluable
concept such as a polynomial-time algorithm. PAC learn-
ability implies PAC predictability for concept classes that
are polynomial-time evaluable (cf. Remark 6.3). Cohen’s
result already applies to path-CQs (defined slightly differ-
ently than above, using two binary relation symbols and
no unary relation symbol – this difference is inessential).
As a consequence, Cohen’s result yields the restriction of
Theorem 1.1 to polynomial-time evaluable classes C (such
as the class of all acyclic CQs, under any of the mentioned
notions of acyclicity), under cryptographic assumptions.
Moreover, in contrast to PAC learnability, PAC predictabil-
ity is an anti-monotone property of concept classes. Thus,
Cohen’s result also yields Theorem 1.1 for efficient PAC pre-
dictability in place of efficient PAC learnability, again under
cryptographic assumptions.

In an earlier paper [11], Cohen had proved a related
but weaker result that requires relation symbols of arity
three. The work of Hirata [21], in a similar vain, shows
that there is even a fixed database on which efficient PAC
prediction (and thus also learning) of acyclic CQs is impos-
sible – a stronger condition than single-instance example
distributions. The result, however, requires ternary relation
symbols and CQs of unbounded arity. We also remark that
it follows from general results of Schapire, see Section 6.3
of [27], that any class of CQs that is NP-hard to evaluate is
not efficiently PAC-predictable unless NP ⊆ P/poly.

We consider, in this note, classes of CQs defined
through acyclicity conditions. In the literature on inductive
logic programming (ILP) various positive and negative PAC
learnability results have been obtained for classes of CQs
defined by different means (e.g., limitations on the use of
existential variables, determinacy conditions pertaining to
functional relations, and restricted variable depth). These
3

are orthogonal to acyclicity. An overview can be found in
[25, Chapter 18].

In [6], the authors study learnability of GAV schema map-
pings, which are closely related to Unions of Conjunctive
Queries (UCQs). Specifically, it was proved in [6] that GAV
schema mappings are not efficiently PAC learnable, assum-
ing RP �= NP, on source schemas that contain at least one
relation symbol of arity at least two, using a reduction of
the non-PAC-learnability of propositional formulas in pos-
itive DNF. This result immediately implies that, for any
schema S containing a relation symbol of arity at least two,
and for each k ≥ 0, the class of k-ary UCQs over S is not
efficiently PAC learnable, assuming RP �= NP. Additionally,
in [6], the authors completely map out the (non-)learnabil-
ity of restricted classes of UCQs definable by conditions on
their Gaifman graph.

There is also another line of work on PAC learnability
of conjunctive queries [13,14,10] that is somewhat differ-
ent in nature: one fixes a schema S and an S-instance I
and defines a concept class where the concepts are now all
relations over the active domain of I definable by a k-ary
CQ (as evaluated in I). PAC learning for various classes of
Boolean formulas, such as 3-CNF, can be seen as a special
case of this framework, for a specific choice of schema S
and (two-element) instance I , where k then corresponds to
the number of Boolean variables. Since, for a fixed choice
of k, this yields a finite concept class, in this setting, one is
interested in the complexity of PAC learning as a function
of k. The mentioned papers establish effective dichotomies,
showing that, depending on the choice of S and I , this con-
cept class is either efficiently PAC learnable in k or is not
even efficiently PAC predictable with membership queries
in k (under suitable cryptographic assumptions). See also
Remark 6.3 below.

2. Preliminaries

2.1. Conjunctive queries

A schema S is a finite set of relation symbols with as-
sociated arity. An instance I over schema S is a finite set
of facts over S, where a fact is an expression of the form
R(a1, . . . , an) where R ∈ S is an n-ary relation symbol and
a1, . . . , an are values. The active domain of an instance I , de-
noted by adom(I) is the (finite) set of values that occur in
the facts of I .

A k-ary conjunctive query (CQ) over a schema S, for k ≥
0, is an expression of the form

q(x) :− ∃y(α1 ∧ · · · ∧ αn)

where x, y are tuples of variables, x has length k, and each
conjunct αi is an atomic formula that uses a relation sym-
bol from S and only variables from x and y, such that each
variable from x occurs in some conjunct. We denote by
q(I) the set of all k-tuples a such that I |= q(a).

We will not define in depth the various notions of
acyclicity that have been mentioned in the introduction,
but we reiterate here that they form a hierarchy with
Berge-acyclicity being most restrictive, and that all men-
tioned classes of acyclic queries are polynomial-time evalu-

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
able, meaning that given a CQ q(x) from the class, an in-
stance I and a tuple a of elements of the active domain
of I , we can decide in polynomial time whether a ∈ q(I).

The definition of path-CQs was given in Section 1.

Example 2.1. An example of a path-CQ is the query

q(x) :− ∃yzu(R(x, y) ∧ R(y, z) ∧ R(z, u) ∧ P (y) ∧ P (u)).

Every path-CQ is Berge-acyclic and hence polynomial-
time evaluable, see e.g. the classic paper where this is
proved for α-acyclic queries [15].

2.2. Computational learning theory

A concept class is a triple C = (�, Ex, |=), where � is a
set of concepts, Ex is a set of examples, and |= ⊆ Ex × �

represents whether an example is a positive or a negative
example for a given concept. We also denote by labφ(e) the
label of e according to φ, that is, labφ(e) = + if e |= φ and
labφ(e) = − otherwise. Two concepts φ, φ′ ∈ � are said to
be equivalent if labφ(e) = labφ′(e) for all e ∈ Ex.2

A labeled example is a pair (e, s) with e ∈ Ex and s ∈
{+, −}. A concept φ ∈ � fits a set of labeled examples E if
labφ(e) = s for all (e, s) ∈ E .

We only consider countable concept classes. Concepts
and examples are assumed to have an effective represen-
tation and a corresponding notion of size, which is denoted
by |φ| and |e|, respectively. We also denote the set of all
concepts (examples) of size at most n by �(n) (respectively,
Ex(n)). For a finite set of (possibly labeled) examples E ,
||E|| = ∑

e∈E |e|.
The following two properties of concept classes will be

important for us later on:

Definition 2.2 (Polynomial-time evaluability). A concept class
is polynomial-time evaluable if there exists a polynomial-
time algorithm that, given φ ∈ � and e ∈ Ex, outputs a
Boolean indicating whether e |= φ.

Definition 2.3 (Polynomial-size fitting property). A concept
class has the polynomial-size fitting property if for every fi-
nite set of labeled examples E , the existence of a concept
that fits E implies that there exists a fitting concept whose
size is bounded by a polynomial in ||E||.

We now define the two algorithmic problems men-
tioned in the introduction, namely fitting and PAC learning.

Definition 2.4 (Fitting problem). The fitting problem (also
known as consistency problem or separability problem) for
a concept class C is the problem to decide, given a finite
set of labeled examples E , whether there exists a concept
in C that fits E .

2 This deviates slightly from the standard convention, which defines a
concept class to be a pair (Ex, C) where C ⊆ ℘(Ex) (and, for c ∈ C , |c|
to be the size of the smallest representation of c). The difference is non-
essential. We prefer this presentation as it makes it easier to spell out
unambiguously the algorithmic problems that we consider (e.g., Defini-
tion 2.2).
4

In order to define PAC algorithms, we first need to in-
troduce some terminology and notation. An example distri-
bution for a concept class C = (�, Ex, |=) is a probability
distribution D over Ex. Given concepts φ, φ∗ ∈ � and an
example distribution D ,

errorD,φ∗(φ) = Pr
e∈D

(labφ(e) �= labφ∗(e))

is the expected error of φ relative to φ∗ and D .

Definition 2.5 (Efficient PAC learnability). An efficient PAC al-
gorithm for a concept class C is a pair (A, f) where

• A is a randomized polynomial-time algorithm that
takes as input a set of labeled examples and outputs
a concept from C , and

• f (·, ·, ·, ·) is a polynomial function, such that, for all
δ, ε ∈ (0, 1), all n, m ∈ N , all example distributions D
over Ex(m) , and all φ∗ ∈ �(n) , if the input consists of
at least f (1/δ, 1/ε, n, m) examples drawn from D and
labeled according to φ∗ , then with probability at least
1 − δ, A outputs a concept φ with errorφ∗,D(φ) ≤ ε .

If such an algorithm exists, we say that C is efficiently PAC
learnable. If the function f depends only on δ and ε and
not on n, m, then we say that (A, f) is a strongly efficient
PAC algorithm, and that the concept class C is strongly effi-
ciently PAC learnable.

This definition of efficient PAC algorithms is modeled
after the one in the textbook [2], in line with the literature
on inductive logic programming (cf., e.g., [25]). Our results
also apply to the alternative oracle-based definition.3 We
prefer the above definition as it exhibits more clearly the
relationship to fitting algorithms.

The following proposition relates the two algorithmic
problems (fitting and PAC learning) to each other.

3 Following the oracle-based presentation in, e.g., [22], one can define
an efficient PAC learning algorithm for a concept class C to be a ran-
domized polynomial-time algorithm that takes as input δ, ε ∈ (0, 1) and
a bound n ∈ N on the size of the target concept φ∗ , and that has access
to an oracle EXφ∗,D which, when called, returns (in unit time) a random
example drawn from D and labeled according to φ∗ . For every choice of
δ, ε , φ∗ ∈ �, n ≥ |φ∗|, and for every example distribution D , the algo-
rithm must terminate in time polynomial in 1/δ, 1/ε, n, and the size of
the largest example returned by the oracle. Furthermore, it must return a
concept that with probability 1 − δ satisfies errorφ∗,D (φ) < ε .

Note that, under this definition, not only the running time of the algo-
rithm but also the number of examples drawn from the distribution may
depend on the size of examples: if the learning algorithm encounters a
large example e, it may follow up by requesting a number of additional
examples that is polynomial in the size of e.

Efficient PAC learnability in the above sense implies efficient PAC
learnability in the sense of Definition 2.5: one can turn an oracle-based
learning algorithm into a learning algorithm according to Definition 2.5
by drawing examples uniformly at random from the input batch to an-
swer EX oracle calls. (To guarantee polynomial-time termination, even on
inputs where a fitting concept does not exist, we can maintain a counter
and terminating after p(n) steps, where p is the polynomial that bounds
the running time of the oracle-based learner on consistent inputs). Our
negative learnability results thus apply also to the oracle-based definition.
A classic paper that shows equivalence of different PAC learning models
is [20].

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
Proposition 2.6 (Pitt and Valiant [26]). Let C be a polynomial-
time evaluable concept class with the polynomial-size fitting
property. If C is efficiently PAC learnable, then the fitting prob-
lem for C is in RP.

This is a well-known fact (cf. also [2, Thm 6.2.1]), al-
though not in this precise formulation, as, usually, polyno-
mial evaluability and the polynomial-size fitting property
are tacitly assumed (which has sometimes led to mistakes,
e.g., in the derivation of Corollary 15 in [23]). To be self-
contained, we outline the proof of Proposition 2.6 here.

Proof. (of Proposition 2.6) Assume that there is an effi-
cient PAC algorithm (A, f) for C . We use it to solve the
fitting problem for C in randomized polynomial time. As-
sume that a set E of k labeled examples is given as the
input. Let n = p(||E||), where p is the polynomial witness-
ing the fact that C has the polynomial-size fitting property.
Let D be the uniform distribution on E (where each ex-
ample in E gets probability mass 1/k), and let m be the
maximum size of an example in E . Pick δ < .5 and ε < 1/k.
We generate a new (polynomial-sized) collection of labeled
examples E ′ by drawing f (1/δ, 1/ε, n, m) samples from
distribution D , and run algorithm A on it. Finally, we check
that the output of A is a fitting concept for E . If so, we an-
swer Yes. Otherwise, we answer No.

Clearly, if there is no fitting concept, the output will be
No. If, on the other hand, there is a fitting concept, then
there is one of size at most n, and hence, with probability
1 − δ, the algorithm will output a concept with error less
than ε . This in fact implies that the error is 0 (because
if the query misclassifies an example to which D assigns
non-zero mass, then it will have error at least 1/k). Hence,
with probability 1 − δ > 0.5 the algorithm outputs Yes. �

A variation on the same argument shows:

Proposition 2.7. If a concept class is strongly efficiently PAC
learnable, then it has the polynomial-size fitting property.

Proof. The proof uses the same construction as before, ex-
cept that the sample size now does not depend on n. Fur-
thermore, we omit the verification step where we confirm
that the produced concept fits the input examples. Instead,
we just output the result of the learning algorithm. In this
way, we obtain a randomized polynomial-time algorithm
that has a non-zero probability of outputting a fitting con-
cept for given input labeled examples, whenever a fitting
concept exists. The polynomial-size fitting property imme-
diately follows from this (the run that outputs a fitting
concept does so in polynomial time). �

We also make use of the following trivial fact:

Proposition 2.8. If a concept class (�, Ex, |=) is efficiently PAC
learnable, then, for every Ex′ ⊆ Ex, the concept class (�, Ex′, |=)

is also efficiently PAC learnable.

Indeed, this follows from the fact that every example
distribution over Ex′ is in particular also an example dis-
(n)

5

tribution over Ex(n) (that assigns no probability mass to
any example in Ex \ Ex′).

Finally, we use a well known connection between PAC
algorithms and Occam algorithms.

Definition 2.9 (Occam algorithm). An Occam algorithm for
a concept class C = (�, Ex, |=), with parameters α < 1
and k ≥ 1, is an algorithm that takes as input a set of
labeled examples E and outputs a concept φ ∈ � with
|φ| ≤ |E|α |φ∗|k that fits E provided that any concept from
� does. Furthermore, the running time is required to be
bounded by a polynomial in |φ∗| and ||E||.

Blumer et al. [4] proved that every Occam algorithm
A yields an efficient PAC algorithm, namely A′ = (A, f),
where the sample-size polynomial f is chosen such that

f (1/δ,1/ε,n,m) =
(

nk ln 2 + ln(2/δ)

ε

)1/(1−α)

.

Note that f does not depend on its fourth component m
(i.e., the example size bound). Moreover, every Occam al-
gorithm gives rise to an efficient PAC algorithm, not only in
the sense of Definition 2.5 as explained above, but, by the
same arguments, also when considering the oracle-based
presentation of PAC algorithms (cf. Footnote 3).

Theorem 2.10 ([4]). Every concept class for which there is an
Occam algorithm is efficiently PAC learnable.

3. Classes of CQs as concept classes

Each class of CQs can be naturally viewed as a concept
class. Fix a schema S, an arity k ≥ 0, and a class C of k-
ary CQs over S. In the associated concept class (C, Ex, |=),
Ex is the class of all pairs (I, a) with I an S-instance and
a a k-tuple of elements of the active domain of I , and |=
describes query answers, that is, (I, a) |= q(x) iff a ∈ q(I),
for all q(x) ∈ C and (I, a) ∈ Ex. We may abuse notation and
refer to this concept class (C, Ex, |=) simply as C when no
ambiguity arises. The following theorem summarizes some
basic properties.

Theorem 3.1 ([5,8]). Fix any schema S that contains at least one
binary relation symbol, and some k ≥ 0.

1. The concept class of k-ary CQs over S is not polynomial-
time evaluable (unless P = NP). Indeed, its evaluation prob-
lem is NP-complete.4

2. The concept class of k-ary CQs over S lacks the polynomial-
size fitting property. Indeed, the smallest fitting CQ for a
given set of labeled examples is in general exponentially
large.

3. The fitting problem for k-ary CQs over S is coNExpTime-
complete.

Let us now consider restricted classes of (unary) CQs
that still include path-CQs. We will see in the next section

4 The evaluation problem takes as input φ and e and asks if e |= φ.

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
that every such class of CQs has an NP-hard fitting problem
(cf. Theorem 5.6). We observe here that every such class of
CQs lacks the polynomial-size fitting property:

Theorem 3.2. Fix a schema S that contains at least a binary and
a unary predicate, and let C be any class of unary CQs over S that
includes all path-CQs. Then C lacks the polynomial-size fitting
property.

Proof. Let R ∈ S be binary and P ∈ S unary. For m ≥ 1,
let Lm denote the “lasso” instance, with active domain
am

0 , . . . , am
2m−1 consisting of the facts R(am

i , am
i+1) for all

i < 2m − 1 and R(am
2m−1, a

m
m) and P (am

m).
For i ≥ 1, let pi be the i-th prime number (where p1 =

2). By the prime number theorem, pi = O (i log i).
Finally, for n ≥ 1, let In be the disjoint union of Lpi

for i = 1, . . . , n, extended with the fact R(b, b) for a fresh
value b. We now construct our set of examples En as fol-
lows:

• Positive example (In, api
0) for i = 1 . . .n.

• Negative example (In, b).

It is easy to see that a fitting path-CQ for En exists,
namely the query

q(x1) :− ∃x2 . . . xk(R(x1, x2) ∧ · · · ∧ R(xk−1, xk) ∧ P (xk))

where k = �i=1...n(pi).
We claim that every CQ that fits the examples must be

of size at least 2n . Let q(x) be any CQ that fits the exam-
ples. Since positive and negative examples are based on
the same instance, we may assume that q is connected.
First of all, note that q must contain a conjunct of the form
P (y) (otherwise it would fail to fit the negative example).
Furthermore, y is not the free variable x and q uses only
the relation symbols P and R (otherwise it would fail to fit
any positive example). Consider the directed graph where
the vertices are the variables of q and there is an edge
from variable z to variable z′ iff the atom R(z, z′) occurs
in q. Since q is connected, there is an undirected path con-
necting x to y. Take any such path of minimal length. We
can represent it as a sequence

x = x0,α0, x1,α1, . . . , x� = y

where for each i < �, αi is an atom that occurs in q
that is either R(xi, xi+1) (then αi is a “forward edge”) or
R(xi+1, xi) (then αi is a “backward edge”). We define the
net-length of this path to be the number of forward edges
minus the number of backward edges.

Clearly, in order for the query q to be satisfied in a
lasso instance Lm , the net length of the above path must be
divisible by m. Therefore, since q fits all the examples con-
structed above, the net-length must be divisible by pi , for
all i = 1 . . .n, and thus at least

∏
i=1...n(pi). It follows, then,

that also the length (in the ordinary sense) of the path
must be at least

∏
i=1...n(pi). Therefore, every CQ that fits

the above examples must have at least
∏

i=1...n(pi) vari-
ables, which exceeds 2n . �
6

4. Failure of strong PAC learnability

By Proposition 2.7, Theorem 3.2 implies:

Corollary 4.1. Fix any schema S that contains at least a binary
relation symbol and a unary relation symbol. Let C be any class
of unary CQs over S that includes all path-CQs. Then C is not
strongly efficiently PAC learnable.

Alternatively, Corollary 4.1 can be shown using a VC-
dimension argument. In fact, we may then even drop the
‘efficiently’ from the statement. We define strong PAC learn-
ability in the same way as strongly efficient PAC learnability
(cf. Definition 2.5) except that A is not required to run in
polynomial time and f is not required to be a polynomial
function.

Theorem 4.2. Fix any schema S that contains at least a binary
relation symbol and a unary relation symbol. Let C be any class
of unary CQs over S that includes all path-CQs. Then C is not
strongly PAC learnable.

Proof. Let us recall the definition of VC-dimension. We say
that a concept class C shatters a set of examples S if for
every subset S ′ ⊆ S there is a c ∈ C such that S ′ = {e ∈
S | e |= c}. The VC-dimension of C is the cardinality of the
largest set of examples that is shattered by C , or infinite
if arbitrarily large sets can be shattered. The fundamental
theorem of statistical machine learning says that a concept
class is strongly PAC learnable iff it has finite VC dimen-
sion [4].

Let S be a schema that contains a unary relation symbol
P and a binary relation symbol R , and let C be a class of
unary CQs over S that contains all path-CQs. We show that
C has infinite VC-dimension.

Let n > 0. We construct a set S that contains n ex-
amples (I1, a1), . . . , (In, a1). Each instance Ii contains an
R-path of length n − 1 starting at a1, that is, adom(Ii) =
{a1, . . . , an} and R(a j, a j+1) ∈ Ii for all j ∈ {1, . . . , n − 1}.
Moreover, we include in Ii all facts P (a j) for j �= i.

To show that C shatters S , let S ′ ⊆ S be an arbi-
trary subset of S and let X ⊆ {1, . . . , n} be such that S ′ =
{(Ii, a1) ∈ S | i ∈ X} and set X = {1, . . . , n} \ X . Let q(x1) be
the path-CQ

q(x1) :− ∃x2 . . . xn(
∧

i=1...n−1

R(xi, xi+1) ∧
∧
j∈X

P (x j)).

One may verify that S ′ = {(Ii, a1) ∈ S | q(a1) ∈ Ii}. �
The concept class of path-CQs is polynomial-time evalu-

able, as follows from the fact that it forms a subclass of
the class of α-acyclic CQs, which is polynomial-time evalu-
able [30]. We make use of this in the next section.

Theorem 4.3 ([30]). Fix any schema S. The concept class of
path-CQs over S is polynomial-time evaluable.

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
5. Non-efficient PAC learnability

We now consider PAC learnability in the non-strong
version and show that no class of unary CQs that includes all
path-CQs is efficiently PAC learnable, cf. Theorem 1.1 from the
introduction.

Recall that we cannot use Proposition 2.6 directly to
prove non-efficient PAC learnability, for two reasons. First,
the polynomial-size fitting property does not hold for
path-CQs. And second, the classes that we consider may
contain CQs that are not path-CQs, and thus polynomial-
time evaluability also fails, despite Theorem 4.3. To cir-
cumvent the latter issue, we work with a restricted class
of instances.

5.1. Tree-shaped instances

Definition 5.1 (Tree-Shaped Instances and CQs). Let S be a
schema that consists of a binary relation symbol R and
any number of unary relation symbols, and let I be an S-
instance. We say that I is tree-shaped if the following two
conditions hold:

1. There is a function level : adom(I) → N such that, for
each fact R(a, b) of I , level(b) = level(a) + 1.

2. I does not contain two binary facts R(a, b), R(a′, b)

that agree on the second value but not on the first.

A CQ over S is said to be tree-shaped if its canonical in-
stance is tree-shaped.5

Lemma 5.2. Fix a schema S that consists of one binary relation
symbol and any number of unary relation symbols. Given a CQ
q over S,

1. we can test in polynomial time whether there exists a tree-
shaped instance I such that q(I) �= ∅,

2. if the answer to the above question is positive, then we can
construct in polynomial time a tree-shaped CQ q′ such that
for all tree-shaped instances I , q(I) = q′(I).

Proof. It suffices to prove the claim for connected CQs (the
general case then follows by a component-wise analysis).
Therefore, let q be a connected CQ.

Let ∼ be the smallest equivalence relation over the
variables of q such that, whenever R(u, v) and R(u′, v ′)
are conjuncts of q and v ∼ v ′ then also u ∼ u′ . Let q′ be
the quotient of q w.r.t. ∼ (that is, q′ is obtained from q by
choosing a representative of each ∼-equivalence class, and
replacing every occurrence of a variable x by the represen-
tative of the ∼-equivalence class of x). It is easy to see that,
for all tree-shaped instances I , a ∈ q(I) iff a ∈ q′(I) (here,
the left-to-right direction uses the tree-shape of I , while
the right-to-left direction holds for every instance I).

If q′ contains a directed cycle, then clearly, q′(I) = ∅ for
all tree-shaped instances I , and we are done.

5 The canonical instance of a CQ is the instance whose active domain
consists of the variables of the query and whose facts are the conjuncts
of the query.
7

Assume, therefore, that q′ does not contain a directed
cycle. Since q′ is connected, there must then exist a (free
or existentially quantified) variable y for which q′ does not
contain any conjunct of the form R(·, y). Furthermore, any
simple path from y to any other variable z must consist
entirely of forward edges, otherwise, the path would be of
the form

y
R−→ · · · R−→ u

R−→ v
R←− w

R←− · · · R←− z

and then u and w would have been identified when we
constructed q′ . It follows that q′ is tree-shaped. Further-
more, let Iq′ be the canonical instance of q′ . Then, clearly,
q′(Iq′) �= ∅. �

Since tree-shaped CQs are α-acyclic and hence can
be evaluated in polynomial time (on the class of all in-
stances) [30], Lemma 5.2 immediately implies:

Proposition 5.3. Fix a schema S that contains one binary re-
lation symbol and any number of unary relation symbols. For
every class C of CQs over S, the concept class (C,Extree, |=),
where Extree is the set of tree-shaped S-instances, is polynomial-
time evaluable.

In what follows, we will therefore only work with tree-
shaped instances.

5.2. A reduction from 3CNF satisfiability

Fix a schema S containing a binary relation symbol R
and a unary relation symbol P .

We use a reduction from the satisfiability problem for
3CNF formulas, inspired by [23,19]. Let φ = φ1 ∧· · ·∧φk be
any 3CNF formula over a propositional signature PROP =
{X1, . . . , Xm}. We denote by LIT = {Xi, Xi | i ≤ m} the set of
all literals over PROP. For every l ∈ LIT , set jl = 2i if l is of
the form Xi and jl = 2i − 1 if l is of the form Xi . Define an
S-instance Iφ as follows:

• R(ai, pi,1) and R(ai, ni,1) for i ≤ m
• R(pi, j, pi, j+1) and R(ni, j, ni, j+1) for i ≤ m, j < 2m
• P (pi, jl) for every literal l ∈ LIT \ {Xi}
• P (ni, jl) for every literal l ∈ LIT \ {Xi}
• R(b, bi,1) for i ≤ k
• R(bi, j, bi, j+1) for i ≤ k and b ≤ 2m
• P (bi, jl) for every l ∈ LIT and i ≤ k with l not occurring

in the clause φi .

Let Eφ = {((Iφ, ai), +) | i ≤ m} ∪ {((Iφ, b), −)}.

Example 5.4. Let PROP = {X1, X2} and consider the for-
mula φ = X1 ∧ X2 ∧ (X1 ∨ X2). Then, the corresponding
S-instance Iφ can be depicted as follows (where each edge
represents an R-edge directed downwards):

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
a1

p1,1

p1,2 P

p1,3 P

p1,4 P

n1,1 P

n1,2

n1,3 P

n1,4 P

a2

p2,1 P

p2,2 P

p2,3

p2,4 P

n2,1 P

n2,2 P

n2,3 P

n2,4

b

b1,1 P

b1,2

b1,3 P

b1,4 P

b2,1 P

b2,2 P

b2,3 P

b2,4

b3,1

b3,2 P

b3,3 P

b3,4

Lemma 5.5. For all 3CNF formulas φ:

1. From a satisfying assignment for φ , one can construct in
polynomial time a path-CQ that fits Eφ .

2. Conversely, if there is a CQ that fits Eφ , then φ has a satis-
fying assignment.

In particular, whenever there is a CQ that fits Eφ , then there is a
fitting path-CQ of size polynomial in |PROP|.

Proof. 1. Let v be a satisfying assignment for φ. Let

q(x0) :− ∃x1, . . . x2m(R(x0, x1) ∧ · · · ∧ R(x2m−1, x2m) ∧∧
l∈LIT such that v|=l P (x jl)).

Clearly, each ai ∈ q(Iφ) and b /∈ q(Iφ).
2. Let q(x) be a unary CQ that fits Eφ . By Lemma 5.2, we

may assume that q is a tree-shaped CQ. Furthermore, we
may assume without loss of generality that q is connected.
Let levelq : Vars(q) → N be as given by Definition 5.1. We
may assume levelq(x) = 0 (if there was any y ∈ Vars(q)

with levelq(y) < levelq(x), then q would not fit the posi-
tive examples of Eφ).

Thus, q(x) is a connected tree-shaped CQ, where x is
the root of the tree. Since q(x) fits the negative example
(Iφ, b), we have that b /∈ q(Iφ). This means that either (i)
q contains a conjunct of the form P (x), or (ii) for some
y ∈ Vars(q) with levelq(y) = 1, the subtree of q rooted at
y, does not admit a homomorphism to (Iφ, bi,1) for any
i ≤ n. It is easy to see that (i) cannot happen, because it
would imply that q does not fit the positive examples in
Eφ . Therefore, case (ii) must apply. Let y be the variable
in question, and let us denote by q′(y) the subtree of q
rooted at y (with y as its free variable).

We know that q′(Iφ) does not contain bi,1 for any i ≤ n.
Furthermore, it is easy to see (from the fact that q fits the
positive examples in Eφ), that for each i ≤ m, either pi,1 or
ni,1 belongs to q′(Iφ).

Now, let L y be the set

{l ∈ LIT | q′ has a conjunct P (z) with levelq(z) = jl + 1}
Claim 1: L y does not contain both Xi, Xi for any i ≤ m.

Claim 1 follows immediately from the fact that q(x) fits
the positive examples.

Claim 2: L y contains a literal from each clause of φ.

Suppose, for the sake of a contradiction, that φ has a
clause φi , such that no literal occurring in φi belongs to
8

L y . Then, bi,1 belongs to q′(Iφ), as witnessed by the vari-
able assignment that maps each variable z to bi,levelq(z)−1.
However, we know that bi,1 /∈ q′(Iφ), a contradiction.

Claim 1 and 2 together imply that φ is satisfiable. In-
deed, it suffices to take any truth assignment consistent
with the literals in L y . �

From Lemma 5.5, together with the NP-hardness of
3CNF satisfiability, we immediately get:

Theorem 5.6. Fix any schema S that contains at least a binary
relation symbol and a unary relation symbol, and let C be any
class of unary CQs over S that includes all path-CQs. Then the
fitting problem for C is NP-hard.

Now, putting everything together, we can prove Theo-
rem 1.1, restated here:

Theorem 5.7. (assuming RP �= NP) Fix a schema S containing
at least one binary relation symbol R and one unary relation
symbol P . Let C be any class of unary CQs over S that includes
all path-CQs. Then C is not efficiently PAC learnable, even w.r.t.
single-instance distributions.

Proof. Assume that the concept class C = (C, Ex, |=) is
efficiently PAC learnable. Then, by Proposition 2.8, so
is C ′ = (C, Ex′, |=) where Ex′ = {(I, a) | I = Iφ for some
3CNF formula φ and a ∈ {a1, a2, b}}. It follows from Lem-
ma 5.5 that C ′ has the polynomial-size fitting property.
Furthermore, C ′ is polynomial-time evaluable since all ex-
amples in Ex′ are tree-shaped and by Proposition 5.3. By
Proposition 2.6, the fitting problem for C ′ is thus solvable
in RP. By Theorem 5.6, this implies that RP = NP.

A careful inspection of the proof of Proposition 2.6 and
the construction of our examples reveals that even efficient
PAC learnability w.r.t. single-instance distributions already
gives us, in the same way as above, an RP-algorithm for
the fitting problem for C ′ . �
Remark 5.8. The above proof involves path-CQs of un-
bounded depth, over a fixed schema. It is easy to see that
if we were to bound both the depth of the path-CQs and
keep the schema fixed, we would end up with a finite con-
cept class, trivializing the PAC learning problem.

Remark 5.9. The above non-learnability proof cannot be
adapted to UCQs in an obvious way. In fact, we crucially
use the fact that the fitting problem for path-CQs is NP-
hard whereas the fitting problem for UCQs that are unions
of path-CQs can be solved in polynomial time. On the
other hand, as mentioned earlier, it follows from results in
[6] that UCQs are not efficiently PAC learnable, assuming
RP �= NP.

Remark 5.10. The fact that the above proof involves a re-
duction from the satisfiability problem for 3CNF formulas
is remarkable, given that 3CNF formulas themselves are ef-
ficiently PAC learnable [22].

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
Remark 5.11. Efficient PAC learnability as defined in Def-
inition 2.5 (in the non-strong version) is sometimes also
known as strong PAC learnability. In contrast, weak PAC
learnability then merely requires the existence of a learner
that works for some non-trivial choice of δ and ε . A well-
known result in computational learning theory states that,
for polynomial-time evaluable concept classes, weak learn-
ability implies strong learnability (cf. [22]). Since the con-
cept class of CQs is not polynomial-time evaluable, Theo-
rem 1.1, taken at face value, does not imply that the same
result holds in the weak PAC model. Nevertheless, inspec-
tion of our proof immediately shows that it yields the
same result also for the weak PAC model.

6. PAC learnability with membership queries

We prove Theorem 1.2 from the introduction. Formally,
a membership oracle MEMBφ , for a concept φ, is an ora-
cle that, given any unlabeled example e, returns (in unit
time) its label according to φ. PAC learning with access to
a membership oracle for the target concept can be viewed
as a formal model of active learning.

Theorem 6.1. Fix any schema S and k ≥ 0. There is an algorithm
that takes as input a set E of examples labeled according to a k-
ary CQ q∗ over S, has access to a membership oracle for q∗, and
outputs a k-ary CQ q over S with |q| ≤ |q∗| that fits E. Moreover,
the running time of the algorithm is polynomial in ||E|| and |q∗|.

Proof. We use ideas similar to the ones used in the proof
that CQs are efficiently exactly learnable with membership
and equivalence queries [6,7]. Before we describe the algo-
rithm, we introduce a number of basic concepts.

Let I, J be instances over the same schema. A mapping
h : adom(I) → adom(J) is called homomorphism from I to J
if R(h(c)) ∈ J for every R(c) ∈ I . Given tuples a and b of
values from I and J , respectively, we write (I, a) → (J , b)

to denote the existence of a homomorphism h from I to J
with h(a) = b. Homomorphisms compose in the sense that
(I, a) → (J , b) and (J , b) → (K , c) implies (I, a) → (K , c).

The direct product I × J of two instances (over the same
schema S), is the S-instance that consists of all facts of
the form R(〈a1, b1〉, . . . , 〈an, bn〉), where R(a1, . . . , an) is a
fact of I and R(b1, . . . , bn) is a fact of J . Note that the
active domain of I × J consists of pairs from adom(I) ×
adom(J). The direct product (I, a) × (J , b) of two exam-
ples, where a = a1, . . . , ak and b = b1, . . .bk are of the
same length, is given by (I × J , (〈a1, b1〉, . . . , 〈ak, bk〉). Note
that, in general, this may not yield a well-defined example,
because there is no guarantee that the distinguished ele-
ments 〈a1, b1〉, . . . , 〈ak, bk〉 belong to adom(I × J). When
it is well-defined, then the projections to the respective
components witness that both (I, a) × (J , b) → (I, a) and
(I, a) × (J , b) → (J , b).

A critical positive example for a CQ q∗ is a positive ex-
ample (I, a) for q∗ , such that, for every proper subinstance
I ′ � I , (I ′, a) is a negative example for q∗ .

The following claim is easy to prove ([7, Lemma 5.4]):

Claim 1: Given a positive example (I, a) for an unknown
CQ q∗ , we can construct from it in linear time a critical
9

positive example (I ′, a) for q∗ , with I ′ ⊆ I , given access to
a membership oracle for q∗ .

Claim 2: If (I, a) and (J , b) are positive examples for a CQ
q∗ , then (I, a) × (J , b) is a well-defined example, and it is
a positive example for q∗ .

Proof of Claim 2: Let (I, a) and (J , b) be positive exam-
ples for a CQ q∗ . Let h1 and h2 be the respective wit-
nessing variable assignments. Then the map h given by
h(x) = (h1(x), h2(x)) is a satisfying variable assignment for
q∗ in (I, a) × (J , b), showing that the latter is a positive ex-
ample for q∗ . It remains to show that it is a well-defined
example, i.e., that each distinguished element occurs in a
fact. This follows from the fact that each free variable of q∗
occurs in a conjunct of q∗ (by the definition of CQs), and
that each distinguished element of (I, a) × (J , b) is the h-
image of a free variable of q∗ (cf. [7, Lemma 5.5]).

Given a set E of examples labeled according to q∗ , the
algorithm proceeds as follows. Let (I1, a1), . . . , (In, an) be
an enumeration of the positive examples in E . We con-
struct, by induction on n, a critical positive example (J , b)

for q∗ such that there is a homomorphism from (J , b) to
each (Ii, ai). This is done by applying Claim 1 and Claim 2
in an interleaved fashion. More precisely:

• Start by setting (J1, b1) to be the critical positive ex-
ample obtained from (I1, a1) via Claim 1.

• For i = 2, . . . , n, let (J ′
i, b

′
i) be (J i−1, bi−1) ×(Ii, ai) and

obtain (J i, bi) as critical positive example from (J ′
i, b

′
i)

via Claim 1.
• Set (J , b) = (Jn, bn).

Note that, by Claim 2 and the fact that homomorphisms
compose, each (J ′

i, b
′
i) is a well-defined example that has

a homomorphism to all examples (I1, a1), . . . , (Ii, ai). Thus,
(J , b) has a homomorphism to all positive examples. Let
b = b1, . . . , bk and let q be the canonical CQ of (J , b),
that is, the CQ q(xb1 , . . . , xbk) that has a conjunct for ev-
ery fact of J , where each element b ∈ adom(J) is replaced
by a corresponding variable xb . Then q fits the positive
examples in E since (J , b) has a homomorphism to each
positive example. It also fits the negative examples in E:
(J , b) is a positive example for q∗ by construction and if q
fails to fit a negative example (I, a) in E , then (J , b) has a
homomorphism to (I, a), which, by composition of homo-
morphisms, leads to a contradiction with q∗ fitting (I, a).

Furthermore, one can easily see that any critical positive
example (I, a) for q∗ satisfies |I| ≤ |q∗|. Hence, each J i sat-
isfies | J i | ≤ |q∗|. This implies, in particular, that |q| ≤ |q∗|
as required. Moreover, it implies that | J ′

i | ∈ O (||E|| · |q∗|),
for all i. Since J i is obtained from J ′

i in linear time by
Claim 1, the running time of this algorithm is O (||E||2 ·
|q∗|). �

The algorithm given in Theorem 6.1 is an Occam algo-
rithm (with α = 0 and k = 1) in the sense of Definition 2.9,
except for the fact that it uses a membership oracle. While
Theorem 2.10 is stated for the case without member-
ship queries, its proof applies also to Occam algorithms

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
with membership queries, yielding efficient PAC learnabil-
ity with membership queries (stated as Theorem 1.2 in the
introduction):

Corollary 6.2. Fix any schema S and k ≥ 0. The class of all k-ary
CQs over S is efficiently PAC learnable with membership queries.

Remark 6.3. The proof of Theorem 6.1 establishes some-
thing stronger, namely that CQs are efficiently PAC learn-
able with membership queries even when the schema S
and the arity k are not fixed but treated as part of the in-
put of the learning task. This is remarkable, because it fol-
lows from results in [13] that CQs are not PAC predictable
with membership queries when the arity is treated as part
of the input (under suitable cryptographic assumptions).
However, note that efficient PAC learnability (with mem-
bership queries) implies PAC predictability (with member-
ship queries) only for concept classes that are polynomial-
time evaluable, which the class of CQs is not.

Remark 6.4. We expect that, with respect to each of the
various notions of “acyclicity” mentioned in the introduc-
tion, acyclic CQs are efficiently PAC learnable with mem-
bership queries. However, since efficient PAC learnability
(with or without membership queries) is not a monotone
property of concept classes, this requires a case-by-case
analysis. A challenge is posed by the fact that the posi-
tive examples (Ii, ai) are not guaranteed to correspond to
queries from the considered class, and thus neither are the
hypotheses that our algorithm generates.

The above proof can also be modified to apply to the
concept class of unions of conjunctive queries (UCQs). By a
k-ary UCQ over a schema S we mean a non-empty finite
disjunction of k-ary CQs over S.

Theorem 6.5. Fix any schema S and k ≥ 0. The class of k-
ary UCQs over S is efficiently PAC learnable with membership
queries.

Proof. We sketch the modified algorithm. Given a set E of
labeled examples, it proceeds as follows. Let (I1, a1), . . . ,
(In, an) be an enumeration of the positive examples in E .
We construct sets of critical positive examples X0, . . . , Xn

such that for all i and all (I j, a j) with j < i ≤ n, there ex-
ists a (J , b) ∈ Xi that admits a homomorphism to (I j, a j).
As before, this is done by applying Claim 1 and Claim 2 in
an interleaved fashion.

More precisely, set X0 = ∅; for i = 1, . . . , n, we first test
whether there is a (J , b) ∈ Xi−1 such that (J , b) × (Ii, ai) is
a positive example for the target query q∗. We use a mem-
bership query for this. If such (J , b) ∈ Xi−1 exists, then
we choose an arbitrary one and set Xi = (Xi−1 \ {(J , b}) ∪
{(J ′, b′)}, where (J ′, b′) is a subinstance of (J , b) × (Ii, ai)

that is a critical positive example for q∗ . Otherwise (if
no such (J , b) ∈ Xi−1 exists), we set Xi = Xi−1 ∪ {(J ′, b′)}
where (J ′, b′) is a subinstance of (Ii, ai) that is a critical
positive example for q∗ .

Let q be the UCQ that is the disjunction of the canonical
CQs of the examples in Xn . By similar arguments as before,
10
we can show that q fits E and |q| ≤ |q∗|. In particular, for
each i ≤ n the sum of the sizes of the structures in Xi is at
most the size of q∗ . �
Remark 6.6. The problem of learning GAV schema map-
pings closely corresponds to the problem of learning UCQs
(cf. [7]). In particular, Theorem 6.5 implies that GAV
schema mappings are efficiently PAC learnable with mem-
bership queries. This resolves an open question in [6].

7. Conclusion

We established a strong negative result on the efficient
PAC learnability of classes of CQs that include all path-
CQs. Although our result indicates that interesting classes
of CQs tend to not be efficiently PAC learnable, from a
theoretical perspective it would be interesting to work to-
wards a complete classification of classes of CQs that are
(or are not) efficiently PAC learnable. On the positive side,
we showed that CQs and UCQs are efficiently PAC learnable
with membership queries.

In the following, we discuss how one could try to over-
come the negative result by loosening the running time
requirements. A first observation is that while PAC learn-
ability of (the class of all) CQs cannot be attained by a
polynomial-time algorithm, PAC learning with only polyno-
mial sample size is always possible when more running time
is granted. Indeed, this approach has been successfully ex-
ploited in [9] for PAC learning unary tree-shaped CQs (over
a schema that contains only unary and binary relations)
with the help of a SAT solver.

The fact that a PAC learning algorithm for CQs exists
with polynomial sample size but super-polynomial run-
ning time, is not difficult to establish. One can simply use
an Occam algorithm that enumerates candidate CQs q in
the order of increasing size, checks for each q whether it
fits the input examples E , and returns the first fitting CQ
found. If a fitting CQ exists, then there is one of size single
exponential in ||E|| [5]. We may thus terminate (and re-
turn an arbitrary CQ) when that bound is reached. The al-
gorithm runs in double exponential time even if we check
in a brute-force way whether candidate CQs fit the input
examples. The bound on the sample size stated after Theo-
rem 2.9 applies despite the non-polynomial running time.
We thus obtain a PAC algorithm with polynomial sample
size and double exponential running time.

It is an interesting question whether and when a more
modest superpolynomial running time suffices. In particu-
lar, one may consider running times that also depend on
the target query q rather than only on the input set of
examples E . From this perspective, the above algorithm at-
tains running time ||E||O (|q|) while time f (q) · poly(||E||)
with f a computable function would clearly be preferable.
This resembles fixed-parameter tractability (FPT) in the
study of the parameterized complexity of query evaluation
(with the size of the query being the parameter), so let us
refer to it as FPT PAC learning. To make this well-defined,
it is convenient to view FPT PAC learning as a promise
problem, meaning that the input examples are promised

B. ten Cate, M. Funk, J.C. Jung et al. Information Processing Letters 183 (2024) 106431
to have a fitting query from the considered class.6 Alterna-
tives are to treat the non-existing target query as being of
size 1 (which is a strong requirement) and to grant unlim-
ited running time in the case that there is no fitting query
(declaring that case a corner case).

In the setting of FPT PAC learning, classes of CQs of
bounded treewidth and (more generally) bounded sub-
modular width should be expected to play a prominent
role because these notions are tightly linked to CQ evalua-
tion in FPT [18,24]. They generalize all notions of acyclicity
mentioned in this paper, such as α-acyclicity. The exact
same Occam algorithm described above yields that for ev-
ery k ≥ 1, the class Ck of CQs of submodular width at most
k is FPT PAC learnable with polynomial sample size. This
raises a number of questions: Is the class of all CQs FPT
PAC learnable? If not, can we characterize the classes of
CQs that are? And how exactly does the running time of
the algorithms depend on the parameter?

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Data availability

No data was used for the research described in the ar-
ticle.

References

[1] Dana Angluin, Queries and concept learning, Mach. Learn. 2 (4)
(1988) 319–342.

[2] Martin Anthony, Norman L. Biggs, Computational Learning Theory:
An Introduction, Cambridge University Press, 1992.

[3] Marta Arias, Roni Khardon, Learning closed Horn expressions, Inf.
Comput. 178 (1) (2002) 214–240.

[4] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, Manfred K.
Warmuth, Learnability and the Vapnik-Chervonenkis dimension,
J. ACM 36 (4) (1989) 929–965.

[5] Balder ten Cate, Víctor Dalmau, The product homomorphism prob-
lem and applications, in: Proc. of ICDT, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015, pp. 161–176.

[6] Balder ten Cate, Víctor Dalmau, Phokion G. Kolaitis, Learning schema
mappings, ACM Trans. Database Syst. 38 (4) (2013) 28.

[7] Balder ten Cate, Víctor Dalmau, Conjunctive queries: unique charac-
terizations and exact learnability, ACM Trans. Database Syst. 47 (4)
(2022) 14.

6 The lower bounds proved in this paper then no longer apply.

[8] Balder ten Cate, Victor Dalmau, Maurice Funk, Carsten Lutz, Extremal
fitting problems for conjunctive queries, in: Floris Geerts, Hung Q.
Ngo, Stavros Sintos (Eds.), Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2023, Seattle, WA, USA, June 18-23, 2023, ACM, 2023, pp. 89–98.

[9] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz,
SAT-based PAC learning of description logic concepts, in: Proc. of IJ-
CAI, 2023.

[10] Hubie Chen, Matthew Valeriote, Learnability of solutions to conjunc-
tive queries, J. Mach. Learn. Res. 20 (1) (2019) 2422–2449.

[11] William W. Cohen, Cryptographic limitations on learning one-clause
logic programs, in: Proc. of AAAI, AAAI Press / The MIT Press, 1993,
pp. 80–85.

[12] William W. Cohen, The dual DFA learning problem: hardness results
for programming by demonstration and learning first-order represen-
tations (extended abstract), in: Proc. of COLT, ACM, 1996, pp. 29–40.

[13] Víctor Dalmau, A dichotomy theorem for learning quantified Boolean
formulas, Mach. Learn. 35 (3) (1999) 207–224.

[14] Víctor Dalmau, Peter Jeavons, Learnability of quantified formulas,
Theor. Comput. Sci. 306 (1) (2003) 485–511.

[15] Ronald Fagin, Degrees of acyclicity for hypergraphs and relational
database schemes, J. ACM 30 (3) (1983) 514–550.

[16] Maurice Funk, Concept-by-example in EL knowledge bases, Master’s
thesis, University of Bremen, 2019.

[17] Maurice Funk, Jean Jung Carsten Lutz, Hadrien Pulcini, Frank Wolter,
Learning description logic concepts: when can positive and negative
examples be separated? in: Proc. of IJCAI, 2019, pp. 1682–1688.

[18] Martin Grohe, The complexity of homomorphism and constraint sat-
isfaction problems seen from the other side, J. ACM 54 (1) (2007)
1.

[19] David Haussler, Learning conjunctive concepts in structural domains,
Mach. Learn. 4 (1989) 7–40.

[20] David Haussler, Michael J. Kearns, Nick Littlestone, Manfred K. War-
muth, Equivalence of models for polynomial learnability, Inf. Comput.
95 (2) (1991) 129–161.

[21] Kouichi Hirata, Prediction-hardness of acyclic conjunctive queries,
Theor. Comput. Sci. 348 (1) (2005) 84–94.

[22] Michael J. Kearns, Umesh V. Vazirani, An Introduction to Computa-
tional Learning Theory, MIT Press, 1994.

[23] Jörg-Uwe Kietz, Some lower bounds for the computational complex-
ity of inductive logic programming, in: Proc. of ECML, Springer, 1993,
pp. 115–123.

[24] Dániel Marx, Tractable hypergraph properties for constraint satisfac-
tion and conjunctive queries, J. ACM 60 (6) (2013) 42.

[25] Shan-Hwei Nienhuys-Cheng, Roland de Wolf, Foundations of Induc-
tive Logic Programming, Springer, 1997.

[26] Leonard Pitt, Leslie G. Valiant, Computational limitations on learning
from examples, J. ACM 35 (4) (1988) 965–984.

[27] Robert E. Schapire, The strength of weak learnability, Mach. Learn. 5
(1990) 197–227.

[28] G. Valiant Leslie, A theory of the learnable, Commun. ACM 27 (1984)
1134–1142.

[29] Ross Willard, Testing expressibility is hard, in: Proc. of CP, Springer,
2010, pp. 9–23.

[30] Mihalis Yannakakis, Algorithms for acyclic database schemes, in:
Proc. of VLDB, VLDB Endowment, 1981, pp. 82–94.
11

http://refhub.elsevier.com/S0020-0190(23)00074-1/bibD98F24F7B18B1217EE17DD3CD7109DFBs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibD98F24F7B18B1217EE17DD3CD7109DFBs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib2621D5F01CB843C8D4243097003A0A42s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib2621D5F01CB843C8D4243097003A0A42s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib30E144B2CD54B61E6FEA635CC68605C9s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib30E144B2CD54B61E6FEA635CC68605C9s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibAC4CAF5948CC7AD5E5B4F7AEF0114932s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibAC4CAF5948CC7AD5E5B4F7AEF0114932s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibAC4CAF5948CC7AD5E5B4F7AEF0114932s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib63503920D1A5250634A39713276FCB55s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib63503920D1A5250634A39713276FCB55s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib63503920D1A5250634A39713276FCB55s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib24992FBCED1907EF5AFE02AEA427BDA2s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib24992FBCED1907EF5AFE02AEA427BDA2s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib385D1FD2941545E7D8EB9B85121A79DDs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib385D1FD2941545E7D8EB9B85121A79DDs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib385D1FD2941545E7D8EB9B85121A79DDs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibE8531F40BB21BB03C8CA06F1F97AF982s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibE8531F40BB21BB03C8CA06F1F97AF982s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibE8531F40BB21BB03C8CA06F1F97AF982s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibE8531F40BB21BB03C8CA06F1F97AF982s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibE8531F40BB21BB03C8CA06F1F97AF982s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib838DA7F11806984A2323CA52F49C0EEAs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib838DA7F11806984A2323CA52F49C0EEAs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib838DA7F11806984A2323CA52F49C0EEAs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib50F2107E765D4DB539AA312DFD7253BEs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib50F2107E765D4DB539AA312DFD7253BEs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8C7DEB15572DB3B3836A558A1069FAB5s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8C7DEB15572DB3B3836A558A1069FAB5s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8C7DEB15572DB3B3836A558A1069FAB5s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8A4D81B3A1994053A8DCCC978843B633s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8A4D81B3A1994053A8DCCC978843B633s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8A4D81B3A1994053A8DCCC978843B633s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib6FC5121C073025D3544D25514C9B26FAs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib6FC5121C073025D3544D25514C9B26FAs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibB7E9B135DBF239E1CD8ED26250291882s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibB7E9B135DBF239E1CD8ED26250291882s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib26F52D37FA95FCDBDDCD0C5FB810813Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib26F52D37FA95FCDBDDCD0C5FB810813Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib357281C26B973FF5E61CAFD7D3FE66C2s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib357281C26B973FF5E61CAFD7D3FE66C2s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibA582A688DF924C2358D8EC4FEC9C383Ds1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibA582A688DF924C2358D8EC4FEC9C383Ds1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibA582A688DF924C2358D8EC4FEC9C383Ds1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibFAA9ADFE8A6617C9D429B8721DDB902Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibFAA9ADFE8A6617C9D429B8721DDB902Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibFAA9ADFE8A6617C9D429B8721DDB902Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibA02ABE4CA679F639EFF5338F80720F94s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibA02ABE4CA679F639EFF5338F80720F94s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib6F461692C819BC99F3C01D5E6607C810s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib6F461692C819BC99F3C01D5E6607C810s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib6F461692C819BC99F3C01D5E6607C810s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibB49C1DE60E1674A6CC460FB89F484409s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibB49C1DE60E1674A6CC460FB89F484409s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibF092EA018B7E7D86B0006BABA4A932DCs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibF092EA018B7E7D86B0006BABA4A932DCs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib04595FE6C535127FA8038B1C128F552Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib04595FE6C535127FA8038B1C128F552Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib04595FE6C535127FA8038B1C128F552Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibC5CFBDAC80067731C9785E5ADEE172D9s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibC5CFBDAC80067731C9785E5ADEE172D9s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib3760591B5CA2C2AB32F2F550DAF78D4Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib3760591B5CA2C2AB32F2F550DAF78D4Cs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibEFA24204DFF4FFE474D6D65B4ED4F9F6s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bibEFA24204DFF4FFE474D6D65B4ED4F9F6s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib2F4165CA75BD8BB7B6D23227429A4B38s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib2F4165CA75BD8BB7B6D23227429A4B38s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib7E0020E492686A69ACAF071A8A3D354Bs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib7E0020E492686A69ACAF071A8A3D354Bs1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8873595B6F228E8D5DD41EEED4B66054s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib8873595B6F228E8D5DD41EEED4B66054s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib922C490BFDEAC6D738F4E486366F2496s1
http://refhub.elsevier.com/S0020-0190(23)00074-1/bib922C490BFDEAC6D738F4E486366F2496s1

	On the non-efficient PAC learnability of conjunctive queries
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Conjunctive queries
	2.2 Computational learning theory

	3 Classes of CQs as concept classes
	4 Failure of strong PAC learnability
	5 Non-efficient PAC learnability
	5.1 Tree-shaped instances
	5.2 A reduction from 3CNF satisfiability

	6 PAC learnability with membership queries
	7 Conclusion
	Declaration of competing interest
	Data availability
	References

