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Long-range order in arrays of composite and monolithic magnetotoroidal moments
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Magnetotoroidal order, also called ferrotoroidicity, is the most recently established type of ferroic state. It
is based on a spontaneous and uniform alignment of unit-cell-sized magnetic whirls, called magnetotoroidal
moments, associated with a macroscopic toroidization. Because of its intrinsic linear magnetoelectric coupling,
this new ferroic state could be useful in the development of spintronic devices. We exploit two-dimensional
periodic arrays of magnetostatically coupled nanomagnets as model systems for the investigation of long-range
magnetotoroidal order. We present two pathways promoting this order, namely, (i) structures comprising a
ring of uniformly magnetized sub-micrometer-sized bar magnets and (ii) structures in which each magnetic
building block itself hosts a magnetic vortex. For both cases, calculations of the magnetic-dipole interaction
and micromagnetic simulations reveal the conditions for the formation of spontaneous magnetotoroidal order.
We confirm this order and the formation of magnetotoroidal domains in our arrays with magnetic force
microscopy. We identify the presence of two types of domain-wall states emerging from the competition of two
intrinsic microscopic couplings. Our work not only identifies the microscopic conditions promoting spontaneous
magnetotoroidal order but also highlights the possibility to tailor mesoscale magnetic arrays toward elusive types
of ferroic order.
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I. INTRODUCTION

The search for self-organized ordered or strongly corre-
lated states of matter is a fascinating subject of physics and
materials science. Ferroic materials, which are related to a
spontaneous and reorientable magnetic, electric, or structural
order [1–3], are of particular interest as they provide the
basis for a plethora of technological applications. Ferroic
materials are defined by the existence of a spontaneous point-
group-symmetry-breaking phase transition with the formation
of domains as regions described by different, yet uniform
orientations of the so-called order parameter as a macro-
scopic observable classifying the phase transition. This order
parameter, which may be the magnetization in the case of
ferromagnetism, has to be orientable by a conjugate field,
which, for the magnetization, is a magnetic field. Importantly,
beyond this purely macroscopic definition, ferroic materials
require microscopic interactions that support and stabilize the
associated spin, charge, or distortive order. The identification
and understanding of new types of ferroic states complement-
ing the established ones (ferromagnetism, ferroelectricity, and
ferroelasticity [2]) is a task of great current interest [4,5]. In
this respect, ferrotoroidicity has recently been proposed as a
ferroic state defined by the spontaneous uniform long-range
alignment of magnetic whirls, the so-called magnetotoroidal
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moments [6–11]. As shown in Fig. 1, these toroidal moments
can be composed from an arrangement of elementary mag-
netic moments within the unit cell, or they may be exhibited
monolithically by the elements themselves, for instance, in the
form of orbital currents [4,12,13].

The uniform alignment of the magnetotoroidal moments t
leads to a macroscopic toroidization T representing the order
parameter; see Fig. 2. The configuration of magnetic moments
associated with the ferrotoroidic state breaks the space-
inversion and time-reversal symmetries, with fundamental
consequences for related electric and magnetic responses
and couplings. Specifically, magnetotoroidal materials allow
for an electric-field-induced magnetization and a magnetic-
field-induced polarization via the linear magnetoelectric effect
[9,14–16]. Ferrotoroidic materials may thus be exploited for
nanoelectronic memories or sensors that are based on in-
tertwined magnetic and electric properties. Furthermore, the
linear magnetoelectric effect in the optical regime manifests as
directional anisotropy and thus opens a pathway for photonic
devices such as optical diodes [17–21].

The scarcity of studies on imaging and manipulation of
ferrotoroidic domains [22,23] is largely due to the magnet-
ically compensated nature of the ferrotoroidic state, which
hampers experimental access to and thus a deeper under-
standing of the concept of magnetotoroidal order. In addition,
it is difficult to disentangle the fragile competition of ex-
change interactions that is assumed to promote the toroidal
order on the microscopic scale [9,11,24]. To overcome these
obstacles, we take advantage of the definition of ferroic order
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FIG. 1. Two-dimensional microscopic representations of mag-
netotoroidal moments. (a) Composite magnetotoroidal moment t
originating either from discrete quantum-mechanical spins or from
a classical magnetic-moment density μi (black arrows and contrast
gradients) displaced by distance vectors ri from the origin. (b) Mono-
lithic magnetotoroidal moment originating either from localized
orbital currents of atoms or ions, or from a continuous vortexlike
magnetization configuration within a single magnetically ordered
entity.

as a macroscopic phenomenon, irrespective of its explicit mi-
croscopic origin. As shown in Refs. [25,26], a transfer from
the atomic to the sub-micrometer length scale, or mesoscale,
provides a means to implement and probe ferrotoroidicity to
a degree that conventional “atomic” materials cannot offer.
For these studies, the quantum-mechanical magnetic moments
of a hypothetical magnetotoroidal crystal are replaced by
classical macrospins in the form of magnetic single-domain
sub-micrometer-sized permalloy bars, that can be lithograph-
ically patterned and arranged at will, thus allowing versatile
tailoring of the symmetry and microscopic interactions of the
resulting array.

In the work presented in this article, we build on stud-
ies of conjugate-field poling [25] and manipulation of short-
and long-range order [26] in artificial magnetotoroidal crys-
tals. These previous studies were performed on a single
and very specific type of magnetotoroidal array. We now
present a variety of mesoscale magnetic systems, either com-
posed of single-domain bars or of equilateral triangles, as
two fundamentally different types of building blocks for
magnetotoroidal arrays. While in the former case a ringlike
arrangement of the magnetic-dipole-like building blocks [27]
exhibits a composite magnetotoroidal moment, the latter hosts
a monolithic magnetotoroidal moment in each individual
building block [28,29]. Using magnetic-dipole calculations
and micromagnetic simulations, we quantify and tailor two
variants of microscopic interactions that are required to pro-
mote ferrotoroidic ordering in these two types of systems—an
intra- and an intertoroidal coupling. Using magnetic force
microscopy (MFM) we confirm the existence of as-grown
magnetotoroidal domains, and we resolve the domain-wall
states in our nanomagnetic structures.

The article is organized as follows: In Sec. II we explain
how we fabricate and probe our magnetotoroidal arrays, as
well as how we perform micromagnetic simulations. The
composite and monolithic types of magnetotoroidal moments
that provide the basis for the spontaneous formation of mag-
netotoroidal order are introduced in Sec. III. We quantify
the microscopic interactions between the building blocks and
demonstrate the implementation of suitable couplings in ar-
rays of composite and monolithic magnetotoroidal moments
in Secs. IV A and IV B, respectively. In Sec. IV C we intro-

FIG. 2. Magnetotoroidal domain structure. (a) Representation of
the two magnetotoroidal-moment orientations (cyan: −t, red: +t)
with magnetic moments in a clockwise or counterclockwise head-to-
tail orientation (black circular arrow). (b) Magnetotoroidal domain
structure in which a domain wall (green line) separates states with a
toroidization of −T (cyan) and +T (red).

duce our processing of MFM data to identify the associated
toroidal order. In Sec. V, we present and discuss the exper-
imental data on magnetotoroidal domains and domain-wall
configurations. We summarize our findings and put them into
the larger context of magnetically compensated ferroic order
in Sec. VI.

II. METHODS

A. Sample fabrication

Arrays of sub-micrometer-sized building blocks made
from ferromagnetic permalloy (Ni81Fe19) were fabricated us-
ing electron-beam lithography and electron-beam evaporation
at room temperature. For this, a polymethyl methacrylate
layer (2% PMMA 950k) was spin-coated onto a 500-μm-thick
(100)-oriented silicon substrate. An electron-beam writer
(Vistec EBPG 500Plus) operating with an acceleration volt-
age of 100 kV at a dose of about 600μC/cm2 was used to
write the pattern into the PMMA resist. After development,
permalloy thin films with thicknesses between 12 and 20 nm
were deposited via electron-beam evaporation at a growth rate
of 0.3 nm min−1 and at a base pressure of 10−6 mbar. The
polycrystalline nature of the permalloy film, with its negli-
gible magnetocrystalline anisotropy, ensures a distribution of
the local magnetization within each building block that is de-
termined primarily by its shape. A thin capping layer of a few
nanometers of gold or aluminum was deposited on top of the
permalloy to prevent deterioration due to permalloy oxidation.
Afterwards, the remaining resist and unwanted material were
removed via ultrasound-assisted lift-off in Technistrip P1316.
The resulting arrays have lateral sizes of about 50 × 50μm2.

B. Micromagnetic imaging

To probe the magnetotoroidal configuration in our arrays,
we performed MFM (using an NT-MDT NTegra-Prima sys-
tem) by applying the two-pass measuring principle in tapping
mode with an oscillating tip. We measure the topography
profile in the first scan in close proximity to the surface. In a
second scan, this topography profile is retraced at a lift height
of typically 40 to 50 nm, to sense the out-of-plane magnetic
stray-field gradient. We used tips with a low magnetic moment
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(Nanosensors PPP-LM-MFMR) to avoid tip-induced changes
of the magnetic order.

C. Micromagnetic simulations

The magnetic configuration and stray fields of the triangle-
shaped building blocks, see Sec. IV, were simulated using
the program Mumax3 [30]. The geometric parameters of a
single building block were discretized into a grid with cells
of 2 × 2 × 4 nm3 (length × width × height). To simulate the
magnetic configuration of the triangle, we use bulk values for
the saturation magnetization, Msat = 860 kA m−1 and the ex-
change stiffness, Aex = 13 pJ m−1, and a vanishing anisotropy
(K = 0) [31]. The magnetic stray field is calculated for a
single triangle-shaped building block surrounded by vacuum.

III. MODELING TOROIDAL ORDER
ON THE MESOSCALE

For implementing magnetotoroidal order in two-
dimensional arrays of nanomagnets, two design criteria
have to be considered. First, the artificial unit cells of the
arrays have to exhibit a magnetotoroidal moment as the
basis of the macroscopic order. This toroidal moment can
either be formed as a composite of n magnetic moments
μi located at positions ri in the unit cell, see Fig. 1(a)
[t ∝ ∑n

i=1 ri × μi], or it originates from a continuous
magnetic curl [t ∝ ∫

uc r × μ(r) d3r with μ(r) as the
magnetic-moment density and “uc” denominating the unit
cell] forming a monolithic toroidal moment; see Fig. 1(b).
Second, since toroidal order refers to the spontaneous
uniform alignment of these toroidal moments, a nonzero
net toroidization T = N−1 ∑N

j=1 t j , with N as the number
of unit cells contributing to the uniform alignment, has to
emerge as the corresponding order parameter. This leads to
the formation of toroidal domains, as schematically shown in
in Fig. 2(b). Note that the replacement of spins of the ions
in conventional crystals with macrospins of the magnetic
nanobars in our mesoscale arrays goes hand-in-hand with the
substitution of the quantum-mechanical exchange interaction
with the classical magnetic-dipole interaction between the
building blocks [32–34].

In this work, we investigate arrays of nanomagnets based
on two complementary types of building blocks promot-
ing magnetotoroidal order. These building blocks are made
of ferromagnetic polycrystalline permalloy, with a negligi-
ble magnetocrystalline anisotropy, where the shape of the
nanoscale element determines its internal magnetic structure
[35]. The first set of arrays consists of stadium-shaped bars,
each with a length of l = 450 nm, a width of w = 150 nm, and
a circular end with radius of curvature of r = w/2 = 75 nm;
see Fig. 3(a). The ferromagnetic bars are single domain with
an in-plane magnetization pointing along their long axis; see
Fig. 3(c). Hence, these Ising-like macrospins are a classi-
cal representation of quantum-mechanical spins [36]. Such
macrospins have been successfully used to address fundamen-
tal questions about magnetic correlations, frustration, thermal
relaxation, phase transitions, and many other phenomena [37].

The second set of arrays consists of equilateral triangles
with l = 400 nm edge length and r = 50 nm corner radius
of curvature; see Fig. 3(b). The appropriate choice of trian-

FIG. 3. Ferromagnetic constituents of composed and monolithic
toroidal moments. Our arrays are composed of (a) nanobars and
(b) equilateral planar triangles arranged in different tilings; see
Figs. 4 and 5. Adjustable parameters are the length l , the width w,
the radius of curvature r, and the height h. (c) The nanobars exhibit a
magnetic single-domain state with magnetization pointing in one of
two directions parallel to the long axis of the bar (orange arrow and
contrast gradient) corresponding to an Ising-like degree of freedom.
(d) The equilateral triangles exhibit a clockwise or counterclockwise
magnetic vortex associated with a down or up toroidal moment.

gle size, corner radius and thickness allows us to promote
the formation of a magnetic vortex [38] as indicated in
Fig. 3(d). The triangular shape breaks the in-plane rotational
symmetry and, in contrast to circular-shaped building blocks,
supports nonzero magnetic stray fields [28,29,39]. The stray
field emanating from each magnetic triangle facilitates their
magnetostatic coupling, which is required for the emergence
of spontaneous long-range order. In addition, the stray fields
allow for the detection of the magnetic configuration with
MFM.

Unlike in conventional ionic crystals, a phase transi-
tion promoting a macroscopic toroidization via a structural
distortion [8] is currently not feasible; the particular magnetic-
moment configuration on our lattices as such breaks space-
inversion and time-reversal symmetries. Furthermore, all the
arrays presented here exhibit zero net magnetization, so that
a decomposition into an uncompensated (magnetized) and
a compensated (toroidal) part of the spin arrangements as
described in Ref. [8] is not necessary.

Considering one of the key aspects of ferroic materials—
the reversibility of the order parameter in a conjugate
field—noncentrosymmetric arrays of triangle-shaped magne-
totoroidal elements, see Fig. 5(c), offer interesting possi-
bilities. Such arrays facilitate the controlled reversal of the
toroidization simply by the application of a homogeneous
magnetic field due to the asymmetric nucleation energy of
the vortex core [39,40]. This feature is a striking advantage in
terms of applications based on the array’s net toroidization.

IV. ENGINEERING OF MICROSCOPIC INTERACTIONS

To identify arrangements of magnetic building blocks
that promote a magnetotoroidal ordering, we limit our con-
siderations to the magnetostatic interaction between direct
neighbors. This approximation is justified by the rapid r−3

decay of the dipolelike magnetic stray field with distance, r.
We have provided a verification in Appendix A 1 showing that
more sophisticated models result in corrections to the interac-
tion energies of less than 10% with no qualitative changes in
the resulting magnetic order.

We distinguish between two types of couplings: First, the
distribution of magnetic stray fields within each basic unit has
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FIG. 4. Magnetic coupling in arrays of composite toroidal moments. (a) Angle-dependent interaction energies, see Eq. (2), for pairs of
magnetic moments as schematically shown in the upper part of the panel. The purple and green curves represent the two types of couplings
given by Eq. (2) and quantify the contribution of the coupling terms to the total magnetic-dipole interaction energy (black curve). The
assumption of a constant center-to-center distance between the magnets and the simplification of representing the nanobars as pairwise
interacting point dipoles captures the behavior of our systems qualitatively (see Appendix A 1). [(b)–(d)] Schematics of a kagome lattice
at θr = 30◦ (b), a square lattice at θr = 45◦ (c), and a hexagonal lattice at θr = 60◦ (d) in a −t configuration. [(e)–(g)] Corresponding scanning
electron microscopy images showing sections of the three arrays. Arrays (e) and (g) are composed of 12-nm-thick permalloy bars of size
l = 450 nm and w = 150 nm whereas the permalloy thickness of building blocks in array (f) is 20 nm. The scale bar is the same for all of the
arrays [(e)–(g)].

to favor a compensated, whirl-like configuration of magnetic
moments, a condition we denote as “intratoroidal coupling”.
Second, the magnetic stray fields exhibited by these magne-
totoroidal building blocks promote a parallel orientation of
adjacent toroidal moments, a condition we denote as “inter-
toroidal coupling”. For the arrays of composite and monolithic
magnetotoroidal moments, these two types of coupling have
fundamentally different origins with consequences for the
emergent domain structure in the arrays, as we will explain
in more detail.

A. Interactions in arrays of composite
magnetotoroidal moments

For the arrays of composite magnetotoroidal moments,
both the intra- and intertoroidal couplings originate from
the magnetic-dipole-like stray fields generated by the mag-
netic single-domain bars. The coupling energy ED of two
interacting bars can be approximated by the magnetic dipole-
dipole interaction between two point dipoles according to

ED = μ0

4π

(
mi · m j

|ri j |3 − 3(mi · ri j )(m j · ri j )

|ri j |5
)

, (1)

where μ0 is the vacuum permeability, mi, j are vectors of
the ith and jth magnetic moment, and ri j is the vector con-
necting the two. Equation (1) can be rewritten by considering
just the angle θi j = arccos[(mi · m j )/(|mi| |m j |)] between the
two neighboring magnetic moments mi, j . We here limit our-
selves to arrays in which neighboring magnets are placed as
depicted in the upper panel of Fig. 4(a) and with a fixed dis-
tance |ri j | between their centers. We can now express Eq. (1)
as a function of the angle θr = arccos[(mi · ri j )/(|mi| |ri j |)] =
θi j/2 between a magnetic moment and the distance vector ri j

to its nearest neighbor, as

ED = E0[cos(2θr ) − 3 cos2(θr )], (2)

with E0 = (μ0|mi, j |2)/(4π |ri j |3).

To construct composite magnetotoroidal moments from
macrospins, we place them in a circular arrangement forming
the unit cell of the array. Here we choose arrangements made
of six (2θr = 60◦), four (2θr = 90◦), or three (2θr = 120◦)
magnets forming kagome, square, and hexagonal lattices, re-
spectively; see Figs. 4(b)–4(d). As shown in Fig. 4(a), the
intratoroidal coupling that stabilizes a whirl-like magnetic
configuration within the unit cell is mainly promoted by the
second term of Eq. (2) (purple line). In the same manner,
the intertoroidal coupling that connects the magnetic whirls
across the unit cells is represented by the first term in Eq. (2)
(green line). In all our arrangements, the intertoroidal cou-
pling manifests itself as the antiparallel alignment of magnetic
moments from neighboring unit cells at 2θr = 180◦.

B. Interactions in arrays of monolithic
magnetotoroidal moments

In contrast to the magnetic-dipole interaction determining
the order in arrays of composite magnetotoroidal moments,
the microscopic interactions promoting long-range order in
arrays of monolithic magnetotoroidal moments are of a
fundamentally different nature. In particular, the intra- and in-
tertoroidal couplings have separate sources. The intratoroidal
coupling results from competing contributions to the free
energy within the individual ferromagnetic building block,
which are primarily due to the magnetostatic interaction
favoring flux-closed configurations of magnetic moments with
minimized stray fields and the magnetic exchange interac-
tion striving for a parallel and uniform spin alignment with
a maximized magnetization. While the design parameters of
the permalloy nanobars shown in Fig. 3(a) can be tailored to
obtain a uniformly magnetized macrospinlike configuration,
see Fig. 3(c), the permalloy triangles in Fig. 3(b) can be
engineered to stabilize a magnetic vortex configuration as
shown in Fig. 3(d).
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FIG. 5. Magnetic coupling in arrays of monolithic toroidal moments. (a) Micromagnetic simulation of the magnetic field surrounding a
20-nm-thick permalloy triangle of dimensions l = 400 nm and r = 50 nm in its magnetic ground state. The streamlines and contrast indicate the
in-plane magnetic-field strength Bx,y in the plane of the triangle. [(b)–(d)] Schematics of triangular magnets on a kagome lattice (b), a triangular
lattice (c), and a hexagonal lattice (d) in a −t configuration with the specified magnetic point-group symmetry. [(e)–(g)] Corresponding
scanning electron microscopy images showing sections of the three arrays. Arrays (e) and (g) are composed of 12-nm-thick permalloy triangles,
whereas array (f) is made from 20-nm-thick permalloy triangles. The scale bar is the same for all of the arrays [(e)–(g)].

Instead of a simple dipolelike magnetic field surround-
ing the uniformly magnetized nanobars, the planar magnetic
triangles exhibit a more complicated and inherently weaker
hexapolelike magnetic field as shown in Fig. 5(a) as the basis
for the intertoroidal coupling. The position of the six magnetic
poles of alternating sign surrounding each magnetic trian-
gle determine which arrangements of triangles can promote
an intertoroidal coupling. We designed a variety of corner-
and edge-coupled networks of magnetic triangles, forming
kagome, triangular, and hexagonal lattices, respectively; see
Figs. 5(b)–5(d). The proximity of oppositely charged mag-
netic poles in our structures introduces a coupling that favors
locally a parallel alignment of neighboring toroidal moments
and, hence, a global toroidization.

C. Image analysis

We describe here the basic image processing protocols that
we applied to proceed from the MFM raw images to the
final color-coded magnetotoroidal domain structures. For the
composite as well as the monolithic magnetotoroidal arrays,
it is key to first identify the magnetization configuration of
every single magnetic building block. We can extract the local
magnetization directions from the contrast given by the phase
response measured in the second pass of the MFM scan [41];
see Sec. II B and Fig. 6(a). The magnetic stray fields that stem
from south (north) poles are encoded as white (black) features
in the image.

While the assignment of the homogeneous magnetization
direction in the bar-shaped dipolar nanomagnets is straightfor-
ward, the assignment of the vorticity in the magnetic triangles
requires a more careful analysis.

In Fig. 6(b), we show simulated out-of-plane magnetic
stray fields from an equilateral permalloy triangle in the two
magnetic ground states of opposite magnetic vorticity. The
simulation reveals the emergence of six magnetic poles of
alternating sign around each triangle that form a propellerlike
pattern. This pattern breaks the vertical mirror symmetry of

each triangle as it is rotated by about ±30◦, depending on the
vorticity. The simulations, as well as the associated literature
on planar soft magnetic triangles, e.g. Ref. [42], allow us to in-
terpret our MFM data. Figure 6(c) represents the z-derivative
of the magnetic stray field above the sample surface. By iden-
tifying the magnetotoroidal state of each triangle manually,
we can colorize an entire MFM scan, see Fig. 6(d), according
to the two toroidization directions as defined in Fig. 2(a).

V. EXAMINATION OF TOROIDAL
DOMAIN CONFIGURATIONS

A. Long-range order in arrays of composite
magnetotoroidal elements

Figure 7 shows the magnetotoroidal-domain configura-
tions measured by MFM on the three macrospin-based arrays
shown in Figs. 4(e)–4(g). The MFM scans performed on
as-grown arrays reveal the local toroidization as well as the
structure of the walls separating areas with toroidization −T
(cyan) and +T (red). For all arrays, we find spontaneous
magnetotoroidal order with domains that extend laterally over
a few to several tens of unit cells. The formation of finite-sized
domains can be understood as a freezing-out of a nonequi-
librium configuration during the growth of the arrays. With
the increasing permalloy film thickness during growth, the
energy barrier for switching as well as the coupling strength
between neighboring elements increases such that thermal
fluctuations are more and more suppressed. As a consequence,
the ongoing deposition emulates the continuous decrease of
the array’s temperature. The magnetization configuration is
eventually quenched from a superparamagnetic state through
the symmetry-breaking phase transition into a nonequilib-
rium multidomain configuration when reaching a thickness
of typically a few nanometers [43]. Beyond this critical
point, the thickness of the structures has no further influence
on the magnetic state. Nevertheless, its further increase en-
hances the dipolar coupling and improves the signal-to-noise
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FIG. 6. Image post-processing for visualizing the magneto-
toroidal order. (a) Schematic of the two-pass measurement principle
in an MFM. We measure the topography in the first line scan (1)
in close proximity to the surface using the tapping mode; see the
solid line in the schematic. In a second line scan (2), this topography
is retraced at a lift height of typically 40 to 50 nm for recording
the z-derivative of the magnetic stray field; see the dashed line in
the schematic. A representation of the measured responses for the
two line scans are indicated below the schematic. (b) Micromagnetic
simulation (see Sect. II for details) of the magnetic field generated
by a 20-nm-thick permalloy triangle of dimensions l = 400 nm and
r = 50 nm in its two magnetic ground states with ±t. The color scale
denotes the strength of the z component of the magnetic stray field
40 nm above the triangle. Note the different arrangement of magnetic
poles for the −t compared with the +t configuration. (c) MFM scan
of an array of equilateral triangles revealing the z-derivative of the
magnetic field 50 nm above the sample surface. The inset shows
the topography scan for the area that it replaces. (d) Color-coded
MFM image from (c) highlighting the identified orientation of the
magnetotoroidal moments. The black outlines indicate two triangles
of opposite magnetotoroidal moment; see panel (b). The scale bar is
the same for panels (c) and (d).

ratio for the MFM measurements. The average size of the do-
mains as well as the microstructure and density of the domain
walls are governed by the domain-wall energy and the number
of energetically degenerate domain-wall states. Note that the
three arrays were grown at different times so that a qualitative
comparison of parameters such as the observed domain size
would be impeded by systematic variations and is therefore of
limited significance.

B. Long-range order in arrays of monolithic
magnetotoroidal elements

The MFM scans performed on the three triangle-based
arrays, see Figs. 5(e)–5(g) are shown in Fig. 8. The measure-
ments reveal spontaneous magnetotoroidal order and domains
that extend across a few unit cells. For the kagome and the
triangular arrays shown in Figs. 8(a) and 8(b), we found that
all permalloy triangles form a magnetic vortex state as shown
schematically in Fig. 3(d). Apparently, the intratoroidal cou-

pling dominates in the arrays of monolithic toroidal moments,
stabilizing the vortex state in the magnetic triangles against
the formation of energetically unfavorable uniformly magne-
tized configurations without a magnetotoroidal moment. This
behavior is a result of the fundamentally different sources
of the two types of interactions underlying the long-range
order. The intratoroidal coupling that promotes the magnetic
vortex as the ground state in each triangle originates from the
interplay between the magnetic exchange and magnetostatic
interactions. The intertoroidal coupling, in contrast, is a re-
sult of the weaker magnetic-multipolar stray fields emanating
from each magnetic triangle; see Fig. 5(a). These stray fields
affect the internal energy of adjacent triangles, enhancing
or lowering the stability of their internal vortex state. Since
the magnetic-exchange interaction is inherently stronger than
multipolar magnetostatic interactions, the intratoroidal cou-
pling is naturally dominant.

The dense packing of triangles in the hexagonal array
shown in Fig. 8(c) reduces the out-of-plane magnetic stray
fields and lowers the MFM contrast such that an unambiguous
assignment of the toroidal domain structure works in selected
areas only, as e.g. shown in the highlighted area in Fig. 8(c). In
contrast, at the domain walls, adjacent triangles exhibiting an
opposite toroidal moment yield enhanced out-of-plane mag-
netic stray fields that are well detectable by MFM.

C. Factors determining the size of magnetotoroidal domains

Domain structures in ferroics are determined by the inter-
play of intrinsic and extrinsic contributions to the free energy.
In the following, we discuss the impact of intrinsic factors
(those that are directly associated with the lattice symmetry
and geometry) and extrinsic factors (those that depend on the
experimental conditions for realizing the arrays) that deter-
mine the domain sizes in our arrays.

1. Intrinsic factors

(1) Angle between neighboring magnetic elements. As
shown in Figs. 4 and 5, the lattice symmetry determines the
angle between adjacent magnetic moments, which—due to
the anisotropic nature of the magnetic-dipole interaction—has
a direct effect on the microscopic coupling strength.

(2) Number of neighboring magnetic moments per vertex
for arrays of composite magnetotoroidal moments. The sym-
metry of the structure determines the number of nanomagnets
that meet at the vertices of the lattice between the unit cells;
see Figs. 4(b)–4(d) and 9. Accordingly, the number of pos-
sible configurations of local ensembles of magnetic moments
differs between our arrays. Because of the Boltzmann entropy,
the probability for domain-wall formation increases statisti-
cally with the number of magnetic moments per vertex, in line
with the rising number of degenerate domain-wall states; see,
e.g., Refs. [43] and [44]. As a consequence, a trend is expected
in our arrays, with smaller domains for fewer magnetic mo-
ments per ringlike magnetotoroidal moment (and hence more
magnetic moments per lattice vertex).

(3) Size of a unit cell. Domain sizes in conventional crys-
tals are typically on a different length scale (e.g., 10−6 m to
10−3 m) than the dimensions of the unit cell (10−10 m). This
is not true for arrays of nanomagnets in which the two length
scales approach each other. Therefore, it becomes important
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FIG. 7. Long-range order in arrays of composite magnetotoroidal moments. MFM scans with color-coded domain states (cyan: −T, red:
+T) of the three arrays with composite magnetotoroidal moments as introduced in Fig. 4. Lower panels: Topography (left) and corresponding
magnetotoroidal order (right) of magnified areas around a domain wall. Two types of domain-wall configurations are indicated that run either
in between (intertoroidal walls, green lines) or across (intratoroidal walls, purple lines) the magnetotoroidal unit cells. An uncolorized version
of this figure is given in Fig. 11 in Appendix A 2.

to consider the different unit-cell sizes of various arrays as
base units for parametrizing the domain size. Depending on
the actual choice of the base unit ([μm] or [u.c.]), the domain
sizes may scale qualitatively differently across our arrays.

2. Extrinsic factors

(1) Distance-dependent coupling strength. The ratio of the
inter- and intratoroidal coupling strength has a pronounced
impact on the resulting size and morphology of toroidal do-
mains; see also Ref. [26]. For the experimental systems, the
ratio is primarily determined by the distances between neigh-

boring nanomagnets within the array and is, thus, virtually
independent of the lattice symmetry and geometry. The weak-
est of the two couplings determines the effective ordering
temperature and, accompanied by this, the length scale for the
observed order.

(2) Thin-film growth rate. The deposition rate of the ferro-
magnetic material determines the speed at which the transition
from the superparamagnetic regime to the short- and finally
long-range-ordered phase occurs. For lower deposition rates,
a system has more time to approach the equilibrium state with
potentially larger domains.

FIG. 8. Long-range order in arrays of monolithic magnetotoroidal moments. MFM scans with color-coded domain states (cyan: −T, red:
+T) of the three arrays with monolithic magnetotoroidal moments as introduced in Fig. 4. Lower panels: Topography (left) and corresponding
magnetotoroidal order (right) of magnified areas around a domain wall. Due to the monolithic nature of the building blocks, only intertoroidal
walls emerge (green lines). An uncolorized version of this figure is given in Fig. 12 in Appendix A 2.
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(3) Choice of invariant set of model parameters. To com-
pare the domain sizes of different arrays of nanomagnets, it is
key to select a suitable reference length that remains constant
throughout a series of arrays. This may be the nanomagnet
center-to-center distance or the edge-to-edge distance (or gap)
between neighboring magnetic elements. The trend in the ex-
pected domain size for different arrays depends qualitatively
on the chosen reference length (in our case a constant gap)
that parameterizes the magnetic interactions.

(4) Boundary effects. When the domain size approaches
the size of the array [see, for example, Fig. 7(b)], the extracted
area of the domain will be underestimated due to truncation
effects.

D. Domain walls and their substructure
in magnetotoroidal arrays

Domain walls can be regarded as correlated excitations in
ordered systems that originate from the reorientation of the
order parameter when moving from one domain to another.
The study of domain walls is of fundamental interest as their
presence and manipulability determines technological key pa-
rameters of ferroic materials, such as their “hardness” in terms
of resisting external stimuli, as well as transport properties.
Here, the transfer from atomic to mesoscopic magnetotoroidal
systems enables unparalleled insights into the nature of the
domain walls.

The walls in our magnetotoroidal arrays are highlighted
in the lower panels of Figs. 7 and 8. We observe two
types of walls, which either run in between or across the
magnetotoroidal elements, as indicated in the lower panel
of Fig. 7, with green (intertoroidal walls) and purple (in-
tratoroidal walls) lines, respectively. The preferred type of
domain-wall state is the one that requires the least amount
of energy for its formation, which is determined by the rel-
ative strength of the two microscopic couplings in the arrays.
The observed preference of intertoroidal domain walls (green
lines) indicates that the intratoroidal coupling dominates over
the intertoroidal coupling for both types of arrays.

While in the arrays of composite magnetotoroidal moments
both couplings stem purely from the magnetic-dipole inter-
action and are of comparable magnitude, the interactions in
the arrays of monolithic magnetotoroidal moments result from
different mechanisms with intrinsically different magnitudes,
as described in Sec. V B. As introduced above, the structure of
the unit cells in the arrays of composite magnetotoroidal mo-
ments allows for two distinct types of domain walls that run
either in between or across the composite unit cells as demon-
strated in Ref. [26]. Note that, in contrast, the domain walls in
arrays of monolithic magnetotoroidal moments can only run
in between magnetotoroidal moments that exhibit an oppo-
site magnetic vorticity. Nevertheless, previous work [45,46]
indicates that, as a result of the local magnetostatic-energy
contribution from the stray fields around a vortex element in
densely packed arrays, even the monolithic magnetic vortex
state may destabilize in favor of a uniformly magnetized con-
figuration [47]. Hypothetically, intratoroidal walls in arrays of
monolithic magnetotoroidal elements may, hence, emerge as
a uniform magnetization in the triangles forming the domain

wall. Within the structural parameters chosen for our arrays,
however, we did not observe such states.

If both domain-wall types are present in a sample,
lower-dimensional domains within the domain walls become
possible [26,48]. We found that the three arrays with com-
posite magnetotoroidal moments display such a substructure
within the domain walls, as highlighted in Fig. 7, whereas
no such substructure was found in the three arrays with
monolithic magnetotoroidal moments as we solely observed
intertoroidal walls.

Furthermore, it has been shown for the composite-type
magnetotoroidal square array that the type of domain wall
determines the net magnetization direction of the magnetic
moments forming the wall [26]. As a consequence, the meet-
ing points of the two domain-wall types constitute local sinks
and sources of magnetic flux, which is associated with emer-
gent magnetic charges of either sign that we found in all our
arrays of composite magnetotoroidal moments.

VI. CONCLUSION

We investigated the spontaneous uniform alignment of
magnetic whirls, so-called magnetotoroidal moments, as a
type of ferroic order. Our experimental systems are arrays of
nanoscale building blocks, made from a soft-magnetic alloy,
that we fabricated by electron-beam lithography combined
with electron-beam evaporation. With the substitution of the
crystal structure and its interactions at the atomic scale with
a system of mesoscopic magnets, we achieved an unparal-
leled local experimental access to the magnetotoroidal state.
We distinguish between arrays of composite and monolithic
magnetotoroidal moments. While the composite arrays exhibit
magnetotoroidal moments that consist of a ringlike arrange-
ment of magnetic single-domain nanobars representing the
classical analog to spins, the monolithic arrays consist of
ferromagnetic triangles that host an intrinsic magnetotoroidal
moment. Using macrospin calculations and micromagnetic
simulations, we have quantified the inter- and intratoroidal
couplings that promote the emergence of magnetotoroidal
order in both types of nanomagnetic arrays.

Using MFM we confirmed the emergence of spontaneous
long-range order in our arrays with magnetotoroidal domains
that span over a few to several tens of unit cells. Our mea-
surements reveal the presence of two types of domain walls
in the arrays of composite magnetotoroidal moments. The
walls either run in between or across the toroidal building
blocks, which is associated with a dominance of the intra-
or intertoroidal coupling, respectively. In the arrays with
composite magnetotoroidal moments both the intra- and in-
tertoroidal coupling are determined by the magnetic-dipole
interaction. Therefore, both couplings are of similar magni-
tude and both types of domain walls are observed. In contrast,
in the arrays with monolithic magnetotoroidal moments, the
intratoroidal coupling, which is given by the interplay of
the magnetic-dipole and the magnetic-exchange interaction,
inherently dominates so that only intertoroidal walls are ob-
served.

In a more general framework, we shed light on ferro-
toroidicity as a new and elusive type of net-magnetization-free
long-range magnetic order that spontaneously breaks space-
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inversion and time-reversal symmetries. As a consequence,
the ferrotoroidic state exhibits the potential for exploitation
of its intrinsic linear magnetoelectric effect and unique nonre-
ciprocal optical responses associated with it. Both phenomena
are of fundamental interest and could be useful in the de-
velopment of new functional materials with possible future
applicability in memory arrays, sensors, and photonic devices.
With the demonstration of spatially resolved magnetotoroidal
order in mesoscale magnetic arrays, our work displays the
fundamental benefits of utilizing such classical systems for
emulating subtle and complex ordering phenomena occuring
at the atomic scale.

FIG. 9. Pairwise interaction energy between magnets at the ver-
tices of our lattices. [(a)–(c)] Geometric arrangement of magnetic
moments on the kagome (a), square (b), and hexagonal (c) lattice;
see also Fig. 4. Magnets colored in black indicate the reference
magnetic moment for separately calculating the energy associated
with the magnetic-dipole interaction with each numbered neighbor.
Blue magnets indicate the two nearest neighbors, and gray magnets
indicate the neighbors that are further away. [(d)–(f)] Magnetic-
dipole-energy contribution for the pairs of point dipoles associated
with panels (a), (b) and (c), respectively, with a center-to-center
distance between adjacent magnets of 525 nm.
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APPENDIX

1. Legitimacy of the pairwise-interacting point-dipole
approximation for modeling arrays of composite

magnetotoroidal moments

a. Magnetic coupling in the far field

With Fig. 9 we support and quantify our assumption
that nearest-neighbor interactions between the nanomagnetic
building blocks in magnetotoroidal arrays are sufficient to
explain the domain configuration close to equilibrium. We
calculate the interaction energy using Eq. (1) and consider
different pairs of pointlike magnetic moments that meet at
the vertex of our lattices, as schematically shown in Figs. 4
and 9(a)–9(c). This allows us to evaluate the contribution
of far-field couplings to the net interaction energy as shown
in Figs. 9(d)–9(f). The model is parameterized by assuming

FIG. 10. Interaction energies between pairs of magnets based on
different nanomagnetic models. Pairwise interaction energies for the
nanomagnet configurations shown in Fig. 4(a). We present our simple
point-dipole calculation with a constant center-to-center distance
between adjacent nanomagnets of 525 nm (black curve) and the sim-
ulated dipole-interaction energies from MuMax3 [30], assuming a
constant edge-to-edge (e2e) distance between adjacent nanomagnets
of 75 nm (blue curve). On comparing the two results qualitatively, we
see that the simple point-dipole model captures the angle-dependent
coupling between pairs of nanomagnets reasonably well.
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FIG. 11. Long-range order in arrays of composite magnetotoroidal moments. Uncolored raw images of Fig. 7.

stadium-shaped nanomagnets of 450 nm length and 150 nm
width, and with 525 nm center-to-center distances between
adjacent nanomagnets. For the three arrays with kagome,
square, and hexagonal symmetries, the energy contribution
from the more-distant neighbors is well below 10% of the total
interaction energy per vertex.

b. Comparison of point dipoles and spatially
extended nanomagnets

In our derivation of the interaction energies, we approx-
imated the spatially extended magnetic building blocks as
point dipoles. To justify this simplification, we calculated the
interaction energy for pairs of zero-dimensional point dipoles

and for pairs of three-dimensional stadium-shaped nanomag-
nets with a finite volume for the nanomagnet configurations
as shown in Fig. 4(a). In particular, we performed simulations
of nanomagnet configurations with a constant 75 nm edge-to-
edge separation rather than a constant 525 nm center-to-center
separation between pairs of nanomagnets, reflecting our ex-
perimental implementation. The resulting interaction energies
as a function of the angle between the nanomagnets are shown
in Fig. 10.

2. Uncolored MFM scans of magnetotoroidal arrays

The raw MFM scans (without the image processing as
described in Sec. IV C) of Figs. 7 and 8 are shown in Figs.
11 and 12, respectively.

FIG. 12. Long-range order in arrays of monolithic magnetotoroidal moments. Uncolored raw images of Fig. 8.
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