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Hindmarsh-Rose neural model is widely accepted as an important prototype for fold/hom and fold/Hopf burstings. In
this paper we are interested in the mechanisms for the production of extra spikes in a burst, and we show the whole
parametric panorama in an unified way. In the fold/hom case two types are distinguished, the continuous one, where
the bursting periodic orbit goes through bifurcations, but persists along the whole process, and the discontinuous
one, where the transition is abrupt and happens after a sequence of chaotic events. In the former case we speak
about canard-induced spike-adding and, in the second one, about chaos-induced. For fold/Hopf bursting, a single
(and continuous) mechanism is distinguished. Separately, all these mechanisms are presented, to some extent, in
the literature. However, our full perspective allows us to construct a spike-adding map and, more significantly, to
understand the dynamics exhibited when borders are crossed, that is, transitions between types of processes, a crucial
point not previously studied.
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Among the elements that allow communication between
neurons, spikes or action potentials are major pieces.
Spike trains (bursts) allow the brain to build a language
for the transmission of information since they are signals
with a higher probability of being picked up by neighbour-
ing neurons than an isolated spike.1 Moreover, the number
and the temporal pattern of spikes provide a system for en-
coding messages. Facing this context, understanding how
spikes can be gained (or lost) becomes a central question.
This is the goal of this work, taking the Hindmarsh-Rose
equations as a paradigm for certain classes of bursting,
we analyse three different types of spike-adding processes.
Although most of the involved dynamics and bifurcations
are well known, we will be able to discover some novel
characteristics. Our classification of the different spike-
adding mechanisms determines maps in the parameter
space that are shown to help in the global analysis of the
system. But, as maps are useless if frontiers are unclear,
in this work we deal with the dynamics that characterize
the transitions from one to another type of spike-adding.
Moreover, some common elements necessary in our dis-
cussion are also present in neural and other problems (me-
chanics, chemistry, ...), such as the existence in numeri-
cal and experimental studies of comb-shaped chaotic re-
gions and the spike-adding phenomenon2–5, so this work
can help in the exploration of these systems. Challenges in
neuroscience and, in particular, the problems that still re-
main to be solved in deciphering the language of neurons
are impressive. Undoubtedly, the classification of the dif-
ferent mechanisms involved in the genesis of extra action
potentials is an essential element of that big task.
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I. INTRODUCTION1

Bursting is one of the most relevant phenomena that can be2

observed in a neuron. Roughly speaking, bursting is charac-3

terized by the appearance of sequences of spikes, correspond-4

ing to fast discharges, alternating with periods of quiescence.5

Moreover, when dealing with a bursting neuron, one of the6

major challenges is to understand how spikes are added to a7

given train of signals.8

This paper studies the spike-adding mechanisms exhibited9

in the Hindmarsh-Rose6 neuron model, a well known exam-10

ple and prototype of fold/hom (or square-wave) and fold/Hopf11

bursting7,8. It is able to reproduce the most significant behav-12

iors: quiescence, spiking and also bursting, either regular or13

irregular (chaotic). Literature concerning this model is ex-14

tensive and, only in relation to our interests, we can quote15

Refs. 2, 9–21.16

The Hindmarsh-Rose (HR) model is described by the fol-17

lowing set of equations:18

⎧⎨
⎩

ẋ = y−ax3 +bx2− z+ I,
ẏ = c−dx2− y,
ż = ε[s(x− x0)− z].

(1)

Variable x represents the membrane potential, whereas y and z19

correspond to ionic currents. We consider a typical choice of20

parameters with a = 1, c = 1, d = 5 and s = 4, discussing the21

spike-adding processes for different choices of the other b, I22

and ε .21 We assume that ε is a small parameter in the model,23

giving rise to a fast-slow system with two fast (x and y), and24

one slow (z) variables.25

When ε = 0 in model (1), we obtain a reduced system26

which is usually called the fast subsystem. Note that the fast27

subsystem is a family of planar vector fields where z is an ad-28

ditional parameter. Fixing b and I (still with ε = 0), we obtain29

a bifurcation diagram with respect to z that is illustrated in30

Fig. 1. There is a curve formed by equilibria which is named31

the slow manifold (Mslow) and a surface containing limit cy-32
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FIG. 1. 2D projection of fold/hom (top) and fold/Hopf (bottom)
bursting orbits (ε = 0.01) superimposed (in black) over the classical
slow-fast decomposition (ε = 0) of the HR model (1) formed by the
1D slow manifold of stable (dark red) and unstable (orange) equi-
libria (Mslow) and the 2D fast (spiking) manifold (M f ast ) of limit
cycles of the fast subsystem of the model (in gray). SN stands for
saddle-node bifurcations of equilibria, Hopf denotes the Hopf bifur-
cation points and hom the homoclinic bifurcation points.

cles which is said the fast manifold (M f ast ). Recall that, in a33

general setting, slow-fast decompositions were first described34

in Ref. 7. For I = 2.2, b = 2.91646 (top) and for I = 2.7535

and b = 2.39 (bottom), the slow manifold is shown in dark36

red (resp. orange) for stable (resp. unstable) equilibria and37

the fast manifold is shown in gray. Intuitively, one can un-38

derstand how burst patterns emerge. Fig. 1 also shows stable39

periodic orbits of the full system (black) superimposed to the40

bifurcation diagram of the fast subsystem. The slow dynamics41

in the complete model is such that ż < 0 when fast variables42

are moving close to the lower branch of Mslow, whereas ż > 043

when they are close to M f ast .44

Indeed, as singular perturbation theory and Fenichel’s the-45

orems explain22, orbits (for small enough ε) follow both man-46

ifolds on some parts of their trajectory. Following the termi-47

nology in Ref. 8, in the first case (top panel), the bursting orbit48

is said to be of fold/homoclinic type, because the termination49

of the fast subregime is due to the existence of a homoclinic50

bifurcation in the phase space of the fast subsystem. In the51

second case (bottom panel), the bursting orbit is said to be of52

fold/Hopf type because the amplitude of oscillations during53

the bursting is decreasing as the limit cycles of the reduced54

model approach the Hopf bifurcation.55

As already mentioned, the main goal of this paper is to ex-56

plain the processes (spike-adding) that lead a bursting orbit to57

change its number of spikes per period. More precisely, we58

provide a classification of the different types of spike-adding59

processes in fold/hom and fold/Hopf bursters. From Ter-60

man23, in the general context of fold/hom bursting, two spike-61

adding mechanisms are considered. On the one hand, there62

can arise extra excursions around the fast manifold which are63

generated through a discontinuous process linked to a chaotic64

phenomenon. On the other, there also can happen that extra65

excursions are created through a continuous process linked to66

orbits that transit through phase space following the unstable67

branch of the slow manifold. We will refer to the first scenario68

as chaos-induced spike-adding, and the second one as canard-69

induced spike-adding. Both cases have been recently studied70

in the literature9,11,17,19,24. Note that analytical results have71

only been obtained very recently on simpler models, such as72

the in-depth theoretical study on the spike-adding canard tran-73

sition given by P. Carter in Ref. 25, where the Morris-Lecar74

model26 is considered (see also Ref. 27 where a transition75

from 1 to 2 spikes via canard orbits is thoroughly analysed in76

a different fast-slow system based on the FitzHugh-Nagumo77

equations). These two interesting papers are the first analyti-78

cal studies regarding the complete creation of canard orbits in79

neural models and open an exciting research line. However, it80

should be noted that the whole scenario is beyond the current81

analytical techniques.82

The spike-adding mechanism in the case of fold/Hopf83

bursting is completely different and is related to the dis-84

tance between saddle-node (left SN bifurcation point of85

Fig. 1(bottom)) and Hopf bifurcation points in the fast sub-86

system (see Fig. 1). Namely, the number of spikes depends87

on the length of the oscillation tube which is accessible for or-88

bits after they jump to the fast manifold from the slow mani-89

fold. It also depends on the characteristic rotation speed at the90

Hopf bifurcation point. We will refer to this mechanism for91

spike-adding as Hopf-induced. Discussions in the literature92

about the spike-adding mechanism involved in the fold/Hopf93

bursters are not so common as those about fold/hom scenarios.94

Of course, in all cases, the number of spikes also increases as95

ε decreases, but this is not our interest, so we will consider96

fixed small values of ε .97

We will see how the Hindmarsh-Rose model exhibits the98

three spike-adding mechanisms that we have just described.99

As said, all have already been considered, to a greater or a100

lesser extent, in the literature. However, in this paper the treat-101

ment is unified, which allows to understand the differences102

between them. Besides, we pay special attention to the transi-103

tion dynamics between scenarios, a problem not well studied104

in literature. Bearing in mind that different spike-adding pro-105

cesses are feasible in a model (HR model in our case), the106

question is: where and why are they produced?107

The frontier between the two spike-adding mechanisms108

linked to fold/hom bursters will be shown to be sharp.109

Namely, it will be marked by homoclinic surfaces in the110
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FIG. 2. Biparametric spike-counting bifurcation diagram for ε = 0.01. Different segments are selected to illustrate (on later figures) three
different spike-adding processes: chaos-induced discontinuous spike-adding, canard-induced continuous spike-adding and Hopf-induced con-
tinuous spike-adding. Along the long segment R1 all of them appear; a discontinuous chaos-induced transition from 2 to 3 spikes along
segment R1a; a continuous Hopf-induced transition from 13 to 14 spikes along segment R1b; and continuous canard-induced along segment
R2 showing a transition from 2 to 3 spikes between fold/hom bursters. Transitions from P1 to P2 and along the segments R3a, R3b and R3c
will be described in Section III to explain how dynamics evolve to change from one scenario to another.

three-parameter bifurcation diagram.10 Nevertheless, the sep-111

aration between Hopf-induced processes and either chaos-112

induced or canard-induced will appear fuzzy. Coming from113

the region of chaos-induced spike-adding, a fan of bifurca-114

tions must be crossed to enter into the region corresponding115

to Hopf-induced processes. These bifurcations arise from a116

codimension-two homoclinic bifurcation point. As we will117

recall later, in the case of a canard-induced spike-adding, the118

periodic orbit must undergo several periodic orbit bifurca-119

tions (bistability and hysteresis are present), among them two120

curves of fold bifurcations which disappear at cusp28 bifurca-121

tion points. These codimension-two bifurcation points will122

play the role of boundary stones separating the canard do-123

mains from the Hopf ones. In other words, continuous spike-124

adding can be canard-induced or Hopf-induced. The first case125

happens when the continuation of the periodic orbit includes126

paths of unstable regime. When this course is not realizable127

because no bifurcation is accessible (the continuation curve is128

far from the cusp boundary stones), the gaining of extra spikes129

can be explained through a Hopf bifurcation process.130

All the different types of spike-adding mechanisms are de-131

tailed in Section II, showing how they indeed arise in the132

Hindmarsh-Rose model. Transitions between these mecha-133

nisms will be described in Section III. Results are summarized134

and discussed in Section IV, where a theoretical classification135

parametric map is proposed. Conclusions are provided in Sec-136

tion V. Throughout this article, all the continuation analysis137

has been done using the well known software AUTO29,30.138

II. CLASSIFICATION OF SPIKE-ADDING PHENOMENA139

In this section we describe the different spike-adding phe-140

nomena present in the HR model. On Fig. 2, regions with141

periodic attractors with a different number of spikes are rep-142

resented in different colors (spike-counting technique). From143

dark blue, indicating spiking, towards red, the number of144

spikes of the periodic orbit grows. Dark red indicates that145

the maximum number of spikes considered in the method has146

been exceeded, meaning that in a large part of that region the147

dominant behavior is chaotic2.148

This figure shows a typical situation for small ε values (in149

this case ε = 0.01). There exist a finite collection of homo-150

clinic bifurcation curves, the black curve represented in the151
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figure being one of them. All the others are so close that, if152

they were also depicted, they would overlap with each other153

(see details in Ref. 10). Located on such curves there also154

arise codimension-two homoclinic bifurcations from which155

many of the elements involved in the spike-adding processes156

emerge. As an illustration, Fig. 2 includes some codimension-157

one bifurcations of periodic orbits: fold (yellow) and period-158

doubling (red) curves. Below the homoclinic bifurcation159

curve, there are wedges corresponding to bistability regimes.160

These regions are bounded by a pair of fold bifurcations con-161

necting through a cusp point. Above the homoclinic bifur-162

cation curve, lobes of chaotic dynamics are formed contain-163

ing pencils of period-doubling cascades. These lobes are lim-164

ited by a fold bifurcation curve of periodic orbits and the first165

period-doubling cascade.166

Segment R1 in Fig. 2 crosses regions of the biparamet-167

ric plane showing the three types of spike-adding detected168

in the model. Along segment R1a we will describe the169

chaos-induced discontinuous spike-adding (Subsection II A)170

and segment R1b is selected to explain the Hopf-induced171

continuous spike-adding (Subsection II C). On the other172

hand, although canard-induced continuous spike-adding is173

also present along R1, segment R2 from Fig. 2 is selected for174

the purpose of illustration, because it provides a clearer dis-175

play (Subsection II B).176

A. Chaos-induced discontinuous spike-adding177

The first type of spike-adding process that we are going to178

analyze is the chaos-induced discontinuous one. As we have179

already mentioned, this process occurs in the region above the180

homoclinic curve, this curve being a boundary of such region.181

In Fig. 3 we consider segment R1a of Fig. 2 and we zoom in on182

the surrounding region with the spike counting technique. Be-183

low that picture, we show the interspike-interval bifurcation184

diagram (IBD) of this segment and the ‖ ·‖2 norm of the peri-185

odic orbits obtained with continuation techniques (AUTO).186

As we can see in the figure, to the right of the segment there187

is a bursting periodic attractor with 2 spikes. As b decreases,188

a typical scenario is present. Firstly, the periodic attractor189

undergoes a cascade of period-doubling bifurcations, until a190

chaotic attractor is generated. Within the chaotic region, nar-191

row windows of regular behavior appear where new periodic192

orbits are generated. They will go through new bifurcations193

where they will become unstable joining to the chaotic invari-194

ant set. Finally, at a fold bifurcation, the chaotic invariant set195

stop being an attractor and two periodic orbits (one stable and196

one unstable) with 3 spikes are generated.197

To show how the attractors evolve throughout this spike-198

adding phenomenon, in Fig. 4 we present the complete pro-199

cess. The central picture shows the bifurcation diagram ob-200

tained by continuation (AUTO) corresponding to the segment201

R1a in Fig. 2. We have selected several values of b (marked202

in the central picture with small colored squares and num-203

bers) for which we have plotted these orbits. For these values,204

the periodic orbits (solid line for stable, and dashed for unsta-205

ble ones) and a chaotic attractor (for square −6−) are shown206
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FIG. 3. Analysis of segment R1a (in Fig. 2) with ε = 0.01, I = 2.75
and b as bifurcation parameter. Top: Biparametric bifurcation spike-
counting diagram around the segment R1a. Dark red represents
chaos, different colors represent periodic orbits with different burst-
ing. Middle picture shows the IBD bifurcation diagram and the bot-
tom one displays a continuation of the periodic orbits, with different
solid (dashed) colors for different (un)stable orbits.

around the central picture. Orbit −1− represents the basic207

periodic orbit of 2 spikes. After the first period-doubling bi-208

furcation, the orbit −1− becomes unstable and a stable peri-209

odic orbit (−2−) with two bursts with 2 spikes (2×2 orbit) is210

generated. A second period-doubling bifurcation repeats the211

former mechanism from 2× 2 to 4× 2 orbit (−3−). So, the212

same mechanism is developed again and again (to a 8×2 orbit213

−4−, 16×2 orbit−5−, and so on), a countably infinite num-214

ber of times giving place to a typical period-doubling route215

to chaos that generates a chaotic attractor (−6−). After a fold216

bifurcation, the chaotic set becomes unstable and two periodic217

orbits (−7−) with 3 spikes are born (the spike-adding). One218

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
37

94
2



5

3.02 3.06 3.1
5.4

5.6

5.8

6

6.2

6.4

b

|| 
. |

| 2

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

2.5 3

-1

0

1

2

z

x

1
23

6

7

7

8

8

Period-doubling

3 spikes 2 spikeschaotic 
attractor

1

2

3456

7

8

3.0686 3.069 3.0694

5.601

5.602

b

|| 
. |

| 2

4

5

FIG. 4. Evolution of periodic orbits throughout the process of chaos-induced discontinuous spike-adding. Central picture shows the bifur-
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of them is stable, the other one unstable, both are indistin-219

guishable at the fold bifurcation and they run along the outer220

edge of the chaotic set. When b moves away from the value221

at which the bifurcation occurs, both orbits are separated from222

each other.223

It is worth paying attention to certain qualitative aspects224

that can be observed in the chaotic transition illustrated in225

Figure 4. As the attracting periodic orbits that arise through226

period-doublings build the chaotic attractor (−6−), spikes ar-227

range visually in four groups inside phase space, although two228

of them, those placed in central positions, seem to compete to229

fill the same area. This process is typical in period-doubling230

cascades giving rise first to thin Feigenbaum chaotic attrac-231

tors that later merge in thicker and larger ones via boundary232

crisis phenomena. When the chaotic attractor is fully created,233

we clearly see how the groups of spikes give rise to three, not234

to four, areas within the attractor, characterized by a denser235

flow. When the fold bifurcation occurs, the three-spiked sta-236

ble periodic orbit takes the place of the chaotic attractor, flow-237

ing through the denser areas previously swept by the chaotic238

trajectory. The fold bifurcation marks the beginning of a peri-239

odic window: the chaotic attractor becomes an unstable sad-240

dle chaotic invariant set that embeds, among other unstable241

periodic orbits, the unstable orbit itself that is born at the fold242

bifurcation.243

As already pointed out in Ref. 12, the process we have just244

described is known in the literature as Type I intermittency245

transition to chaos, as introduced in Refs. 31 and 32. In Ref.246

12, authors explore a segment of parameters which cuts the247

whole sequence of chaotic lobes. The scenario here presented248

is common to each spike-adding. As b decreases, periodic or-249

bits with n spikes go through a period-doubling cascade which250
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6

precedes the formation of a horseshoe. The dynamics enters251

into a chaotic window which disappears through a Type I in-252

termittency transition. Chaotic transitions have been studied253

in Refs. 23 and 33. Working in a general framework, which254

includes the Hindmarsh-Rose model, Terman explains how255

the passage from n to n+1 spikes can be accompanied by the256

creation of horseshoes. In that sense, we understood that each257

passage through a chaotic lobe includes a Terman’s transition.258

B. Canard-induced continuous spike-adding259

A full detailed picture of the continuous transition from 2260

to 3 spikes between fold/hom bursters along the segment R2261

(Fig. 2) is given in Fig. 5. In the central panel, the bifurca-262

tion curve obtained by continuation is displayed. Solid curve263

represents stable periodic orbits, while dashed curve indicates264

unstable periodic orbits. Squares with different colors over the265

curve mark different values of parameter b selected to show266

their corresponding periodic orbits (pictures around). These267

periodic orbits are plotted over the slow Mslow and fast M f ast268

manifolds of the limit case to explain the canard transition269

generating the new spike11,13,17. In the upper left corner of the270

central picture, all the selected orbits are represented together271

to see their relative position. Starting from the lower branch of272

the bifurcation curve, where the 2-spikes periodic orbit is sta-273

ble, and decreasing the value of b, the curve reaches a fold bi-274

furcation (marked with a square inside a circle). There, the pe-275

riodic orbit becomes unstable and its length starts to increase276

as b decreases. This is the beginning of the canard transition:277

The increment in the length of the periodic orbit occurs as it278

extends following the piece of the slow manifold close to the279

unstable part of the manifold of equilibria between both fold280

bifurcations (see Fig. 1 top). Along the middle branch of the281

bifurcation curve, “headless” canards evolve up to a second282

fold bifurcation is reached. There, the orbit overcomes the283

right-fold of the equilibrium manifold in the fast subsystem284

and an additional turn around the tubular fast manifold arises;285

the canard orbit is said maximal and the canard “head” starts286

to be developed (second fold bifurcation marked with a square287

in a circle). This “head” moves to the left as b increases and288

the orbit recovers its stability after a period-doubling bifur-289

cation (marked with a square inside a circle), when the orbit290

already has an extra spike. Therefore, the new spike has trav-291

elled from the neighbourhood of the right piece of M f ast to292

the neighbourhood of the left piece of M f ast . This process293

that we have just described is the essential mechanism behind294

the continuous spike-adding for fold/hom bursters11,13,17.295

In the sense in which we have travelled the curve, the bifur-296

cation where the orbit with three spikes regains its stability is297

actually a period-halving bifurcation. Keep in mind that in a298

small interval to the right of this bifurcation there are pencils299

of bifurcations very close each other, and so it is quite diffi-300

cult to observe them and their effects. Just to show this, the301

doubled periodic orbit emerging at that point is also continued302

with AUTO and both bifurcation curves are displayed in Fig. 6303

(light blue color lines). The curve for the double period orbit304

undergoes through a fold bifurcation where parameter b starts305

to increase until a second period-doubling is reached, and so306

on (note that the unstable orbit is connected with bifurcated307

orbits close to the fold on the right). This process only can308

be detected using continuation techniques because the stable309

region is very small and it has no real effects in the dynam-310

ics. However, once the phenomenon is detected, the orbits311

obtained can be carefully integrated to observe the chaotic be-312

havior in that narrow parametric region (see red dots on the313

IBD on the top picture of Fig. 6).314

This canard-induced spike-adding mechanism had already315

been discussed in the literature.11,13,17,19 Some micro-chaos316

zones had already been detected and discussed in Ref. 12,317

but for segments very close to the homoclinic bifurcation318

curves, and not on the generic spike-adding process. Here319

we observe how small chaotic windows are detected far320

from the homoclinic skeleton. It follows that the fan of321

bifurcations of periodic orbits extends widely in parameter322

space. In fact, the chaotic window is associated with a cas-323

cade of period-doubling. The tangled bifurcation diagram324

formed by the codimension one bifurcations that arise from325

the codimension-two homoclinic bifurcation points has been326

discussed in Ref. 10, where it is also explained how the spike-327

adding mechanisms fit into the whole web.328

C. Hopf-induced continuous spike-adding329

The Hindmarsh-Rose model presents a variation of con-330

tinuous spike-adding, where bistability and canards are not331

present. The spike-adding occurs without the periodic orbits332

losing their stability, but still increasing their length by adding333

an extra cycle to their turns around the fast manifold.334

Unlike what happens in the fold/hom cases, in the pro-335

cess of Hopf-induced spike-adding, period-doubling and fold336

bifurcations do not appear. Neither is chaotic behavior ob-337

served, nor do canards emerge. The complete process is338

shown in Fig. 7, presenting again in the central panel the con-339

tinuation bifurcation diagram of segment R1b of Fig. 2. The340

coloured squares mark the points in the diagram correspond-341

ing to the selected values. For these values, the stable pe-342

riodic orbits are shown over the slow Mslow and fast M f ast343

manifolds (see Fig. 1 for more details). As shown in Fig. 7,344

the process is straightforward. That is, what happens in this345

case is that, as b decreases, almost the entire orbit is moving346

toward smaller values of z. But the point of re-entry of the347

orbit around the fast manifold, after passing through the sta-348

ble lower branch of the slow manifold, does not move. This349

means that more space is generated in the corner of the slow350

manifold where the upper saddle-node is located. Thus, there351

comes a time when there is room for a new spike in the orbit,352

which is occupied. As b continues to decrease, the displace-353

ment of most of the orbit continues, causing the amplitude of354

the new spike to increase. Along the continuation of the bifur-355

cation line we observe how periodic orbits with thirteen spikes356

move to the left so that space is generated for the appearance357

of a new spike on the right side of the orbit giving rise to a358

burster with fourteen spikes instead of thirteen. If b contin-359

ues to decrease sufficiently, this spike-adding process will be360
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FIG. 5. Evolution of periodic orbits throughout the process of canard-induced continuous spike-adding. Central picture shows the bifurcation
diagram obtained by continuation (AUTO) corresponding to the segment R2 in Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. For these values, the periodic orbits (solid line for stable, and dashed for unstable ones) are shown over
the slow and fast manifolds (Mslow and M f ast , see Fig. 1 for more details). The grey arrow indicates the direction in the process of adding a
new spike. In the upper left corner of the central picture, all the selected orbits are represented together to see their relative position. Along
the continuation of the bifurcation line we observe periodic orbits with two spikes, later headless canards (orbits numbered with -c-), canards
with head (-ch- orbits), and, finally, orbits with three spikes.

repeated in the same way.361

As already mentioned in the introduction, any process of362

spike-adding where periodic orbits do not cross any bifurca-363

tion, just a smooth change allowing an extra spike, will be364

referred as Hopf-induced, even in the case where the fast dy-365

namics does not correspond to a fold/Hopf bursting from the366

Izhikevich classification.367

In the Appendix we explain theoretically, using a simple368

model, how the number of spikes depends on the distance be-369

tween the two saddle-node bifurcation points of the slow man-370

ifold of equilibria Mslow. In the case of a fold/Hopf burster,371

the number of spikes exhibited by an orbit is strongly linked to372

the size of the oscillation region in the phase space. The trajec-373

tory around the fast manifold is longer as greater is the width374

of that region in the direction of variable z and that width cor-375

responds to the distance between the saddle-node bifurcation376
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FIG. 6. IBD (top) and continuation diagram (bottom) of a magnifi-
cation of segment R2. On the top picture, blue represents periodic
orbits with two spikes while red line represents periodic orbits with
three spikes and some bifurcated orbits from them coexisting with
the two spikes periodic orbits. In the pointed thin region there ex-
ists chaotic behavior (dotted red points) originated via a very narrow
period-doubling cascade.

points, at least for small values of ε . As b decreases, that dis-377

tance increases. To be precise, observe how the lower saddle-378

node point moves to left as b decreases, but the upper one379

seems to remain fixed.380

III. TRANSITION SPIKE-ADDING STATES381

In the previous section we have identified three differ-382

ent spike-adding processes, namely, mechanisms induced by383

chaotic behaviors, canard explosions or Hopf bifurcations.384

Recall that the former is a discontinuous evolution, whereas385

the latter two are continuous transitions. Now we explain how386

the dynamics is transformed to change from one type to an-387

other.388

We begin by discussing the transition between the two types389

of continuous spike-adding. In this case we cannot visually390

identify a sharp border marking the passage from one to the391

other. Fig. 8 shows the spike-adding process from bursting pe-392

riodic orbits with 10 spikes to periodic orbits with 11 spikes393

along the three small segments R3a, R3b and R3c (see Fig.394

2). Along the first segment, the process clearly corresponds395

to canard-induced continuous spike-adding. In the case of the396

third segment, however, the process clearly is Hopf-induced397

continuous spike-adding. It is evident that, between these two398

segments, a bifurcation has to occur that generates the change399

between both types of spike-adding. However, for this value400

of ε we are not able to detect it numerically as the continu-401

2.37 2.38 2.39 2.4 2.41
15.3

15.5

15.7

15.9

16.1

16.3

b

|| 
. |

| 2

13 spikes

14 spikes

1 2 3 4

-2

-1

0

1

2

z

x

1 2 3 4

-2

-1

0

1

2

z

x

1 2 3 4

-2

-1

0

1

2

z

x

1 2 3 4

-2

-1

0

1

2

z

x

1

2

3

4

1 2

34

FIG. 7. Evolution of periodic orbits throughout the process of Hopf-
induced continuous spike-adding. Central picture shows the bifurca-
tion diagram obtained by continuation corresponding to the segment
R1b of Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. The stable periodic orbits are
shown over the slow Mslow and fast M f ast manifolds. The grey
arrow indicates the direction in the process of adding a new spike.
Along the continuation of the bifurcation line we observe how pe-
riodic orbits with thirteen spikes move to the left so that space is
generated for the appearance of a new spike on the right side of the
orbit. Finally, periodic orbits have fourteen spikes.

ation software stops the calculation of the fold bifurcations.402

We show an intermediate segment (R3b) where the passage403

through the canard is not so apparent.404

In order to illustrate more clearly the transition between405

these two types of spike-adding, we study one case for a406
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FIG. 8. Variations of the spike-adding processes along segments
R3a, R3b and R3c (Fig. 2). Along segment R3a (top) the spike-
adding is canard-induced, but along segment R3c (bottom) the bi-
furcation curve has been stretched and the spike-adding process is
Hopf-induced.

higher value of the small parameter (ε = 0.05) to help in407

the visualization. For this ε value, the two fold bifurca-408

tions involved in the spike-adding from 2 to 3 spikes between409

fold/hom bursters that occur in the upper part of the region be-410

low the homoclinics can be fully continued numerically. Fold411

bifurcation curves are plotted in yellow in Fig. 9. They arise412

from codimension-two bifurcation points located on the ho-413

moclinic curves. Segments A and B cut both curves and, as it414

can be seen on the bottom pictures, the spike-adding process415

is canard-induced. If we compare the continuation bifurca-416

tion curves (left pictures) for both segments, we can observe417

how, as I decreases, the curve is stretched. As a consequence,418

the two fold bifurcation curves get closer to each other, un-419

til they reach a point (cusp bifurcation) where both coincide420

and disappear. Segment C goes through that point. This is421

the bifurcation point where canard-induced continuous spike-422

adding ends to give rise to Hopf-induced continuous spike-423

adding. Segments D and E cross this type of spike-adding, as424

can be seen on bottom pictures.425

Once we understand how a cusp bifurcation of periodic or-426

bits allows us to explain the passage from a canard-induced427

spike-adding towards a Hopf-induced type, we can conjecture428

that this is what happens for smaller values of ε and, in partic-429

ular, in the case illustrated in Fig. 8, although the fold bifurca-430

tion curves involved are not easy to detect and to continue. It431

is important to remark here one main difference among both432

continuous spike-adding phenomena: in the canard-induced433

case the canard orbit in the process to obtain an extra spike434

makes a “go-and-come-back” excursion, whereas in the Hopf-435

induced case the orbit that is obtaining an extra spike grows436

but it does not come back. This is clearly seen in Figures 8437
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FIG. 9. Top: Biparametric bifurcation spike-counting diagram for
ε = 0.05. Different segments are selected to illustrate the evolution
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ors of the orbits correspond with coloured squares in the left bifurca-
tion diagrams.
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and 9.438

As already mentioned, the transition from the region where439

spike-adding is induced by chaotic dynamics to the zones ex-440

hibiting continuous processes is determined, one way or an-441

other, by the homoclinic skeleton of the model. Two cases442

are clearly distinguished according to whether the dynamics443

change to either a canard-mediated mechanism or a Hopf-444

induced one.445

If we pay attention to the transition towards a canard-446

induced spike-adding, the homoclinic bifurcation curve it-447

self becomes a sharp frontier with the region governed by448

the chaotic machinery. Indeed, if we consider any horizon-449

tal line in the parameter space such that it crosses the homo-450

clinic curve, as the long segment R1 in discontinuous orange451

in Fig. 2, the passage through the homoclinic curve is clearly452

the event which marks the change of behavior. As illustrated453

in Fig. 12, which is included in the Discussion section, the454

spike-adding transition from 2 to 3 spikes consists of a chaotic455

window (see Section II A), whereas in the passage from 3 to456

4 spikes a bistability window is traversed (see Section II B).457

In between, the homoclinic curve is crossed, and large chaotic458

windows are no longer observed to the left of such bifurcation.459

The transformation of discontinuous spike-addings into460

Hopf-induced ones is quite different. To describe how dynam-461

ics evolve, we have selected a short segment in the parameter462

space fixing I = 4.1 and b ∈ [2.58,2.6]. We denote by P1 and463

P2 the left and right ends, respectively (see Fig. 2). The tran-464

sition process starts when the segment crosses an ultimate fan465

of bifurcation curves of periodic orbits arising from the type-466

C inclination-flip (IF) codimension-two homoclinic bifurca-467

tion point located in the fold of the homoclinic curve (see the468

theoretical unfolding34 and the numerically computed bifur-469

cation curves displayed at the bottom-right panel in Fig. 10).470

As showed at top panels of Fig. 10, for P1 and P2 we observe471

a fold/Hopf and a fold/hom bursting, respectively. Some of472

the changes that occur in the attractor can be seen in the IBD473

bifurcation diagram (central panel of Fig. 10). By decreasing474

parameter b, a bistability zone is detected, which leads to the475

gaining of a new spike. It is formed as a consequence of the476

passing through fold and period-doubling bifurcation curves.477

Shortly after crossing this bistability zone, there is an abrupt478

change in the number of spikes that precedes the entrance into479

the domain of Hopf-induced spike-adding (see the green ver-480

tical band in the IBD). The time series and the orbit exhibited481

at the bottom-left panel in Fig. 10 show a phenomenon of in-482

termittency where the fold/Hopf and the fold/Hom bursting al-483

ternate (the sum of the spikes of both types explains the abrupt484

jump observed in the IBD). We can understand this peculiar485

behavior appealing to the fast-slow decomposition. Along the486

transition from fold/Hopf to fold/hom bursting (see Fig. 1),487

the 2D fast manifold of limit cycles becomes tangent to the488

1D slow manifold of equilibria. Close to this tangency, orbits489

can show the alternation between the two types of bursting,490

exhibiting phases where the orbit follows the fast manifold up491

to the Hopf bifurcation point and phases where orbits behave492

as if the fast manifold were split. The presence of the pen-493

cils of bifurcations that converge to the IF point helps in this494

mixed behavior.495
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PDfoldPD
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FIG. 10. Crossing the bridge between Hopf-induced (top-left) and
chaos-induced (top-right) spike-adding. Orbits correspond to points
P1 and P2, respectively, of Fig. 2. Inter-spike bifurcation diagram
for I = 4.1 and b ∈ [2.58,2.6] is provided in central panel, where the
green vertical band separates the two types of spike-adding. Tran-
sition through the green band is illustrated at the bottom-left panel.
Bottom-right panel provides de location of P1 and P2, and also the
numerically calculated bifurcation curves and the theoretical unfold-
ing of a type-C inclination-flip.

IV. DISCUSSION496

Throughout the previous sections we have provided a uni-497

fied perspective of several of the spike-adding mechanisms498

that are unfolded in the Hindmarsh-Rose model and the tran-499

sitions that occur between the different types. Figure 11 pro-500

vides a schematic illustration of the catalogue. Specifically,501
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we have identified:502

• Chaos-induced spike-adding: (translucent red region)503

discontinuous spike-adding formed by isolas of burst-504

ing periodic orbits with cascades of period-doubling bi-505

furcations leading to chaos. This case corresponds to506

the chaotic scenario studied by Terman23.507

• Canard-induced continuous spike-adding: (translu-508

cent dark-blue region) continuous spike-adding created509

in hysteresis areas limited by fold bifurcations of peri-510

odic orbits and canards being involved in the genesis of511

extra spikes.512

• Hopf-induced continuous spike-adding: (translucent513

pale-green region) continuous spike-adding with a Hopf514

bifurcation being involved in the creation of new extra515

spikes (see also Appendix).516

• Transition spike-adding states: there are three pos-517

sibilities. Translucent green strips shown in Fig. 11518

correspond to the transition between Hopf-induced and519

canard-induced continuous spike-addings near a cusp520

bifurcation where two fold bifurcations of periodic or-521

bits collapse. Sharp location is not possible because,522

as already explained in Section III, the cusp points523

are not easy to detect and, furthermore, they do not524

form a continuous line as they appear just at isolated525

points (they are codimension-two bifurcations). On the526

contrary, the frontier in between chaos-induced spike527

adding and the other two mechanisms is evident. The528

black curve (homoclinic bifurcation) marks the transi-529

tion to canard-induced spike-adding. The change from530

chaos- to Hopf-induced spike-adding involves bifurca-531

tion curves of periodic orbits arising from codimension-532

two homoclinic bifurcations and it is clearly recogniz-533

able on the spike-counting bifurcation diagram.534

Just as a summary of what is typically observed in numer-535

ical and experimental settings, Figure 12 shows a one param-536

eter slice (line R1 in Fig. 2) where the three types of spike-537

adding detected in the model (chaos-induced discontinuous538

spike-adding (right), canard-induced continuous spike-adding539

(middle) and Hopf-induced continuous spike-adding (left))540

and two transitions in between are observed. In the plot at541

the top (a), the interspike-interval bifurcation diagram (IBD)542

shows clearly the number of spikes and the time length among543

spikes. Red color represents coexistence of two periodic at-544

tractors with n and n+1 spikes. The bottom plot (b) presents545

the parametric evolution of the periodic orbits using contin-546

uation techniques. The figure shows the ‖ · ‖2 norm of the547

periodic orbit along the selected segment R1. In the contin-548

uation line, the blue color line changes from Hopf-induced549

continuous spike-adding (left part) to canard-induced contin-550

uous spike-adding (middle part). Note that, on the right side,551

the purple color line represents an isola (simple closed curves552

in the corresponding slice) of 3-spikes periodic orbits and553

green and other colors represent the basic 2-spikes periodic or-554

bit and its period-doubling bifurcated orbits on the region of555
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FIG. 11. Classification scheme of regions with different type of
spike-adding process superimposed on the biparametric bifurcation
spike-counting diagram for ε = 0.01. White color represents re-
gions with chaotic behavior; different shades of gray represent re-
gions with periodic orbits with different number of spikes; translu-
cent colors represent (schematically) regions with different types of
spike-adding. The homoclinic bifurcation (black curve) marks the
boundary between the region with discontinuous spike-adding and
the other regions.

chaos-induced discontinuous spike-adding. We can also ob-556

serve how the change from the discontinuous spike-adding to557

the continuous spike-adding occurs sharply when crossing the558

homoclinic curve. On the other hand, while canard-induced559

continuous spike-adding is occurring, the segment R1 crosses560

bistability wedges, limited by a fold point and the first period-561

doubling bifurcation. When the last wedge has been crossed,562

the spike-adding mechanism changes to Hopf-induced. Note563

that bistability regions are only present in the canard-induced564

continuous spike-adding.565

Fig. 12 also shows the vertical line (b = 2.67434) that, ac-566

cording to the fast-slow dynamics and the Izhikevich classifi-567

cation, corresponds to the passage from fold/hom to fold/Hopf568

bursting. Namely, in the biparametric plane (b, I), the verti-569

cal line b = 2.67434 is tangent to the homoclinic bifurcation570

curve for the fast subsystem at the point where the curve folds571

in the b-direction. Of course, since this useful classification is572

based on the limit case (ε = 0), this theoretical frontier works573

the better as smaller the value of ε is and, in fact, already for574

ε = 0.01 we observe how the Izhikevich criterion is no longer575

applicable in some regions.576

Indeed, paying attention to the cascade of bifurcations577

shown at panel (b) of Fig. 12, it is still observed how on the left578

side of the vertical line of homoclinic folding, the canards are579

involved in the genesis of new spikes. On this side, the Izhike-580

vich analysis classifies the bursting as fold/Hopf, but this only581
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bifurcation (ε=0.01)
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 ≈ cusp bifurcation
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FIG. 12. Analysis of transitions along segment R1 (in Fig. 2) with ε = 0.01, I = 2.75 and b as bifurcation parameter. (a) Interspike-interval
bifurcation diagram (IBD). Red color represents coexistence of two periodic attractors with n and n+1 spikes. Panel (b) shows the ‖ ·‖2 norm
of the periodic orbit along the process, obtained with continuation techniques (AUTO). Purple represents an isola of 3-spikes periodic orbits;
the continuous spike-adding process is shown in blue; green and other colors represent the basic 2-spikes periodic orbit and its period-doubling
bifurcated orbits. More details are given in the text. Panel (a1) illustrates one example of the limits with Izhikevich’s classification.

manifests for smaller values of parameter b (on the left-side582

of the cusp bifurcation line, to be precise). The reason lies583

in the fact that for a higher dimensional parameter space, like584

in a three-dimensional bifurcation diagram including ε , the585

transition bifurcation surfaces exhibit some inclination, that is,586

they are not completely vertical (see recent Ref. 10 for a com-587

plete three dimensional analysis). Panel (a1) in Fig. 12 illus-588

trates with an example the limitations with Izhikevich’s clas-589

sification. Superimposed on the fast-slow decomposition, a590

bursting orbit is shown. Fast-slow decomposition is fold/Hopf591

type, but bursting is clearly of fold/hom type.592

From a practical point of view, we may have the following593

question: how does this study help in biological settings? In594

fact, the main point is to consider what phenomena we can595

expect. Obviously, it is not possible to determine the spike-596

adding mechanisms that a neuron experiences only with ex-597

perimental data. Nevertheless, the visualization of a bursting598

orbit and the information obtained from biparametric maps599
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arising in simpler models can help us to point to one type or600

another. That is, if a square-wave bursting solution (fold/hom601

case) is observed, we should have in mind two possible spike-602

adding mechanisms: canard-induced or chaos-induced. If ex-603

perimentation shows abrupt changes in the number of spikes,604

we can suspect that there is a hysteresis phenomenon and605

that the dynamics have been captured by an alternative sta-606

ble branch, so we identify a canard-induced spike-adding.607

The recognition of this mechanism should move researcher608

to look for the coexisting stable orbit since bistability is, in609

many cases, a desirable feature of a neuron and may have bi-610

ological consequences35–37. On the contrary, if some chaotic611

phenomenon is detected, we can suspect the existence of iso-612

las and that the spike-adding processes may involve transi-613

tions through chaotic windows38. Furthermore, there are ex-614

amples in the literature of experiments with neurons exhibit-615

ing comb-shaped biparametric structures associate to chaos-616

induced mechanisms39–41. In these examples, the use of bi-617

parametric maps helps to explain the results. The appearance618

of fold/Hopf bursting orbits is the signal that either bistabil-619

ity or chaos are over and the spike-adding becomes a smooth620

process. The above ones are not the only precursors of the621

different phenomena. For example, a bursting orbit that sud-622

denly lengthens and then returns, but with an extra spike, can623

be identified with the presence of a canard phenomenon and624

bistability.625

From a mathematical point of view, once the global struc-626

ture is clear, one can think of obtaining analytical proofs to ex-627

plain how the different processes and transformations emerge628

from the singular limit using, for instance, the techniques in-629

troduced by P. Carter25,27. We also remark that, taking into630

account that the codimension-two points are organizing cen-631

ters for key bifurcations involved in some of the processes632

and transitions analysed in this paper, it should be interesting633

to study the existence of codimension-three points unfolding634

these codimension-two bifurcations, but we have to move into635

a three-parametric space, like in Ref. 10, and this is part of our636

future research.637

V. CONCLUSIONS638

Neural communication takes place through action poten-639

tials or spikes. In addition, it is when the spikes travel in640

packets that the exchange of information is more fluent and641

efficient. The number and tempo of the spikes in each burst642

are main ingredients to build neural messages. These are643

the reasons that justify the importance of the analysis of the644

spike-adding mechanisms. In this paper we deal with bursting645

in single-neurons activity. Among the most popular models,646

we choose the Hindmarsh-Rose, as it is the simplest one that647

is able to exhibit bursting behavior. We show and classify648

the different mechanisms of spike-adding: chaos-induced,649

canard-induced and Hopf-induced. Besides, we study the650

transition mechanisms from one type of spike-adding process651

to another.652

The above processes involve bistable and chaotic regimes.653

As already mentioned, bistability is a profitable character-654

istic for a neuron and chaotic behaviors are commonly ob-655

served in experiments with real neurons in the laboratory, as656

in Refs. 38–41. Our theoretical results motivate the interest657

for discovering new mechanisms in the context of the cited658

experiments.659

Spike-adding maps provide us with information on how we660

should move in the parameter space depending on whether we661

want our neuron to exhibit one or another spike-adding mech-662

anism. These maps are common in the literature and simi-663

lar chaotic zones and spike-adding stripes have been found664

for other realistic fold/hom bursting models, including the665

leech heart interneuron model42 and the pancreatic β -cell neu-666

ron model43, among others. Therefore, for future research,667

it would be interesting to explore whether this classification668

is valid in other models exhibiting fold/hom and fold/Hopf669

bursting, where we sincerely believe that this is the case. And670

what is more challenging, Izhikevich’s catalogue for the types671

of bursting is extensive and one must wonder what spike-672

adding mechanisms are available in each case and also what673

are the transition dynamics.674
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APPENDIX761

In this Appendix we just show analytically, with a simple762

example, how an increase in the distance between the saddle-763

node bifurcations of equilibria in the fast subsystem of the HR764

model allows the increment of the number of spikes, and so,765

it generates the Hopf-induced spike-adding process.766

Let us consider the following family of vector fields:767 ⎧⎨
⎩

x′ = −zx−ωy−Lx(x2 + y2),
y′ = ωx− zy−Ly(x2 + y2),
z′ = ε.

(A.1)

This is a toy-model for a Hopf bifurcation, where the bifurca-768

tion parameter z varies with respect to time at a constant ratio769

ε , which we assume to be a small parameter (ε � 1). Coeffi-770

cient L corresponds to the first Lyapunov coefficient28 and we771

assume that L > 0.772

Using polar coordinates x = r cosθ , y = r sinθ in (A.1), we773

get:774 ⎧⎨
⎩

r′ = −zr−Lr3,
θ ′ = ω,
z′ = ε.

(A.2)

Let775

ϕ(t,r0,θ0,z0) =(
ϕr(t,r0,θ0,z0),ϕθ (t,r0,θ0,z0),ϕz(t,r0,θ0,z0)

)
be the flow defined by equations (A.2). Clearly,776

ϕθ (t,r0,θ0,z0) = θ0 +ωt,
ϕz(t,r0,θ0,z0) = z0 + εt.

Fixing time t = 2π
ω and angle θ0 = 0 we get the first return777

map P from the half-plane θ0 = 0 on itself. Namely,778

P(r0,z0) =
(
Pr(r0,z0),Pz(r0,z0)

)
with779

Pr(r0,z0) = ϕr
(

2π
ω

,r0,0,z0

)

and780

Pz(r0,z0) = ϕz
(

2π
ω

,r0,0,z0

)
= z0 +

2πε
ω

.

In what follows, we assume that

(r0,z0) ∈ [0,R]×{−δ},

for some δ > 0 and R >
√

δ
L , and define

(rn,zn) = ((Pr)n(r0,z0),(Pz)n(r0,z0)).

Constant δ stands for the maximum allowed change in pa-781

rameter z. We say that the orbit of the point (r0,0,z0) has N782

spikes if N is the maximum number of iterations of the first re-783

turn map which remain in the rectangle [0,R]× [−δ ,δ ]. Since784

R >
√

δ
L , it follows by construction that rn < R for all n ∈ N.785

On the other hand786

zn =−δ +
2πε n

ω
,

and, in order to have zn > δ , the condition787

n >
δω
πε

,

must be fulfilled. We obtain the expected results, that is, the788

number n of allowed spikes increases as either δ or the rota-789

tion speed ω increase. Bearing in mind the Hindmarsh-Rose790

model, the number of spikes in the fold/Hopf bursting in-791

creases as the distance (measured in the z-direction) between792

the two saddle-node bifurcation points in the fast subsystem793

(2δ in the toy model) increases.794
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