
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On the non-efficient PAC learnability of conjunctive queries

ten Cate, B.; Funk, M.; Jung, J.C.; Lutz, C.
DOI
10.1016/j.ipl.2023.106431
Publication date
2024
Document Version
Final published version
Published in
Information Processing Letters
License
CC BY

Link to publication

Citation for published version (APA):
ten Cate, B., Funk, M., Jung, J. C., & Lutz, C. (2024). On the non-efficient PAC learnability of
conjunctive queries. Information Processing Letters, 183, Article 106431. Advance online
publication. https://doi.org/10.1016/j.ipl.2023.106431

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:24 Jan 2024

https://doi.org/10.1016/j.ipl.2023.106431
https://dare.uva.nl/personal/pure/en/publications/on-the-nonefficient-pac-learnability-of-conjunctive-queries(7216504c-8904-4875-a554-6cd3b18d0f39).html
https://doi.org/10.1016/j.ipl.2023.106431


Information Processing Letters 183 (2024) 106431

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

On the non-efficient PAC learnability of conjunctive queries

Balder ten Cate a,∗,1, Maurice Funk b, Jean Christoph Jung c, Carsten Lutz b

a ILLC, University of Amsterdam, Postbus 94242, Amsterdam, 1090 GE, the Netherlands
b Leipzig University, Augustusplatz 10, Leipzig, 04109, Germany
c TU Dortmund University, August-Schmidt-Straß e 1, Dortmund, 44227, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2022
Received in revised form 21 July 2023
Accepted 24 July 2023
Available online 28 July 2023

Keywords:
Computational learning theory
Conjunctive queries
Inductive logic programming
Databases

This note serves three purposes: (i) we provide a self-contained exposition of the fact 
that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct 
(PAC) model, paying clear attention to the complicating fact that this concept class lacks 
the polynomial-size fitting property, a property that is tacitly assumed in much of the 
computational learning theory literature; (ii) we establish a strong negative PAC learnability 
result that applies to many restricted classes of conjunctive queries (CQs), including acyclic 
CQs for a wide range of notions of acyclicity; (iii) we show that CQs (and UCQs) are 
efficiently PAC learnable with membership queries.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Conjunctive queries (CQs) are an extensively studied 
database query language that plays a prominent role in 
database theory. CQs correspond precisely to Datalog pro-
grams with a single non-recursive rule and to the positive-
existential-conjunctive fragment of first-order logic. Since 
the evaluation problem for conjunctive queries is NP-
complete, various tractable subclasses have been intro-
duced and studied. These include different variants of 
acyclicity, such as α-acyclicity, β-acyclicity, γ -acyclicity, 
and Berge-acyclicity, which form a strict hierarchy with 
Berge-acyclicity being most restrictive [15]. A landmark re-
sult by Grohe states that a class of CQs is tractable if and 
only if the treewidth of all CQs in it is bounded by a con-
stant (under certain assumptions) [18,24].

In this note, we consider the learnability of CQs from 
labeled examples, in Valiant’s well-known Probably Approx-
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imately Correct (PAC) learning model [28]. We give a self-
contained proof that the class of all CQs as well as all 
classes of acyclic CQs mentioned above are not efficiently 
PAC learnable. While the general idea of our proof is due 
to [23,19], we strengthen the result in several respects and 
present it in a form that is easily accessible to modern-day 
database theorists.

The result q(I) of evaluating a k-ary CQ q on a database 
instance I is a set of k-tuples of values from the active 
domain of I . An example, then, is most naturally taken to 
be a pair (I, a) where I is a database instance and a is a 
k-tuple of values from the active domain of I . The example 
is positive if a ∈ q(I) and negative otherwise.

An efficient PAC algorithm is a (possibly randomized) 
polynomial-time algorithm that takes as input a set of ex-
amples drawn from an unknown probability distribution D
and labeled as positive/negative according to an unknown 
target CQ q∗ to be learned, and that outputs a CQ q, such 
that, if the input sample is sufficiently large, then with 
probability at least 1 − δ, q has expected error at most 
ε , meaning that if we draw an example e from D , then 
with probability 1 − ε , q and q∗ assign the same label to e
(cf. Fig. 1). The required number of examples must further-
more be bounded by a function polynomial in |q∗|, 1/δ, 
1/ε , and the example size. We give a precise definition in 
ss article under the CC BY license (http://
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e1 · · · en unlabeled examples drawn from some example distribution D
| |

(e1, lab1) · · · (en, labn) the same examples labeled according to some target CQ q∗
| |

PAC algorithm

|
q hypothesis produced by PAC algorithm
|

errorD,q∗ (q) expected error of q on examples drawn from D and labeled according to q∗

Fig. 1. Graphical depiction of a PAC algorithm.
Section 2. Note that since a PAC algorithm does not know 
the example distribution D , it must perform well for all
distributions D . In this sense, the PAC model captures a 
strong form of distribution-independent learning.

Our main result is the following, stated, for simplicity, 
for unary CQs:

Theorem 1.1. (assuming RP �= NP) Let C be any class of unary 
CQs over a fixed schema S that contains at least one binary 
relation symbol and one unary relation symbol. If C includes 
all path-CQs, then C is not efficiently PAC learnable, even 
w.r.t. single-instance example distributions.

Here, RP denotes the class of problems solvable by a 
randomized algorithm with one-sided error that runs in 
polynomial time, and by a path-CQ we mean a unary CQ 
of the form

q(x1) :− ∃x2 . . . xn(R(x1, x2) ∧ · · · ∧ R(xn−1, xn)

∧P (x j1) ∧ · · · ∧ P (x jm ))

where R is a binary relation symbol and P is a unary rela-
tion symbol. That is, a path-CQ is a very simple type of CQ 
that describes an outgoing directed path decorated with a 
single unary relation symbol.

With a single-instance example distribution, we mean an 
example distribution D such that for some database in-
stance I , D assigns non-zero probability mass only to ex-
amples of the form (I, a). This captures the natural sce-
nario of learning CQs from positive and negative exam-
ples that all pertain to a single given database instance. 
Clearly, efficient PAC learnability w.r.t. all example distribu-
tions implies efficient PAC learnability w.r.t. single-instance 
distributions.

Note that efficient PAC learnability is not an anti-
monotone property of query classes, and Theorem 1.1 says 
more than just that path-CQs are not efficiently PAC learn-
able. In particular, Theorem 1.1 implies that the class of all 
CQs is not efficiently PAC learnable, and the same is true 
for all classes of acyclic CQs mentioned above since path-
CQs belong to all of these classes. Theorem 1.1 also implies 
non-efficient PAC learnability of concept expressions in the 
description logics EL and ELI (even in the absence of a 
TBox), see e.g. [17] and references therein.

It is worth comparing the notion of a PAC learning al-
gorithm to that of a fitting algorithm. Both types of algo-
rithms take as input a set of labeled examples. A fitting 
algorithm decides the existence of a CQ that agrees with 
the labels of the input examples. The fitting problem is 
coNExpTime-complete for CQs [29,5] and, in fact, is known 
2

to be hard already for some more restricted classes of 
acyclic CQs [5,16,17]. A PAC algorithm, on the other hand, 
produces a CQ that, with high probability, has a low ex-
pected error, but is not required to fit the input examples. 
Despite these differences, it is well-known that for con-
cept classes that are both polynomial-time evaluable and 
have the polynomial-size fitting property (defined in Sec-
tion 2), NP-hardness of the fitting problem implies the 
non-existence of an efficient PAC learning algorithm [26], 
see Proposition 2.6 below. Unfortunately, the concept class 
of CQs has neither of these properties. A main difficulty of 
our proof of Theorem 1.1 (which is nevertheless based on 
a reduction from an NP-hard fitting problem) is to find a 
way around this.

We also prove that PAC learnability of CQs can be re-
covered by extending the PAC model with membership 
queries, known from Angluin’s [1] model of exact learning. 
In a membership query, the learner chooses an example 
(I, a) and asks an oracle to provide, in unit time, the pos-
itive or negative labeling of (I, a) according to the target 
query. In Angluin’s model of exact learning, CQs are known 
to not be efficiently learnable with membership queries 
alone, but they are efficiently learnable when also equiva-
lence queries are admitted (the learner may give a hypoth-
esis query to the oracle and ask whether it is equivalent to 
the target query, requesting a counterexample if this is not 
the case). The latter is implicit in [6], an explicit proof can 
be found in [7], cf. also [3].

As pointed out in [6], the fact that CQs are effi-
ciently exactly learnable with membership and equivalence 
queries implies PAC learnability with membership queries 
and an NP-oracle (cf. [1]), where the NP-oracle is used 
for evaluating hypotheses on examples. It was left open 
whether CQs are efficiently PAC learnable with member-
ship queries without an NP-oracle. We give an affirmative 
answer to this question and show that it also extends to 
UCQs, that is, to disjunctions of conjunctive queries.

Theorem 1.2. Fix any schema S and k ≥ 0. The class of all k-ary 
CQs over S is efficiently PAC learnable with membership queries. 
The same is true for the class of all k-ary UCQs over S.

1.1. Related work

Haussler [19] shows that the class of Boolean CQs over 
a schema that contains an unbounded number of unary 
relation symbols is not efficiently PAC-learnable (unless 
RP = NP). The essential part of the proof is to show that 
the fitting problem for the same concept class is NP-
complete. Over a schema that consists of unary relation 
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symbols only, every CQ is trivially Berge-acyclic. There-
fore, this implies that efficient PAC learnability fails for 
acyclic Boolean CQs, for any of the aforementioned no-
tions of acyclicity. The fact that Haussler’s result is stated 
for Boolean CQs and Theorem 1.1 is stated for unary CQs 
is an inessential difference (cf. [23]). The fact that the 
proof in [19] uses an unbounded number of unary rela-
tion symbols, however, is an important difference. Indeed, 
if one was to consider Boolean queries over a fixed finite 
schema that consists of unary relation symbols only, then 
the resulting concept class would be finite and trivially PAC 
learnable.

Kietz [23] proves that the class of unary CQs over 
a schema that contains a single binary relation symbol 
and an unbounded number of unary relation symbols is 
not PAC-learnable (unless RP = NP). Again the essential 
part of the proof is to show that the fitting problem is 
NP-complete. Kietz’s result already applies to path-CQs of 
length 1 with multiple unary relation symbols. This is only 
possible because of the infinite schema, as, otherwise, the 
concept class is again finite and trivially PAC learnable.

Cohen [12] proves that the class of unary CQs over a 
schema that contains two binary relation symbols is not 
PAC-predictable unless certain assumptions from the field 
of cryptography fail. In PAC prediction, the output of the al-
gorithm is not required to be a concept from the concept 
class, but instead must be any polynomial-time evaluable 
concept such as a polynomial-time algorithm. PAC learn-
ability implies PAC predictability for concept classes that 
are polynomial-time evaluable (cf. Remark 6.3). Cohen’s 
result already applies to path-CQs (defined slightly differ-
ently than above, using two binary relation symbols and 
no unary relation symbol – this difference is inessential). 
As a consequence, Cohen’s result yields the restriction of 
Theorem 1.1 to polynomial-time evaluable classes C (such 
as the class of all acyclic CQs, under any of the mentioned 
notions of acyclicity), under cryptographic assumptions. 
Moreover, in contrast to PAC learnability, PAC predictabil-
ity is an anti-monotone property of concept classes. Thus, 
Cohen’s result also yields Theorem 1.1 for efficient PAC pre-
dictability in place of efficient PAC learnability, again under 
cryptographic assumptions.

In an earlier paper [11], Cohen had proved a related 
but weaker result that requires relation symbols of arity 
three. The work of Hirata [21], in a similar vain, shows 
that there is even a fixed database on which efficient PAC 
prediction (and thus also learning) of acyclic CQs is impos-
sible – a stronger condition than single-instance example 
distributions. The result, however, requires ternary relation 
symbols and CQs of unbounded arity. We also remark that 
it follows from general results of Schapire, see Section 6.3 
of [27], that any class of CQs that is NP-hard to evaluate is 
not efficiently PAC-predictable unless NP ⊆ P/poly.

We consider, in this note, classes of CQs defined 
through acyclicity conditions. In the literature on inductive 
logic programming (ILP) various positive and negative PAC 
learnability results have been obtained for classes of CQs 
defined by different means (e.g., limitations on the use of 
existential variables, determinacy conditions pertaining to 
functional relations, and restricted variable depth). These 
3

are orthogonal to acyclicity. An overview can be found in 
[25, Chapter 18].

In [6], the authors study learnability of GAV schema map-
pings, which are closely related to Unions of Conjunctive 
Queries (UCQs). Specifically, it was proved in [6] that GAV 
schema mappings are not efficiently PAC learnable, assum-
ing RP �= NP, on source schemas that contain at least one 
relation symbol of arity at least two, using a reduction of 
the non-PAC-learnability of propositional formulas in pos-
itive DNF. This result immediately implies that, for any 
schema S containing a relation symbol of arity at least two, 
and for each k ≥ 0, the class of k-ary UCQs over S is not 
efficiently PAC learnable, assuming RP �= NP. Additionally, 
in [6], the authors completely map out the (non-)learnabil-
ity of restricted classes of UCQs definable by conditions on 
their Gaifman graph.

There is also another line of work on PAC learnability 
of conjunctive queries [13,14,10] that is somewhat differ-
ent in nature: one fixes a schema S and an S-instance I
and defines a concept class where the concepts are now all 
relations over the active domain of I definable by a k-ary 
CQ (as evaluated in I). PAC learning for various classes of 
Boolean formulas, such as 3-CNF, can be seen as a special 
case of this framework, for a specific choice of schema S
and (two-element) instance I , where k then corresponds to 
the number of Boolean variables. Since, for a fixed choice 
of k, this yields a finite concept class, in this setting, one is 
interested in the complexity of PAC learning as a function 
of k. The mentioned papers establish effective dichotomies, 
showing that, depending on the choice of S and I , this con-
cept class is either efficiently PAC learnable in k or is not 
even efficiently PAC predictable with membership queries 
in k (under suitable cryptographic assumptions). See also 
Remark 6.3 below.

2. Preliminaries

2.1. Conjunctive queries

A schema S is a finite set of relation symbols with as-
sociated arity. An instance I over schema S is a finite set 
of facts over S, where a fact is an expression of the form 
R(a1, . . . , an) where R ∈ S is an n-ary relation symbol and 
a1, . . . , an are values. The active domain of an instance I , de-
noted by adom(I) is the (finite) set of values that occur in 
the facts of I .

A k-ary conjunctive query (CQ) over a schema S, for k ≥
0, is an expression of the form

q(x) :− ∃y(α1 ∧ · · · ∧ αn)

where x, y are tuples of variables, x has length k, and each 
conjunct αi is an atomic formula that uses a relation sym-
bol from S and only variables from x and y, such that each 
variable from x occurs in some conjunct. We denote by 
q(I) the set of all k-tuples a such that I |= q(a).

We will not define in depth the various notions of 
acyclicity that have been mentioned in the introduction, 
but we reiterate here that they form a hierarchy with 
Berge-acyclicity being most restrictive, and that all men-
tioned classes of acyclic queries are polynomial-time evalu-
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able, meaning that given a CQ q(x) from the class, an in-
stance I and a tuple a of elements of the active domain 
of I , we can decide in polynomial time whether a ∈ q(I).

The definition of path-CQs was given in Section 1.

Example 2.1. An example of a path-CQ is the query

q(x) :− ∃yzu(R(x, y) ∧ R(y, z) ∧ R(z, u) ∧ P (y) ∧ P (u)).

Every path-CQ is Berge-acyclic and hence polynomial-
time evaluable, see e.g. the classic paper where this is 
proved for α-acyclic queries [15].

2.2. Computational learning theory

A concept class is a triple C = (�, Ex, |=), where � is a 
set of concepts, Ex is a set of examples, and |= ⊆ Ex × �

represents whether an example is a positive or a negative 
example for a given concept. We also denote by labφ(e) the 
label of e according to φ, that is, labφ(e) = + if e |= φ and 
labφ(e) = − otherwise. Two concepts φ, φ′ ∈ � are said to 
be equivalent if labφ(e) = labφ′(e) for all e ∈ Ex.2

A labeled example is a pair (e, s) with e ∈ Ex and s ∈
{+, −}. A concept φ ∈ � fits a set of labeled examples E if 
labφ(e) = s for all (e, s) ∈ E .

We only consider countable concept classes. Concepts 
and examples are assumed to have an effective represen-
tation and a corresponding notion of size, which is denoted 
by |φ| and |e|, respectively. We also denote the set of all 
concepts (examples) of size at most n by �(n) (respectively, 
Ex(n)). For a finite set of (possibly labeled) examples E , 
||E|| = ∑

e∈E |e|.
The following two properties of concept classes will be 

important for us later on:

Definition 2.2 (Polynomial-time evaluability). A concept class 
is polynomial-time evaluable if there exists a polynomial-
time algorithm that, given φ ∈ � and e ∈ Ex, outputs a 
Boolean indicating whether e |= φ.

Definition 2.3 (Polynomial-size fitting property). A concept 
class has the polynomial-size fitting property if for every fi-
nite set of labeled examples E , the existence of a concept 
that fits E implies that there exists a fitting concept whose 
size is bounded by a polynomial in ||E||.

We now define the two algorithmic problems men-
tioned in the introduction, namely fitting and PAC learning.

Definition 2.4 (Fitting problem). The fitting problem (also 
known as consistency problem or separability problem) for 
a concept class C is the problem to decide, given a finite 
set of labeled examples E , whether there exists a concept 
in C that fits E .

2 This deviates slightly from the standard convention, which defines a 
concept class to be a pair (Ex, C) where C ⊆ ℘(Ex) (and, for c ∈ C , |c|
to be the size of the smallest representation of c). The difference is non-
essential. We prefer this presentation as it makes it easier to spell out 
unambiguously the algorithmic problems that we consider (e.g., Defini-
tion 2.2).
4

In order to define PAC algorithms, we first need to in-
troduce some terminology and notation. An example distri-
bution for a concept class C = (�, Ex, |=) is a probability 
distribution D over Ex. Given concepts φ, φ∗ ∈ � and an 
example distribution D ,

errorD,φ∗(φ) = Pr
e∈D

(labφ(e) �= labφ∗(e))

is the expected error of φ relative to φ∗ and D .

Definition 2.5 (Efficient PAC learnability). An efficient PAC al-
gorithm for a concept class C is a pair (A, f ) where

• A is a randomized polynomial-time algorithm that 
takes as input a set of labeled examples and outputs 
a concept from C , and

• f (·, ·, ·, ·) is a polynomial function, such that, for all 
δ, ε ∈ (0, 1), all n, m ∈ N , all example distributions D
over Ex(m) , and all φ∗ ∈ �(n) , if the input consists of 
at least f (1/δ, 1/ε, n, m) examples drawn from D and 
labeled according to φ∗ , then with probability at least 
1 − δ, A outputs a concept φ with errorφ∗,D(φ) ≤ ε .

If such an algorithm exists, we say that C is efficiently PAC 
learnable. If the function f depends only on δ and ε and 
not on n, m, then we say that (A, f ) is a strongly efficient
PAC algorithm, and that the concept class C is strongly effi-
ciently PAC learnable.

This definition of efficient PAC algorithms is modeled 
after the one in the textbook [2], in line with the literature 
on inductive logic programming (cf., e.g., [25]). Our results 
also apply to the alternative oracle-based definition.3 We 
prefer the above definition as it exhibits more clearly the 
relationship to fitting algorithms.

The following proposition relates the two algorithmic 
problems (fitting and PAC learning) to each other.

3 Following the oracle-based presentation in, e.g., [22], one can define 
an efficient PAC learning algorithm for a concept class C to be a ran-
domized polynomial-time algorithm that takes as input δ, ε ∈ (0, 1) and 
a bound n ∈ N on the size of the target concept φ∗ , and that has access 
to an oracle EXφ∗,D which, when called, returns (in unit time) a random 
example drawn from D and labeled according to φ∗ . For every choice of 
δ, ε , φ∗ ∈ �, n ≥ |φ∗|, and for every example distribution D , the algo-
rithm must terminate in time polynomial in 1/δ, 1/ε, n, and the size of 
the largest example returned by the oracle. Furthermore, it must return a 
concept that with probability 1 − δ satisfies errorφ∗,D (φ) < ε .

Note that, under this definition, not only the running time of the algo-
rithm but also the number of examples drawn from the distribution may 
depend on the size of examples: if the learning algorithm encounters a 
large example e, it may follow up by requesting a number of additional 
examples that is polynomial in the size of e.

Efficient PAC learnability in the above sense implies efficient PAC 
learnability in the sense of Definition 2.5: one can turn an oracle-based 
learning algorithm into a learning algorithm according to Definition 2.5
by drawing examples uniformly at random from the input batch to an-
swer EX oracle calls. (To guarantee polynomial-time termination, even on 
inputs where a fitting concept does not exist, we can maintain a counter 
and terminating after p(n) steps, where p is the polynomial that bounds 
the running time of the oracle-based learner on consistent inputs). Our 
negative learnability results thus apply also to the oracle-based definition. 
A classic paper that shows equivalence of different PAC learning models 
is [20].
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Proposition 2.6 (Pitt and Valiant [26]). Let C be a polynomial-
time evaluable concept class with the polynomial-size fitting 
property. If C is efficiently PAC learnable, then the fitting prob-
lem for C is in RP.

This is a well-known fact (cf. also [2, Thm 6.2.1]), al-
though not in this precise formulation, as, usually, polyno-
mial evaluability and the polynomial-size fitting property 
are tacitly assumed (which has sometimes led to mistakes, 
e.g., in the derivation of Corollary 15 in [23]). To be self-
contained, we outline the proof of Proposition 2.6 here.

Proof. (of Proposition 2.6) Assume that there is an effi-
cient PAC algorithm (A, f ) for C . We use it to solve the 
fitting problem for C in randomized polynomial time. As-
sume that a set E of k labeled examples is given as the 
input. Let n = p(||E||), where p is the polynomial witness-
ing the fact that C has the polynomial-size fitting property. 
Let D be the uniform distribution on E (where each ex-
ample in E gets probability mass 1/k), and let m be the 
maximum size of an example in E . Pick δ < .5 and ε < 1/k. 
We generate a new (polynomial-sized) collection of labeled 
examples E ′ by drawing f (1/δ, 1/ε, n, m) samples from 
distribution D , and run algorithm A on it. Finally, we check 
that the output of A is a fitting concept for E . If so, we an-
swer Yes. Otherwise, we answer No.

Clearly, if there is no fitting concept, the output will be 
No. If, on the other hand, there is a fitting concept, then 
there is one of size at most n, and hence, with probability 
1 − δ, the algorithm will output a concept with error less 
than ε . This in fact implies that the error is 0 (because 
if the query misclassifies an example to which D assigns 
non-zero mass, then it will have error at least 1/k). Hence, 
with probability 1 − δ > 0.5 the algorithm outputs Yes. �

A variation on the same argument shows:

Proposition 2.7. If a concept class is strongly efficiently PAC 
learnable, then it has the polynomial-size fitting property.

Proof. The proof uses the same construction as before, ex-
cept that the sample size now does not depend on n. Fur-
thermore, we omit the verification step where we confirm 
that the produced concept fits the input examples. Instead, 
we just output the result of the learning algorithm. In this 
way, we obtain a randomized polynomial-time algorithm 
that has a non-zero probability of outputting a fitting con-
cept for given input labeled examples, whenever a fitting 
concept exists. The polynomial-size fitting property imme-
diately follows from this (the run that outputs a fitting 
concept does so in polynomial time). �

We also make use of the following trivial fact:

Proposition 2.8. If a concept class (�, Ex, |=) is efficiently PAC 
learnable, then, for every Ex′ ⊆ Ex, the concept class (�, Ex′, |=)

is also efficiently PAC learnable.

Indeed, this follows from the fact that every example 
distribution over Ex′ is in particular also an example dis-
(n)

5

tribution over Ex(n) (that assigns no probability mass to 
any example in Ex \ Ex′).

Finally, we use a well known connection between PAC 
algorithms and Occam algorithms.

Definition 2.9 (Occam algorithm). An Occam algorithm for 
a concept class C = (�, Ex, |=), with parameters α < 1
and k ≥ 1, is an algorithm that takes as input a set of 
labeled examples E and outputs a concept φ ∈ � with 
|φ| ≤ |E|α |φ∗|k that fits E provided that any concept from 
� does. Furthermore, the running time is required to be 
bounded by a polynomial in |φ∗| and ||E||.

Blumer et al. [4] proved that every Occam algorithm 
A yields an efficient PAC algorithm, namely A′ = (A, f ), 
where the sample-size polynomial f is chosen such that

f (1/δ,1/ε,n,m) =
(

nk ln 2 + ln(2/δ)

ε

)1/(1−α)

.

Note that f does not depend on its fourth component m
(i.e., the example size bound). Moreover, every Occam al-
gorithm gives rise to an efficient PAC algorithm, not only in 
the sense of Definition 2.5 as explained above, but, by the 
same arguments, also when considering the oracle-based 
presentation of PAC algorithms (cf. Footnote 3).

Theorem 2.10 ([4]). Every concept class for which there is an 
Occam algorithm is efficiently PAC learnable.

3. Classes of CQs as concept classes

Each class of CQs can be naturally viewed as a concept 
class. Fix a schema S, an arity k ≥ 0, and a class C of k-
ary CQs over S. In the associated concept class (C, Ex, |=), 
Ex is the class of all pairs (I, a) with I an S-instance and 
a a k-tuple of elements of the active domain of I , and |=
describes query answers, that is, (I, a) |= q(x) iff a ∈ q(I), 
for all q(x) ∈ C and (I, a) ∈ Ex. We may abuse notation and 
refer to this concept class (C, Ex, |=) simply as C when no 
ambiguity arises. The following theorem summarizes some 
basic properties.

Theorem 3.1 ([5,8]). Fix any schema S that contains at least one 
binary relation symbol, and some k ≥ 0.

1. The concept class of k-ary CQs over S is not polynomial-
time evaluable (unless P = NP). Indeed, its evaluation prob-
lem is NP-complete.4

2. The concept class of k-ary CQs over S lacks the polynomial-
size fitting property. Indeed, the smallest fitting CQ for a 
given set of labeled examples is in general exponentially 
large.

3. The fitting problem for k-ary CQs over S is coNExpTime-
complete.

Let us now consider restricted classes of (unary) CQs 
that still include path-CQs. We will see in the next section 

4 The evaluation problem takes as input φ and e and asks if e |= φ.
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that every such class of CQs has an NP-hard fitting problem 
(cf. Theorem 5.6). We observe here that every such class of 
CQs lacks the polynomial-size fitting property:

Theorem 3.2. Fix a schema S that contains at least a binary and 
a unary predicate, and let C be any class of unary CQs over S that 
includes all path-CQs. Then C lacks the polynomial-size fitting 
property.

Proof. Let R ∈ S be binary and P ∈ S unary. For m ≥ 1, 
let Lm denote the “lasso” instance, with active domain 
am

0 , . . . , am
2m−1 consisting of the facts R(am

i , am
i+1) for all 

i < 2m − 1 and R(am
2m−1, a

m
m) and P (am

m).
For i ≥ 1, let pi be the i-th prime number (where p1 =

2). By the prime number theorem, pi = O (i log i).
Finally, for n ≥ 1, let In be the disjoint union of Lpi

for i = 1, . . . , n, extended with the fact R(b, b) for a fresh 
value b. We now construct our set of examples En as fol-
lows:

• Positive example (In, api
0 ) for i = 1 . . .n.

• Negative example (In, b).

It is easy to see that a fitting path-CQ for En exists, 
namely the query

q(x1) :− ∃x2 . . . xk(R(x1, x2) ∧ · · · ∧ R(xk−1, xk) ∧ P (xk))

where k = �i=1...n(pi).
We claim that every CQ that fits the examples must be 

of size at least 2n . Let q(x) be any CQ that fits the exam-
ples. Since positive and negative examples are based on 
the same instance, we may assume that q is connected. 
First of all, note that q must contain a conjunct of the form 
P (y) (otherwise it would fail to fit the negative example). 
Furthermore, y is not the free variable x and q uses only 
the relation symbols P and R (otherwise it would fail to fit 
any positive example). Consider the directed graph where 
the vertices are the variables of q and there is an edge 
from variable z to variable z′ iff the atom R(z, z′) occurs 
in q. Since q is connected, there is an undirected path con-
necting x to y. Take any such path of minimal length. We 
can represent it as a sequence

x = x0,α0, x1,α1, . . . , x� = y

where for each i < �, αi is an atom that occurs in q
that is either R(xi, xi+1) (then αi is a “forward edge”) or 
R(xi+1, xi) (then αi is a “backward edge”). We define the 
net-length of this path to be the number of forward edges 
minus the number of backward edges.

Clearly, in order for the query q to be satisfied in a 
lasso instance Lm , the net length of the above path must be 
divisible by m. Therefore, since q fits all the examples con-
structed above, the net-length must be divisible by pi , for 
all i = 1 . . .n, and thus at least 

∏
i=1...n(pi). It follows, then, 

that also the length (in the ordinary sense) of the path 
must be at least 

∏
i=1...n(pi). Therefore, every CQ that fits 

the above examples must have at least 
∏

i=1...n(pi) vari-
ables, which exceeds 2n . �
6

4. Failure of strong PAC learnability

By Proposition 2.7, Theorem 3.2 implies:

Corollary 4.1. Fix any schema S that contains at least a binary 
relation symbol and a unary relation symbol. Let C be any class 
of unary CQs over S that includes all path-CQs. Then C is not 
strongly efficiently PAC learnable.

Alternatively, Corollary 4.1 can be shown using a VC-
dimension argument. In fact, we may then even drop the 
‘efficiently’ from the statement. We define strong PAC learn-
ability in the same way as strongly efficient PAC learnability
(cf. Definition 2.5) except that A is not required to run in 
polynomial time and f is not required to be a polynomial 
function.

Theorem 4.2. Fix any schema S that contains at least a binary 
relation symbol and a unary relation symbol. Let C be any class 
of unary CQs over S that includes all path-CQs. Then C is not 
strongly PAC learnable.

Proof. Let us recall the definition of VC-dimension. We say 
that a concept class C shatters a set of examples S if for 
every subset S ′ ⊆ S there is a c ∈ C such that S ′ = {e ∈
S | e |= c}. The VC-dimension of C is the cardinality of the 
largest set of examples that is shattered by C , or infinite 
if arbitrarily large sets can be shattered. The fundamental 
theorem of statistical machine learning says that a concept 
class is strongly PAC learnable iff it has finite VC dimen-
sion [4].

Let S be a schema that contains a unary relation symbol 
P and a binary relation symbol R , and let C be a class of 
unary CQs over S that contains all path-CQs. We show that 
C has infinite VC-dimension.

Let n > 0. We construct a set S that contains n ex-
amples (I1, a1), . . . , (In, a1). Each instance Ii contains an 
R-path of length n − 1 starting at a1, that is, adom(Ii) =
{a1, . . . , an} and R(a j, a j+1) ∈ Ii for all j ∈ {1, . . . , n − 1}. 
Moreover, we include in Ii all facts P (a j) for j �= i.

To show that C shatters S , let S ′ ⊆ S be an arbi-
trary subset of S and let X ⊆ {1, . . . , n} be such that S ′ =
{(Ii, a1) ∈ S | i ∈ X} and set X = {1, . . . , n} \ X . Let q(x1) be 
the path-CQ

q(x1) :− ∃x2 . . . xn(
∧

i=1...n−1

R(xi, xi+1) ∧
∧
j∈X

P (x j)).

One may verify that S ′ = {(Ii, a1) ∈ S | q(a1) ∈ Ii}. �
The concept class of path-CQs is polynomial-time evalu-

able, as follows from the fact that it forms a subclass of 
the class of α-acyclic CQs, which is polynomial-time evalu-
able [30]. We make use of this in the next section.

Theorem 4.3 ([30]). Fix any schema S. The concept class of 
path-CQs over S is polynomial-time evaluable.
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5. Non-efficient PAC learnability

We now consider PAC learnability in the non-strong 
version and show that no class of unary CQs that includes all 
path-CQs is efficiently PAC learnable, cf. Theorem 1.1 from the 
introduction.

Recall that we cannot use Proposition 2.6 directly to 
prove non-efficient PAC learnability, for two reasons. First, 
the polynomial-size fitting property does not hold for 
path-CQs. And second, the classes that we consider may 
contain CQs that are not path-CQs, and thus polynomial-
time evaluability also fails, despite Theorem 4.3. To cir-
cumvent the latter issue, we work with a restricted class 
of instances.

5.1. Tree-shaped instances

Definition 5.1 (Tree-Shaped Instances and CQs). Let S be a 
schema that consists of a binary relation symbol R and 
any number of unary relation symbols, and let I be an S-
instance. We say that I is tree-shaped if the following two 
conditions hold:

1. There is a function level : adom(I) → N such that, for 
each fact R(a, b) of I , level(b) = level(a) + 1.

2. I does not contain two binary facts R(a, b), R(a′, b)

that agree on the second value but not on the first.

A CQ over S is said to be tree-shaped if its canonical in-
stance is tree-shaped.5

Lemma 5.2. Fix a schema S that consists of one binary relation 
symbol and any number of unary relation symbols. Given a CQ 
q over S,

1. we can test in polynomial time whether there exists a tree-
shaped instance I such that q(I) �= ∅,

2. if the answer to the above question is positive, then we can 
construct in polynomial time a tree-shaped CQ q′ such that 
for all tree-shaped instances I , q(I) = q′(I).

Proof. It suffices to prove the claim for connected CQs (the 
general case then follows by a component-wise analysis). 
Therefore, let q be a connected CQ.

Let ∼ be the smallest equivalence relation over the 
variables of q such that, whenever R(u, v) and R(u′, v ′)
are conjuncts of q and v ∼ v ′ then also u ∼ u′ . Let q′ be 
the quotient of q w.r.t. ∼ (that is, q′ is obtained from q by 
choosing a representative of each ∼-equivalence class, and 
replacing every occurrence of a variable x by the represen-
tative of the ∼-equivalence class of x). It is easy to see that, 
for all tree-shaped instances I , a ∈ q(I) iff a ∈ q′(I) (here, 
the left-to-right direction uses the tree-shape of I , while 
the right-to-left direction holds for every instance I).

If q′ contains a directed cycle, then clearly, q′(I) = ∅ for 
all tree-shaped instances I , and we are done.

5 The canonical instance of a CQ is the instance whose active domain 
consists of the variables of the query and whose facts are the conjuncts 
of the query.
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Assume, therefore, that q′ does not contain a directed 
cycle. Since q′ is connected, there must then exist a (free 
or existentially quantified) variable y for which q′ does not 
contain any conjunct of the form R(·, y). Furthermore, any 
simple path from y to any other variable z must consist 
entirely of forward edges, otherwise, the path would be of 
the form

y
R−→ · · · R−→ u

R−→ v
R←− w

R←− · · · R←− z

and then u and w would have been identified when we 
constructed q′ . It follows that q′ is tree-shaped. Further-
more, let Iq′ be the canonical instance of q′ . Then, clearly, 
q′(Iq′) �= ∅. �

Since tree-shaped CQs are α-acyclic and hence can 
be evaluated in polynomial time (on the class of all in-
stances) [30], Lemma 5.2 immediately implies:

Proposition 5.3. Fix a schema S that contains one binary re-
lation symbol and any number of unary relation symbols. For 
every class C of CQs over S, the concept class (C,Extree, |=), 
where Extree is the set of tree-shaped S-instances, is polynomial-
time evaluable.

In what follows, we will therefore only work with tree-
shaped instances.

5.2. A reduction from 3CNF satisfiability

Fix a schema S containing a binary relation symbol R
and a unary relation symbol P .

We use a reduction from the satisfiability problem for 
3CNF formulas, inspired by [23,19]. Let φ = φ1 ∧· · ·∧φk be 
any 3CNF formula over a propositional signature PROP =
{X1, . . . , Xm}. We denote by LIT = {Xi, Xi | i ≤ m} the set of 
all literals over PROP. For every l ∈ LIT , set jl = 2i if l is of 
the form Xi and jl = 2i − 1 if l is of the form Xi . Define an 
S-instance Iφ as follows:

• R(ai, pi,1) and R(ai, ni,1) for i ≤ m
• R(pi, j, pi, j+1) and R(ni, j, ni, j+1) for i ≤ m, j < 2m
• P (pi, jl ) for every literal l ∈ LIT \ {Xi}
• P (ni, jl ) for every literal l ∈ LIT \ {Xi}
• R(b, bi,1) for i ≤ k
• R(bi, j, bi, j+1) for i ≤ k and b ≤ 2m
• P (bi, jl ) for every l ∈ LIT and i ≤ k with l not occurring 

in the clause φi .

Let Eφ = {((Iφ, ai), +) | i ≤ m} ∪ {((Iφ, b), −)}.

Example 5.4. Let PROP = {X1, X2} and consider the for-
mula φ = X1 ∧ X2 ∧ (X1 ∨ X2). Then, the corresponding 
S-instance Iφ can be depicted as follows (where each edge 
represents an R-edge directed downwards):
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a1

p1,1

p1,2 P

p1,3 P

p1,4 P

n1,1 P

n1,2

n1,3 P

n1,4 P

a2

p2,1 P

p2,2 P

p2,3

p2,4 P

n2,1 P

n2,2 P

n2,3 P

n2,4

b

b1,1 P

b1,2

b1,3 P

b1,4 P

b2,1 P

b2,2 P

b2,3 P

b2,4

b3,1

b3,2 P

b3,3 P

b3,4

Lemma 5.5. For all 3CNF formulas φ:

1. From a satisfying assignment for φ , one can construct in 
polynomial time a path-CQ that fits Eφ .

2. Conversely, if there is a CQ that fits Eφ , then φ has a satis-
fying assignment.

In particular, whenever there is a CQ that fits Eφ , then there is a 
fitting path-CQ of size polynomial in |PROP|.

Proof. 1. Let v be a satisfying assignment for φ. Let

q(x0) :− ∃x1, . . . x2m(R(x0, x1) ∧ · · · ∧ R(x2m−1, x2m) ∧∧
l∈LIT such that v|=l P (x jl )).

Clearly, each ai ∈ q(Iφ) and b /∈ q(Iφ).
2. Let q(x) be a unary CQ that fits Eφ . By Lemma 5.2, we 

may assume that q is a tree-shaped CQ. Furthermore, we 
may assume without loss of generality that q is connected. 
Let levelq : Vars(q) → N be as given by Definition 5.1. We 
may assume levelq(x) = 0 (if there was any y ∈ Vars(q)

with levelq(y) < levelq(x), then q would not fit the posi-
tive examples of Eφ ).

Thus, q(x) is a connected tree-shaped CQ, where x is 
the root of the tree. Since q(x) fits the negative example 
(Iφ, b), we have that b /∈ q(Iφ). This means that either (i) 
q contains a conjunct of the form P (x), or (ii) for some 
y ∈ Vars(q) with levelq(y) = 1, the subtree of q rooted at 
y, does not admit a homomorphism to (Iφ, bi,1) for any 
i ≤ n. It is easy to see that (i) cannot happen, because it 
would imply that q does not fit the positive examples in 
Eφ . Therefore, case (ii) must apply. Let y be the variable 
in question, and let us denote by q′(y) the subtree of q
rooted at y (with y as its free variable).

We know that q′(Iφ) does not contain bi,1 for any i ≤ n. 
Furthermore, it is easy to see (from the fact that q fits the 
positive examples in Eφ ), that for each i ≤ m, either pi,1 or 
ni,1 belongs to q′(Iφ).

Now, let L y be the set

{l ∈ LIT | q′ has a conjunct P (z) with levelq(z) = jl + 1}
Claim 1: L y does not contain both Xi, Xi for any i ≤ m.

Claim 1 follows immediately from the fact that q(x) fits 
the positive examples.

Claim 2: L y contains a literal from each clause of φ.

Suppose, for the sake of a contradiction, that φ has a 
clause φi , such that no literal occurring in φi belongs to 
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L y . Then, bi,1 belongs to q′(Iφ), as witnessed by the vari-
able assignment that maps each variable z to bi,levelq(z)−1. 
However, we know that bi,1 /∈ q′(Iφ), a contradiction.

Claim 1 and 2 together imply that φ is satisfiable. In-
deed, it suffices to take any truth assignment consistent 
with the literals in L y . �

From Lemma 5.5, together with the NP-hardness of 
3CNF satisfiability, we immediately get:

Theorem 5.6. Fix any schema S that contains at least a binary 
relation symbol and a unary relation symbol, and let C be any 
class of unary CQs over S that includes all path-CQs. Then the 
fitting problem for C is NP-hard.

Now, putting everything together, we can prove Theo-
rem 1.1, restated here:

Theorem 5.7. (assuming RP �= NP) Fix a schema S containing 
at least one binary relation symbol R and one unary relation 
symbol P . Let C be any class of unary CQs over S that includes 
all path-CQs. Then C is not efficiently PAC learnable, even w.r.t. 
single-instance distributions.

Proof. Assume that the concept class C = (C, Ex, |=) is 
efficiently PAC learnable. Then, by Proposition 2.8, so 
is C ′ = (C, Ex′, |=) where Ex′ = {(I, a) | I = Iφ for some
3CNF formula φ and a ∈ {a1, a2, b}}. It follows from Lem-
ma 5.5 that C ′ has the polynomial-size fitting property. 
Furthermore, C ′ is polynomial-time evaluable since all ex-
amples in Ex′ are tree-shaped and by Proposition 5.3. By 
Proposition 2.6, the fitting problem for C ′ is thus solvable 
in RP. By Theorem 5.6, this implies that RP = NP.

A careful inspection of the proof of Proposition 2.6 and 
the construction of our examples reveals that even efficient 
PAC learnability w.r.t. single-instance distributions already 
gives us, in the same way as above, an RP-algorithm for 
the fitting problem for C ′ . �
Remark 5.8. The above proof involves path-CQs of un-
bounded depth, over a fixed schema. It is easy to see that 
if we were to bound both the depth of the path-CQs and 
keep the schema fixed, we would end up with a finite con-
cept class, trivializing the PAC learning problem.

Remark 5.9. The above non-learnability proof cannot be 
adapted to UCQs in an obvious way. In fact, we crucially 
use the fact that the fitting problem for path-CQs is NP-
hard whereas the fitting problem for UCQs that are unions 
of path-CQs can be solved in polynomial time. On the 
other hand, as mentioned earlier, it follows from results in 
[6] that UCQs are not efficiently PAC learnable, assuming 
RP �= NP.

Remark 5.10. The fact that the above proof involves a re-
duction from the satisfiability problem for 3CNF formulas 
is remarkable, given that 3CNF formulas themselves are ef-
ficiently PAC learnable [22].
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Remark 5.11. Efficient PAC learnability as defined in Def-
inition 2.5 (in the non-strong version) is sometimes also 
known as strong PAC learnability. In contrast, weak PAC 
learnability then merely requires the existence of a learner 
that works for some non-trivial choice of δ and ε . A well-
known result in computational learning theory states that, 
for polynomial-time evaluable concept classes, weak learn-
ability implies strong learnability (cf. [22]). Since the con-
cept class of CQs is not polynomial-time evaluable, Theo-
rem 1.1, taken at face value, does not imply that the same 
result holds in the weak PAC model. Nevertheless, inspec-
tion of our proof immediately shows that it yields the 
same result also for the weak PAC model.

6. PAC learnability with membership queries

We prove Theorem 1.2 from the introduction. Formally, 
a membership oracle MEMBφ , for a concept φ, is an ora-
cle that, given any unlabeled example e, returns (in unit 
time) its label according to φ. PAC learning with access to 
a membership oracle for the target concept can be viewed 
as a formal model of active learning.

Theorem 6.1. Fix any schema S and k ≥ 0. There is an algorithm 
that takes as input a set E of examples labeled according to a k-
ary CQ q∗ over S, has access to a membership oracle for q∗, and 
outputs a k-ary CQ q over S with |q| ≤ |q∗| that fits E. Moreover, 
the running time of the algorithm is polynomial in ||E|| and |q∗|.

Proof. We use ideas similar to the ones used in the proof 
that CQs are efficiently exactly learnable with membership 
and equivalence queries [6,7]. Before we describe the algo-
rithm, we introduce a number of basic concepts.

Let I, J be instances over the same schema. A mapping 
h : adom(I) → adom( J ) is called homomorphism from I to J
if R(h(c)) ∈ J for every R(c) ∈ I . Given tuples a and b of 
values from I and J , respectively, we write (I, a) → ( J , b)

to denote the existence of a homomorphism h from I to J
with h(a) = b. Homomorphisms compose in the sense that 
(I, a) → ( J , b) and ( J , b) → (K , c) implies (I, a) → (K , c).

The direct product I × J of two instances (over the same 
schema S), is the S-instance that consists of all facts of 
the form R(〈a1, b1〉, . . . , 〈an, bn〉), where R(a1, . . . , an) is a 
fact of I and R(b1, . . . , bn) is a fact of J . Note that the 
active domain of I × J consists of pairs from adom(I) ×
adom( J ). The direct product (I, a) × ( J , b) of two exam-
ples, where a = a1, . . . , ak and b = b1, . . .bk are of the 
same length, is given by (I × J , (〈a1, b1〉, . . . , 〈ak, bk〉). Note 
that, in general, this may not yield a well-defined example, 
because there is no guarantee that the distinguished ele-
ments 〈a1, b1〉, . . . , 〈ak, bk〉 belong to adom(I × J ). When 
it is well-defined, then the projections to the respective 
components witness that both (I, a) × ( J , b) → (I, a) and 
(I, a) × ( J , b) → ( J , b).

A critical positive example for a CQ q∗ is a positive ex-
ample (I, a) for q∗ , such that, for every proper subinstance 
I ′ � I , (I ′, a) is a negative example for q∗ .

The following claim is easy to prove ([7, Lemma 5.4]):

Claim 1: Given a positive example (I, a) for an unknown 
CQ q∗ , we can construct from it in linear time a critical 
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positive example (I ′, a) for q∗ , with I ′ ⊆ I , given access to 
a membership oracle for q∗ .

Claim 2: If (I, a) and ( J , b) are positive examples for a CQ 
q∗ , then (I, a) × ( J , b) is a well-defined example, and it is 
a positive example for q∗ .

Proof of Claim 2: Let (I, a) and ( J , b) be positive exam-
ples for a CQ q∗ . Let h1 and h2 be the respective wit-
nessing variable assignments. Then the map h given by 
h(x) = (h1(x), h2(x)) is a satisfying variable assignment for 
q∗ in (I, a) × ( J , b), showing that the latter is a positive ex-
ample for q∗ . It remains to show that it is a well-defined 
example, i.e., that each distinguished element occurs in a 
fact. This follows from the fact that each free variable of q∗
occurs in a conjunct of q∗ (by the definition of CQs), and 
that each distinguished element of (I, a) × ( J , b) is the h-
image of a free variable of q∗ (cf. [7, Lemma 5.5]).

Given a set E of examples labeled according to q∗ , the 
algorithm proceeds as follows. Let (I1, a1), . . . , (In, an) be 
an enumeration of the positive examples in E . We con-
struct, by induction on n, a critical positive example ( J , b)

for q∗ such that there is a homomorphism from ( J , b) to 
each (Ii, ai). This is done by applying Claim 1 and Claim 2 
in an interleaved fashion. More precisely:

• Start by setting ( J1, b1) to be the critical positive ex-
ample obtained from (I1, a1) via Claim 1.

• For i = 2, . . . , n, let ( J ′
i, b

′
i) be ( J i−1, bi−1) ×(Ii, ai) and 

obtain ( J i, bi) as critical positive example from ( J ′
i, b

′
i)

via Claim 1.
• Set ( J , b) = ( Jn, bn).

Note that, by Claim 2 and the fact that homomorphisms 
compose, each ( J ′

i, b
′
i) is a well-defined example that has 

a homomorphism to all examples (I1, a1), . . . , (Ii, ai). Thus, 
( J , b) has a homomorphism to all positive examples. Let 
b = b1, . . . , bk and let q be the canonical CQ of ( J , b), 
that is, the CQ q(xb1 , . . . , xbk ) that has a conjunct for ev-
ery fact of J , where each element b ∈ adom( J ) is replaced 
by a corresponding variable xb . Then q fits the positive 
examples in E since ( J , b) has a homomorphism to each 
positive example. It also fits the negative examples in E: 
( J , b) is a positive example for q∗ by construction and if q
fails to fit a negative example (I, a) in E , then ( J , b) has a 
homomorphism to (I, a), which, by composition of homo-
morphisms, leads to a contradiction with q∗ fitting (I, a).

Furthermore, one can easily see that any critical positive 
example (I, a) for q∗ satisfies |I| ≤ |q∗|. Hence, each J i sat-
isfies | J i | ≤ |q∗|. This implies, in particular, that |q| ≤ |q∗|
as required. Moreover, it implies that | J ′

i | ∈ O (||E|| · |q∗|), 
for all i. Since J i is obtained from J ′

i in linear time by 
Claim 1, the running time of this algorithm is O (||E||2 ·
|q∗|). �

The algorithm given in Theorem 6.1 is an Occam algo-
rithm (with α = 0 and k = 1) in the sense of Definition 2.9, 
except for the fact that it uses a membership oracle. While 
Theorem 2.10 is stated for the case without member-
ship queries, its proof applies also to Occam algorithms 
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with membership queries, yielding efficient PAC learnabil-
ity with membership queries (stated as Theorem 1.2 in the 
introduction):

Corollary 6.2. Fix any schema S and k ≥ 0. The class of all k-ary 
CQs over S is efficiently PAC learnable with membership queries.

Remark 6.3. The proof of Theorem 6.1 establishes some-
thing stronger, namely that CQs are efficiently PAC learn-
able with membership queries even when the schema S
and the arity k are not fixed but treated as part of the in-
put of the learning task. This is remarkable, because it fol-
lows from results in [13] that CQs are not PAC predictable 
with membership queries when the arity is treated as part 
of the input (under suitable cryptographic assumptions). 
However, note that efficient PAC learnability (with mem-
bership queries) implies PAC predictability (with member-
ship queries) only for concept classes that are polynomial-
time evaluable, which the class of CQs is not.

Remark 6.4. We expect that, with respect to each of the 
various notions of “acyclicity” mentioned in the introduc-
tion, acyclic CQs are efficiently PAC learnable with mem-
bership queries. However, since efficient PAC learnability 
(with or without membership queries) is not a monotone 
property of concept classes, this requires a case-by-case 
analysis. A challenge is posed by the fact that the posi-
tive examples (Ii, ai) are not guaranteed to correspond to 
queries from the considered class, and thus neither are the 
hypotheses that our algorithm generates.

The above proof can also be modified to apply to the 
concept class of unions of conjunctive queries (UCQs). By a 
k-ary UCQ over a schema S we mean a non-empty finite 
disjunction of k-ary CQs over S.

Theorem 6.5. Fix any schema S and k ≥ 0. The class of k-
ary UCQs over S is efficiently PAC learnable with membership 
queries.

Proof. We sketch the modified algorithm. Given a set E of 
labeled examples, it proceeds as follows. Let (I1, a1), . . . ,
(In, an) be an enumeration of the positive examples in E . 
We construct sets of critical positive examples X0, . . . , Xn

such that for all i and all (I j, a j) with j < i ≤ n, there ex-
ists a ( J , b) ∈ Xi that admits a homomorphism to (I j, a j). 
As before, this is done by applying Claim 1 and Claim 2 in 
an interleaved fashion.

More precisely, set X0 = ∅; for i = 1, . . . , n, we first test 
whether there is a ( J , b) ∈ Xi−1 such that ( J , b) × (Ii, ai) is 
a positive example for the target query q∗. We use a mem-
bership query for this. If such ( J , b) ∈ Xi−1 exists, then 
we choose an arbitrary one and set Xi = (Xi−1 \ {( J , b}) ∪
{( J ′, b′)}, where ( J ′, b′) is a subinstance of ( J , b) × (Ii, ai)

that is a critical positive example for q∗ . Otherwise (if 
no such ( J , b) ∈ Xi−1 exists), we set Xi = Xi−1 ∪ {( J ′, b′)}
where ( J ′, b′) is a subinstance of (Ii, ai) that is a critical 
positive example for q∗ .

Let q be the UCQ that is the disjunction of the canonical 
CQs of the examples in Xn . By similar arguments as before, 
10
we can show that q fits E and |q| ≤ |q∗|. In particular, for 
each i ≤ n the sum of the sizes of the structures in Xi is at 
most the size of q∗ . �
Remark 6.6. The problem of learning GAV schema map-
pings closely corresponds to the problem of learning UCQs 
(cf. [7]). In particular, Theorem 6.5 implies that GAV 
schema mappings are efficiently PAC learnable with mem-
bership queries. This resolves an open question in [6].

7. Conclusion

We established a strong negative result on the efficient 
PAC learnability of classes of CQs that include all path-
CQs. Although our result indicates that interesting classes 
of CQs tend to not be efficiently PAC learnable, from a 
theoretical perspective it would be interesting to work to-
wards a complete classification of classes of CQs that are 
(or are not) efficiently PAC learnable. On the positive side, 
we showed that CQs and UCQs are efficiently PAC learnable 
with membership queries.

In the following, we discuss how one could try to over-
come the negative result by loosening the running time 
requirements. A first observation is that while PAC learn-
ability of (the class of all) CQs cannot be attained by a 
polynomial-time algorithm, PAC learning with only polyno-
mial sample size is always possible when more running time 
is granted. Indeed, this approach has been successfully ex-
ploited in [9] for PAC learning unary tree-shaped CQs (over 
a schema that contains only unary and binary relations) 
with the help of a SAT solver.

The fact that a PAC learning algorithm for CQs exists 
with polynomial sample size but super-polynomial run-
ning time, is not difficult to establish. One can simply use 
an Occam algorithm that enumerates candidate CQs q in 
the order of increasing size, checks for each q whether it 
fits the input examples E , and returns the first fitting CQ 
found. If a fitting CQ exists, then there is one of size single 
exponential in ||E|| [5]. We may thus terminate (and re-
turn an arbitrary CQ) when that bound is reached. The al-
gorithm runs in double exponential time even if we check 
in a brute-force way whether candidate CQs fit the input 
examples. The bound on the sample size stated after Theo-
rem 2.9 applies despite the non-polynomial running time. 
We thus obtain a PAC algorithm with polynomial sample 
size and double exponential running time.

It is an interesting question whether and when a more 
modest superpolynomial running time suffices. In particu-
lar, one may consider running times that also depend on 
the target query q rather than only on the input set of 
examples E . From this perspective, the above algorithm at-
tains running time ||E||O (|q|) while time f (q) · poly(||E||)
with f a computable function would clearly be preferable. 
This resembles fixed-parameter tractability (FPT) in the 
study of the parameterized complexity of query evaluation 
(with the size of the query being the parameter), so let us 
refer to it as FPT PAC learning. To make this well-defined, 
it is convenient to view FPT PAC learning as a promise 
problem, meaning that the input examples are promised 
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to have a fitting query from the considered class.6 Alterna-
tives are to treat the non-existing target query as being of 
size 1 (which is a strong requirement) and to grant unlim-
ited running time in the case that there is no fitting query 
(declaring that case a corner case).

In the setting of FPT PAC learning, classes of CQs of 
bounded treewidth and (more generally) bounded sub-
modular width should be expected to play a prominent 
role because these notions are tightly linked to CQ evalua-
tion in FPT [18,24]. They generalize all notions of acyclicity 
mentioned in this paper, such as α-acyclicity. The exact 
same Occam algorithm described above yields that for ev-
ery k ≥ 1, the class Ck of CQs of submodular width at most 
k is FPT PAC learnable with polynomial sample size. This 
raises a number of questions: Is the class of all CQs FPT 
PAC learnable? If not, can we characterize the classes of 
CQs that are? And how exactly does the running time of 
the algorithms depend on the parameter?
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