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Hindmarsh-Rose neural model is widely accepted as an important prototype for fold/hom and fold/Hopf burstings. In
this paper we are interested in the mechanisms for the production of extra spikes in a burst, and we show the whole
parametric panorama in an unified way. In the fold/hom case two types are distinguished, the continuous one, where
the bursting periodic orbit goes through bifurcations, but persists along the whole process, and the discontinuous
one, where the transition is abrupt and happens after a sequence of chaotic events. In the former case we speak
about canard-induced spike-adding and, in the second one, about chaos-induced. For fold/Hopf bursting, a single
(and continuous) mechanism is distinguished. Separately, all these mechanisms are presented, to some extent, in
the literature. However, our full perspective allows us to construct a spike-adding map and, more significantly, to
understand the dynamics exhibited when borders are crossed, that is, transitions between types of processes, a crucial

point not previously studied.
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Among the elements that allow communication between :
neurons, spikes or action potentials are major pieces.
Spike trains (bursts) allow the brain to build a language
for the transmission of information since they are signals
with a higher probability of being picked up by neighbour-
ing neurons than an isolated spike.! Moreover, the number
and the temporal pattern of spikes provide a system for en-
coding messages. Facing this context, understanding how
spikes can be gained (or lost) becomes a central question.
This is the goal of this work, taking the Hindmarsh-Rose
equations as a paradigm for certain classes of bursting,
we analyse three different types of spike-adding processes. ,
Although most of the involved dynamics and bifurcations ,,
are well known, we will be able to discover some novel ,
characteristics. Our classification of the different spike- ,
adding mechanisms determines maps in the parameter
space that are shown to help in the global analysis of the
system. But, as maps are useless if frontiers are unclear, ,
in this work we deal with the dynamics that characterize
the transitions from one to another type of spike-adding.

Moreover, some common elements necessary in our dis-

cussion are also present in neural and other problems (me-

chanics, chemistry, ...), such as the existence in numeri-

cal and experimental studies of comb-shaped chaotic re-

gions and the spike-adding phenomenon>~, so this work
can help in the exploration of these systems. Challenges in 2o
neuroscience and, in particular, the problems that still re- 2:
main to be solved in deciphering the language of neurons =2
are impressive. Undoubtedly, the classification of the dif-23
ferent mechanisms involved in the genesis of extra action 2+

2

8

potentials is an essential element of that big task. 25
26
27
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I. INTRODUCTION

Bursting is one of the most relevant phenomena that can be
observed in a neuron. Roughly speaking, bursting is charac-
terized by the appearance of sequences of spikes, correspond-
ing to fast discharges, alternating with periods of quiescence.
Moreover, when dealing with a bursting neuron, one of the
major challenges is to understand how spikes are added to a
given train of signals.

This paper studies the spike-adding mechanisms exhibited
in the Hindmarsh-Rose® neuron model, a well known exam-
ple and prototype of fold/hom (or square-wave) and fold/Hopf
bursting”8. It is able to reproduce the most significant behav-
iors: quiescence, spiking and also bursting, either regular or
irregular (chaotic). Literature concerning this model is ex-
tensive and, only in relation to our interests, we can quote
Refs. 2, 9-21.

The Hindmarsh-Rose (HR) model is described by the fol-
lowing set of equations:

i=y—ax® +bx* —z+1,
y=c—dx’—y, M
z=¢€ls(x—x9) —2].

Variable x represents the membrane potential, whereas y and z
correspond to ionic currents. We consider a typical choice of
parameters witha =1, c =1, d = 5 and s = 4, discussing the
spike-adding processes for different choices of the other b, 1
and £.2! We assume that € is a small parameter in the model,
giving rise to a fast-slow system with two fast (x and y), and
one slow (z) variables.

When € = 0 in model (1), we obtain a reduced system
which is usually called the fast subsystem. Note that the fast
subsystem is a family of planar vector fields where z is an ad-
ditional parameter. Fixing b and I (still with € = 0), we obtain
a bifurcation diagram with respect to z that is illustrated in
Fig. 1. There is a curve formed by equilibria which is named
the slow manifold (.#j,,,,) and a surface containing limit cy-
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FIG. 1. 2D projection of fold/hom (top) and fold/Hopf (bottom) s2
bursting orbits (¢ = 0.01) superimposed (in black) over the classical ,,
slow-fast decomposition (€ = 0) of the HR model (1) formed by the
1D slow manifold of stable (dark red) and unstable (orange) equi-
libria (.#j;,,,) and the 2D fast (spiking) manifold (.#4y) of limit
cycles of the fast subsystem of the model (in gray). SN stands for &
saddle-node bifurcations of equilibria, Hopf denotes the Hopf bifur- *
cation points and hom the homoclinic bifurcation points. 88

4

89

920

cles which is said the fast manifold (.#,y). Recall that, in a°*
general setting, slow-fast decompositions were first described 2
in Ref. 7. For I = 2.2, b = 2.91646 (top) and for [ = 2.75°
and b = 2.39 (bottom), the slow manifold is shown in dark®
red (resp. orange) for stable (resp. unstable) equilibria and °®
the fast manifold is shown in gray. Intuitively, one can un-°°
derstand how burst patterns emerge. Fig. 1 also shows stable °7
periodic orbits of the full system (black) superimposed to the o=
bifurcation diagram of the fast subsystem. The slow dynamics e
in the complete model is such that z < 0 when fast variables.oo
are moving close to the lower branch of .#,,,, whereas 7 > (ko1
when they are close to .# 4. 102

Indeed, as singular perturbation theory and Fenichel’s the-os
orems explainzz, orbits (for small enough €) follow both man-os
ifolds on some parts of their trajectory. Following the termi-os
nology in Ref. 8, in the first case (top panel), the bursting orbitos
is said to be of fold/homoclinic type, because the terminatioro?
of the fast subregime is due to the existence of a homoclinicies
bifurcation in the phase space of the fast subsystem. In theios
second case (bottom panel), the bursting orbit is said to be ofi1o

fold/Hopf type because the amplitude of oscillations during
the bursting is decreasing as the limit cycles of the reduced
model approach the Hopf bifurcation.

As already mentioned, the main goal of this paper is to ex-
plain the processes (spike-adding) that lead a bursting orbit to
change its number of spikes per period. More precisely, we
provide a classification of the different types of spike-adding
processes in fold/hom and fold/Hopf bursters. From Ter-
man?3, in the general context of fold/hom bursting, two spike-
adding mechanisms are considered. On the one hand, there
can arise extra excursions around the fast manifold which are
generated through a discontinuous process linked to a chaotic
phenomenon. On the other, there also can happen that extra
excursions are created through a continuous process linked to
orbits that transit through phase space following the unstable
branch of the slow manifold. We will refer to the first scenario
as chaos-induced spike-adding, and the second one as canard-
induced spike-adding. Both cases have been recently studied
in the literature®! 1171924 Note that analytical results have
only been obtained very recently on simpler models, such as
the in-depth theoretical study on the spike-adding canard tran-
sition given by P. Carter in Ref. 25, where the Morris-Lecar
model?® is considered (see also Ref. 27 where a transition
from 1 to 2 spikes via canard orbits is thoroughly analysed in
a different fast-slow system based on the FitzHugh-Nagumo
equations). These two interesting papers are the first analyti-
cal studies regarding the complete creation of canard orbits in
neural models and open an exciting research line. However, it
should be noted that the whole scenario is beyond the current
analytical techniques.

The spike-adding mechanism in the case of fold/Hopf
bursting is completely different and is related to the dis-
tance between saddle-node (left SN bifurcation point of
Fig. 1(bottom)) and Hopf bifurcation points in the fast sub-
system (see Fig. 1). Namely, the number of spikes depends
on the length of the oscillation tube which is accessible for or-
bits after they jump to the fast manifold from the slow mani-
fold. It also depends on the characteristic rotation speed at the
Hopf bifurcation point. We will refer to this mechanism for
spike-adding as Hopf-induced. Discussions in the literature
about the spike-adding mechanism involved in the fold/Hopf
bursters are not so common as those about fold/hom scenarios.
Of course, in all cases, the number of spikes also increases as
€ decreases, but this is not our interest, so we will consider
fixed small values of €.

We will see how the Hindmarsh-Rose model exhibits the
three spike-adding mechanisms that we have just described.
As said, all have already been considered, to a greater or a
lesser extent, in the literature. However, in this paper the treat-
ment is unified, which allows to understand the differences
between them. Besides, we pay special attention to the transi-
tion dynamics between scenarios, a problem not well studied
in literature. Bearing in mind that different spike-adding pro-
cesses are feasible in a model (HR model in our case), the
question is: where and why are they produced?

The frontier between the two spike-adding mechanisms
linked to fold/hom bursters will be shown to be sharp.
Namely, it will be marked by homoclinic surfaces in the
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FIG. 2. Biparametric spike-counting bifurcation diagram for € = 0.01. Different segments are selected to illustrate (on later figures) three
different spike-adding processes: chaos-induced discontinuous spike-adding, canard-induced continuous spike-adding and Hopf-induced con-
tinuous spike-adding. Along the long segment R1 all of them appear; a discontinuous chaos-induced transition from 2 to 3 spikes along
segment R1la; a continuous Hopf-induced transition from 13 to 14 spikes along segment R1b; and continuous canard-induced along segment
R2 showing a transition from 2 to 3 spikes between fold/hom bursters. Transitions from P1 to P2 and along the segments R3a, R3b and R3¢
will be described in Section III to explain how dynamics evolve to change from one scenario to another.

three-parameter bifurcation diagram.!? Nevertheless, the sep-ss
aration between Hopf-induced processes and either chaos-sa
induced or canard-induced will appear fuzzy. Coming fronuss
the region of chaos-induced spike-adding, a fan of bifurcaase
tions must be crossed to enter into the region correspondings-
to Hopf-induced processes. These bifurcations arise from ass
codimension-two homoclinic bifurcation point. As we will

recall later, in the case of a canard-induced spike-adding, the

periodic orbit must undergo several periodic orbit bifurca-se
tions (bistability and hysteresis are present), among them two

curves of fold bifurcations which disappear at cusp®® bifurca-,
tion points. These codimension-two bifurcation points will,,,
play the role of boundary stones separating the canard do-,,
mains from the Hopf ones. In other words, continuous spike-,,,
adding can be canard-induced or Hopf-induced. The first case,,,
happens when the continuation of the periodic orbit includes,,,
paths of unstable regime. When this course is not realizable,
because no bifurcation is accessible (the continuation curve is,,,
far from the cusp boundary stones), the gaining of extra spikes, ,,
can be explained through a Hopf bifurcation process. 140

All the different types of spike-adding mechanisms are de-so
tailed in Section II, showing how they indeed arise in thes:

Hindmarsh-Rose model. Transitions between these mecha-
nisms will be described in Section III. Results are summarized
and discussed in Section IV, where a theoretical classification
parametric map is proposed. Conclusions are provided in Sec-
tion V. Throughout this article, all the continuation analysis
has been done using the well known software AUTO?*%,

Il.  CLASSIFICATION OF SPIKE-ADDING PHENOMENA

In this section we describe the different spike-adding phe-
nomena present in the HR model. On Fig. 2, regions with
periodic attractors with a different number of spikes are rep-
resented in different colors (spike-counting technique). From
dark blue, indicating spiking, towards red, the number of
spikes of the periodic orbit grows. Dark red indicates that
the maximum number of spikes considered in the method has
been exceeded, meaning that in a large part of that region the
dominant behavior is chaotic?.

This figure shows a typical situation for small € values (in
this case € = 0.01). There exist a finite collection of homo-
clinic bifurcation curves, the black curve represented in the
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figure being one of them. All the others are so close that, if
they were also depicted, they would overlap with each other
(see details in Ref. 10). Located on such curves there also
arise codimension-two homoclinic bifurcations from which
many of the elements involved in the spike-adding processes
emerge. As an illustration, Fig. 2 includes some codimension-
one bifurcations of periodic orbits: fold (yellow) and period-
doubling (red) curves. Below the homoclinic bifurcation
curve, there are wedges corresponding to bistability regimes.
These regions are bounded by a pair of fold bifurcations con-
necting through a cusp point. Above the homoclinic bifur-
cation curve, lobes of chaotic dynamics are formed contain-
ing pencils of period-doubling cascades. These lobes are lim-
ited by a fold bifurcation curve of periodic orbits and the first
period-doubling cascade.

Segment R1 in Fig. 2 crosses regions of the biparamet-
ric plane showing the three types of spike-adding detected
in the model. Along segment Rla we will describe the
chaos-induced discontinuous spike-adding (Subsection II A)
and segment R1b is selected to explain the Hopf-induced
continuous spike-adding (Subsection IIC). On the other
hand, although canard-induced continuous spike-adding is
also present along R1, segment R2 from Fig. 2 is selected for
the purpose of illustration, because it provides a clearer dis-
play (Subsection II B).

A. Chaos-induced discontinuous spike-adding

The first type of spike-adding process that we are going to
analyze is the chaos-induced discontinuous one. As we have
already mentioned, this process occurs in the region above the
homoclinic curve, this curve being a boundary of such region.
In Fig. 3 we consider segment R1a of Fig. 2 and we zoom in on
the surrounding region with the spike counting technique. Be-
low that picture, we show the interspike-interval bifurcation
diagram (IBD) of this segment and the || - || norm of the peri-
odic orbits obtained with continuation techniques (AUTO).

As we can see in the figure, to the right of the segment there
is a bursting periodic attractor with 2 spikes. As b decreases,

a typical scenario is present. Firstly, the periodic attractor
undergoes a cascade of period-doubling bifurcations, until a
chaotic attractor is generated. Within the chaotic region, nar-
row windows of regular behavior appear where new periodic
orbits are generated. They will go through new bifurcations
where they will become unstable joining to the chaotic invari-
ant set. Finally, at a fold bifurcation, the chaotic invariant setor
stop being an attractor and two periodic orbits (one stable anckos
one unstable) with 3 spikes are generated. 200

To show how the attractors evolve throughout this spike-io
adding phenomenon, in Fig. 4 we present the complete pro=i
cess. The central picture shows the bifurcation diagram ob-:2
tained by continuation (AUTO) corresponding to the segmentis
Rla in Fig. 2. We have selected several values of b (markeckia
in the central picture with small colored squares and num-is
bers) for which we have plotted these orbits. For these valueszie
the periodic orbits (solid line for stable, and dashed for unsta-=i-
ble ones) and a chaotic attractor (for square —6—) are showreis

3.02 3.0 3.1
spike-adding b

FIG. 3. Analysis of segment R1a (in Fig. 2) with € = 0.01, / =2.75
and b as bifurcation parameter. Top: Biparametric bifurcation spike-
counting diagram around the segment Rla. Dark red represents
chaos, different colors represent periodic orbits with different burst-
ing. Middle picture shows the IBD bifurcation diagram and the bot-
tom one displays a continuation of the periodic orbits, with different
solid (dashed) colors for different (un)stable orbits.

around the central picture. Orbit —1— represents the basic
periodic orbit of 2 spikes. After the first period-doubling bi-
furcation, the orbit —1— becomes unstable and a stable peri-
odic orbit (—2—) with two bursts with 2 spikes (2 x 2 orbit) is
generated. A second period-doubling bifurcation repeats the
former mechanism from 2 x 2 to 4 x 2 orbit (—3—). So, the
same mechanism is developed again and again (to a 8 x 2 orbit
—4—, 16 x 2 orbit —5—, and so on), a countably infinite num-
ber of times giving place to a typical period-doubling route
to chaos that generates a chaotic attractor (—6—). After a fold
bifurcation, the chaotic set becomes unstable and two periodic
orbits (—7—) with 3 spikes are born (the spike-adding). One
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FIG. 4. Evolution of periodic orbits throughout the process of chaos-induced discontinuous spike-adding. Central picture shows the bifur-
cation diagram obtained by continuation corresponding to the segment Rla in Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. For these values, the periodic orbits (solid line for stable, and dashed for unstable ones) and a chaotic
attractor (for square —6—) are shown around the central picture. Along the continuation of the bifurcation lines we observe periodic orbits with
two spikes (—1—), later a period-doubling cascade (—2— to —5—) originates a chaotic attractor (—6—) and, finally, after a fold bifurcation,
two periodic orbits with three spikes appear (—7— and —8—). In the upper right corner of the central picture, a magnification of the region

where the first period-doubling cascade occurs is shown.

of them is stable, the other one unstable, both are indistin-ss
guishable at the fold bifurcation and they run along the outesss
edge of the chaotic set. When b moves away from the valuess
at which the bifurcation occurs, both orbits are separated fromness
each other. 230

240
It is worth paying attention to certain qualitative aspects,,,

that can be observed in the chaotic transition illustrated in,,,
Figure 4. As the attracting periodic orbits that arise through,,,
period-doublings build the chaotic attractor (—6—), spikes ar-

range visually in four groups inside phase space, although twaeaa
of them, those placed in central positions, seem to compete tceas
fill the same area. This process is typical in period-doublingas
cascades giving rise first to thin Feigenbaum chaotic attrac-zsz
tors that later merge in thicker and larger ones via boundaryzas
crisis phenomena. When the chaotic attractor is fully createdzae
we clearly see how the groups of spikes give rise to three, notso

to four, areas within the attractor, characterized by a denser
flow. When the fold bifurcation occurs, the three-spiked sta-
ble periodic orbit takes the place of the chaotic attractor, flow-
ing through the denser areas previously swept by the chaotic
trajectory. The fold bifurcation marks the beginning of a peri-
odic window: the chaotic attractor becomes an unstable sad-
dle chaotic invariant set that embeds, among other unstable
periodic orbits, the unstable orbit itself that is born at the fold
bifurcation.

As already pointed out in Ref. 12, the process we have just
described is known in the literature as Type I intermittency
transition to chaos, as introduced in Refs. 31 and 32. In Ref.
12, authors explore a segment of parameters which cuts the
whole sequence of chaotic lobes. The scenario here presented
is common to each spike-adding. As b decreases, periodic or-
bits with n spikes go through a period-doubling cascade which
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precedes the formation of a horseshoe. The dynamics enterssos
into a chaotic window which disappears through a Type I in=sor
termittency transition. Chaotic transitions have been studiedsos
in Refs. 23 and 33. Working in a general framework, whichsos
includes the Hindmarsh-Rose model, Terman explains howsio
the passage from n to n+ 1 spikes can be accompanied by thes:
creation of horseshoes. In that sense, we understood that eachsi2
passage through a chaotic lobe includes a Terman’s transitionss

314

315

B. Canard-induced continuous spike-adding 316
317

A full detailed picture of the continuous transition from 2*°
to 3 spikes between fold/hom bursters along the segment R2**
(Fig. 2) is given in Fig. 5. In the central panel, the bifurca-*°
tion curve obtained by continuation is displayed. Solid curve™
represents stable periodic orbits, while dashed curve indicates™
unstable periodic orbits. Squares with different colors over the’™
curve mark different values of parameter b selected to show*
their corresponding periodic orbits (pictures around). These™
periodic orbits are plotted over the slow .#y,,, and fast a5
manifolds of the limit case to explain the canard transition™"
generating the new spike'!317_ In the upper left corner of the™™®
central picture, all the selected orbits are represented together
to see their relative position. Starting from the lower branch of
the bifurcation curve, where the 2-spikes periodic orbit is sta-*>°
ble, and decreasing the value of b, the curve reaches a fold bi-
furcation (marked with a square inside a circle). There, the pe-=sso
riodic orbit becomes unstable and its length starts to increasess:
as b decreases. This is the beginning of the canard transitionss:
The increment in the length of the periodic orbit occurs as itss
extends following the piece of the slow manifold close to thessa
unstable part of the manifold of equilibria between both foldss
bifurcations (see Fig. 1 top). Along the middle branch of thesss
bifurcation curve, “headless” canards evolve up to a seconcs,
fold bifurcation is reached. There, the orbit overcomes thesss
right-fold of the equilibrium manifold in the fast subsystensss
and an additional turn around the tubular fast manifold ariseszao
the canard orbit is said maximal and the canard “head” startsa:
to be developed (second fold bifurcation marked with a squaress.
in a circle). This “head” moves to the left as b increases andas
the orbit recovers its stability after a period-doubling bifurs..
cation (marked with a square inside a circle), when the orbitas
already has an extra spike. Therefore, the new spike has travsae
elled from the neighbourhood of the right piece of .# 5 tosar
the neighbourhood of the left piece of .#t.s. This processas
that we have just described is the essential mechanism behind.ase
the continuous spike-adding for fold/hom bursters' 1317,

In the sense in which we have travelled the curve, the bifurss:
cation where the orbit with three spikes regains its stability iss:
actually a period-halving bifurcation. Keep in mind that in ass
small interval to the right of this bifurcation there are pencilssa
of bifurcations very close each other, and so it is quite diffisss
cult to observe them and their effects. Just to show this, thesse
doubled periodic orbit emerging at that point is also continueds»
with AUTO and both bifurcation curves are displayed in Fig. Gss
(light blue color lines). The curve for the double period orbitse
undergoes through a fold bifurcation where parameter b startseo

350

to increase until a second period-doubling is reached, and so
on (note that the unstable orbit is connected with bifurcated
orbits close to the fold on the right). This process only can
be detected using continuation techniques because the stable
region is very small and it has no real effects in the dynam-
ics. However, once the phenomenon is detected, the orbits
obtained can be carefully integrated to observe the chaotic be-
havior in that narrow parametric region (see red dots on the
IBD on the top picture of Fig. 6).

This canard-induced spike-adding mechanism had already
been discussed in the literature.!’»1317:1° Some micro-chaos
zones had already been detected and discussed in Ref. 12,
but for segments very close to the homoclinic bifurcation
curves, and not on the generic spike-adding process. Here
we observe how small chaotic windows are detected far
from the homoclinic skeleton. It follows that the fan of
bifurcations of periodic orbits extends widely in parameter
space. In fact, the chaotic window is associated with a cas-
cade of period-doubling. The tangled bifurcation diagram
formed by the codimension one bifurcations that arise from
the codimension-two homoclinic bifurcation points has been
discussed in Ref. 10, where it is also explained how the spike-
adding mechanisms fit into the whole web.

C. Hopf-induced continuous spike-adding

The Hindmarsh-Rose model presents a variation of con-
tinuous spike-adding, where bistability and canards are not
present. The spike-adding occurs without the periodic orbits
losing their stability, but still increasing their length by adding
an extra cycle to their turns around the fast manifold.

Unlike what happens in the fold/hom cases, in the pro-
cess of Hopf-induced spike-adding, period-doubling and fold
bifurcations do not appear. Neither is chaotic behavior ob-
served, nor do canards emerge. The complete process is
shown in Fig. 7, presenting again in the central panel the con-
tinuation bifurcation diagram of segment R1b of Fig. 2. The
coloured squares mark the points in the diagram correspond-
ing to the selected values. For these values, the stable pe-
riodic orbits are shown over the slow .#,,, and fast .# s
manifolds (see Fig. 1 for more details). As shown in Fig. 7,
the process is straightforward. That is, what happens in this
case is that, as b decreases, almost the entire orbit is moving
toward smaller values of z. But the point of re-entry of the
orbit around the fast manifold, after passing through the sta-
ble lower branch of the slow manifold, does not move. This
means that more space is generated in the corner of the slow
manifold where the upper saddle-node is located. Thus, there
comes a time when there is room for a new spike in the orbit,
which is occupied. As b continues to decrease, the displace-
ment of most of the orbit continues, causing the amplitude of
the new spike to increase. Along the continuation of the bifur-
cation line we observe how periodic orbits with thirteen spikes
move to the left so that space is generated for the appearance
of a new spike on the right side of the orbit giving rise to a
burster with fourteen spikes instead of thirteen. If b contin-
ues to decrease sufficiently, this spike-adding process will be
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FIG. 5. Evolution of periodic orbits throughout the process of canard-induced continuous spike-adding. Central picture shows the bifurcation
diagram obtained by continuation (AUTO) corresponding to the segment R2 in Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. For these values, the periodic orbits (solid line for stable, and dashed for unstable ones) are shown over
the slow and fast manifolds (.#;,,, and .# s, see Fig. 1 for more details). The grey arrow indicates the direction in the process of adding a
new spike. In the upper left corner of the central picture, all the selected orbits are represented together to see their relative position. Along
the continuation of the bifurcation line we observe periodic orbits with two spikes, later headless canards (orbits numbered with -c-), canards

with head (-ch- orbits), and, finally, orbits with three spikes.

repeated in the same way. 369

As already mentioned in the introduction, any process ofizo
spike-adding where periodic orbits do not cross any bifurca=s7
tion, just a smooth change allowing an extra spike, will be72
referred as Hopf-induced, even in the case where the fast dy-73
namics does not correspond to a fold/Hopf bursting from the7s
Izhikevich classification. 375

In the Appendix we explain theoretically, using a simple®

model, how the number of spikes depends on the distance be-
tween the two saddle-node bifurcation points of the slow man-
ifold of equilibria .#;,,,. In the case of a fold/Hopf burster,
the number of spikes exhibited by an orbit is strongly linked to
the size of the oscillation region in the phase space. The trajec-
tory around the fast manifold is longer as greater is the width
of that region in the direction of variable z and that width cor-
responds to the distance between the saddle-node bifurcation
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FIG. 6. IBD (top) and continuation diagram (bottom) of a magnifi-
cation of segment R2. On the top picture, blue represents periodic
orbits with two spikes while red line represents periodic orbits with
three spikes and some bifurcated orbits from them coexisting with
the two spikes periodic orbits. In the pointed thin region there ex-
ists chaotic behavior (dotted red points) originated via a very narrow
period-doubling cascade.

points, at least for small values of € . As b decreases, that dis-
tance increases. To be precise, observe how the lower saddle-
node point moves to left as b decreases, but the upper one
seems to remain fixed.

I1l. TRANSITION SPIKE-ADDING STATES

In the previous section we have identified three differ-
ent spike-adding processes, namely, mechanisms induced by
chaotic behaviors, canard explosions or Hopf bifurcations.
Recall that the former is a discontinuous evolution, whereas
the latter two are continuous transitions. Now we explain how
the dynamics is transformed to change from one type to an-
other.

We begin by discussing the transition between the two types
of continuous spike-adding. In this case we cannot visually
identify a sharp border marking the passage from one to the
other. Fig. 8 shows the spike-adding process from bursting pe-
riodic orbits with 10 spikes to periodic orbits with 11 spikes
along the three small segments R3a, R3b and R3c (see Fig.
2). Along the first segment, the process clearly corresponds
to canard-induced continuous spike-adding. In the case of the
third segment, however, the process clearly is Hopf-induced**?
continuous spike-adding. It is evident that, between these twd**?
segments, a bifurcation has to occur that generates the change***
between both types of spike-adding. However, for this valuesos
of € we are not able to detect it numerically as the continu-sos

2 e 2 .
4 3
X X
0 0
1 1
2 2
2,3 4 2,3 4
16.3
i
16.1
15.9
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FIG. 7. Evolution of periodic orbits throughout the process of Hopf-
induced continuous spike-adding. Central picture shows the bifurca-
tion diagram obtained by continuation corresponding to the segment
R1b of Fig. 2. The coloured squares mark the points in the diagram
corresponding to the selected values. The stable periodic orbits are
shown over the slow .#,,, and fast .#,; manifolds. The grey
arrow indicates the direction in the process of adding a new spike.
Along the continuation of the bifurcation line we observe how pe-
riodic orbits with thirteen spikes move to the left so that space is
generated for the appearance of a new spike on the right side of the
orbit. Finally, periodic orbits have fourteen spikes.

ation software stops the calculation of the fold bifurcations.
We show an intermediate segment (R3b) where the passage
through the canard is not so apparent.

In order to illustrate more clearly the transition between
these two types of spike-adding, we study one case for a
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FIG. 8. Variations of the spike-adding processes along segments
R3a, R3b and R3c (Fig. 2). Along segment R3a (top) the spike-
adding is canard-induced, but along segment R3¢ (bottom) the bi-
furcation curve has been stretched and the spike-adding process is
Hopf-induced.

higher value of the small parameter (¢ = 0.05) to help in
the visualization. For this € value, the two fold bifurca-
tions involved in the spike-adding from 2 to 3 spikes between
fold/hom bursters that occur in the upper part of the region be-
low the homoclinics can be fully continued numerically. Fold
bifurcation curves are plotted in yellow in Fig. 9. They arise
from codimension-two bifurcation points located on the ho-
moclinic curves. Segments A and B cut both curves and, as it
can be seen on the bottom pictures, the spike-adding process
is canard-induced. If we compare the continuation bifurca-
tion curves (left pictures) for both segments, we can observe
how, as I decreases, the curve is stretched. As a consequence,
the two fold bifurcation curves get closer to each other, un-
til they reach a point (cusp bifurcation) where both coincide
and disappear. Segment C goes through that point. This is
the bifurcation point where canard-induced continuous spike-
adding ends to give rise to Hopf-induced continuous spike-
adding. Segments D and E cross this type of spike-adding, as
can be seen on bottom pictures.

Once we understand how a cusp bifurcation of periodic or-
bits allows us to explain the passage from a canard-induced
spike-adding towards a Hopf-induced type, we can conjecture
that this is what happens for smaller values of € and, in partic-
ular, in the case illustrated in Fig. 8, although the fold bifurca-
tion curves involved are not easy to detect and to continue. It
is important to remark here one main difference among both
continuous spike-adding phenomena: in the canard-induced
case the canard orbit in the process to obtain an extra spike
makes a “go-and-come-back” excursion, whereas in the Hopf-
induced case the orbit that is obtaining an extra spike grows
but it does not come back. This is clearly seen in Figures 8
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FIG. 9. Top: Biparametric bifurcation spike-counting diagram for
€ = 0.05. Different segments are selected to illustrate the evolution
from canard-induced continuous spike-adding (segments A and B) to
Hopf-induced continuous spike-adding (segments D and E) through
a cusp (segment C). Bottom: Left column shows bifurcation dia-
grams obtained by continuation corresponding to the selected seg-
ments. In the right column, some periodic orbits along the segment
are plotted together to see their relative position and shape. The col-
ors of the orbits correspond with coloured squares in the left bifurca-
tion diagrams.
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and 9.

As already mentioned, the transition from the region where
spike-adding is induced by chaotic dynamics to the zones ex-
hibiting continuous processes is determined, one way or an-
other, by the homoclinic skeleton of the model. Two cases
are clearly distinguished according to whether the dynamics
change to either a canard-mediated mechanism or a Hopf-
induced one.

If we pay attention to the transition towards a canard-
induced spike-adding, the homoclinic bifurcation curve it-
self becomes a sharp frontier with the region governed by
the chaotic machinery. Indeed, if we consider any horizon-
tal line in the parameter space such that it crosses the homo-
clinic curve, as the long segment R1 in discontinuous orange
in Fig. 2, the passage through the homoclinic curve is clearly
the event which marks the change of behavior. As illustrated
in Fig. 12, which is included in the Discussion section, the
spike-adding transition from 2 to 3 spikes consists of a chaotic
window (see Section II A), whereas in the passage from 3 to
4 spikes a bistability window is traversed (see Section IIB).
In between, the homoclinic curve is crossed, and large chaotic
windows are no longer observed to the left of such bifurcation.

The transformation of discontinuous spike-addings into
Hopf-induced ones is quite different. To describe how dynam-
ics evolve, we have selected a short segment in the parameter
space fixing I = 4.1 and b € [2.58,2.6]. We denote by P1 and
P2 the left and right ends, respectively (see Fig. 2). The tran-
sition process starts when the segment crosses an ultimate fan
of bifurcation curves of periodic orbits arising from the type-
C inclination-flip (IF) codimension-two homoclinic bifurca-
tion point located in the fold of the homoclinic curve (see the
theoretical unfolding®* and the numerically computed bifur-
cation curves displayed at the bottom-right panel in Fig. 10).
As showed at top panels of Fig. 10, for P1 and P2 we observe
a fold/Hopf and a fold/hom bursting, respectively. Some of
the changes that occur in the attractor can be seen in the IBD
bifurcation diagram (central panel of Fig. 10). By decreasing
parameter b, a bistability zone is detected, which leads to the
gaining of a new spike. It is formed as a consequence of the
passing through fold and period-doubling bifurcation curves.
Shortly after crossing this bistability zone, there is an abrupt
change in the number of spikes that precedes the entrance into
the domain of Hopf-induced spike-adding (see the green ver-
tical band in the IBD). The time series and the orbit exhibited
at the bottom-left panel in Fig. 10 show a phenomenon of in-
termittency where the fold/Hopf and the fold/Hom bursting al-
ternate (the sum of the spikes of both types explains the abrupt
jump observed in the IBD). We can understand this peculiar
behavior appealing to the fast-slow decomposition. Along the
transition from fold/Hopf to fold/hom bursting (see Fig. 1),
the 2D fast manifold of limit cycles becomes tangent to the
1D slow manifold of equilibria. Close to this tangency, orbits™®
can show the alternation between the two types of bursting,
exhibiting phases where the orbit follows the fast manifold upsor
to the Hopf bifurcation point and phases where orbits behaveses
as if the fast manifold were split. The presence of the pen-aes
cils of bifurcations that converge to the IF point helps in thisoo
mixed behavior. 501

10

2.58 2.585

2.59 b 2.595 2.6
2 PD
X
2
0 500 1000 1500

time

theoretical unfolding
PD

b=2.5885, |=4.1

PD

FIG. 10. Crossing the bridge between Hopf-induced (top-left) and
chaos-induced (top-right) spike-adding. Orbits correspond to points
P1 and P2, respectively, of Fig. 2. Inter-spike bifurcation diagram
for/ =4.1 and b € [2.58,2.6] is provided in central panel, where the
green vertical band separates the two types of spike-adding. Tran-
sition through the green band is illustrated at the bottom-left panel.
Bottom-right panel provides de location of P1 and P2, and also the
numerically calculated bifurcation curves and the theoretical unfold-
ing of a type-C inclination-flip.

IV. DISCUSSION

Throughout the previous sections we have provided a uni-
fied perspective of several of the spike-adding mechanisms
that are unfolded in the Hindmarsh-Rose model and the tran-
sitions that occur between the different types. Figure 11 pro-
vides a schematic illustration of the catalogue. Specifically,
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we have identified:

e Chaos-induced spike-adding: (translucent red region)
discontinuous spike-adding formed by isolas of burst-
ing periodic orbits with cascades of period-doubling bi-
furcations leading to chaos. This case corresponds to

the chaotic scenario studied by Terman®3.

e Canard-induced continuous spike-adding: (translu-
cent dark-blue region) continuous spike-adding created
in hysteresis areas limited by fold bifurcations of peri-
odic orbits and canards being involved in the genesis of
extra spikes.

e Hopf-induced continuous spike-adding: (translucent
pale-green region) continuous spike-adding with a Hopf
bifurcation being involved in the creation of new extra
spikes (see also Appendix).

e Transition spike-adding states: there are three pos-
sibilities. Translucent green strips shown in Fig. 11
correspond to the transition between Hopf-induced and
canard-induced continuous spike-addings near a cusp
bifurcation where two fold bifurcations of periodic or-
bits collapse. Sharp location is not possible because,
as already explained in Section III, the cusp points
are not easy to detect and, furthermore, they do not
form a continuous line as they appear just at isolated
points (they are codimension-two bifurcations). On the
contrary, the frontier in between chaos-induced spike
adding and the other two mechanisms is evident. The
black curve (homoclinic bifurcation) marks the transi-
tion to canard-induced spike-adding. The change from .
chaos- to Hopf-induced spike-adding involves bifulrca-557
tion curves of periodic orbits arising from codimension-558
two homoclinic bifurcations and it is clearly recogniz—559

able on the spike-counting bifurcation diagram. woo

Just as a summary of what is typically observed in numer-**

ical and experimental settings, Figure 12 shows a one param-"*
eter slice (line R1 in Fig. 2) where the three types of spike~**
adding detected in the model (chaos-induced discontinuous*®*
spike-adding (right), canard-induced continuous spike-adding*®
(middle) and Hopf-induced continuous spike-adding (left)ypee
and two transitions in between are observed. In the plot ags”
the top (a), the interspike-interval bifurcation diagram (IBD e
shows clearly the number of spikes and the time length amongs®
spikes. Red color represents coexistence of two periodic at57°
tractors with n and n+ 1 spikes. The bottom plot (b) present$7
the parametric evolution of the periodic orbits using contin#72
uation techniques. The figure shows the || - || norm of the?s
periodic orbit along the selected segment R1. In the contin#74
uation line, the blue color line changes from Hopf-induced?®
continuous spike-adding (left part) to canard-induced contin57¢
uous spike-adding (middle part). Note that, on the right sidesz
the purple color line represents an isola (simple closed curveszs
in the corresponding slice) of 3-spikes periodic orbits andse
green and other colors represent the basic 2-spikes periodic orsso
bit and its period-doubling bifurcated orbits on the region ofs:

11

4.5 T ;
=== homoclinic bifurcation

[ ] chaotic behaviour

Spike-Adding
- (Hopf-induced)

2.5

23 24 25 26 27

28 29 3 3.1
b

FIG. 11. Classification scheme of regions with different type of
spike-adding process superimposed on the biparametric bifurcation
spike-counting diagram for € = 0.01. White color represents re-
gions with chaotic behavior; different shades of gray represent re-
gions with periodic orbits with different number of spikes; translu-
cent colors represent (schematically) regions with different types of
spike-adding. The homoclinic bifurcation (black curve) marks the
boundary between the region with discontinuous spike-adding and
the other regions.

chaos-induced discontinuous spike-adding. We can also ob-
serve how the change from the discontinuous spike-adding to
the continuous spike-adding occurs sharply when crossing the
homoclinic curve. On the other hand, while canard-induced
continuous spike-adding is occurring, the segment R1 crosses
bistability wedges, limited by a fold point and the first period-
doubling bifurcation. When the last wedge has been crossed,
the spike-adding mechanism changes to Hopf-induced. Note
that bistability regions are only present in the canard-induced
continuous spike-adding.

Fig. 12 also shows the vertical line (b = 2.67434) that, ac-
cording to the fast-slow dynamics and the Izhikevich classifi-
cation, corresponds to the passage from fold/hom to fold/Hopf
bursting. Namely, in the biparametric plane (b,1), the verti-
cal line b = 2.67434 is tangent to the homoclinic bifurcation
curve for the fast subsystem at the point where the curve folds
in the b-direction. Of course, since this useful classification is
based on the limit case (€ = 0), this theoretical frontier works
the better as smaller the value of € is and, in fact, already for
€ =0.01 we observe how the Izhikevich criterion is no longer
applicable in some regions.

Indeed, paying attention to the cascade of bifurcations
shown at panel (b) of Fig. 12, it is still observed how on the left
side of the vertical line of homoclinic folding, the canards are
involved in the genesis of new spikes. On this side, the Izhike-
vich analysis classifies the bursting as fold/Hopf, but this only
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FIG. 12. Analysis of transitions along segment R1 (in Fig. 2) with € = 0.01, / = 2.75 and b as bifurcation parameter. (a) Interspike-interval
bifurcation diagram (IBD). Red color represents coexistence of two periodic attractors with n and n+ 1 spikes. Panel (b) shows the || - ||, norm
of the periodic orbit along the process, obtained with continuation techniques (AUTO). Purple represents an isola of 3-spikes periodic orbits;
the continuous spike-adding process is shown in blue; green and other colors represent the basic 2-spikes periodic orbit and its period-doubling
bifurcated orbits. More details are given in the text. Panel (al) illustrates one example of the limits with Izhikevich’s classification.

manifests for smaller values of parameter b (on the left-sidese:
of the cusp bifurcation line, to be precise). The reason lieso:
in the fact that for a higher dimensional parameter space, like
in a three-dimensional bifurcation diagram including &, them

transition bifurcation surfaces exhibit some inclination, that is,

they are not completely vertical (see recent Ref. 10 for a com-:::
plete three dimensional analysis). Panel (al) in Fig. 12 illus—597
trates with an example the limitations with Izhikevich’s clas—598
sification. Superimposed on the fast-slow decomposition, a_

bursting orbit is shown. Fast-slow decomposition is fold/Hopf

type, but bursting is clearly of fold/hom type.

From a practical point of view, we may have the following
question: how does this study help in biological settings? In
fact, the main point is to consider what phenomena we can
expect. Obviously, it is not possible to determine the spike-
adding mechanisms that a neuron experiences only with ex-
perimental data. Nevertheless, the visualization of a bursting
orbit and the information obtained from biparametric maps
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arising in simpler models can help us to point to one type oOmss
another. That is, if a square-wave bursting solution (fold/homnsse
case) is observed, we should have in mind two possible spike-ssz
adding mechanisms: canard-induced or chaos-induced. If ex-sss
perimentation shows abrupt changes in the number of spikessgso
we can suspect that there is a hysteresis phenomenon andseo
that the dynamics have been captured by an alternative staee
ble branch, so we identify a canard-induced spike-addingss:
The recognition of this mechanism should move researcheises
to look for the coexisting stable orbit since bistability is, irses
many cases, a desirable feature of a neuron and may have bi-es
ological consequences*~37. On the contrary, if some chaoticses
phenomenon is detected, we can suspect the existence of iS0-eez
las and that the spike-adding processes may involve transises
tions through chaotic windows®. Furthermore, there are ex-ses
amples in the literature of experiments with neurons exhibit-szo
ing comb-shaped biparametric structures associate to chaosez
induced mechanisms*#!. In these examples, the use of biwsr
parametric maps helps to explain the results. The appearanceszs
of fold/Hopf bursting orbits is the signal that either bistabile7a
ity or chaos are over and the spike-adding becomes a smooth
process. The above ones are not the only precursors of the
different phenomena. For example, a bursting orbit that sud-ezs
denly lengthens and then returns, but with an extra spike, can
be identified with the presence of a canard phenomenon and,,
bistability. 677
From a mathematical point of view, once the global struc-,,
ture is clear, one can think of obtaining analytical proofs to ex,,
plain how the different processes and transformations emerge,,,
from the singular limit using, for instance, the techniques in-,,
troduced by P. Carter®>?”. We also remark that, taking intq,,,
account that the codimension-two points are organizing cen,,
ters for key bifurcations involved in some of the processes
and transitions analysed in this paper, it should be interesting
to study the existence of codimension-three points unfolding,,,
these codimension-two bifurcations, but we have to move into
a three-parametric space, like in Ref. 10, and this is part of our

future research.
686

687

V. CONCLUSIONS 688
689

690
Neural communication takes place through action poten,,

tials or spikes. In addition, it is when the spikes travel ire:
packets that the exchange of information is more fluent ande3
efficient. The number and tempo of the spikes in each burst®*
are main ingredients to build neural messages. These are: ::
the reasons that justify the importance of the analysis of the,,
spike-adding mechanisms. In this paper we deal with burstinges
in single-neurons activity. Among the most popular modelsge®
we choose the Hindmarsh-Rose, as it is the simplest one that®®
is able to exhibit bursting behavior. We show and classify,,,
the different mechanisms of spike-adding: chaos-inducedyes
canard-induced and Hopf-induced. Besides, we study theros
transition mechanisms from one type of spike-adding process®
to another. -

The above processes involve bistable and chaotic regimes.,qq
As already mentioned, bistability is a profitable character-os

13

istic for a neuron and chaotic behaviors are commonly ob-
served in experiments with real neurons in the laboratory, as
in Refs. 38—41. Our theoretical results motivate the interest
for discovering new mechanisms in the context of the cited
experiments.

Spike-adding maps provide us with information on how we
should move in the parameter space depending on whether we
want our neuron to exhibit one or another spike-adding mech-
anism. These maps are common in the literature and simi-
lar chaotic zones and spike-adding stripes have been found
for other realistic fold/hom bursting models, including the
leech heart interneuron model*? and the pancreatic 3-cell neu-
ron model*3, among others. Therefore, for future research,
it would be interesting to explore whether this classification
is valid in other models exhibiting fold/hom and fold/Hopf
bursting, where we sincerely believe that this is the case. And
what is more challenging, Izhikevich’s catalogue for the types
of bursting is extensive and one must wonder what spike-
adding mechanisms are available in each case and also what
are the transition dynamics.
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APPENDIX 88

In this Appendix we just show analytically, with a simple
example, how an increase in the distance between the saddle-
node bifurcations of equilibria in the fast subsystem of the HR
model allows the increment of the number of spikes, and so,
it generates the Hopf-induced spike-adding process.

Let us consider the following family of vector fields: 788

¥ = —zx—oy—Lx(x* +y?), 789
y = ox—zy—Ly(x*+y%), (A.1y
Z/ — 8. 791

This is a toy-model for a Hopf bifurcation, where the bifurca-,

tion parameter z varies with respect to time at a constant ratio,,
€, which we assume to be a small parameter (¢ < 1). Coeffi-

14

28 and we

cient L corresponds to the first Lyapunov coefficien
assume that L > 0.
Using polar coordinates x = rcos 8, y = rsin 0 in (A.1), we

get:

¥ o= —zr—Lr3,
0 — o (A2)
7 = e

Let
¢(t,r0,60,20) =
((pr<t7r0a BOaZO)a (pe(t7r07 607Z0); (Pz<t7r0a 90;20))
be the flow defined by equations (A.2). Clearly,

¢9(f770790,Z0) = 9()+wl,
(Pz(t7r07607Z0) :ZO+8t.

Fixing time ¢t = %” and angle 6y = 0 we get the first return
map P from the half-plane 6y = O on itself. Namely,

P(ro,20) = (P"(ro,20), P*(r0.20))
with
2n
P’ (ro,20) = @" (w,FO,O,Z())

and

2 2me
PZ(rO7Z0) = (pZ (a)7r070520) =20+ 7

In what follows, we assume that
(}’0,1()) € [OaR] X {_6}7
for some 6 > 0 and R >

(rszn) = ((P")"(r0,20), (P*)"(r0,20))-

Constant § stands for the maximum allowed change in pa-
rameter z. We say that the orbit of the point (ry,0,z9) has N
spikes if NV is the maximum number of iterations of the first re-
turn map which remain in the rectangle [0,R] x [—§, 8]. Since

%, and define

R > \/g , it follows by construction that r, < R for all n € N.
On the other hand

2mEN
in = _6 + )
0]
and, in order to have z, > 8, the condition
Sw
n>—,
e

must be fulfilled. We obtain the expected results, that is, the
number n of allowed spikes increases as either § or the rota-
tion speed ® increase. Bearing in mind the Hindmarsh-Rose
model, the number of spikes in the fold/Hopf bursting in-
creases as the distance (measured in the z-direction) between
the two saddle-node bifurcation points in the fast subsystem
(24 in the toy model) increases.





