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We present an exact analytical solution for quantum strong long-range models in the canonical ensemble by
extending the classical solution proposed in Campa et al. [J. Phys. A: Math. Gen. 36, 6897 (2003)]. Specifically,
we utilize the equivalence between generalized Dicke models and interacting quantum models as a generalization
of the Hubbard-Stratonovich transformation. To demonstrate our method, we apply it to the Ising chain in
transverse field and discuss its potential application to other models, such as the Fermi-Hubbard model, combined
short- and long-range models, and models with antiferromagnetic interactions. Our findings indicate that the
critical behavior of a model is independent of the range of interactions, within the strong long-range regime,
and the dimensionality of the model. Moreover, we show that the order-parameter expression is equivalent to
that provided by mean-field theory, thus confirming the exactness of the latter. Finally, we examine the algebraic
decay of correlations and characterize its dependence on the range of interactions in the full phase diagram.
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I. INTRODUCTION

Long-range systems are those in which two-body
interactions decay as a power law at large distances. They are
ubiquitous in nature, with some examples given by dipolar,
Coulomb, or van der Walls interactions. Recent experimental
advances in atomic, molecular, and optical systems have
led to a resurgence of interest in long-range models [1-4].
In these experiments, the effective interactions between
spins are often long ranged and tunable, renewing the need
for a comprehensive understanding of long-range systems.
Although less studied than their short-ranged counterparts,
there are already some rigorous and numerical results
available [5-9]. Some equilibrium and dynamical properties
have been discussed in comparison with short-range systems.
Notable examples are the existence (or absence) of an
area law of entanglement [10-13], the algebraic decay of
two-point correlators out of criticality [14—16], the spreading
of correlations [17], the existence of Majorana modes [18],
and topological properties [19].

In these examples, the phenomenology can be understood
within a (sub)classification in terms of the range of interac-
tions they exhibit. To fix notation and ideas, let us introduce
this classification with the models considered in this paper:
quantum long-range models in an N-site lattice with a cou-
pling of the form

N
/Hc:_z-lijcicjy (D
ij

where C; is a local Hermitian operator acting on site i.
We consider models with power-law decaying interactions
Jij =TJ(r;;)/N,

and periodic boundary conditions (PBC). The distance be-
tween sites r;; is then given by the nearest image convention.
Through this work we will focus on the case of attractive or
ferromagnetic interaction, so the interaction strengthis I > 0,
although the extension to antiferromagnetic or repulsive mod-
els will be discussed. b is a parameter that can be tuned to
shift the spectrum of J. The decay rate « sets the range of
the interactions. For a < d, where d is the dimensionality of
the lattice, the interactions decay slowly enough that the sum
in the coupling term (1) depends superlinearly on N, break-
ing the extensivity of the model (see Appendix A 1). Kac’s
renormalization factor 1/N restores extensivity, ensuring a
well-defined thermodynamic limit. Here N = )", J;;, note that
PBC make the model translation invariant, and thus Zi J; j is
independent of j. Regardless, the model remains nonadditive
in this regime. Nonadditivity brings about particular statistical
and dynamical phenomena that differ from the commonly
studied short-range models, such as ensemble inequivalence,
negative specific heat, and quasistationary states [8]. Accord-
ingly, the regime o < d is identified as (strong) long range. In
the regime o > d, the model is naturally extensive, and Kac’s

non-additivity additivity
(strong) weak short range
long range long range a
homogeneous nearest
all-to-all neighbours

FIG. 1. Classification of long-range models following [5,8] valid

. b if r;=0, for both the classical and quantum models. This work presents a
J(r;;) = —a . 2 . .
i otherwise solution for the quantum strong long-range regime.
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renormalization factor amounts to a rescaling of the interac-
tion strength. Within the regime « > d two further subregimes
can be identified: for o > «, the critical exponents of the
model match those of the nearest-neighbor model (¢ — o0),
this is the short-range regime; for d < o < o, the model
presents critical exponents that differ from the short-range
ones, the effects of long-range interactions are felt but the
model is additive, this is the weak long-range regime [5,8]. For
convenience, we summarize this classification in Fig. 1.This
work deals with the strong long-range regime.

Strong long-range models are commonly disregarded in
many analytical and numerical studies on the grounds of
the ill-defined thermodynamic limit brought about by the
nonextensivity. Kac’s rescaling eliminates this barrier, making
their study possible. For quantum models, seminal numerical
studies solving the transverse-field Ising model in the strong
long-range regime are found in Refs. [20,21]. They confirm
that in this regime the model is within the mean-field univer-
sality class. This is in agreement with the claim that mean
field is exact for quantum spin models in the strong long-
range regime [22] that generalizes similar findings in classical
systems [23-26]. These works are crucial for the rigorous
understanding of the physics of long-range systems. On the
one hand, they provide an exact way to solve them; on the
other hand, they provide a starting point for approximations
that tackle the weak long-range regime.

This work provides a recipe to analytically solve, in
the canonical ensemble, quantum strong long-range models.
Therefore, it complements the work of Mori [22] and con-
firms that in the strong long-range regime mean field is exact.
Besides, it extends the work of Campa and coworkers for clas-
sical strong long-range models to the quantum case [27]. Our
work introduces a generalized Hubbard-Stratonovich trans-
formation (HST) and provides a closed expression for the
free energy at any temperature. Technically, we show how to
use the equivalence between generalized Dicke models and
interacting quantum models as a quantum HST. We show
that only strong long-range models admit this mapping and
formulate their canonical solution in terms of the associated
Dicke model, which is then tackled following the prescription
of Wang and Hioe [28,29]. We illustrate the method on the
Ising chain in transverse field. We find that the critical be-
havior is universal for « < d and any lattice dimensionality.
The expression for the magnetization (the order parameter)
is shown to be equivalent to the mean-field solution, thus
proving the exactness of the latter. Finally, we study the al-
gebraic decay of correlations as a function of the decay rate of
interactions .

The rest of the paper is organized as follows. In Sec. II, we
provide a brief overview of the HST as a tool to solve classical
models, which forms the basis for our further development.
In Sec. III, we establish the relationship between generalized
Dicke and long-range models and introduce the generalized
HST. Section IV presents the solution for strong long-range
models and a discussion of which models can be treated with
this method. We perform the calculations for the long-range
transverse field Ising model, including the full phase diagram
and the decay of two-point correlations in Sec. V. Finally, we
conclude the paper with some general remarks and relegate
more technical details to the Appendixes.

II. SKETCH OF THE SOLUTION
FOR CLASSICAL SYSTEMS

To warm up, it is convenient to understand how to solve
classical strong long-range models, mainly following the
works of Campa and coworkers [23,27]. For simplicity con-
sider the Ising model

N N
Hd =h Z Si — Z],‘jSiSj. (3)
i ij

Here, s; is a discrete variable. The solution is based on two
main observations. First, diagonalizing the interaction matrix
J = ADAT, which allows one to write the coupling term as
> D (3 Ajesi)?, where {Dy} are the eigenvalues of the in-
teraction matrix. Note that, in this form, the coupling is written
as a sum of interaction terms that are quadratic in va Ajisi.
Second, eliminating these quadratic interactions by use of the
Hubbard-Stratonovich transformation which is based on the
equality

7 = Z e*ﬂﬂcl e / duy Z e*ﬂ(h st g /D=2y Arkfi“k)’
Si Si

“

where u; are real auxiliary variables. This equality for the
partition function follows from Gaussian integral formulas.

Notice that we have decoupled the interaction J;;s;s ;, there-
fore, the sum over s; configurations is trivial. Finally, the
integral over the real variables u; can be done within the
saddle-point approximation in the N-large limit. This is true
if some conditions are met on the eigenspectrum of the J;;
matrix (see below and the discussion in Appendix B).

III. FROM THE DICKE MODEL TO QUANTUM
LONG-RANGE MODELS AND BACK

A. Effective theory of the Dicke model

The method described above and utilized in Ref. [27]
cannot be straightforwardly applied to quantum models. The
application of the HST requires splitting the exponential that
constitutes the kernel of the partition function into a product
of exponentials, which in the quantum case is prevented by
the noncommutativity of the long-range interaction term and
other terms in the Hamiltonian. There are ways in which the
HST can be applied to solve quantum systems, but it requires
a reframing of the partition function in terms of commuting
quantities. A field-theory formulation or imaginary-time Trot-
terization are examples of this. Here we present an alternative
which is the closest to the classical formulation.

Our method utilizes some results from quantum optics in
order to draw an equivalence between some quantum long-
range models and a cavity QED model. Specifically, we utilize
the generalized Dicke model as our starting point to develop
this equivalence:

M—1
T i
H=) owaja+Ho— ) (@ +a)—=Ci. (5
k=0 ki \/ﬁ

Here H, is an exactly solvable Hamiltonian of the “matter”
degrees of freedom and C; is the local Hermitian operator
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that couples site i to the bosonic modes with [ay, az/] = 013
finally, A; are real coupling constants. In two previous publi-
cations [30,31] we show that the generalized Dicke model,
after integrating out the electromagnetic modes, yields an
exact effective Hamiltonian description for the matter degrees
of freedom alone in the limit N — oo (thermodynamic limit).
The resulting Hamiltonian,

N M-1

Ak jk
H =y — Z > N—wlf(c,»cj, (©)
ij k=0

corresponds to a quantum model with interactions given
by (Jetr)ij = ZQ/FI Aikjk/(Nwy). The mode structure of the
cavity determines the resulting effective model. However, it
is important to note that the exact mapping between Hamilto-
nians (5) and (6) is limited to the thermodynamic limit N —
oo and a number of modes M such that limy_, o, M/N = 0.
Following, we demonstrate how we can reverse the effective
theory to solve a quantum model. The first question that arises
is which family of quantum models, with interaction given by
Eq. (1), can be solved this way, i.e., which can be cast in the
form of Eq. (6). We also show that this is the case for strong
long-range models, « < d; this is the first result of this paper.

B. Mapping a quantum model to the Dicke model

If we start from an arbitrary extensive! model of the form
Ho = Ho — Zij Ji;CiC; [cf. Eq. ()], the first step is to di-
agonalize the interaction matrix J = ADAT, where D is a
diagonal matrix, Dy, = Dy8y,. Note that A is orthogonal be-
cause J is symmetric. The matrix elements are then given by

N-1

Ty =" AuDiAjy. (N
k=0

Assuming that J;; > 0, the smallest eigenvalue of J can al-
ways be set to zero by adjusting its diagonal elements, which
we denote b. Fixing b # 0 introduces, generally, nontrivial
diagonal terms of the form I'b/NC?. These can be shown to
be negligible in the thermodynamic limit, so the freedom to
set b remains (see Appendix A 2). For a general interaction
matrix the number of nonzero eigenvalues M scales with the
size of the matrix N. Conveniently, it can be shown that for
a model with power-law decaying interactions and PBC such
as the one considered in this work (1), the number of nonzero
modes in the thermodynamic limit (N — oco) depends on the
decay rate of the interaction [27]. For a model in the strong
long-range regime & < d, only a small number of modes have
a nonzero eigenvalue, such that limy_, ., M/N = 0. This can
be seen analytically in models with a translation-invariant in-
teraction matrix, which can be diagonalized in Fourier space,
obtaining a closed expression for its eigenvalues:

r -
D(@) = % Y J () expl—igr]. ®)

'Meaning that Kac’s prescription is used to ensure extensivity if the
model is strong long ranged.
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FIG. 2. Analysis of the eigenvalues of the coupling matrix J (1)
for d = 1. Left: For « = 0.2 < 1, a plot of the eigenvalues for N =
100 on top and a histogram of the eigenvalues as a function of N on
the bottom. Right: Same but foroo = 1.8 > 1.

Here q denotes any of the N reciprocal-space vectors in the
first Brillouin zone and the sum runs over all lattice points.
The large-N behavior of D(q) can then be estimated by re-
placing the sum with an integral [27].

Complementarily, we provide in Fig. 2 a graphical anal-
ysis of this phenomenon by showing the typical distribution
of eigenvalues depending on « for d = 1(the same behavior
is observed in other dimensions, not shown). This graphical
analysis can be useful for models without translation invari-
ance. In Fig. 2 we show that for a strong long-range model the
eigenvalues bunch around zero as N increases, whereas they
remain more uniformly distributed in the weak long-range
regime. This can be condensed into a criterion for determin-
ing whether arbitrary models are tractable: knowing that the
eigenvalues of J are non-negative and bounded by construc-
tion, if only a vanishingly small fraction M /N are nonzero for
N — o0, then their average will tend to zero and vice versa.
Thus, for an arbitrary interaction matrix J, if

li 1A/FID—I' 1TJ—O 9
Jim, y 2 D= lim Tr0) = ®

the model is tractable, i.e., the number M of nonzero eigen-
values scales as limy_, .o M/N = 0. If we apply this criterion
to translation-invariant models we find limy .o 1/N ), Dy =
limy_ oo Fb/N , which is zero for « < 1 and nonzero other-
wise (see Appendixes A 1 and A 2).

Once it is established that a given model has a sufficiently
small number of nonzero eigenvalues, one can sort them by
decreasing value and truncate the sum in Eq. (7) to consider
only the first M terms for which Dy # 0. For these remain-
ing nonzero eigenvalues, we can identify w; = 1/Dy. This,
together with the rescaled elements of the change of basis
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FIG. 3. Schematic of the generalized Hubbard-Stratonovich
transformation mapping a quantum long-range model to (and from)
a generalized Dicke model. Blue dots represent “matter” degrees of
freedom and red squares represent cavity modes [cf. Hamiltonians
(5) and (6) in the main text].

matrix Ayx = v'N Ay, leads to Eq. (6) and effectively defines
the mode structure for the associated Dicke model (5).

In summary, models for which limy_ ., M/N =0, in
particular strong long-range models, can be mapped to gen-
eralized Dicke models via the effective theory described in
[30,31]. To gain further insight, it is useful to compare Hamil-
tonians (5) and (6) with the system depicted in Fig. 3, which
outlines our procedure. The interacting model, shown in the
left-hand side of the figure, where constituents are depicted
as blue nodes and interactions as black edges, is mapped to a
larger system where the physical (matter) degrees of freedom
are uncoupled and interact with auxiliary bosonic modes rep-
resented as red squares.” Integrating out these bosonic modes
would lead back to the desired interactions J;;. The paral-
lelism between the auxiliary bosonic modes in the effective
theory and the auxiliary classical fields in the standard HST
motivates the claim of a generalized Hubbard-Stratonovich
transformation.

IV. EXACT SOLUTION OF STRONG LONG-RANGE
MODELS

At this point we have shown how to map a strong long-
range quantum model (1) to a generalized Dicke model (5) as
illustrated in Fig. 3. To solve the latter, we will follow the steps
outlined in the original solution of the Dicke model by Wang
and Hioe [28,29]. In the thermodynamic limit, the trace over
the photonic degrees of freedom is replaced by a collection
of complex Gaussian integrals and the bosonic creation and
annihilation operators az, ay, are replaced by complex fields

oy, o
M—1
f]‘[ Trm{exp[—ﬂ<2wklak|2
k=0
+H0+Z””‘x" )“ (10)

where o = xx + iy;. At this point, the parallelism with
the standard Hubbard-Stratonovich transformation used in

2Figure 3 is actually an oversimplification, as it only depicts long-
range interactions, which are the ones replaced by the auxiliary
bosonic modes of the effective theory. The theory is also applicable
to models containing a combination of short- and long-range inter-
actions. For a discussion about the applicability of the method, see
Sec. IV.

the classical model is even more explicit. The Gaussian
integral over the imaginary parts {y;} yields an unim-
portant constant. To tackle the integration over the real
parts, we perform a change of variables u; = x7/N and
define

Il = Zin(uo, - . ., upy—1)
— Trm{e—ﬂ(?-lo-'-zk,;2)»,kukC;)} (11)
and fi[ur] = In(Zyn[u])/N. In the resulting integral
/ H duew Wplwl.  (12)
where
M—1
¢lucd = —B Y wutg + funlte], (13)
k=0

the exponent depends explicitly linearly on N, allowing one to
use the saddle-point method (exactly for N — 00) to express
the partition function as the value of the integrand at the
maximum of ¢[u]:

MU IN
Z= L[) o SXP (VYLD (14)
with
oliug] = H{}flxﬂukl (15)

Computing the partition function is thus reduced to a mul-
tivariate maximization problem. In order for the zero-order
saddle-point approximation to be exact, one has to verify that
there exists a maximum {i}, i.e., that ¢ admits a stationary
point {i;} and the eigenvalues of the Hessian of ¢ at the
stationary point Hgliix] are all negative. In the presence of
several maxima, one has to find the global maximum. Finding
global extrema of a multivariate scalar function is normally a
complex task, without guarantee or provability of success, but
in the present case it is greatly facilitated for homogeneous
or near-homogeneous systems (see Sec. V). Additionally, the
second-order corrections to the partition function in the form
of a factor (det H¢[ﬁk])’1/ 2 must be negligible with respect
to the zero-order term exp{N¢[ii;]}, but this is generally true
(see Appendix B). This is the main result of this paper, i.e., the
exact expression for the partition function of strong long-range
models (14).

In the next section and in order to give concrete formulas,
we particularize for the case of the Ising model in transverse
field. However, the ideas presented here can be applied to
other models. For instance, our next section generalizes easily
to a spin-s system where s > % and also to the inclusion
of a longitudinal field, such that Ho = w, ) ; S7 + w, Y ; SF
and C; = 287 with [S¥, S’3 ] = ieqp,S” 8;; spin-s operators. The
Fermi- Hubbard model W1th long-range interactions could also
be treated with our method. Here Ho = #;;c| ¢; and C; = ¢]¢;
with {c;, c;} = §;; fermionic operators. Finally, we could con-
sider for Ho any model such that Hy + >, &C; is solvable,
where the &; are constants. In doing so, we could combine
short-range models (as the one-dimensional short-range Ising

165130-4



EXACT SOLUTION FOR QUANTUM STRONG LONG-RANGE ...

PHYSICAL REVIEW B 108, 165130 (2023)

model in transverse field, the XY model, and so on) with
strong long-range interactions. This is because our method
requires knowledge of the eigenstates of Hgy + Zk’l- 2XiuiCi
[cf. Eq. (11)].

We have, thus far in the paper, focused only on ferro-
magnetic (attractive) models. However, the discussion of the
applicability and generalizations of our method demands that
we consider antiferromagnetic (repulsive) models [32,33].
Frustrated antiferromagnetic long-range models cannot be
tackled with our method. To see why, it suffices to look at
Fig. 2, frustrated antiferromagnetic models arise from chang-
ing the global sign of the interaction in Eq. (1), which in
turn results in a change of sign of the eigenvalues of the
coupling matrix. For a general model, a shift to render the
smallest eigenvalue equal to zero is not possible as it would
require a b of the order of N, leading to nonvanishing di-
agonal elements even in the N — oo limit. For a model
in which Ci2 = 1, the shift is possible, but after a shift to
render the smallest eigenvalue equal to zero, we find that
the majority of the eigenvalues are nonzero, regardless of
the range of interactions «. In contrast, it is possible to de-
fine unfrustrated long-range antiferromagnetic models J;; =
['(—=1)"7J(r;;)/N, as an extension of unfrustrated nearest-
neighbor antiferromagnetic interactions [34]. Here, the sign
change is alternating, rather than global, effectively defin-
ing two sublattices. The interaction matrix defined this way
shares the eigenvalues of its ferromagnetic counterpart and the
corresponding model can thus be tackled with our method.
However, a number of interesting subtleties arise later on in
the solution that deserve a detailed discussion; we reserve this
for a future publication.

V. SOLUTION OF THE LONG-RANGE ISING MODEL
IN A TRANSVERSE FIELD

To showcase the effectiveness of the formalism presented
in the previous sections, we particularize now to an Ising chain
in transverse field

N N
w
H= TZ > oi = Jjoia}, (16)
i ij

where o** are the usual Pauli matrices and J;; is given by
Eq. (2). This corresponds to setting d = 1, Ho = %5 ), 07,
and C; = 0. In Appendix C 1 we show that this leads to

M—1 1 N
dlu] = —B kg; ol + v Xi:ln[z cosh(Ben)l,  (17)

with 2¢;[ux] = \/a)zz +4Q2>, hixug)?.

In the case of a homogeneous H, we show in Appendixes
C2 and C3 that the global maximum is homogeneous in the
lattice. In terms of the minimization variables, homogeneity
implies that uy = u # 0 and w20 = 0 (see Appendix C2).
This means that only the zero mode, which is constant on
the lattice, Ao = 1 V i, is relevant in determining the ther-
modynamic properties of the model. In turn, one finds that
the critical properties of the model are independent of the
decay rate of interactions « since the latter only determines
the degree to which higher-frequency modes (k > 0) have to

102

NxXnpw;z

0.1 0.2 0.3 0.4 0.5
MNw,

FIG. 4. Susceptibility for maximally separated spins x,» for
strong long-range quantum Ising models as a function of the inter-
action strength I'. The parameters used were w, = 1, Bw, = 10 and
N = 100.

be considered in the diagonalization of J. In more intuitive
terms, homogeneity is revealed in the fact that 2¢; = 2¢ =
Jw?+ 1612, Vi. In any case, the multivariate maximization
problem simplifies to a single variable maximization problem
max, ¢(u). Taking the derivative of ¢ with respect to u yields
the condition

i€ = 2T utanh (B€), (18)

which is manifestly « independent. Note that € = €(it). For
I' < w,/4, =0 is the only solution. For " > w,/4, the
solution depends on 8, for 8 > ., with B, given by w, =
4T tanh(B.w,/2), there is another solution to Eq. (18) given by
€ = 2I" tanh(B¢€). The solution # = 0 corresponds to a maxi-
mum in the regime where it is the only solution and becomes
a minimum for 8 > B, with the maximum given by the other
solution [28]. This marks the paramagnetic-ferromagnetic
transition point. This is the well-known mean-field critical be-
havior of the standard (single-mode homogeneous coupling)
Dicke model [28,35], which is shared by the Lipkin-Meshkov-
Glick (LMG) model (all-to-all homogeneous Ising) [36,37]
and, as we just showed, is also universal to all strong
long-range Ising models and their associated Dicke mod-
els, i.e., we have demonstrated that the critical point is
independent of «. This can be visualized in Fig. 4 where
the vertical line marks the phase transition, located at the
maximum for the susceptibility (see below), and is inde-
pendent of «. Besides, in Fig. 5 we compute the critical
line, in red, in the (I", 1/8) plane and compare it against
the simulations in Ref. [21]. We find excellent agreement
with their numerical results and showcase that the critical
point is independent of o and coincides with the mean-field
value.

In terms of observables, we focus now on the calculation
of magnetization. In order to do so from the partition function,
we introduce a perturbative longitudinal field to the Hamilto-
nian, such that H — H — Zi h;o}*. Then one can compute the
order parameter (o;") = dInZ/dh; and the susceptibilities’

Xij = lim M

. 19
{ha}—0 8hj (19

3The magnetization must be kept {,} dependent in order to com-
pute the susceptibility; the magnetization of the {A,}-independent
model is defined as B(o;") = limy,,)—.0 0 InZ/9h;.
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FIG. 5. Phase diagram of the strong long-range Ising chain in
transverse field. The red line corresponds to the universal critical
line for @ < 1. The numerical data are taken from Ref. [21]. The
color map shows the slope of the linear dependence o, = ax + b,
where o, is susceptibility decay rate and « is the rate of decay of
interactions, computed with parameters w, = 1 and N = 100.

The introduction of longitudinal fields leads to the substitution
2% Ak = 2>, Ay + hy; in Eq. (17). The magnetization
is then

2 ZkMz_ol Aikity + h;

il ]

<Ul~x) = tanh (B¢;[itx]) (20)

Here, the magnetization appears as a function of the maxi-
mization variables {i;}. However, it is possible to show that
Do Al = ) iijto7), rewriting Eq. (20) as a self-consistent
equation on {(o;")} which is precisely the self-consistent equa-
tion that arises in a mean-field solution. Our exact analytical
method is thus equivalent to mean-field theory, proving that
mean-field theory is exact for strong long-range models and
any lattice dimensionality d. Anecdotally, our theory evi-
dences that the self-consistent solution from mean-field theory
is redundant, in the sense that the solution involves a transcen-
dental equation of N variables (the magnetizations {(o})}),
whereas the same problem can be rewritten in terms of M
variables (the {u;}), with limy_, .o M/N = 0.

A. Decay of correlations

Our final result concerns the decay of correlations. In
weak long-range and short-range systems correlations de-
cay exponentially at long distances. Only at the critical
point do these systems exhibit power-law decay of cor-
relations [14-16]. Conversely, strong long-range systems
exhibit power-law decay of correlations at all distances. In
the absence of exponential decay, the concept of correla-
tion length cannot be straightforwardly defined, although
there have been some attempts [38]. Here we study the
susceptibility x;; [Eq. (19)] as a measure of correla-
tions between spins, as it is proportional to the Kubo

correlator [39][Chap. 4]

B
=t et o).

The susceptibility can be computed analytically from Eq. (19)
for a translation-invariant model [40][Chap. 6] (see Ap-
pendix D for a derivation) or numerically otherwise. The
analytical derivation yields

1 M—1
Xij = Y8+~ D ki = Yok, (22)
k=0

where Y is a quantity that depends on & [Eq. (D4)] and
{xx} are the Fourier modes of the susceptibility [Eq. (D7)].
Equation (22) evidences that x;+; goes to zero in the ther-
modynamic limit with a speed that is determined by the ratio
M/N and thus ultimately by « (by its relation to d).

For a numerical calculation, the introduction of a site-
dependent field &; breaks the homogeneity of the model and
the multivariate maximization of ¢ is carried out numeri-
cally; (o7) is then computed according to Eq. (20) and y;;
is computed as a finite difference. We have verified that both
methods yield the same results for the current model. This
is noteworthy because the numerical calculation relies on a
multivariate optimization which could, a priori, converge to
an incorrect result corresponding to a local maxima. We be-
lieve the success is due to the fact that the only deviation from
homogeneity stems from the introduction of a perturbative
field and is thus small. Hence, although the optimization is
strictly multivariate, the landscape does not differ much from
the univariate case.

Despite the fact that the analytical results have been
obtained under the assumption that we worked in the thermo-
dynamic limit N — oo. The computation of the susceptibility,
whether numerically or according to Eq. (22), requires us to
fix a finite value of N and M. For each value of o and N, we
increase the value of M until convergence is reached while
enforcing the constraint that limy_, .o M(N)/N = 0.

Because the model is translation invariant, the suscepti-
bility is only a function of distance, allowing us to define
Xii+r = Xr- In Fig. 4 we study the susceptibility at a fixed dis-
tance: we plot the half-chain susceptibility xy/» as a function
of the interaction strength I" for different decay rates « < 1 at
zero temperature B — oo. The half-chain susceptibility dis-
plays a-independent divergence at the critical point and some
dependence on o away from it. Intuitively, the correlations
remain larger for longer-ranged models. We now turn to the
spatial dependence of the susceptibility. In the absence of a
correlation length, we study the susceptibility decay rate o,
defined from the relation x, = Ar~%«. Interestingly, one finds
that o, depends linearly on «, o, = aa + b. In Fig. 5 we plot
the slope a as a function of interaction strength I and inverse
temperature 1/8. Close to the critical line, the susceptibility
decay rate o, becomes independent of the interaction decay
rate o, in agreement with Fig. 4. As one moves further from
the critical line, a — 1, varying continuously from O to 1 in
intermediate regions. In all cases we find b = 0. Similar alge-
braic decays have been described previously for the connected
correlator (oj'0;") — (of)(o}) in the paramagnetic phase [14].
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There, a linear relation between «, and « is also reported.
Here we extend those findings to the full phase diagram.

VI. CONCLUSIONS

In this paper, we have presented a method for solving
strong long-range models in the quantum domain based on the
Hubbard-Stratonovich transformation for classical systems.
Our method is a physics-based solution rooted in light-matter
interaction models in which, in the thermodynamic limit, light
can be integrated out leaving an effective long-range model.
Solutions of the former, i.e., Dicke models, are due to Hepp
and Lieb [41,42], and Wang and Hioe [28,29], which we have
recently generalized [30,31].

We have shown that our method can be applied in the
strong long-range regime and confirmed that mean-field
theory is exact in this regime [cf. Fig. 1 and Egs. (2),
(5), and (6)]. In doing so, this paper complements the
work of Mori [22]. Besides, it extends the work of Campa
and coworkers for classical strong long-range models to
the quantum case [27]. It is worth noting that neither
our method nor the equivalent mean-field theory can be
used to compute nonlocal quantities such as the entangle-
ment entropy, which can be nontrivial in strong long-range
systems [43].

Our method is flexible and could be applied, e.g., to
spin-s systems where s > %, to models with a longitudinal
field, such as the long-range XXZ model, or to the Fermi-
Hubbard model with long-range interactions. Additionally,
many exactly solvable models could be complemented with
long-range interactions and solved with our method since it
relies on knowing the eigenvalues of the system without long-
range interactions and with a “field” term proportional to the
long-range coupling operator. Unfrustrated antiferromagnetic
systems are also within the scope of the method. In conclu-
sion, our work provides a powerful tool for solving quantum
long-range models.
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FIG. 6. Scaling of N = Z},V Jij (left) and b (right) for a one-
dimensional model (d = 1) with power-law decaying interactions
(1). Here b is fixed such that the smallest eigenvalue of J is zero.
The dotted lines indicate the analytical asymptote.

APPENDIX A: PROPERTIES OF THE LONG-RANGE
INTERACTION MATRIX

1. Loss of extensivity

In Fig. 6 we illustrate the extensivity (or lack thereof) of
a model with power-law decaying interactions in d = 1. We
compute N = Y Jj; as a measure of the coupling energy per
spin. In the absence of Kac’s rescaling, this quantity must not
scale with the number of spins N to keep the total coupling
energy extensive. Figure 6 shows that this is not the case for
o < 1. The threshold case o = 1 is highlighted for clarity
and corresponds to a logarithmic dependence of N on N.
For « > 1 the dependence is sublogarithmic, i.e., N becomes
independent of N at large N. As discussed in the main text,
loss of extensivity is prevented with Kac’s rescaling, which we
can now understand as a renormalization of the total coupling
energy by the energy per spin.

In fact, for d =1 and N — oo the scaling of N can be
computed analytically since

N 00
N=YJy=b+2)r
i r=1

As b converges to a constant value when N — oo (will be
shown in Appendix A 2), the convergence of N will be ruled
by the convergence of the infinite series. For « > 1 the series
is convergent, so N becomes independent of N at large N. For
a < 1 the series diverges.

(AD)

2. Diagonal terms can be neglected in strong long-range models

Setting b # 0 introduces a new diagonal term in the Hamil-
tonian

N
- Z I'b/NC?. (A2)
Importantly, this term contains a factor b/N. We know from
Appendix A1 that limy_ o N = oo for « <d. So if b is
independent of N for N — oo, the diagonal term vanishes in
the thermodynamic limit.

It can be shown analytically that this is the case for d = 1
and o > 0. From Eq. (8) we see that the smallest eigenvalue
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of J when N — oo is given by

I 7 r I = r..—o
Diin = = Xr:J(r)(—l) = ﬁ(b+2;(—l) r )

(A3)
Here r = |r|. Hence, setting Dy, = O fixes
o0
b=—-2) (-1)r ™ (Ad)
r=1

The convergence of this series is proven by means of the
alternating series test since the absolute value of its terms
monotonically decrease to 0. For « = 0 and finite N, as .il‘;ﬁ i=
1, b must be fixed to 1 to ensure that the smallest eigenvalue
of J is zero. This is manifestly independent of N.

In other dimensions or other models, this test can be done
graphically. In Fig. 6 we show the value of b, for a model with
power-law decaying interactions in d = 1, computed numer-
ically for different values of N when b is chosen so that the
smallest eigenvalue of J is zero. One can see that in this case
the numerical results converge to the analytical prediction.
The same behavior is observed in other dimensions.

APPENDIX B: NEGLIGIBLE SECOND-ORDER
CORRECTIONS TO THE SADDLE-POINT METHOD

The second-order term of the saddle-point expansion is
proportional to (det Hy[iix])~!/%. Accordingly, it corresponds
to a correction to the free energy per particle of the form

M—1
L (det Hy[itx]) : p M (B1)
— In(de = — nyy X —,
N Y £ N

where the {v;} are the eigenvalues of detHyl[i;]. This
correction scales as M/N and thus vanishes in the thermo-
dynamic limit. Notably, if the applicability of the effective
theory to map a long-range interacting model to a gener-
alized Dicke model constitutes the first appearance of the
restriction limy_, .o M/N = 0, the argument contained in this
Appendix constitutes a second independent one. In fact, this
second occurrence of the restriction also appears in clas-
sical systems, where it is actually the only restriction to
limy_. oo M/N =0, as in classical systems an unrestricted
standard HST can be used, as outlined in Sec. II.

APPENDIX C: SOLVING THE LONG-RANGE ISING
MODEL IN TRANSVERSE FIELD

1. Solving the associated Dicke model

Particularizing Eq. (11) for the Ising model, we have to
compute

N
Zinlur] =Try {exp [—ﬂ Z( %Uf
M—1
+y 2,\ikuka;‘>} } (C1)
k=0

Because the spins are now decoupled, the trace over spins fac-
torizes. The resulting single-spin Hamiltonian has eigenvalues

M-1 2
1
+ C— 2 .
€ =te = :I:2 s + 4( E 2Alkuk) . (C2)

k=0
Accordingly,
Znlur] = HZ cosh(Be;), (C3)
1 1
ol = Z In(2 cosh B¢;), (C4)

1
Pmlu] = —B Y opuf + v > In(2 cosh Be;).  (CS)
k i

2. Existence of a homogeneous maximum of ¢

To find the maximum of ¢[u;] we impose a vanishing
gradient V¢ = 0, which translates to the following condition
for the maximization variables:

_ 1 & a2 0 hay

ooy = Ztanh(ﬁe,) : . (C6)
From here, let us consider a solution that is homogeneous in
the lattice, we will later prove that possible inhomogeneous
maxima are only local maxima in Appendix C 3. Let us define
i =2, Aiguy and consider it as an alternate optimization
variable. Homogeneity implies that fi; = ji; to see how this
affects the variables {iz;} it is useful to invert the relation and
write u; in terms of the {u;}, yielding

|
= — ik i C7
e =~ : K (C7)
Now, homogeneity implies
_ N
= 2~ 3 he (C8)

2Ni

Since the {A;;} are the Fourier modes resulting from the diago-
nalization of J, we have ) _; Ay = N&yo. Accordingly, we find
itr20 = 0 and 2iip = ji. So, if the solution is homogeneous,
the only relevant mode is the zero mode iy = # and the rest
of the maximization variables are zero, with i satisfying the
condition

iwy = % tanh(B¢€). (C9)

From Eq. 8 we have wy = 1/T", which when replaced in
Eq. (C9) yields Eq. (18).

At this point we can compute the Hessian of ¢, Hy. As
we have shown, for a homogeneous solution, the optimization
problem becomes single valued such that

0%¢

T

2
+B tanh(ﬁe)(é — ISZ )

2
= —2Bwy+[1 — tanhz(ﬁe)]<4ﬂ>

H
¢ €

(C10)
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If we evaluate the Hessian at # = 0, which is always a solution
of Eq. (C9) we obtain

Hy(i = 0) = —2Bwp + B tanh (ﬁ%)wﬁ (C11)

r4

which is always negative for I' < w,/4, i.e., for wy = 1/I" >
4/w,. For wg > 4/w,, the sign depends on B, being negative
for B < B, with wyw, = 4 tanh(B.w./2). So in the regime
where it = 0 is the only solution to Eq. (C9), it is a maximum.
For wy < 4/w, and B > B, a nontrivial solution given by
wp€ = 2 tanh(B¢€) appears and can be shown graphically to
be the maximum. Therefore, Eq. (C9) always has a solution
that is a maximum of ¢.

3. Proof that the homogeneous solution is the global maximum

We cannot rule out the existence of inhomogeneous ex-
trema of ¢, i.e., inhomogeneous solutions of Eq. (C6).
Instead, we show that if there exists an inhomogeneous
solution and it is a maximum, it is a local maximum,
with the global maximum given by the homogeneous
solution.

Let us express the self-consistent condition for the extrema
of ¢ given in Eq. (C6) in terms of {u;} and {¢;}:

1 & al ikl
2 L = Ztanh(ﬂa) W (1
Isolating the {ﬁ,-} yields the self-consistent condition
;= ZZtanh(,Be ) Jij, (C13)

which is simply a reformulation of the maximization problem
in terms of new variables. Accordingly, ¢ reads as

Pluil = — Zu, it Zln [2 cosh(Be:)].
(C14)
with NJijT = Y, hixwiAjx. Note that JJ*J = J. Substituting
Eq. (C13) in (C14) yields
plin] = — Z tanh(ﬁe) a2+ Zln [2 cosh(B&)]
_ i Z (ii;)
=N : E (L)
(C15)

We can particularize this expression for the homogeneous
solution, it; = fi,

S(7) = _étanhe(ﬂe) 2

> + In[2 cosh(Bé)]
|
=5 2 &)

(C16)

Note that because fi maximizes ¢, it also maximizes &.
Therefore, an inhomogeneous maximum of ¢ given by
{i1;} cannot maximize & for all f; (to the extent that
some j; must deviate from & in order for the con-
figuration to be inhomogeneous) and thus ¢(it) = ¢[f;].
The global maximum of ¢ is given by the homogeneous
solution.

APPENDIX D: ANALYTICAL CALCULATION
OF SUSCEPTIBILITIES

From Egs. (20) and (C6) we realize that

N
B 1
ukwk=NZ(o Aik D)
and thus
o,
—ka)k Zx,, - (D2)
From Eq. (19) we have
lim 2A§x AL (D3)
ij = 11 ik 75— ij | Lis
K= o " on; T
with
i+ i\’
Yi=(1—tanlqz(/%,»)),3<’“Lfr >
€

— 2
+tanh(f3€,-)é [1 - (“":h") ] (D4)

i

From Egs. (D2) and (D3) and after some manipulation, we
find

(D5)

N
Xij = (ZZJirer + (Sij)Y,

where Y = limy,,0Y;. For a translation-invariant model,
Eq. (D5) can be solved in Fourier space. We define

N-1
Xij = 11\7 Z}\ik)(k)\jk (D6)
k=0
and find
Y
X =T"2vp. YD, (D7)

Here Dy are the eigenvalues of J [cf. Eq. (7)]. The susceptibil-
ities in real space are thus given by

| M N—1
Xij =5 (Z Aik Xkhjk +Y Z Aik%’k)
k=0 k=M
| [ M-1
=~ |:Z Ak Xkhjk +Y (N(sij - Z )wk)»jk>:|, (D8)
k=0

k=0
leading to Eq. (22).
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