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We classify all the 6-dimensional unimodular Lie algebras g admitting a complex structure 
with non-zero closed (3, 0)-form. This gives rise to 6-dimensional compact homogeneous 
spaces M = �\G , where � is a lattice, admitting an invariant complex structure with 
holomorphically trivial canonical bundle. As an application, in the balanced Hermitian case, 
we study the instanton condition for any metric connection ∇ε,ρ in the plane generated by 
the Levi-Civita connection and the Gauduchon line of Hermitian connections. In the setting 
of the Hull-Strominger system with connection on the tangent bundle being Hermitian-
Yang-Mills, we prove that if a compact non-Kähler homogeneous space M = �\G admits 
an invariant solution with respect to some non-flat connection ∇ in the family ∇ε,ρ , then 
M is a nilmanifold with underlying Lie algebra h3, a solvmanifold with underlying algebra 
g7, or a quotient of the semisimple group SL(2, C). Since it is known that the system can 
be solved on these spaces, our result implies that they are the unique compact non-Kähler 
balanced homogeneous spaces admitting such invariant solutions. As another application, 
on the compact solvmanifold underlying the Nakamura manifold, we construct solutions, 
on any given balanced Bott-Chern class, to the heterotic equations of motion taking the 
Chern connection as (flat) instanton.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Complex manifolds with holomorphically trivial canonical bundle, possibly endowed with a special Hermitian metric, 
play a relevant role both in geometry and in theoretical physics. An important source of these distinguished manifolds 
is provided by certain quotients of Lie groups G by cocompact lattices �, more specifically, by 2n-dimensional compact 
homogeneous spaces M = �\G endowed with an invariant complex structure with holomorphically trivial canonical bundle. 
By the latter we mean that the (unimodular) Lie algebra g of G has a complex structure with non-zero closed (n, 0)-form. 
For instance, when M is a nilmanifold, i.e. G is nilpotent, a result of Salamon [30] ensures that any invariant complex 
structure on M possesses a non-zero (n, 0)-form which is closed.

In this paper we are interested in the complex dimension three, mainly due to its relation to the Hull-Strominger system. 
The precise definition of the system is given below and at this point we just recall that its solutions require in particular a 
compact complex manifold X = (M, J ) with non-vanishing holomorphic (3, 0)-form �. When M = �\G is a 6-dimensional 
nilmanifold and J is invariant, the problem of determining which nilpotent Lie algebras g admit a complex structure was 
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completely solved in [30]. Furthermore, the unimodular solvable Lie algebras g of dimension 6 that admit a complex struc-
ture with non-zero closed (3, 0)-form are classified in [10], together with the existence problem for several special classes 
of Hermitian metrics. Our first goal in this paper is to complete these previous results by extending the classification to any 
unimodular Lie algebra in six dimensions.

In Section 2 we study the existence of complex structures with non-zero closed (3, 0)-form on Lie algebras g of real 
dimension 6 which are unimodular and non-solvable. Different approaches are followed depending on the decomposability 
of the algebra g, but in any case our study relies on the analysis of stable forms in six dimensions [19]. The main result 
is an uniqueness theorem in this setting, namely that so(3, 1), i.e. the real Lie algebra underlying sl(2, C), is the only Lie 
algebra admitting this kind of complex structures (see Theorem 2.9). For completeness, in the Corollaries 2.10, 2.11 and 2.12
we collect this new result together with other known results to provide classifications of 6-dimensional unimodular Lie 
algebras admitting complex structures J with non-zero closed (3, 0)-form, as well as of those having balanced Hermitian 
metrics.

As a first application of the above classification, we study the existence of invariant solutions of the Hull-Strominger 
system with connection ∇ on the tangent bundle being Hermitian-Yang-Mills. Such solutions satisfy the heterotic equa-
tions of motion. In Section 3 we review the definition and several important results about the system found in 
[1,4–9,14–16,18,20–22,27,32]. In particular, in [8] invariant solutions of the heterotic equations of motion were first ob-
tained on a nilmanifold with underlying Lie algebra h3, whereas in [27] new solutions were found on a solvmanifold with 
underlying algebra g7 and on the quotient of the semisimple group with Lie algebra so(3, 1). In all these solutions, ∇ is 
taken as the Strominger-Bismut connection [3], which is a non-flat instanton. Moreover, it was conjectured in [27, Section 
7] that these are the only spaces admitting such solutions; more concretely, if a compact non-Kähler homogeneous space 
M = �\G admits an invariant solution of the heterotic equations of motion with slope parameter α′ > 0 and with respect to 
some non-flat connection ∇ in the ansatz ∇ε,ρ , then ∇ is the Bismut connection and M is one of the three spaces above.

The connections ∇ε,ρ constitute a plane of metric connections where important connections proposed for the anomaly 
cancellation equation live: the Levi-Civita connection ∇ LC = ∇0,0, the Hull connection ∇− = ∇− 1

2 ,0, the Chern connection 
∇c = ∇0, 1

2 and the Strominger-Bismut connection ∇+ = ∇ 1
2 ,0, so also the Gauduchon line ∇τ of Hermitian connections [17]

joining ∇+ and ∇c (see Section 3 for details). In Sections 4 and 5 we prove the following result related to this conjecture, 
which is valid independently of the sign of the slope parameter α′: let M = �\G be a 6-dimensional compact manifold 
defined as the quotient of a simply connected Lie group G by a lattice � of maximal rank, and suppose that M possesses 
an invariant complex structure J with non-zero closed (3, 0)-form admitting an invariant balanced metric F . If some ∇ε,ρ

in the associated (ε,ρ)-plane of metric connections is a non-flat instanton, then the Lie algebra of G is isomorphic to h3, 
g7, or so(3, 1) (see Theorem 3.5). For the proof, we study the nilpotent case in Section 4, whereas Section 5 is devoted to 
the class of solvmanifolds.

As a second application, we consider the Chern connection to construct solutions on the Nakamura manifold with given 
balanced class. In greater detail, in Section 6 we take X as the compact complex manifold defined by the Nakamura manifold 
endowed with its abelian complex structure, and provide solutions of the heterotic equations of motion in the Bott-Chern 
class of any given invariant balanced metric F . More concretely, in Theorem 6.2 it is proved that given any such F , there 
always exists another balanced metric F̃ with [ F̃ 2] = [F 2] ∈ H2,2

BC (X, R) and a non-flat instanton solving the heterotic equa-
tions of motion with respect to the (flat) Chern connection associated to F̃ .

2. Complex structures with closed (3, 0)-form on non-solvable spaces

In this section we study the existence of complex structures with non-zero closed (3, 0)-form on Lie algebras g of 
real dimension six. Since the nilpotent and the solvable unimodular cases have been studied respectively in [30] and [10], 
we will focus on the non-solvable unimodular setting. The conclusion will be that only so(3, 1) admits this special type of 
complex structures. For completeness, in Section 2.5 we collect this new result together with other known results to provide 
classifications for Lie algebras (see Corollary 2.10) and for compact homogeneous spaces with balanced Hermitian metrics 
(see Corollary 2.12).

We will use different approaches depending on the decomposability of the algebra g, but in any case our study relies on 
the analysis of stable forms in six dimensions.

2.1. Stable forms in dimension six

Stable forms on 6-dimensional vector spaces were widely studied in [19]. We recall the basic properties omitting details 
which can be found in the referred paper.

Let (V , ν) be an oriented six-dimensional real vector space, being ν ∈ ∧6 V ∗ a fixed volume form of V . A three-form 
ρ ∈ ∧3 V ∗ is stable if its orbit under the action of GL(V ) is open.

Stability can be characterized algebraically in the following way. Let κ : ∧5 V ∗ → V ⊗∧6 V ∗ be the canonical isomorphism 
κ(ξ) = v ⊗ ν , with ιvν = ξ , and define
2
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Kρ(v) := κ(ιvρ ∧ ρ) ∈ V ⊗ ∧6 V ∗, v ∈ V ,

λ(ρ) := 1
6 tr(K 2

ρ) ∈ (∧6 V ∗)⊗2.

Then, ρ is stable if and only if λ(ρ) 	= 0. A stable three-form ρ defines a specific volume form

φ(ρ) = √|λ(ρ)| ∈ ∧6 V ∗

and an endomorphism given by Jρ := 1
φ(ρ)

Kρ .
It turns out that Jρ is an almost complex structure if and only if λ(ρ) < 0. In this case we say that Jρ is the almost 

complex structure induced by ρ . The dual almost complex structure, which along this paper we will denote again by Jρ
(instead of J∗

ρ ), acts on one-forms by the following formula

( Jρα)(v)φ(ρ) = α ∧ ιvρ ∧ ρ, α ∈ V ∗, v ∈ V . (1)

In addition, the complex three-form � = ρ + i Jρρ has bidegree (3, 0) with respect to Jρ .
Now, let g be a 6-dimensional Lie algebra and J an almost complex structure on g, i.e. J is an endomorphism J : g −→ g

satisfying J 2 = −Idg . The almost complex structure J is called integrable if it has no torsion, i.e. its Nijenhuis tensor

N J (X, Y ) = [ J X, J Y ] − J [X, J Y ] − J [ J X, Y ] − [X, Y ], X, Y ∈ g, (2)

vanishes identically. We are concerned with complex structures satisfying the stronger condition given by the existence of 
a non-zero closed (3, 0)-form. As all of them arise from closed stable three-forms ρ ∈ ∧3g∗ , we will proceed as follows.

Let ρ be a generic closed three-form on the Lie algebra g. Recall that the differential d is induced from the formula

dα(X, Y ) = −α([X, Y ]), α ∈ g∗, X, Y ∈ g. (3)

Now, consider the endomorphism J̃ρ defined by acting on one-forms as follows

(
( J̃ρα)(X)

)
ν = α ∧ ιXρ ∧ ρ, α ∈ g∗, X ∈ g, (4)

where ν ∈ ∧6g∗ is a fixed volume form of g. From (1) and (4) we have that the endomorphisms J̃ρ and the dual of Kρ

coincide. Then we define λ̃(ρ) as the scalar given by

λ̃(ρ)ν⊗2 = λ(ρ) = 1

6
tr(K 2

ρ ) = 1

6
tr( J̃ 2

ρ ).

When λ̃(ρ) < 0 and d( J̃ρρ) = 0 we get an almost complex structure Jρ on g with non-zero closed (3, 0)-form � = ρ +
i Jρρ . It is straightforward that the condition d� = 0 implies that the differential of any (1,0)-form has vanishing (0,2)-
component, which in turn is equivalent to the Nijenhuis tensor (2) of Jρ being identically zero, i.e. Jρ is integrable.

As a consequence, in order to prove that a given Lie algebra g does not admit any complex structure with closed (3, 0)-
form, it is enough to show that, for any closed ρ ∈ ∧3g∗ , one gets tr( J̃ 2

ρ ) ≥ 0 whenever J̃ρρ is closed. However, this 
condition becomes very intricate to deal with in the case of non-solvable 3 ⊕ 3 decomposable Lie algebras, and we will use 
instead the fact that the almost complex structures Jρ satisfying N Jρ = 0 would induce a family of linear endomorphisms 
on the first 3-dimensional factor which are not torsion free, so contradicting the existence of such a Jρ (see Section 2.3 and 
the proof of Proposition 2.4 for the precise argument).

As it is explained in the introduction, we are interested in the geometry of compact complex manifolds of the form 
M = �\G , where � is a lattice, endowed with an invariant complex structure with holomorphically trivial canonical bundle. 
Hence, if g is the Lie algebra of G , in addition to have a complex structure with non-zero closed (3, 0)-form, g must be 
unimodular due to a well-known result by Milnor [25] (see also [10] for other necessary conditions on the cohomology of 
g).

2.2. Six-dimensional unimodular non-solvable Lie algebras

In this section we recall the different classes of unimodular non-solvable Lie algebras in six dimensions. When the Lie 
algebra is decomposable, i.e. g = ⊕n

j=1 g j , the unimodularity of g requires the unimodularity of every summand g j . Taking 
this fact into account, together with the lists of non-solvable Lie algebras up to dimension 5 (see [31, Table 1] and [12, Table 
2]), one has the following classification of decomposable unimodular non-solvable Lie algebras of dimension six:
3
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sl(2,R) ⊕R3 = (e23, −e13, −e12, 0, 0, 0),

sl(2,R) ⊕ h3 = (e23, −e13, −e12, 0, 0, e45),

sl(2,R) ⊕ e(1,1) = (e23, −e13, −e12, 0, −e46, −e45),

sl(2,R) ⊕ e(2) = (e23, −e13, −e12, 0, −e46, e45),

sl(2,R) ⊕ sl(2,R) = (e23, −e13, −e12, e56, −e46, −e45),

sl(2,R) ⊕ so(3) = (e23, −e13, −e12, e56, −e46, e45),

so(3) ⊕R3 = (e23, −e13, e12, 0, 0, 0),

so(3) ⊕ h3 = (e23, −e13, e12, 0, 0, e45),

so(3) ⊕ e(1,1) = (e23, −e13, e12, 0, −e46, −e45),

so(3) ⊕ e(2) = (e23, −e13, e12, 0, −e46, e45),

so(3) ⊕ so(3) = (e23, −e13, e12, e56, −e46, e45),

A5,40 ⊕R= (2e12, −e13, 2e23, e24 + e35, e14 − e25, 0).

(5)

All the Lie algebras in (5) are 3 ⊕ 3 decomposable except A5,40 ⊕R, which is 5 ⊕ 1 decomposable. For the description of 
the structure of each Lie algebra we are using the exterior derivative d instead of the Lie bracket due to the formula (3). In 
greater detail, for instance the notation sl(2, R) ⊕R3 = (e23, −e13, −e12, 0, 0, 0) means that the Lie algebra has a basis of 
one-forms {e j}6

j=1 such that

de1 = e2 ∧ e3, de2 = −e1 ∧ e3, de3 = −e1 ∧ e2, de4 = de5 = de6 = 0.

In the indecomposable case, we are taking the classification from [13, Table 2], so up to isomorphism one has the 
following list of indecomposable unimodular non-solvable Lie algebras in six dimensions:

L6,1 = (e23, −e13, e12, e26 − e35, −e16 + e34, e15 − e24),

L6,2 = (e23, 2e12, −2e13, e14 + e25, −e15 + e34, e45),

L6,4 = (e23, 2e12, −2e13, 2e14 + 2e25, e26 + e34, −2e16 + 2e35),

so(3,1) = (e23 − e56, −e13 + e46, e12 − e45, e26 − e35, −e16 + e34, e15 − e24).

(6)

If we remove the unimodularity condition, then another Lie algebra, labeled as L6,3, appears. It turns out that this algebra 
has complex structures with non-zero closed (3, 0)-form (see Remark 2.7 for details), however no compact quotient of the 
corresponding simply-connected Lie group by a lattice exists.

It is well-known that so(3, 1) admits complex structures with closed (3, 0)-form:

Example 2.1. The real Lie algebra so(3, 1) underlies the 3-dimensional complex Lie algebra sl(2, C) given by the complex 
structure equations

dω1 = ω23, dω2 = −ω13, dω3 = ω12. (7)

To see it, it suffices to check that the complex one-forms {ωk}3
k=1 are forms of bidegree (1, 0) with respect to an almost 

complex structure on so(3, 1). Let J be the almost complex structure on so(3, 1) defined, in terms of the real basis {e j}6
j=1

given in (6), by

J e1 = e4, J e2 = e5, J e3 = e6, J e4 = −e1, J e5 = −e2, J e6 = −e3.

Now, consider the (1, 0)-forms with respect to J given by ω1 = e3 − ie6, ω2 = e1 − ie4, and ω3 = e2 − ie5. A direct calculation 
shows that ω1, ω2, ω3 satisfy (7) and, as J is complex parallelizable, the (3, 0)-form � = ω123 is closed. Note that J
corresponds to the closed stable three-form ρ = e123 − e156 + e246 − e345 ∈ ∧3so(3, 1)∗ .

2.3. The decomposable case

When the Lie algebra is decomposable we will use the observation in [23, Lemma 1] that the integrability of J induces 
a torsion free endomorphism on every summand.

By definition, a torsion free endomorphism on a Lie algebra h is a vector space homomorphism F : h → h satisfying 
N F (X, Y ) = 0 for any X, Y ∈ h, where

N F (X, Y ) = [F X, F Y ] − F [X, F Y ] − F [F X, Y ] − [X, Y ]. (8)

Note that the identically zero endomorphism F ≡ 0 has zero torsion if and only if the Lie algebra h is abelian, and that 
there are Lie algebras not admitting any torsion free endomorphism.
4
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Now, let g = ⊕n
j=1 g j be a decomposable Lie algebra, and denote by i j : g j → g and π j : g → g j the natural inclusion and 

projection, respectively, for every j-th summand. Let J : g → g be an almost complex structure on g and define, for every j
with 1 ≤ j ≤ n, the endomorphism F j = π j ◦ J ◦ i j : g j → g j .

Suppose that J is integrable, i.e. the Nijenhuis tensor N J ≡ 0. Taking the projection on every summand g j , it follows 
from (2) that

[π j J X,π j J Y ]g j − π j J ([X,π j J Y ]g j ) − π j J ([π j J X, Y ]g j ) − [X, Y ]g j = 0

for any X, Y ∈ g j . Therefore, the endomorphism F j : g j → g j satisfies N F j ≡ 0, so we have:

Lemma 2.2. [23] If J : g → g is integrable, then F j : g j → g j is a torsion free endomorphism for every j.

This will be particularly useful in the case of 3 ⊕ 3 decomposable Lie algebras. As a first step we have the following 
lemma stating that certain endomorphisms of the Lie algebras sl(2, R) and so(3) are not torsion free.

Lemma 2.3. For any A, B, C, λ, μ, τ ∈R, we have:

(i) The endomorphism F : sl(2, R) → sl(2, R) defined by the coordinate matrix

F =
⎛
⎝ λ A B

A μ C
−B −C τ

⎞
⎠ , (9)

in the basis {ek}3
k=1 with brackets [e1, e2] = e3, [e1, e3] = e2, [e2, e3] = −e1 , is not torsion free.

(ii) The endomorphism F : so(3) → so(3) defined by the coordinate matrix

F =
⎛
⎝ λ A B

A μ C
B C τ

⎞
⎠ , (10)

in the basis {ek}3
k=1 with brackets [e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = −e1 , is not torsion free.

Proof. We prove only the first statement as the second follows an analogous argument. In the first case, by (8) we have 
that the torsion free condition for F is equivalent to

0 = N F (e1, e2) = 2(AC − Bμ)e1 + 2(AB − λC)e2 − (1 + A2 + B2 + C2 − λμ + λτ + μτ)e3,

0 = N F (e1, e3) = −2(Aτ + BC)e1 − (1 − A2 − B2 + C2 + λμ − λτ + μτ)e2 − 2(AB − λC)e3,

0 = N F (e2, e3) = (1 − A2 + B2 − C2 + λμ + λτ − μτ)e1 + 2(Aτ + BC)e2 + 2(AC − Bμ)e3.

We will arrive to a contradiction assuming that F is torsion free. From

0 = e3(N F (e1, e2)) + e2(N F (e1, e3)) = 2(1 + C2 + μτ),

we get that μτ < 0 (in particular μ, τ 	= 0). So, from the equation 0 = e1(N F (e1, e2)) = 2(AC − Bμ) we have B = AC
μ , and 

substituting in 0 = e1(N F (e1, e3)) = −2(Aτ + BC) we get A(C2 + μ τ ) = 0, which implies A = 0 because C2 + μ τ = −1. As 
A = 0, then B = 0.

Now, from

0 = e2(N F (e1, e3)) + e1(N F (e2, e3)) = 2(1 + λμ),

we get λμ = −1. In particular λ 	= 0 and we obtain C = 0 from the equation e3(N F (e1, e3)) = 0.
Finally, from the equation e2(N F (e1, e3)) = 0 we get τ (λ − μ) = 0, so λ = μ. But this implies λμ = λ2 > 0, contradicting 

that λμ = −1. �
In the following result we consider g = g1 ⊕ g2 as any of the 3 ⊕ 3 decomposable Lie algebras in (5). We shall prove that 

for any closed three-form ρ on g, if λ(ρ) < 0 then the almost complex structure Jρ induces an endomorphism on g1 which 
is not torsion free.

Proposition 2.4. The 3 ⊕ 3 decomposable unimodular non-solvable Lie algebras do not admit any complex structure with non-zero 
closed (3, 0)-form.
5
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Proof. The 3 ⊕ 3 decomposable unimodular non-solvable Lie algebras are given in (5), and they split as g = g1 ⊕ g2, where 
g1 is either sl(2, R) or so(3), and g2 runs the following list: R3, h3, e(1, 1), e(2), sl(2, R), so(3). Hence, we distinguish two 
cases depending on the first summand:

• The case g = sl(2, R) ⊕ g2. We show the details of the proof for the Lie algebra g2 =R3. Firstly, any closed three-form 
ρ on the Lie algebra sl(2, R) ⊕R3 is given by

ρ = a1e123 + a2e124 + a3e125 + a4e126 + a5e134 + a6e135 + a7e136 + a8e234 + a9e235

+ a10e236 + a11e456,

where a1, . . . , a11 ∈R. Taking the volume form ν = e123456 we consider the endomorphism J̃ρ defined by (4).
Suppose that λ̃(ρ) < 0, i.e. we get that Jρ is an almost complex structure on g. We define the linear endomorphisms 

Fρ = π1 ◦ Jρ ◦ i1 and F̃ρ = π1 ◦ J̃ρ ◦ i1 on sl(2, R) induced by Jρ and J̃ρ , respectively. Recall that Jρ = |λ̃(ρ)|−1/2 J̃ρ , so Fρ

is also a multiple of F̃ρ , i.e.

Fρ = |λ̃(ρ)|−1/2 F̃ρ.

By a direct calculation one gets that the induced endomorphism F̃ρ of sl(2, R) is given by (9) with the values A = B = C = 0
and λ = μ = τ = −a1a11, so Fρ : sl(2, R) → sl(2, R) is given by the values λ, μ, τ , A, B, C multiplied by the constant 
|λ̃(ρ)|−1/2, and therefore Fρ belongs to the same family of linear endomorhisms defined by (9). Now, we can apply 
Lemma 2.3 to conclude that Fρ is not torsion free. This fact, together with Lemma 2.2, implies that Jρ is not torsion 
free as well. In particular, the latter excludes the existence of a complex structure with closed (3, 0)-form on sl(2, R) ⊕R3.

For the remaining cases for g2, the proofs follow similar arguments but taking into account the corresponding values 
λ, μ, τ and A, B, C provided in Table 1 in the Appendix.

• The case g = so(3) ⊕g2. As in the previous case, we show the details of the proof for the particular Lie algebra g2 = h3. 
A generic closed three-form ρ on the Lie algebra so(3) ⊕ h3 is given by

ρ = a1e123 + a2e124 + a3e125 + a4e134 + a5e135 + a6e234 + a7e235 + a8(−e145 + e236)

+ a9(e136 + e245) + a10(−e126 + e345) + a11e456,

where a1, . . . , a11 ∈ R. Consider the endomorphism J̃ρ defined by (4) with respect to the volume form ν = e123456. Then, 
one gets that the induced endomorphism F̃ρ = π1 ◦ J̃ρ ◦ i1 : so(3) → so(3) is given by (10) with the values A = −2a8a9, 
B = −2a10a8, C = 2a10a9, and

λ = −a2
10 − a1a11 + a2

8 − a2
9, μ = −a2

10 − a1a11 − a2
8 + a2

9, τ = a2
10 − a1a11 − a2

8 − a2
9.

Hence, applying Lemma 2.3 the endomorphism Fρ = |λ̃(ρ)|−1/2 F̃ρ is not torsion free. Therefore, N Jρ is not zero and conse-
quently no complex structure with closed (3, 0)-form exists on the Lie algebra so(3) ⊕ h3.

Similar arguments follow for the remaining cases for g2, taking into account the corresponding values A, B, C, λ, μ, τ
provided in Table 2 in the Appendix. �

The remaining 5 ⊕ 1 decomposable Lie algebra A5,40 ⊕R requires a more involved argument that relies on the class of 
λ̃(ρ) modulo the ideal generated by the polynomials that determine the closedness of the four-form J̃ρρ .

Proposition 2.5. The Lie algebra A5,40 ⊕R does not admit any complex structure with non-zero closed (3, 0)-form.

Proof. Any generic closed three-form of the Lie algebra A5,40 ⊕R is given by

ρ = a1e123 + a2e125 + a3e126 + a4(e135 − e124) + a5e136 + a6e234 + a7(e134 + e235) + a8e236

+ a9(e256 − e146) + a10(e246 + e356) + a11e456,

where a1, . . . , a11 ∈R. Taking the volume form ν = e123456, we consider the endomorphism J̃ρ defined by (4) and we find 
that the 4-form d

(
J̃ρρ

)
expresses as

d
(

J̃ρρ
) = q1e1234 + q2e1235 + q3e1245 + q4(e1246 − e1356) + q5e1256 + q6e1345 + q7(e1346 + e2356)

+ q8e2345 + q9e2346,

where q j := q j(a1, . . . , a11) denote the polynomials in the variables a1, . . . , a11 given by
6
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q1 = −2(a10a2a6 + a10a4a7 − 2a4a6a9 + 2a2
7a9),

q2 = −2(2a10a2
4 + 2a10a2a7 + a2a6a9 + a4a7a9),

q3 = −4a11(a
2
4 + a2a7),

q4 = −2(a2
10a2 + a11a4a5 + 2a11a3a7 − a11a2a8 + a10a4a9 + 2a7a2

9),

q5 = −6(a11a3a4 − a11a2a5 − a10a2a9 + a4a2
9),

q6 = 2a11(a2a6 + a4a7),

q7 = −2(2a2
10a4 − a11a3a6 + a11a5a7 − 2a11a4a8 + a10a7a9 − a6a2

9),

q8 = −4a11(a4a6 − a2
7),

q9 = −6(a11a5a6 + a2
10a7 − a11a7a8 + a10a6a9).

The expression of λ̃(ρ) is a polynomial of degree 4 belonging to the polynomial ring R[a1, . . . , a11] in the variables 
a1, . . . , a11. Let I = 〈q1, . . . , q9〉 be the ideal generated by the polynomials q1, . . . , q9 above. We need to compute1 the class 
of λ̃(ρ) modulo the ideal I . Concretely, one gets

λ̃(ρ) = (a1a11)
2 − a10q2 + a8q3 − a7q4 + 2

3
a6q5 + a5q6 + 1

3
a2q9.

Now, the cancellation of d
(

J̃ρρ
)

clearly requires the cancellation of q1, . . . , q9, but the latter implies that λ̃(ρ) =
(a1a11)

2 ≥ 0. Therefore, no complex structure with closed (3, 0)-form exists on A5,40 ⊕R. �
2.4. The indecomposable case

In this section we study the existence of complex structures on the indecomposable unimodular non-solvable Lie algebras 
L6,1, L6,2 and L6,4.

Proposition 2.6. The Lie algebras L6,1, L6,2 and L6,4 do not admit complex structures with non-zero closed (3, 0)-form.

Proof. The proofs for the Lie algebras L6,1 and L6,4 follow a similar argument to the proof of Proposition 2.5 for A5,40 ⊕R, 
but taking into account the corresponding values charted in Table 3 in the Appendix for the forms ρ and d( J̃ρρ), the 
polynomials q1, . . . , q9 and λ̃(ρ).

The proof of the statement for L6,2 is less straightforward than the former cases, so we will give the details for this 
algebra. Any closed three-form ρ on L6,2 is expressed as

ρ = a1e123 + a2e124 + a3e135 + a4(e234 − e125) + a5(e235 − e134) + a6(e236 − e145)

+ a7(e245 − 2e126) + a8(e146 + e256) + a9(2e136 + e345) + a10(e346 − e156) + a11e456,

where a1, . . . , a11 ∈R. A direct calculation shows that the 4-form d
(

J̃ρρ
)

is given by

d
(

J̃ρρ
) = q1e1234 + q2e1235 + q3e1245 + q4e1246 + q5(e1256 − e2346) + q6e1345

+ q7(e1346 − e2356) + q8e1356 + q9e2345,

where q j := q j(a1, . . . , a11) denote the polynomials in the variables a1, . . . , a11 given by

q1 = 2(2a10a2
4 + 2a10a2a5 + a4a2

6 − 2a1a10a7 − 3a5a6a7 − 2a3a2
7 + a2a3a8 − a4a5a8 + a1a6a8

− a2a6a9 − 2a4a7a9),

q2 = − 2(a10a2a3 − a10a4a5 + a1a10a6 + a5a2
6 + a3a6a7 + 2a3a4a8 + 2a2

5a8 + 3a4a6a9

− 2a5a7a9 + 2a1a8a9 − 2a2a2
9),

q3 = 2(2a11a2
4 + 2a11a2a5 + a10a2a6 − 2a1a11a7 + 2a10a4a7 − 2a2

6a7 − 3a4a6a8 + 2a5a7a8

− a1a2
8 − 8a2

7a9 + 4a2a8a9),

q4 = 6(a11a2a6 + 2a11a4a7 − 2a10a2
7 + a10a2a8 + a6a7a8 + a4a2

8),

1 We used the computer software Singular, available at http://www.singular.uni -kl .de.
7
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q5 = 2(a2(a
2
10 − 2a11a9) − a11a4a6 + 4a11a5a7 − 3a10a6a7 − a10a4a8 + a2

6a8 + 2a5a2
8 − 2a7a8a9),

q6 = − 2(a1a2
10 − 2a11a3a4 − 2a11a2

5 + 3a10a5a6 + 4a10a3a7 − a3a6a8 − 2a1a11a9 + 2a10a4a9

− 2a2
6a9 + 2a5a8a9 − 8a7a2

9),

q7 = − 2(2a4(a
2
10 − 2a11a9) − a11a5a6 + a10a2

6 + 2a11a3a7 − a10a5a8 + a3a2
8 − 2a10a7a9 + 3a6a8a9),

q8 = − 6(a5(a
2
10 − 2a11a9) + a11a3a6 + a10a3a8 − a10a6a9 − 2a8a2

9),

q9 = 2(a11a2a3 − a11a4a5 + a1a11a6 + 2a10a4a6 + a3
6 − 3a10a5a7 + a1a10a8 + 2a5a6a8

+ a3a7a8 − a10a2a9 + 4a6a7a9 + 3a4a8a9).

Moreover, for λ̃(ρ) one gets

λ̃(ρ) = (2a2a3a6 − 2a4a5a6 + a1a2
6 + 4a3a4a7 + 4a2

5a7 − 4a2
4a9 − 4a2a5a9 + 4a1a7a9 + a2

1a11)a11

+ 3

2
a10q1 − 2a9q3 + 5

6
a3q4 + a5q5 − a7q6 + 1

2
a4q7 + 2

3
a2q8 + a6

2
q9.

Next we distinguish two cases depending on the cancellation of the term a2
10 − 2a11a9 appearing in the polynomials q5, 

q7 and q8. In the subsequent analysis we assume that a11 	= 0, otherwise d
(

J̃ρρ
) = 0 would imply that λ̃(ρ) = 0.

(i) If a2
10 − 2a11a9 	= 0, then from the cancellation of q5, q7 and q8 one gets

a2 = −a11a4a6 + 4a11a5a7 − 3a10a6a7 − a10a4a8 + a2
6a8 + 2a5a2

8 − 2a7a8a9

2a11a9 − a2
10

,

a4 = −a11a5a6 + a10a2
6 + 2a11a3a7 − a10a5a8 + a3a2

8 − 2a10a7a9 + 3a6a8a9

2(2a11a9 − a2
10)

,

a5 = a11a3a6 + a10a3a8 − a10a6a9 − 2a8a2
9

2a11a9 − a2
10

.

After substituting a2, a4 and a5 in q4 we obtain

q4 = 3(a3
10 + a2

11a3 − 3a10a11a9)(a11a2
6 − 2a2

10a7 + 2a10a6a8 + 4a11a7a9 + 2a2
8a9)

2

(a2
10 − 2a11a9)3

.

Now, in order to have q4 = 0 we consider the following two cases:

• a3 = 3a10a11a9−a3
10

a2
11

, but in this case we have

λ̃(ρ) = (a1a2
11 + a11a2

6 − 2a2
10a7 + 2a10a6a8 + 4a11a7a9 + 2a2

8a9)
2

a2
11

≥ 0;

• a11a2
6 − 2a2

10a7 + 2a10a6a8 + 4a11a7a9 + 2a2
8a9 = 0, but this case again yields to a non-negative λ̃(ρ) = (a1a11)

2.

Therefore, the condition a2
10 − 2a11a9 	= 0 always implies λ̃(ρ) ≥ 0.

(ii) Let a2
10 − 2a11a9 = 0, so a9 = a2

10
2a11

. In this case q8 factorizes as q8 = 3(a3
10−2a2

11a3)(a11a6+a10a8)

a2
11

. Hence, q8 = 0 if and only 
if one of the following two cases holds:

• a3 = a3
10

2a2
11

, which implies that the polynomial q7 factorizes as

q7 = (a11a6 + a10a8)(2a2
11a5 − 2a10a11a6 − a2

10a8)

a2
11

.

Now, if a11a6 + a10a8 = 0 then we get that q6 = (2a2
11a5+a2

10a8)2

a3
11

and λ̃(ρ) = a2
1a6

11+(2a2
11a5+a2

10a8)2(2a11a7+a2
8)

a4
11

. Hence, q6 = 0

implies λ̃(ρ) = (a1a11)
2.

On the other hand, when 2a2
11a5 − 2a10a11a6 −a2

10a8 = 0 we arrive again at a non-negative λ̃(ρ) = (a1a3
11+(a11a6+a10a8)2)2

4 .

a11

8
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• a6 = − a10a8
a11

, which implies that the polynomial q7 factorizes as q7 = (a3
10−2a2

11a3)(2a11a7+a2
8)

a2
11

. We can suppose that a3
10 −

2a2
11a3 	= 0 (otherwise we lie in the previous case). Then, q7 = 0 if and only if 2a11a7 + a2

8 = 0, but the latter yields 
λ̃(ρ) = (a1a11)

2.

Therefore, the condition a2
10 − 2a11a9 = 0 also implies λ̃(ρ) ≥ 0, so the proof of the proposition is complete. �

Remark 2.7. More examples of complex structures with closed (3, 0)-form can be found in the class of six-dimensional 
non-solvable Lie algebras if we allow the Lie algebra to be non-unimodular. Indeed, consider the Lie algebra L6,3 (following 
the notation in [13, Table 2]) with structure equations

de1 = e23, de2 = 2e12, de3 = −2e13, de4 = e14 + e25 + e46, de5 = −e15 + e34 + e56, de6 = 0.

Then, the endomorphism J given by

J e1 = 3
2 e2 + 1

6 e3, J e2 = − 1
3 e1 − 1

9 e6, J e3 = −3e1 + e6,

J e4 = 1
3 e5, J e5 = −3e4, J e6 = 9

2 e2 − 1
2 e3,

defines an almost complex structure on L6,3 such that the nonzero (3, 0)-form � = (e1 − i J e1) ∧ (e2 − i J e2) ∧ (e4 − i J e4) is 
closed.

Remark 2.8. Our results have also applications to para-complex and closed S L(3, C) structures on unimodular non-solvable 
Lie groups.

First, we recall that similarly to the almost complex case, if a stable 3-form ρ satisfies λ(ρ) > 0 then the endomorphism 
Jρ defines a para-complex structure on g, i.e. J 2

ρ = Id and the eigenspaces for the eigenvalues ±1 are three-dimensional 
(see [19] for more details). The form ρ + e Jρρ , where e2 = 1, is a (3, 0)-form with respect to Jρ . If this (3, 0)-form is 
closed, then the corresponding torsion tensor N Jρ vanishes identically and the para-complex structure is integrable. It is 
clear that any decomposable Lie algebra g = g1 ⊕ g2, with dimg1 = dimg2 = 3, has para-complex structures with closed 
(3, 0)-form. The Lie algebras A5,40 ⊕R, L6,1, L6,2, L6,3 and L6,4 also admit this type of structures. In fact, from the proofs of 
the Propositions 2.5 and 2.6, and from Table 3 in the Appendix, it is enough to take a1 = a11 = 1 and the other coefficients 
a j equal to zero. Note that for L6,3 the closed 3-form ρ = e123 + e456 defines a para-complex structure for which Jρρ is 
also closed (see Remark 2.7 for the structure equations of L6,3).

In relation to SL(3, C) structures, we recall that an oriented six-dimensional differentiable manifold M admits an 
SL(3, C)-structure if its frame bundle can be reduced to SL(3, C). Alternatively, such a structure is defined by a stable 
three-form ρ ∈ �3(M) inducing an almost complex structure Jρ , that is, λ(ρ) < 0. The SL(3, C)-structure is called closed
if dρ = 0, and in this case the four-form d( Jρρ) has bidegree (2, 2) with respect to Jρ . Notice that, being ρ closed, the 
integrability of Jρ is equivalent to d( Jρρ) = 0. For nilpotent Lie algebras, Fino and Salvatore classify in [11] the closed 
SL(3, C)-structures for which d( Jρρ) is a non-zero (semi-)positive (2, 2)-form. The results in this section could be of inter-
est in relation to the study of such structures in the non-solvable setting.

2.5. Classification results

The results obtained in Sections 2.3 and 2.4 are summed up in the following theorem.

Theorem 2.9. Let g be an unimodular non-solvable Lie algebra of dimension 6. Then g admits a complex structure with a non-zero 
closed (3, 0)-form if and only if it is isomorphic to so(3, 1).

For completeness, in the following corollaries we collect the result obtained in Theorem 2.9 together with other known 
results. Firstly, from Salamon’s classification in the nilpotent case [30] and the classification obtained in [10, Thm. 2.8] for 
solvable Lie algebras, we get

Corollary 2.10. Let g be an unimodular Lie algebra of dimension 6. Then, g admits a complex structure with a non-zero closed (3, 0)-
form if and only if it is isomorphic to one in the following list:
9
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h1 = (06),

h2 = (04,12,34),

h3 = (05,12 + 34),

h4 = (04,12,14 + 23),

h5 = (04,13 + 42,14 + 23),

h6 = (04,12,13),

h7 = (03,12,13,23),

h8 = (05,12),

h9 = (04,12,14 + 25),

h10 = (03,12,13,14),

h11 = (03,12,13,14 + 23),

h12 = (03,12,13,24),

h13 = (03,12,13 + 14,24),

h14 = (03,12,14,13 + 42),

h15 = (03,12,13 + 42,14 + 23),

h16 = (03,12,14,24),

h
−
19 = (03,12,23,14 − 35),

h
+
26 = (02,12,13,23,14 + 25),

g1 = (15,−25,−35,45,0,0),

gα
2 = (α ·15+25,−15+α ·25,−α ·35+45,−35−α ·45,0,0),

g3 = (0,−13,12,0,−46,−45),

g4 = (23,−36,26,−56,46,0),

g5 = (24 + 35,26,36,−46,−56,0),

g6 = (24 + 35,−36,26,−56,46,0),

g7 = (24 + 35,46,56,−26,−36,0),

g8 = (16 − 25,15 + 26,−36 + 45,−35 − 46,0,0),

g9 = (45,15 + 36,14 − 26 + 56,−56,46,0),

so(3,1) = (23−56,−13+46,12−45,26−35,−16+34,15−24).

Here α ≥ 0 is any non-negative real number. The Lie algebras in the list are pairwise non-isomorphic. The Lie algebras 
hk are nilpotent, gl are solvable, and so(3, 1) is the only semi-simple Lie algebra in the classification. On the other hand, 
the decomposable Lie algebras are the following: h1 (1 ⊕ · · · ⊕ 1), h2, g3 (3 ⊕ 3), h3, h6, h9, h16, g1, gα

2 (1 ⊕ 5), and h8
(1 ⊕ 1 ⊕ 1 ⊕ 3).

Let X be a complex manifold with dimC X = n. A Hermitian metric F on X is said to be balanced if dF n−1 = 0. Important 
aspects of these metrics were first investigated by Michelsohn [24]. The balanced Hermitian geometry plays a central role 
in heterotic string theory, as the next sections show.

We recall that any left-invariant Hermitian metric F on a complex Lie group is balanced, so the Lie algebra so(3, 1) admits 
balanced Hermitian structures. The 6-dimensional nilpotent, resp. unimodular solvable with closed (3, 0)-form, Lie algebras 
admitting balanced Hermitian structures are classified in [34, Thm. 26], resp. in [10, Thm. 4.5]. As a second consequence of 
the results obtained in the previous sections we have

Corollary 2.11. Let g be an unimodular Lie algebra of dimension 6. Then, g admits a complex structure with a non-zero closed (3, 0)-
form having balanced metrics if and only if it is isomorphic to h1, h2 , h3 , h4 , h5 , h6 , h−

19 , g1 , gα
2 (α ≥ 0), g3 , g5 , g7 , g8 , or so(3, 1).

Concerning the existence of lattices (of maximal rank), the connected and simply connected nilpotent Lie group Hk
corresponding to the Lie algebra hk admits a lattice by the well-known Malcev theorem. Moreover, by [10, Prop. 2.10], the 
connected and simply connected Lie group Gl corresponding to the solvable Lie algebra gl admits a lattice for any l 	= 2, 
whereas for l = 2 there exists a countable number of distinct α’s, including α = 0, for which the Lie group Gα

2 corresponding 
to gα

2 admits a lattice. For the case of so(3, 1), it is well-known that a lattice exists. Hence, we get the following result for 
compact homogeneous spaces in six dimensions:

Corollary 2.12. Let M = �\G be a six-dimensional compact manifold defined as the quotient of a simply connected Lie group G by a 
lattice �. Suppose that M possesses an invariant complex structure J with non-zero closed (3, 0)-form admitting a balanced metric F . 
Then, the Lie algebra g of G is isomorphic to h1, . . . , h6 , h−

19 , g1 , gα
2 for some α ≥ 0, g3 , g5 , g7 , g8 , or so(3, 1).

We recall that such homogeneous spaces are Kähler only when g ∼= h1 or g0
2 (see Proposition 5.3 below for more details). 

We also recall that the existence of a balanced metric on (M, J ) implies the existence of an invariant one (by symmetriza-
tion).

3. The Hull-Strominger system on compact balanced homogeneous spaces

The heterotic superstring background with non-zero torsion was investigated, independently, by A. Strominger [32] and 
C. Hull [20], giving rise to a complicated system of partial differential equations. Their approach allowed to extend the 
initial proposal for a superstring compactification given in [4] to a complex (non necessarily Kähler) setting with trivial 
canonical bundle. In dimension six, the system requires the geometric inner space X to be a compact complex conformally 
balanced manifold with holomorphically trivial canonical bundle, which is equipped with an instanton compatible with the 
Green-Schwarz anomaly cancellation condition:

dT = 2π2α′(p1(∇) − p1(A)
)
. (11)
10
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This equality, also known as the Bianchi identity, is an equation of 4-forms, where T is the torsion of the Strominger-Bismut 
connection of the conformally balanced metric, α′ is a real constant (called the slope parameter), and p1(∇), resp. p1(A), 
denotes the 4-form representing the first Pontrjagin class of some metric connection ∇ , resp. of the instanton A.

More concretely, let (M, J , g, �) be a compact manifold of real dimension 6 endowed with a Hermitian structure ( J , g)

and a non-vanishing holomorphic (3, 0)-form �. Denoting by F the fundamental form, the torsion 3-form is T = JdF . The 
Hull-Strominger system is given by

d(‖�‖F F 2) = 0,

�A ∧ F 2 = 0, (�A)0,2 = (�A)2,0 = 0,

dT − α′
4

(
tr� ∧ � − tr�A ∧ �A

) = 0.

(12)

The first equation (the conformally balanced condition) is a reformulation, due to Li and Yau [22], of the so-called dilatino 
and gravitino equations of the system. It implies the existence of a balanced Hermitian metric F̂ on (M, J ) simply by 
modifying F conformally as F̂ =‖� ‖1/2

F F . The second equation, also known as the gaugino equation, is the Hermitian-
Yang-Mills equation for the connection A, where �A denotes its curvature. The third equation is the anomaly cancellation 
equation (11) after taking 1

8π2 tr� ∧ � as the 4-form representing the class p1, where � is the curvature of the connection.
Li and Yau [22] found the first non-Kähler solutions to the Hull-Strominger system on a Kähler Calabi-Yau manifold. 

Based on a construction by Goldstein and Prokushkin in [18], Fu and Yau first proved the existence of solutions on non-
Kähler Calabi-Yau inner spaces given as a T 2-bundle over a K3 surface [14]. Recently, the Fu-Yau solution is generalized to 
torus bundles over K3 orbifolds in [9].

An important result by Ivanov [21] (see also [8]) states that a solution of the Hull-Strominger system satisfies in addition 
the heterotic equations of motion if and only if the connection ∇ in the tangent bundle is Hermitian-Yang-Mills, i.e.

� ∧ F 2 = 0, �0,2 = �2,0 = 0. (13)

Homogeneous solutions to the system (12)-(13) were first found in [8] on a nilmanifold, and more recently on a solvman-
ifold and on the quotient of SL(2, C) in [27] (see also [7]). On the other hand, the Li-Yau solutions to the Hull-Strominger 
system given in [22] were further extended in [1] by a perturbative method for certain Kähler Calabi-Yau threefolds with 
stable holomorphic vector bundle to prove existence of solutions to the heterotic equations of motion. New examples of 
solutions of the system (12)-(13) on non-Kähler torus bundles over K3 surfaces are constructed by Garcia-Fernandez in [15], 
including applications to the construction of T-dual solutions. More recently, with the ansatz that the metric connection 
∇ in the tangent bundle is Hermitian-Yang-Mills, a family of Futaki invariants obstructing the existence of solutions of the 
Hull-Strominger system in a given balanced class b is found in [16].

The results in [22,14,9] mentioned above require ∇ to be taken as the Chern connection ∇c . In addition to ∇c , other 
metric connections proposed for the anomaly cancellation equation are the Strominger-Bismut connection ∇+ , the Levi-
Civita connection ∇ LC or the Hull connection ∇− . The physical and geometrical meaning of different choices for ∇ is 
discussed by De la Ossa and Svanes in [6]. In [7] the canonical 1-parameter family of Hermitian connections ∇τ found 
by Gauduchon [17] is considered. The family ∇τ contains the Chern connection (τ = 1) and the Bismut connection (τ =
−1). Furthermore, all the previous connections can be gathered in a plane of metric linear connections ∇ε,ρ which were 
introduced and studied in [27], so that ∇ LC = ∇0,0, ∇± = ∇± 1

2 ,0, ∇c = ∇0, 1
2 , and where the Gauduchon connections ∇τ

correspond to the line ρ = 1
2 − ε (where τ = 1 − 4ε). The covariant derivative of this two-parameter family of connections 

is also considered in [5] to study the geometry of a fibration X over the moduli space of heterotic structures M, where the 
fibres are 3-folds X together with their metrics and complex structures.

We recall the definition of the connections ∇ε,ρ . Let (M, J , g) be a Hermitian manifold. A linear connection ∇ defined 
on the tangent bundle T M is called Hermitian if ∇g = 0 and ∇ J = 0, i.e. both the metric and the complex structure are 
parallel. For any (ε, ρ) ∈R2, the connection ∇ε,ρ is defined as

g(∇ε,ρ
X Y , Z) = g(∇ LC

X Y , Z) + ε T (X, Y , Z) + ρ C(X, Y , Z), X, Y , Z ∈ X(M) (14)

where C(·, ·, ·) = dF ( J ·, ·, ·) denotes the torsion of the Chern connection ∇c , and T (·, ·, ·) = JdF (·, ·, ·) stands for the torsion 
3-form of the Bismut connection ∇+ . Here F (·, ·) = g(·, J ·) is the fundamental 2-form.

Proposition 3.1. [27, Prop. 2.1] Let (M, J , g) be a Hermitian manifold. For every (ε, ρ) ∈R2 , the connection ∇ε,ρ satisfies the follow-
ing properties:

∇ε,ρ g = 0, ∇ε,ρ J = (1 − 2ε − 2ρ)∇ LC J .

Therefore, if (M, J , g) is not Kähler then, ∇ε,ρ is Hermitian if and only if ρ = 1
2 − ε.

The 1-parameter family ∇ε, 1
2 −ε is precisely the family of canonical Hermitian connections ∇τ found by Gauduchon in 

[17], where the parameters are related by ε = 1−τ and ρ = 1+τ .
4 4

11
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The invariant Hermitian geometry of compact balanced non-Kähler homogeneous spaces allows to construct explicit 
solutions of the heterotic equations of motion (and more generally of the Hull-Strominger system) when ∇ = ∇ε,ρ is taken 
in the anomaly cancellation equation. Note that in the invariant setting, the function ‖� ‖F is constant and the first equation 
in (12) is equivalent to the closedness of F 2, i.e. F is balanced. In fact, in [8,27] such solutions were found, even with 
positive slope parameter α′ , on a nilmanifold with underlying Lie algebra h3, a solvmanifold with underlying algebra g7, 
and on the quotient of the semisimple group SL(2, C). Of course, the solutions required to find connections in the (ε,ρ)-
plane satisfying the instanton equation (13).

In the following three propositions, we recall the results obtained in [27] concerning the Hermitian-Yang-Mills condition 
for the metric (ε,ρ)-connections. In what follows, we will use the notation ∇ε,ρ

(J ,F ) to emphasize that we are considering any 
balanced Hermitian structure ( J , F ) on the given homogeneous space and any connection in the corresponding (ε,ρ)-plane.

Proposition 3.2. [27, Prop. 3.2] Let ( J , F ) be any invariant balanced Hermitian structure on a 6-dimensional nilmanifold M with 
underlying nilpotent Lie algebra isomorphic to h3. Then, the connection ∇ε,ρ

(J ,F ) is an instanton if and only if (ε,ρ) = ( 1
2 , 0), i.e. it is the 

Bismut connection.

Proposition 3.3. [27, Prop. 5.2] Let J be any invariant complex structure with non-zero closed (3, 0)-form on a 6-dimensional solv-
manifold M with underlying solvable Lie algebra isomorphic to g7. Let F be any invariant balanced metric on (M, J ), and let ∇ε,ρ

(J ,F ) be 
a connection in the (ε,ρ)-plane. Then, we have:

(i) If (ε,ρ) 	= ( 1
2 , 0), then ∇ε,ρ

(J ,F ) is not an instanton.

(ii) There exist balanced metrics F for which the Bismut connection ∇
1
2 ,0

(J ,F ) is an instanton.

Proposition 3.4. [27, Prop. 4.1] Let J be the complex parallelizable structure on a compact quotient M with underlying Lie algebra 
so(3, 1) (that is, M is the quotient of the semisimple group S L(2, C) by a lattice of maximal rank). Then, there is a one-parametric 
family of invariant balanced Hermitian metrics Ft for which the connection ∇ε,ρ

(J ,Ft)
is an instanton only for (ε,ρ) ∈ {( 1

2 , 0), (0, 12 )}, i.e. 
for the Chern connection (which is flat) and the Bismut connection.

In all the cases, the curvature of the Bismut connection has non-vanishing trace, in particular it is not flat. Moreover, it 
was conjectured that these are the only spaces admitting such solutions, more concretely (see [27, Section 7]), if a compact 
non-Kähler homogeneous space M = �\G admits an invariant solution of the heterotic equations of motion with α′ > 0 and 
with respect to some non-flat connection ∇ in the ansatz ∇ε,ρ , then ∇ is the Bismut connection and M is one of the spaces 
above.

Our goal in the second part of the paper is to prove the following result related to this conjecture, which is valid 
independently of the sign of the slope parameter α′ .

Theorem 3.5. Let M = �\G be a six-dimensional compact manifold defined as the quotient of a simply connected Lie group G by a 
lattice � of maximal rank. Suppose that M possesses an invariant balanced Hermitian structure ( J , F ) with invariant non-zero closed 
(3, 0)-form. Let ∇ε,ρ

(J ,F ) be a metric connections in the (ε,ρ)-plane. If ∇ε,ρ
(J ,F ) is a non-flat instanton, then the Lie algebra of G is isomorphic 

to h3 , g7 , or so(3, 1).

By the classification results obtained in the previous section, it suffices to focus on homogeneous spaces based on the 
Lie algebras g � h3, g7, so(3, 1). Thus, we will study the balanced Hermitian geometry on the Lie algebras h2, h4, h5, h6, 
h

−
19, g1, g0

2, gα
2 (α > 0), g3, g5, and g8. Section 4 is devoted to the nilpotent case, whereas in Section 5 we study the class of 

solvmanifolds. Section 6 explores the role played by flat instantons (Chern connection) in the construction of solutions on 
the Nakamura manifold with given balanced class.

From now on, the manifold M = �\G will be a compact quotient of a Lie group G by a lattice �, endowed with an 
invariant Hermitian structure ( J , F ), that is, ( J , F ) can be defined at the level of the Lie algebra g of G . We will say that a 
basis {ek}6

k=1 for g∗ is adapted to the Hermitian structure if both the complex structure J and the 2-form F express in the 
canonical way

J e1 = −e2, J e3 = −e4, J e5 = −e6, F = e12 + e34 + e56. (15)

Hence, the metric g is given by g = e1 ⊗ e1 + · · · + e6 ⊗ e6.
Given any linear connection ∇ , the connection 1-forms (σ∇ )i

j with respect to an adapted basis are

(σ∇)i
j(ek) = g(∇ek e j, ei),

and the curvature 2-forms (�∇ )i are given by
j

12
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(�∇)i
j = d(σ∇)i

j +
∑

1≤k≤6

(σ∇)i
k ∧ (σ∇)k

j .

Let ck
i j be the structure constants of the Lie algebra g with respect to an adapted basis {ek}6

k=1, that is,

dek =
∑

1≤i< j≤6

ck
i j ei j, 1 ≤ k ≤ 6.

Since dek(ei, e j) = −ek([ei, e j]) and the basis {ek}6
k=1 is orthonormal, the Levi-Civita connection 1-forms (σ LC )i

j of the metric 

g express as (σ LC )i
j(ek) = 1

2 (ci
jk − ck

i j + c j
ki).

Now, let ∇ = ∇ε,ρ
(J ,F ) be any metric connection in the (ε,ρ)-plane. Using (14), its connection 1-forms are given by

(
σ

∇ε,ρ
(J ,F )

)i
j(ek) = (σ LC )i

j(ek) − ε T (ei, e j, ek) − ρ C(ek, ei, e j)

= 1

2
(ci

jk − ck
i j + c j

ki) − ε JdF (ei, e j, ek) − ρ dF ( J ek, ei, e j).

For any 1 ≤ i, j, k, l ≤ 6, we define

�
ε,ρ
(J ,F )(i, j) := (

�
∇ε,ρ
(J ,F )

)i
j(e1, e2) + (

�
∇ε,ρ
(J ,F )

)i
j(e3, e4) + (

�
∇ε,ρ
(J ,F )

)i
j(e5, e6),

ϒ
ε,ρ
(J ,F )(i, j,k, l) := (

�
∇ε,ρ
(J ,F )

)i
j( J ek, J el) − (

�
∇ε,ρ
(J ,F )

)i
j(ek, el).

Then, one can express the Hermitian-Yang-Mills condition (13) as follows:

Lemma 3.6. The connection ∇ε,ρ
(J ,F ) is an instanton if and only if for an adapted basis {ek}6

k=1 the following conditions

�
ε,ρ
(J ,F )(i, j) = 0, ϒ

ε,ρ
(J ,F )(i, j,k, l) = 0, (16)

are satisfied for every 1 ≤ i, j, k, l ≤ 6.

Proof. It follows directly from the conditions �∇ε,ρ
(J ,F ) ∧ F 2 = 0 and 

(
�

∇ε,ρ
(J ,F )

)0,2 = (
�

∇ε,ρ
(J ,F )

)2,0 = 0, taking into account (15). �
4. Instantons on balanced nilmanifolds

In this section we prove Theorem 3.5 for nilmanifolds. We will use the adapted frames obtained in [33] for any invariant 
balanced Hermitian structure.

Recall that by our discussion in Section 3 we need to study the balanced Hermitian geometry on the nilmanifolds with 
underlying Lie algebra isomorphic to any of the nilpotent Lie algebras h2, h4, h5, h6, or h−

19.
In the following result we study the Hermitian geometry on the nilpotent Lie algebra h5 endowed with its complex 

parallelizable structure.

Proposition 4.1. Let (M, J ) be the Iwasawa manifold and let F be any invariant Hermitian metric on (M, J ). Then, the connection 
∇ε,ρ
(J ,F ) is an instanton if and only if (ε, ρ) = (0, 12 ), i.e. it is the Chern connection (which is flat).

Proof. Since J is complex parallelizable, it is well-known that any invariant Hermitian metric F on the Iwasawa manifold 
(M, J ) is balanced and the Chern connection is flat, so it is an instanton.

Let us consider any other connection ∇ε,ρ
(J ,F ) . By [33, Thm. 2.11], given any such ( J , F ), there is a basis {ek}6

k=1 of 1-forms 
satisfying (15) and the following equations

de1 = de2 = de3 = de4 = 0, de5 = t e13 − t e24, de6 = t e14 + t e23, (17)

where t ∈ R∗ . By Lemma 3.6, the connection is an instanton if and only if the conditions (16) hold. A direct calculation 
gives the following particular equations:

�
ε,ρ
(J ,F )(5,6) = 0 ⇐⇒ 1 + 2ε − 2ρ = 0,

ϒ
ε,ρ
(J ,F )(1,3,1,3) = 0 ⇐⇒ 1 − 2ε − 2ρ = 0,

which are never satisfied if (ε, ρ) 	= (0, 1 ). In conclusion, only the Chern connection is an instanton. �
2

13
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In the following result we exclude the case h3 because it is studied in [27] (see Proposition 3.2 above). This is the reason 
for taking (�, b) 	= (0, 0) in the following result.

Proposition 4.2. Let ( J , F ) be an invariant balanced Hermitian structure on a nilmanifold M with underlying Lie algebra isomorphic 
to h2 , h4 , h5 or h6 . Suppose J is not complex parallelizable. Then, the connection ∇ε,ρ

(J ,F ) is never an instanton.

Proof. We use the description of the balanced geometry on the Lie algebras h2, h4, h5 and h6 provided in [33, Thm. 2.11]. 
For any invariant balanced Hermitian structure ( J , F ), there is a basis {ek}6

k=1 of 1-forms satisfying (15) and one of the two 
following sets of equations:

⎧⎪⎪⎨
⎪⎪⎩

de1 = de2 = de3 = de4 = 0,

de5 = t
s (� + b2)e13 − t

s (� − b2)e24,

de6 = − 2 t (e12 − e34) + t
s (� − b2)e14 + t

s (� + b2)e23;
(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = de2 = de3 = de4 = 0,

de5 = sY
[
2b2u1|u| (e12 − e34) − b2tu1|u|Y (e13 + e24) + 2�su1 (e13 − e24)

+2su2
(
(� − b2)e14 + (� + b2)e23

)]
,

de6 = sY
[
2(2s2 − b2u2)|u| (e12 − e34) + b2tu2|u|Y (e13 + e24) − 2�su2 (e13 − e24)

+2su1
(
(� − b2)e14 + (� + b2)e23

)]
.

(19)

Here � ∈ {0, 1}, b ∈ R with (�, b) 	= (0, 0), and s, t ∈ R∗ . In the equations (19), u = u1 + i u2 ∈ C∗ with s2 > |u|2, and we 
are denoting Y := 2

√
s2−|u|2
t |u| . We recall that all the complex structures J are nilpotent, and the abelian ones correspond to 

taking ρ = 0 in (18) or (19). Since we are considering (�, b) 	= (0, 0), when J is abelian the Lie algebra is h5 and we can 
normalize b so that b = 1.

Next, we study the instanton condition for any connection ∇ε,ρ
(J ,F ) . First, we consider the equations (18). The instanton 

conditions (16) give in particular the following equations:

�
ε,ρ
(J ,F )(1,2) = 0 ⇐⇒ b4(1 + 4(ε − ρ)2) + 4s2

(
ρ2 + (ε − 1

2 )2
) + 4ε �2(2ρ − 1) = 0,

ϒ
ε,ρ
(J ,F )(1,2,1,4) = 0 ⇐⇒ �(ε − ρ − 3

2 )(ε − ρ + 1
2 ) = 0,

ϒ
ε,ρ
(J ,F )(3,6,1,6) = 0 ⇐⇒ (1 + 2ε − 2ρ)

[
�(1 + 2ε − 2ρ) − b2(1 − 2ε − 2ρ)

] = 0,

ϒ
ε,ρ
(J ,F )(4,5,1,6) = 0 ⇐⇒ (1 + 2ε − 2ρ)

[
�(1 + 2ε − 2ρ) + b2(1 − 2ε − 2ρ)

] = 0.

Recall that � ∈ {0, 1}. If � = 1, then the equation ϒε,ρ
(J ,F )(1, 2, 1, 4) = 0 implies ε − ρ ∈ {− 1

2 , 32 }. In the first case we have 

that �ε,ε+ 1
2

(J ,F ) (1, 2) 	= 0 since b4 + s2 + 4ε2(1 + s2) > 0. On the other hand, if ε − ρ = 3
2 then at least one of the conditions 

ϒ
ε,ε− 3

2
(J ,F ) (3, 6, 1, 6) = 0 = ϒ

ε,ε− 3
2

(J ,F ) (4, 5, 1, 6) fail.
Let us suppose now that � = 0, that is to say, the complex structure J is abelian, so we can take b = 1. But in this case 

�
ε,ρ
(J ,F )(1, 2) 	= 0 clearly. Hence, no connection can be an instanton.

From now on, we consider the equations (19) and divide our study into three cases depending on the values of the pair 
(�, b):

• If (�, b) = (0, 1), then one can check that the equation �ε,ρ
(J ,F )(5, 6) = 0 is satisfied if and only if (1 − 2ε)ρ = 0, so ε = 1

2

or ρ = 0. A direct calculation of the term ϒε,ρ
(J ,F )(1, 3, 1, 3) allows to show that in both cases the equation ϒε,ρ

(J ,F )(1, 3, 1, 3) = 0

holds if and only if (ε, ρ) = ( 1
2 , 0). But for the latter connection one gets �

1
2 ,0
(J ,F )(1, 2) 	= 0. Thus, no connection ∇ε,ρ

(J ,F ) is an 
instanton when (�, b) = (0, 1).

• In the case (�, b) = (1, 0) we get the following conditions:

ϒ
ε,ρ
(J ,F )(1,5,3,5) = 0 ⇐⇒ (1 + 2ε − 2ρ)2u1 = 0,

ϒ
ε,ρ
(J ,F )(1,5,3,6) = 0 ⇐⇒ (1 + 2ε − 2ρ)2u2 = 0.

Using that u 	= 0, one has ρ = ε + 1
2 . Now, a direct calculation shows that ϒε,ε+ 1

2
(J ,F ) (1, 3, 1, 3) = 0 implies ε = 0, which in turn 

gives �ε,ρ
(5, 6) 	= 0. So, there are not instantons for (�, b) = (1, 0).
(J ,F )

14
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• Finally, let us study the case � = 1 and b 	= 0. One has:

�
ε,ρ
(J ,F )(1,4) = 0 ⇐⇒ [

(1 + 2ε − 2ρ)2 + 4ρ(1 − 2ε)
]

u1 = 0,

ϒ
ε,ρ
(J ,F )(1,2,1,4) = 0 ⇐⇒ (1 + 2ε − 2ρ)(3 − 2ε + 2ρ) u1 = 0,

ϒ
ε,ρ
(J ,F )(1,5,1,6) = 0 ⇐⇒ (1 + 2ε − 2ρ)(1 − 2ε + 2ρ) u1 = 0.

- If u1 	= 0, then necessarily ρ = ε + 1
2 , and the first equation reduces to (ε + 1

2 )( 1
2 − ε) = 0, so giving the two possible 

values (ε, ρ) = ( 1
2 , 1) or (ε, ρ) = (− 1

2 , 0). One can check that in both cases the condition �ε,ρ
(J ,F )(1, 2) = 0 is satisfied if and 

only if (b2 − u2)
2 + 2s2 − u2

2 + 1 = 0. However, the latter is not possible since s2 > |u|2 implies 2s2 − u2
2 > 0.

- Let us suppose that u1 = 0 (thus, u2 	= 0). The difference ϒε,ρ
(J ,F )(1, 5, 3, 6) − ϒ

ε,ρ
(J ,F )(2, 5, 3, 5) is a nonzero multiple of 

(1 + 2ε − 2ρ)2(2s2 − b2u2), so in what follows we will distinguish two cases depending on the vanishing of 2s2 − b2u2:

– If 2s2 	= b2u2, then ρ = ε + 1
2 . Moreover, we get

�
ε,ε+ 1

2
(J ,F )

(1,3) = 0 ⇐⇒ (1 + 2ε)(1 − 2ε)(2s2 − b2u2) = 0,

ϒ
ε,ε+ 1

2
(J ,F ) (1,3,1,3) = 0 ⇐⇒ ε

(
(b2 − u2)

2 + 2s2 − u2
2 + 1

) = 0.

Arguing as above, there are not solutions for this system.
– Finally, we consider the case 2s2 = b2u2, so we can take u2 = 2s2/b2. Note that the condition s2 > |u|2 translates into 

the inequality b4 − 4s2 > 0. A direct calculation gives the following equations:

�
ε,ρ
(J ,F )(1,2)− �

ε,ρ
(J ,F )(3,4) = 0 ⇐⇒ (1 + 2ε)2−16ερ + 4ρ2 = 0,

�
ε,ρ
(J ,F )(5,6) = 0 ⇐⇒ (1 + 2ε)2−16ερ + 4ρ2−4(1−2ε)ρ(1 + b4−2s2) = 0.

Taking the difference we get (1 − 2ε)ρ(1 + b4 − 2s2) = 0, therefore ε = 1
2 or ρ = 0 (since b4 − 4s2 > 0). Now, if ε = 1

2

the condition �
1
2 ,ρ

(J ,F )(5, 6) = 0 reduces to (1 − ρ)2(b4 − 4s2) = 0, which implies ρ = 1; however, in such case one can 

check that �
1
2 ,1
(J ,F )(1, 2) 	= 0. Similarly, if ρ = 0 then �ε,0

(J ,F )(5, 6) = 0 reduces to (1 + 2ε)2(b4 − 4s2) = 0, thus ε = − 1
2 , but 

again �− 1
2 ,0

(J ,F ) (1, 2) 	= 0.

In conclusion, no connection ∇ε,ρ
(J ,F ) is an instanton when � = 1 and b 	= 0, and the proof of the proposition is com-

plete. �
In the following result we consider the nilmanifolds having h−

19 as underlying Lie algebra.

Proposition 4.3. Let ( J , F ) be an invariant balanced Hermitian structure on a nilmanifold M with underlying Lie algebra isomorphic 
to h−

19 . Then, the connection ∇ε,ρ
(J ,F ) is never an instanton.

Proof. The description of the balanced geometry on the Lie algebra h−
19 can be found in [33, Thm. 2.11]. For any invariant 

balanced Hermitian structure ( J , F ), there is a basis {ek}6
k=1 of 1-forms satisfying (15) and one of the two following sets of 

equations:{
de1 = de2 = 0, de3 = 2s

r e15, de4 = 2s
r e25, de5 = 0, de6 = ± 2

rs (e13 + e24); (20)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = de2 = 0,

de3 = s
rt Z

[
± t2

s2 (e13 + e24) ± t2

s2 (st + Z) (e25 − e16) + e14 + 1
st+Z e15

]
,

de4 = s
rt Z

[
e24 + 1

st+Z e25
]
,

de5 = −s
rt Z

[
(st + Z) e24 + e25

]
,

de6 = s
rt Z

[
± t2

s2
1

st+Z (e13 + e24) ± t2

s2 (e25 − e16) + (st + Z) e14 + e15
]
.

(21)

Here r, s, t ∈R∗ , and in the equations (21) we have s2t2 > 1 and Z := √
s2t2 − 1.

We recall that any complex structure J on h−
19 is non-nilpotent, and there are only two complex structures J±

0 up to 
isomorphism. The ±-sign in the equations above corresponds to J = J± , respectively.
0

15
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For (20), a direct calculation shows that

�
ε,ρ
(J ,F )(1,2) = 0 ⇐⇒ (

(ε − 1
2 )2 + ρ2

)
(1 + s4) = 0,

�
ε,ρ
(J ,F )(5,6) = 0 ⇐⇒ ρ(ε − 1

2 ) + ε(ρ − 1
2 )s4 = 0,

whereas for the equations (21) we get

�
ε,ρ
(J ,F )(1,2) = 0 ⇐⇒ ((ε − 1

2 )2 + ρ2)(s4 + t4) = 0,

�
ε,ρ
(J ,F )(3,5) = 0 ⇐⇒ (

(ε + 1
2 )2 + 2ε + ρ(ρ − 4ε − 2)

)
s4 − (

(ε − 1
2 )2 + ρ(ρ − 4ε + 2)

)
t4 = 0.

It is clear that in both cases the respective system of equations does not have any solutions in (ε, ρ), hence (16) in 
Lemma 3.6 is never satisfied and the connection ∇ε,ρ

(J ,F )
is not an instanton. �

5. Instantons on balanced solvmanifolds

In this section we prove Theorem 3.5 for solvmanifolds. Recall that, by the discussion in Section 3, we need to study the 
balanced Hermitian geometry on the solvmanifolds whose underlying algebra is isomorphic to any of the following solvable 
Lie algebras: g1, g0

2, gα>0
2 , g3, g5, or g8.

A first difference with the nilpotent setting is that there are not adapted frames available in the literature for the solvable 
Lie algebras, so we will find them for each case.

Along this section, J will always refer to an invariant complex structure with non-zero closed (3, 0)-form. Given a (1,0)-
basis {ωk}3

k=1 for the complex structure J , any invariant Hermitian metric F expresses as

2 F = i (r2ω11̄ + s2ω22̄ + t2ω33̄) + uω12̄ − ūω21̄ + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄, (22)

where the coefficients r2, s2, t2 are non-zero real numbers and u, v, z ∈ C satisfy r2s2 > |u|2, s2t2 > |v|2, r2t2 > |z|2 and 
r2s2t2 + 2Re (iū v̄ z) > t2|u|2 + r2|v|2 + s2|z|2. The balanced condition for F imposes restrictions on these metric coefficients, 
which need to be considered in order to find an adapted basis for ( J , F ). In what follows, we will use the term “diagonal” 
to refer to a balanced metric F with u = v = z = 0 in its expression (22) with respect to a certain (1,0)-basis.

We will start with the classification of complex structures obtained in [10] to find adapted frames on each balanced 
Hermitian solvmanifold, and then we will study the instanton condition for any connection ∇ε,ρ

(J ,F ) in the associated (ε,ρ)-
plane.

The following lemma will be used when studying solvmanifolds with underlying Lie algebra isomorphic to g1 , gα
2 or g8.

Lemma 5.1. Let g be a 6-dimensional Lie algebra endowed with a complex structure J defined by the complex equations

dω1 = K ω13 + L ω13̄, dω2 = −K ω23 − L ω23̄, dω3 = 0, (23)

where K , L ∈C with L 	= 0. Let F be any Hermitian metric given by (22). Then, we have:
(a) The metric F is balanced if and only if v = z = 0.
(b) For any balanced metric F , there is a (1,0)-basis {τ k}3

k=1 such that F = i
2 (τ 11̄ + τ 22̄ + τ 33̄),

and

dτ 1 = K

t
τ 13 + L

t
τ 13̄, dτ 2 = 2uK

t
√

1 − |u|2 τ 13 + 2uL

t
√

1 − |u|2 τ 13̄ − K

t
τ 23 − L

t
τ 23̄, dτ 3 = 0.

(c) The real basis {e1, . . . , e6} for g∗ defined by e2k−1 + i e2k := τ k, 1 ≤ k ≤ 3, satisfies (15).

Proof. The metric F is balanced if and only if F 2 is a closed form, equivalently ∂̄ F ∧ F = 0. Using (23) we get

4 ∂̄ F ∧ F = L (uz̄ − ir2 v̄)ω131̄2̄3̄ − L (is2 z̄ + ū v̄)ω231̄2̄3̄.

Since L 	= 0, F is balanced if and only if uz̄ − ir2 v̄ = 0 = is2 z̄ + ū v̄ . Now, r2s2 > |u|2 implies that the latter conditions are 
equivalent to v = z = 0. This proves (a).

Notice that we can normalize the metric coefficients r and s, so that any balanced Hermitian structure ( J , F ) still has a 
(1,0)-basis satisfying (23) and the metric writes as

2 F = i ω11̄ + i ω22̄ + i t2ω33̄ + u ω12̄ − ū ω21̄, t ∈R∗, u ∈ B = {u ∈C | |u| < 1}. (24)

Hence, F can be written as

2 F = i (1 − |u|2)ω11̄ + i
(

u ω1 + i ω2
)
∧(ū ω1̄ − i ω2̄) + it2ω33̄ = i(τ 11̄ + τ 22̄ + τ 33̄),
16
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where {τ k}3
k=1 is the (1,0)-basis defined by

τ 1 =
√

1 − |u|2 ω1, τ 2 = u ω1 + i ω2, τ 3 = t ω3. (25)

A direct calculation shows that the complex structure equations (23) express in this basis as in (b).
Finally, (c) follows from (b) by considering the real and imaginary parts of τ k , 1 ≤ k ≤ 3, i.e. e1 + i e2 := τ 1, e3 + i e4 := τ 2

and e5 + i e6 := τ 3. �
In the following result we begin with solvmanifolds with g1 as underlying Lie algebra.

Proposition 5.2. Let M be a 6-dimensional solvmanifold with underlying solvable Lie algebra isomorphic to g1. For every invariant 
balanced Hermitian structure ( J , F ), there is a basis {ek}6

k=1 of 1-forms on M satisfying (15) and the following equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = 2
t e15,

de2 = 2
t e25,

de3 = 4u1

t
√

1−|u|2 e15 − 4u2

t
√

1−|u|2 e25 − 2
t e35,

de4 = 4u2

t
√

1−|u|2 e15 + 4u1

t
√

1−|u|2 e25 − 2
t e45,

de5 = de6 = 0,

(26)

where t ∈R∗ and u = u1 + i u2 ∈B = {u ∈C | |u| < 1}.
Moreover, the connection ∇ε,ρ

(J ,F ) is an instanton if and only if (ε, ρ) = (0, 12 ) and u = 0; in other words, the (non-Kähler) balanced 
metric F is “diagonal” and ∇ε,ρ

(J ,F )
is precisely the Chern connection (which is flat).

Proof. By [10, Prop. 3.3], up to isomorphism, there is only one complex structure J with closed (3, 0)-form on the Lie 
algebra g1. Its complex equations are given by (23) with K = L = 1. Then, by Lemma 5.1 we consider the basis of invariant 
1-forms {ek}6

k=1 on M defined in (c). Now, by a direct calculation from the complex equations given in Lemma 5.1 (b) for 
K = L = 1 we arrive at (26).

Next, we study the instanton condition. One can check that the equation �
ε,ρ
(J ,F )(5, 6) = 0 is satisfied if and only if 

ε(1 − 2ρ) = 0, so ε = 0 or ρ = 1
2 . But, if ε = 0 then ϒ0,ρ

(J ,F )(1, 3, 1, 3) = 0 implies 1 − 2ρ = 0, so ρ = 1
2 . On the other hand, if 

ρ = 1
2 then ϒε, 1

2
(J ,F )(1, 3, 1, 3) = 0 implies ε = 0. So, in any case we are reduced to (ε,ρ) = (0, 12 ), i.e. the Chern connection.

Now, let us take (ε,ρ) = (0, 12 ). In this case the instanton condition is equivalent to the vanishing of the terms �0, 1
2

(J ,F )(i, j), 

for 1 ≤ i < j ≤ 4. Moreover, �0, 1
2

(J ,F )
(1, 2) = −�

0, 1
2

(J ,F )
(3, 4), �0, 1

2
(J ,F )

(1, 3) = �
0, 1

2
(J ,F )

(2, 4) and �0, 1
2

(J ,F )
(1, 4) = −�

0, 1
2

(J ,F )
(2, 3), hence the 

instanton condition (16) is equivalent to the vanishing of the following three terms

�
0, 1

2
(J ,F )(1,2) = −8 |u|2

t2(1 − |u|2) , �
0, 1

2
(J ,F )(1,3) = −8 u2

t2
√

1 − |u|2 , �
0, 1

2
(J ,F )(1,4) = 8 u1

t2
√

1 − |u|2 ,

which in turn is equivalent to u = 0 (i.e. the balanced metric F is diagonal when written as (24) in the basis {ωk}3
k=1). Since 

dF = − 4
t e125 + 4

t e345, the metric F is not Kähler.
Finally, when u = 0 all the curvature forms of the Chern connection vanish identically, so the instanton is flat. �
In the following result we consider solvmanifolds with underlying Lie algebra g0

2. Recall that these solvmanifolds admit 
invariant Hermitian metrics which are Kähler.

Proposition 5.3. Let M be a solvmanifold with underlying Lie algebra isomorphic to g0
2. For every invariant balanced Hermitian struc-

ture ( J , F ), there is a basis {ek}6
k=1 of 1-forms on M satisfying (15) and the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = − 2
t e25,

de2 = 2
t e15,

de3 = − 4u2

t
√

1−|u|2 e15 − 4u1

t
√

1−|u|2 e25 + 2
t e45,

de4 = 4u1

t
√

1−|u|2 e15 − 4u2

t
√

1−|u|2 e25 − 2
t e35,

de5 = de6 = 0,

(27)
17
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where t ∈R∗ and u = u1 + i u2 ∈B = {u ∈C | |u| < 1}.
Moreover, if the balanced metric is not Kähler then ∇ε,ρ

(J ,F ) is never an instanton.

The Kähler metrics correspond to u = 0 in (27); in this case the connection ∇ε,ρ
(J ,F ), which coincides with the Levi-Civita connection, 

has all the curvature forms identically zero.

Proof. By [10, Prop. 3.3] there is only one complex structure J , up to isomorphism, with closed (3, 0)-form on the Lie 
algebra g0

2, with complex equations given by (23) for K = L = i. Using Lemma 5.1, we consider the basis of invariant 1-
forms {ek}6

k=1 on M defined in (c). Now, (27) follows by a direct calculation from the complex structure equations given in 
Lemma 5.1 (b) with K = L = i.

Next, we study the instanton condition for any connection ∇ε,ρ
(J ,F ) . Firstly, we note that the equation �

ε,ρ
(J ,F )(1, 2) =

−4 ((1−2ε)2+4ρ2)|u|2
t2(1−|u|2)

= 0 implies that (ε, ρ) = ( 1
2 , 0), or u = 0.

In the case (ε, ρ) = ( 1
2 , 0), the condition �

1
2 ,0
(J ,F )(5, 6) = 16|u|2

t2(1−|u|2)
= 0 implies that u = 0. So, there are not instantons when 

the metric is non-Kähler.
Clearly, when u = 0, since F is Kähler, the connections are all the Levi-Civita connection. In this case one has that all the 

curvature forms vanish identically. �
In the following result we study solvmanifolds with underlying Lie algebra isomorphic to gα

2 , for some α > 0. Recall that 
there is a countable number of distinct α’s for which the connected and simply connected solvable Lie group corresponding 
to gα

2 admits a lattice [10, Prop. 2.10].

Proposition 5.4. Let M be a solvmanifold with underlying Lie algebra isomorphic to gα
2 , for some α > 0. For every invariant balanced 

Hermitian structure ( J , F ) on M, there is a basis of 1-forms {ek}6
k=1 satisfying (15) and the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = 2δ
t cos θ e15 − 2

t sin θ e25,

de2 = 2
t sin θ e15 + 2δ

t cos θ e25,

de3 = 4δu1 cos θ−4u2 sin θ

t
√

1−|u|2 e15 − 4δu2 cos θ+4u1 sin θ

t
√

1−|u|2 e25 − 2δ
t cos θ e35 + 2

t sin θ e45,

de4 = 4δu2 cos θ+4u1 sin θ

t
√

1−|u|2 e15 + 4δu1 cos θ−4u2 sin θ

t
√

1−|u|2 e25 − 2
t sin θ e35 − 2δ

t cos θ e45,

de5 = de6 = 0,

(28)

where δ = ±1 and θ ∈ (0,π/2), and where t ∈R∗ and u = u1 + i u2 ∈B = {u ∈C | |u| < 1}.
Moreover, the connection ∇ε,ρ

(J ,F ) is an instanton if and only if (ε, ρ) = (0, 12 ) and u = 0; that is, the (non-Kähler) balanced metric 
F is “diagonal” and ∇ε,ρ

(J ,F ) is the Chern connection (which is flat).

Proof. Any complex structure J with closed (3, 0)-form on the Lie algebra gα
2 is given, up to isomorphism, by the equations 

(23) for K = L = δ cos θ + i sin θ , where δ = ±1 and θ ∈ (0,π/2). Note that α = cos θ/ sin θ . Then, by Lemma 5.1 we consider 
the basis of invariant 1-forms {ek}6

k=1 on M defined in (c). Now, by a direct calculation from the complex equations given 
in Lemma 5.1 (b) for K = L = δ cos θ + i sin θ we arrive at (28).

Now, we will find the connections ∇ε,ρ
(J ,F )

that satisfy the instanton condition (16). Consider in particular the following 
conditions:

ϒ
ε,ρ
(J ,F )(1,3,1,3) = 0 ⇐⇒ (1+2ε−2ρ)(1−2ε−2ρ)(cos2θ+|u|2 sin2θ)

t2(1−|u|2)
= 0,

�
ε,ρ
(J ,F )

(5,6) = 0 ⇐⇒ ε(1−2ρ)(cos2θ+|u|2 sin2θ)

t2(1−|u|2)
= 0.

Using that θ ∈ (0,π/2), we get (1 − 2ρ)2 − 4ε2 = 0 = ε(1 − 2ρ). Hence, (ε,ρ) = (0, 12 ), that is, we are reduced to study the 

Chern connection. But, now we have �0, 1
2

(J ,F )(1, 2) = −8|u|2
t2(1−|u|2)

= 0, which implies that u = 0, i.e. the metric is diagonal (when 
written in (24) with respect to the basis {ωk}3

k=1). Note that dF = − 4δ cos θ
t (e12 − e34) ∧ e5 	= 0, so the diagonal metric is not 

Kähler.
Finally, when u = 0 all the curvature forms of the Chern connection vanish identically, so it is a flat instanton. �

Remark 5.5. Note that g1 and gα
2 are precisely the solvable Lie algebras in Corollary 2.10 which have a codimension-one 

abelian ideal. A Lie group G whose Lie algebra has this property is called almost-abelian. Pujia studies in [29] the instanton 
condition for the Gauduchon connections of invariant balanced structures on 6-dimensional almost-abelian Lie groups, so 
the Propositions 5.2, 5.3 and 5.4 extend such study to the whole (ε,ρ)-plane of metric connections ∇ε,ρ .
18
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In the following two propositions we prove that the solvmanifolds with underlying Lie algebra isomorphic to g3 or g5
do not provide any instanton.

Proposition 5.6. Let M be a solvmanifold with underlying Lie algebra isomorphic to g3. For every invariant balanced Hermitian struc-
ture ( J , F ), there is a basis {ek}6

k=1 of 1-forms on M satisfying (15) and the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = de2 = 0,

de3 = v2
rt2 e13 + v1

rt2 e14 −
√

s2t2−|v|2
rt2 e16,

de4 = 2xv2
rt2 e13 + 2xv1

rt2 e14 − 2x
√

s2t2−|v|2
rt2 e16 + v2−2xv1

rt2 e23 + v1+2xv2
rt2 e24

+ 2x
√

s2t2−|v|2
rt2 e25 −

√
s2t2−|v|2

rt2 e26,

de5 = t4+2xv2(v1−2xv2)

2xrt2
√

s2t2−|v|2 e13 + v1(v1−2xv2)

rt2
√

s2t2−|v|2 e14 − v1−2xv2
rt2 e16

− t4+v2
2−2xv1 v2

rt2
√

s2t2−|v|2 e23 + t4−2xv2(v1+2xv2)

2xrt2
√

s2t2−|v|2 e24 − 2xv2
rt2 e25 + v2

rt2 e26,

de6 = t4+v2(v2+2xv1)

rt2
√

s2t2−|v|2 e13 + v1(v2+2xv1)

rt2
√

s2t2−|v|2 e14 − v2+2xv1
rt2 e16

+ v1(v2−2xv1)

rt2
√

s2t2−|v|2 e23 + v1(v1+2xv2)

rt2
√

s2t2−|v|2 e24 + 2xv1
rt2 e25 − v1

rt2 e26,

(29)

where x ∈R+ , and where r, s, t ∈R∗ and v = v1 + i v2 ∈C satisfy s2t2 > |v|2 .
Moreover, ∇ε,ρ

(J ,F ) is never an instanton.

Proof. As proved in [10, Prop. 3.4], any complex structure J with closed (3, 0)-form on the Lie algebra g3 is given, up to 
isomorphism, by the equations

dω1= 0, dω2= −1

2
ω13 − 1 + 2xi

2
ω13̄ + xi ω31̄, dω3= 1

2
ω12 + 2x − i

4x
ω12̄ + i

4x
ω21̄, (30)

where x ∈R+ .
An invariant Hermitian metric F is balanced if and only if it is given by (22) with u = z = 0 (see the proof of [10, Thm. 

4.5] for details). Consider the (1,0)-basis {τ k}3
k=1 defined by

τ 1 = r ω1, τ 2 = �

t
ω2, τ 3 = v

t
ω2 + it ω3, (31)

where � = √
s2t2 − |v|2. Hence, the metric can be written as F = i

2 (τ 11̄ + τ 22̄ + τ 33̄), and the complex structure equations 
(30) express in this basis as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dτ 1 = 0,

dτ 2 = − v i
2rt2 τ

12 + � i
2rt2 τ 13 − (2x−i)v̄

2rt2 τ 12̄ + (2x−i)�
2rt2 τ 13̄ − xv

rt2 τ
21̄ + x�

rt2 τ 31̄,

dτ 3 = (t4−v2) i
2rt2�

τ 12 + v i
2rt2 τ 13 + t4−4x2|v|2+2x(|v|2+t4) i

4xrt2�
τ 12̄ + (2x−i)v

2rt2 τ 13̄

− 4x2 v2+t4

4xrt2�
τ 21̄ + xv

rt2 τ
31̄.

(32)

Taking the real basis {ek}6
k=1 as in Lemma 5.1 (c) and using (32), we arrive at (29).

Next, we study the instanton condition for ∇ε,ρ
(J ,F ) . First, we notice that the condition

�
ε,ρ
(J ,F )(1,2) = − ((1 − 2ε)2 + 4ρ2)(1 + 4x2)(4x2s4 + t4)

16x2r2(s2t2 − |v|2) = 0

directly implies that (ε,ρ) = ( 1
2 , 0). Moreover, for these values, we get the following system of linear equations in v1 and 

v2:

�
1
2 ,0
(J ,F )(3,5) = 0 ⇐⇒ (1 + 4x2)t2 v1 + 4x(s2 + t2)v2 = 0,

�
1
2 ,0
(J ,F )(3,6) = 0 ⇐⇒ −4x(s2 − t2)v1 + (1 + 4x2)t2 v2 = 0.

Since the determinant is equal to (1 − 4x2)2t4 + 16x2s4 > 0, we have v1 = 0 = v2. But in this case one gets
19
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ϒ
1
2 ,0
(J ,F )

(1,3,1,4) = 2x2s2(s2 + t2) + t4

2xr2s2t2
	= 0,

so there are not instantons in the (ε,ρ)-plane. �
Proposition 5.7. Let M be a solvmanifold with underlying Lie algebra isomorphic to g5. For every invariant balanced Hermitian struc-
ture ( J , F ) on M, there is a basis {ek}6

k=1 of 1-forms satisfying (15) and the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = 2
t e15,

de2 = 2
t e25,

de3 = 4u1

t
√

r2s2−u2
1

e15 − 2
t e35,

de4 = 4u1

t
√

r2s2−u2
1

e25 − 2
t e45,

de5 = 0,

de6 = 2t√
r2s2−u2

1

e13 + 2t√
r2s2−u2

1

e24,

(33)

where r, s, t ∈R∗ and u1 ∈R satisfy r2s2 > u2
1 .

Furthermore, ∇ε,ρ
(J ,F ) is never an instanton.

Proof. By [10, Prop. 3.6] there is only one complex structure J , up to isomorphism, with closed (3, 0)-form on the Lie 
algebras g5, and with complex structure equations

dω1= ω1∧ (ω3 + ω3̄), dω2=−ω2∧ (ω3 + ω3̄), dω3= ω12̄ + ω21̄. (34)

An invariant Hermitian metric F is balanced if and only if it is given by (22) with u = ū = u1 ∈ R and v = z = 0 [10, 
Thm. 4.5]. In terms of the (1,0)-basis {τ k}3

k=1 defined by

τ 1 = �

s
ω1, τ 2 = u1

s
ω1 + is ω2, τ 3 = t ω3,

where � =
√

r2s2 − u2
1, the metric can be written as F = i

2 (τ 11̄ + τ 22̄ + τ 33̄). The complex structure equations (34) express 
in this basis as

⎧⎪⎪⎨
⎪⎪⎩

dτ 1 = 1
t τ

13 + 1
t τ

13̄,

dτ 2 = 2u1
t �

τ 13 + 2u1
t �

τ 13̄ − 1
t τ

23 − 1
t τ

23̄,

dτ 3 = i t
�

τ 12̄ − i t
�

τ 21̄.

(35)

Taking the real basis {ek}6
k=1 as in Lemma 5.1 (c), from (35) we arrive at the equations (33).

Now, we study the connections ∇ε,ρ
(J ,F ) that are instantons. It can be checked that the condition ϒε,ρ

(J ,F )(1, 5, 3, 6) = 0 is 

satisfied if and only if ρ = ε + 1
2 . In this case, one has that ϒε,ε+ 1

2
(J ,F )

(1, 3, 1, 3) = 0 if and only if ε = 0. But taking (ε, ρ) =
(0, 12 ) we arrive at �0, 1

2
(J ,F )(5, 6) = 4t2

r2s2−u2
1

, which never vanishes. So, there are not instantons in the (ε,ρ)-plane. �

The following two propositions are devoted to the solvmanifolds with underlying Lie algebra isomorphic to g8. When 
endowed with its complex parallelizable structure, it gives rise to the well-known Nakamura manifold [26]. The following 
result studies this case, whereas in Proposition 5.10 we focus on the complex structures (with closed (3, 0)-form) which are 
not complex parallelizable.

Proposition 5.8. Let M be a solvmanifold with underlying Lie algebra isomorphic to g8. Let J be its complex parallelizable structure 
and F any invariant balanced Hermitian metric. Then, there is a basis {ek}6 of 1-forms on M satisfying (15) and the equations
k=1
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = − Y e16 − Y e25,

de2 = Y e15 − Y e26,

de3 = Ze15 − T e16 − T e25 − Ze26 + Y e36 + Y e45,

de4 = T e15 + Ze16 + Ze25 − T e26 − Y e35 + Y e46,

de5 = de6 = 0,

(36)

where Y , Z , T ∈R, with Y > 0. Moreover, the connection ∇ε,ρ
(J ,F ) is an instanton if and only if it is the Chern connection (which is flat).

Proof. It is well-known that the complex parallelizable structure J on g8 is defined by the equations

dω1 = 2i ω13, dω2 = −2i ω23, dω3 = 0, (37)

and any metric F given by (22) is balanced. Let us consider the (1,0)-basis {σ k}3
k=1 defined by

σ 1 = ω1, σ 2 = − iu

s2
ω1 + ω2 + i v̄

s2
ω3, σ 3 = ω3.

Then, the complex structure equations (37) express in this basis as

dσ 1 = 2i σ 13, dσ 2 = 4u

s2
σ 13 − 2i σ 23, dσ 3 = 0, (38)

and the metric F is written as

F = i

2
r′2σ 11̄ + i

2
s′2σ 22̄ + i

2
t′2σ 33̄ + z′

2
σ 13̄ − z̄′

2
σ 31̄,

where r′ 2 = r2 − |u|2
s2 , s′ 2 = s2, t′ 2 = t2 − |v|2

s2 , and z′ = z + iuv
s2 .

Let �′ = √
r′ 2t′ 2 − |z′|2. Now, in terms of the new (1,0)-basis {τ k}3

k=1 defined by

τ 1 = r′ σ 1 + i z̄′
r′ σ 3, τ 2 = s′ σ 2, τ 3 = �′

r′ σ 3,

the metric is F = i
2 (τ 11̄ + τ 22̄ + τ 33̄), and the complex structure equations (38) express as

⎧⎪⎪⎨
⎪⎪⎩

dτ 1 = 2r′i
�′ τ 13,

dτ 2 = 4u
s′�′ τ 13 − 2r′i

�′ τ 23,

dτ 3 = 0.

(39)

Thus, taking the real basis {e1, . . . , e6} as in Lemma 5.1 (c), from (39) we arrive at (36) with Y = 2r′
�′ and Z + iT = 4u

s′�′ . 
Notice that Y 	= 0 and we can always suppose Y > 0 (just by taking −e j for j = 5, 6).

We study next the instanton condition for the connections ∇ε,ρ
(J ,F )

. Since Y > 0, from the following two equations

ϒ
ε,ρ
(J ,F )(1,3,1,3) = 0 ⇐⇒ ((1 − 2ρ)2 − 4ε2)(2Y 2 + Z 2 + T 2) = 0,

�
ε,ρ
(J ,F )(5,6) = 0 ⇐⇒ ε (1 − 2ρ)(2Y 2 + Z 2 + T 2) = 0,

it follows that (ε,ρ) = (0, 12 ), i.e. we are reduced to study the Chern connection. Now, by a direct calculation one can check 
that the instanton condition is satisfied for any metric, since all the curvature forms of the Chern connection vanish.

In conclusion, for any J -Hermitian metric F , the Chern connection is a flat instanton. Note that dF = 2Y (e12 − e34) ∧
e6 + (e13 + e24) ∧ (T e5 + Ze6) − (e14 − e23) ∧ (Ze5 − T e6) 	= 0. �
Remark 5.9. The coefficients Y , Z , T ∈R in the equations (36) are related to the metric coefficients r, s, t ∈R∗ and u, v, z ∈
C in (22). Indeed, by the proof of Proposition 5.8 we have Y = Y (r, s, t, u, v, z) = 2r′

�′ , Z = Z(r, s, t, u, v, z) = 4u1
s′�′ and T =

T (r, s, t, u, v, z) = 4u2
s′�′ , where r′ 2 = r2 − |u|2

s2 , s′ 2 = s2, t′ 2 = t2 − |v|2
s2 , z′ = z + iuv

s2 , and �′ = √
r′ 2t′ 2 − |z′|2.

Proposition 5.10. Let M be a solvmanifold with underlying Lie algebra isomorphic to g8, endowed with an invariant J , which is not 
complex parallelizable, admitting balanced metrics. Then, for every invariant balanced Hermitian structure ( J , F ), there is a basis 
{ek}6 of 1-forms on M satisfying (15) and the following equations:
k=1
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = − 2a
t e15 − 2

t e16 + 2b
t e25,

de2 = − 2b
t e15 − 2a

t e25 − 2
t e26,

de3 = − 4(a u1−b u2)

t
√

1−|u|2 e15 − 4u1

t
√

1−|u|2 e16 + 4(b u1+a u2)

t
√

1−|u|2 e25 + 4u2

t
√

1−|u|2 e26

+ 2a
t e35 + 2

t e36 − 2b
t e45,

de4 = − 4(b u1+a u2)

t
√

1−|u|2 e15 − 4u2

t
√

1−|u|2 e16 − 4(a u1−b u2)

t
√

1−|u|2 e25 − 4u1

t
√

1−|u|2 e26

+ 2b
t e35 + 2a

t e45 + 2
t e46,

de5 = de6 = 0,

(40)

where (a, b) ∈R ×R∗ − {(0, −1)}, and t ∈R∗ and u = u1 + i u2 ∈B = {u ∈C | |u| < 1}.
Moreover, the connection ∇ε,ρ

(J ,F ) is an instanton if and only if (ε, ρ) = (0, 12 ) and u = 0; that is, the (non-Kähler) balanced metric 
F is “diagonal” and ∇ε,ρ

(J ,F ) is the Chern connection (which is flat).

Proof. By [10, Prop. 3.7 and Thm. 4.5], any complex structure J with closed (3, 0)-form on the Lie algebra g8 admitting 
a balanced metric is given, up to isomorphism, by complex structure equations of the form (23) with K = −A + i and 
L = −A − i, where A ∈C with Im A 	= 0. The structure is complex parallelizable if and only if A = −i, so we suppose next 
that A = a + b i, with b 	= 0 and (a, b) 	= (0, −1). Following Lemma 5.1, we consider the basis of invariant 1-forms {ek}6

k=1
on M defined in (c). Now, by a direct calculation from the complex equations given in Lemma 5.1 (b) for K = −a + (1 − b)i
and L = −a − (1 + b)i we arrive at (40).

Now, the instanton conditions for the connection ∇ε,ρ
(J ,F )

imply

ϒ
ε,ρ
(J ,F )(1,3,1,3) = 0 ⇐⇒ ((1 − 2ρ)2 − 4ε2)(1 + a2 + b2|u|2) = 0,

�
ε,ρ
(J ,F )(5,6) = 0 ⇐⇒ ε (1 − 2ρ)(1 + a2 + b2|u|2) = 0.

Therefore, (ε,ρ) = (0, 12 ) and we are reduced to study the Chern connection. But a direct calculation shows that 

�
0, 1

2
(J ,F )(1, 2) = 0 if and only if (a2 + (1 + b)2)|u|2 = 0, so u = 0 (i.e. the balanced metric F is diagonal when writ-

ten as (24) in the basis {ωk}3
k=1). Moreover, in this case all the curvature forms vanish identically. Note that dF =

4a
t e125 + 4

t e126 − 4a
t e345 − 4

t e346 	= 0, i.e. the metric F is not Kähler. �
Remark 5.11. It is worthy to remark that the adapted equations given in Sections 4 and 5 not only provide a complete 
description of the spaces of invariant balanced Hermitian structures on their respective manifolds, they also give rise to a 
constructive converse result. In other words, for any family of equations, one can apply the following constructive process, 
which we illustrate in the case of Proposition 5.2: choosing any t ∈ R∗ and any u = u1 + i u2 ∈ B = {u ∈ C | |u| < 1}, one 
can check that the equations (26) satisfy d2ek = 0, 1 ≤ k ≤ 6, so they define a solvable Lie algebra which is isomorphic to 
g1; defining J and F by (15) one has that J is a complex structure with non-zero closed (3, 0)-form � = (e1 + i e2) ∧ (e3 +
i e4) ∧ (e5 + i e6), and F is a balanced J -Hermitian metric; finally, since the corresponding simply-connected Lie group has 
a lattice [10], we get a compact solvmanifold endowed with the Hermitian structure ( J , F ).

6. Solutions of the Hull-Strominger system and the heterotic equations of motion

In this section we find new explicit solutions of the Hull-Strominger system and the heterotic equations of motion on 
the compact solvmanifold underlying the Nakamura manifold. In the forthcoming paper [28] a general study of the system 
on solvmanifolds will be provided.

It follows from Sections 4 and 5 that the Chern connection ∇c is an instanton in several cases, although it is always flat. 
We have the following

Corollary 6.1. Let M = �\G be a six-dimensional compact manifold defined as the quotient of a simply connected Lie group G by a 
lattice �. Suppose that M possesses an invariant complex structure J with non-zero closed (3, 0)-form admitting balanced metrics F . 
Then, the Chern connection ∇c is an instanton in the following cases:

• g ∼= h5 , g8 or so(3, 1), endowed with its complex parallelizable structure J (in this case any Hermitian metric is balanced);
• g ∼= g1 , gα

2 (α>0) or g8 , J is any complex structure and F any “diagonal” Hermitian metric;
• g ∼= g0

2 , for any complex structure J and any Kähler metric F .
Moreover, in all the cases ∇c is flat.

Proof. The result is a direct consequence of Propositions 3.4, 4.1, 5.2, 5.3, 5.4, 5.8 and 5.10. �
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Let X be a compact complex manifold of complex dimension n, endowed with a balanced Hermitian metric F . Then, 
F n−1 defines a real (n − 1, n − 1) class in Bott-Chern cohomology. We recall that the Bott-Chern cohomology groups [2] of 
X are defined by

H p,q
BC (X) := ker d : �p,q(X,C) −→ �p+q+1(X,C)

im ddc : �p−1,q−1(X,C) −→ �p,q(X,C)
,

and we will denote by [F n−1] the class defined by the balanced metric in Hn−1,n−1
BC (X, R) ⊂ Hn−1,n−1

BC (X).
Recall that g8 is the Lie algebra of the solvmanifold underlying the Nakamura manifold. Next we consider it endowed 

with its abelian complex structure. In the following result we prove that for any given invariant balanced metric, there is 
another metric defining the same Bott-Chern (2,2)-class for which its associated Chern connection is flat and the heterotic 
equations of motion are satisfied with respect to a non-flat instanton.

Theorem 6.2. Let X = (M, JAb) be the Nakamura manifold endowed with its abelian complex structure JAb. Let F be any invariant 
balanced Hermitian metric on X and [F 2] ∈ H2,2

BC (X, R) its corresponding Bott-Chern class. Then, there exists a balanced Hermitian 
metric F̃ on X satisfying the following properties:

(a) The metric F̃ is cohomologous to F , i.e. [ F̃ 2] = [F 2] ∈ H2,2
BC (X, R), and its associated Chern connection ∇c

( JAb, F̃ )
is flat;

(b) There is a connection A compatible with ( JAb, F̃ ), which is a non-flat instanton and satisfies the heterotic equations of motion 
with respect to the Chern connection.

Proof. The abelian complex structure JAb is given by the complex equations

dω1 = −2i ω13̄, dω2 = 2i ω23̄, dω3 = 0, (41)

so it corresponds to taking K = 0 and L = −2i in (23). By Lemma 5.1 (a), any invariant balanced Hermitian metric F is given 
by (22) with v = z = 0. In addition, we can normalize the metric coefficients r = s = 1, so for the structure JAb there is a 
(1,0)-basis {ωk}3

k=1 satisfying (41) and such that any balanced metric F is given by

2 F = i (ω11̄ + ω22̄ + t2ω33̄) + u ω12̄ − ū ω21̄, (42)

with t ∈R∗ and u ∈B = {u ∈C | |u| < 1}. Then, we get

2 F 2 = (1 − |u|2)ω121̄2̄ + t2ω131̄3̄ + t2ω232̄3̄ − iut2ω132̄3̄ + iūt2ω231̄3̄.

Notice that the equations (41) imply

∂∂̄(ω12̄) = 4ω132̄3̄, ∂∂̄(ω21̄) = 4ω231̄3̄,

so we have

F 2 = 1 − |u|2
2

ω121̄2̄ + t2

2
ω131̄3̄ + t2

2
ω232̄3̄ + i ∂∂̄

(
ūt2

8
ω21̄ − ut2

8
ω12̄

)
.

Hence, [F 2] = [ F̃ 2] in H2,2
BC (X, R), where F̃ is the balanced Hermitian metric on X defined by

2 F̃ = i (r̃2 ω11̄ + s̃2 ω22̄ + t̃ 2 ω33̄), (43)

where r̃ = s̃ = (1 − |u|2)1/4 and t̃ = t/(1 − |u|2)1/4. Now, since the metric F̃ is diagonal, it follows from Corollary 6.1 that its 
Chern connection is flat. This proves (a).

To prove (b), we need to find an instanton A solving the anomaly cancellation condition for the Chern connection, i.e. 
satisfying

dT = α′

4
(tr �c ∧ �c − tr�A ∧ �A) = −α′

4
tr�A ∧ �A, (44)

where α′ is a non-zero constant and dT = d JAbdF̃ , with F̃ given in (43). We first notice that again, because of the form of 
the complex equations (41), there is an automorphism of (g8, JAb) so that we can suppose that r̃ = s̃ = 1. From now on, we 
will denote the metric coefficient t̃ by t .

Hence, we can write the balanced metric as F̃ = e12 + e34 + e56 with respect to an adapted basis {ek}6
k=1 whose differ-

entials are given by (40) with (a, b) = (0, 1) and u1 = u2 = 0. A direct calculation gives dF̃ = 4
t (e12 − e34) ∧ e6, so we have 

the torsion 3-form T = JAbdF̃ = 4 (e12 − e34) ∧ e5. Thus,
t
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dT = −16

t2
e1256 − 16

t2
e3456. (45)

Now, we consider a linear connection A defined by the connection 1-forms given, in the adapted basis {ek}6
k=1, by

(σ A)1
2 = −(σ A)2

1 = λ e1 + μ e2, (σ A)3
4 = −(σ A)4

3 = λ e3 + μ e4,

and (σ A)i
j = 0 for any (i, j) 	= (1, 2), (2, 1), (3, 4), (4, 3). Here λ, μ are real numbers, so for any such pair one has a connec-

tion Aλ,μ (which we will denote simply by A).
Notice that any connection A is Hermitian, in fact, since we are working in an adapted basis, the compatibility of A with 

the U(3)-structure ( JAb, F̃ ), i.e. A JAb = 0 = A F̃ , is equivalent to the connection 1-forms to satisfy (σ A)
j
i = −(σ A)i

j , together 
with the conditions

(σ A)1
3 = (σ A)2

4, (σ A)1
4 = −(σ A)2

3, (σ A)1
5 = (σ A)2

6, (σ A)1
6 = −(σ A)2

5,

(σ A)3
5 = (σ A)4

6, (σ A)3
6 = −(σ A)4

5.

By a direct calculation we get that all the curvature 2-forms (�A)i
j vanish, except for

(�A)1
2 = −(�A)2

1 = −2μ

t
e15 − 2λ

t
e16 + 2λ

t
e25 − 2μ

t
e26,

and

(�A)3
4 = −(�A)4

3 = 2μ

t
e35 + 2λ

t
e36 − 2λ

t
e45 + 2μ

t
e46.

Therefore, the conditions (16) in Lemma 3.6 are fulfilled, which implies that A is an instanton. Moreover, from these curva-
ture forms one obtains that the trace of the curvature of the instanton is

tr�A ∧ �A = − 8

t2
(λ2 + μ2)e1256 − 8

t2
(λ2 + μ2)e3456,

so, taking into account (45), we have that the anomaly cancellation (44) is satisfied if and only if

−16

t2
= 2α′

t2
(λ2 + μ2).

Finally, given any negative α′ , we can choose λ, μ such that λ2 +μ2 = 8/(−α′). Hence, with this choice, we have a solution 
of the heterotic equations of motion with non-flat instanton. �
Remark 6.3. We note here that the Nakamura manifold endowed with its abelian complex structure JAb also provides 
solutions to the heterotic equations of motion for any given positive α′ . Indeed, we can exchange the roles of ∇c and A in 
the anomaly cancellation condition and look for solutions of the equation

dT = α′

4
(tr �A ∧ �A − tr�c ∧ �c) = α′

4
tr�A ∧ �A,

with α′ > 0. Notice that this lies precisely in the setting of the system proposed by M. Garcia-Fernandez in [15], where 
metric connections which are instantons are allowed in the first term of the right hand side of the anomaly cancellation 
equation of the Hull-Strominger system. Recall that the instantons Aλ,μ found in Theorem 6.2 are not only metric, they are 
also Hermitian. So, following the proof of the theorem, given any positive α′ , we can choose λ, μ such that λ2 +μ2 = 8/α′ . 
With this choice, one has many solutions of the heterotic equations of motion, according to [15], with flat instanton.
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Appendix A

In this appendix we provide the relevant data for the proofs of the Propositions 2.4 and 2.6. Tables 1 and 2 correspond 
to the 3 ⊕ 3 decomposable Lie algebras sl(2, R) ⊕ g2 and so(3) ⊕ g2, respectively. For the Lie algebras L6,1 and L6,4 the 
relevant data are given in Table 3.
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Table 1
Closed 3-forms ρ on g = sl(2, R) ⊕ g2 and the values λ, μ, τ , A, B, C (up to the constant |λ̃(ρ)|−1/2) of the 
linear endomorphism F of sl(2, R) in Lemma 2.3 (i) induced by J̃ρ .

g2 Lie algebra g = sl(2,R) ⊕ g2

R3 ρ = a1e123 + a2e124 + a3e125 + a4e126 + a5e134 + a6e135 + a7e136 + a8e234 + a9e235

+a10e236 + a11e456

λ = μ = τ = a1a11, A = B = C = 0
h3 ρ = a1e123 + a2e124 + a3e125 + a4e134 + a5e135 + a6e234 + a7e235 + a8(e236 − e145)

+a9(e136 + e245) + a10(e126 + e345) + a11e456

λ = a2
10 − a1a11 − a2

8 − a2
9, μ = a2

10 − a1a11 + a2
8 + a2

9, τ = −a2
10 − a1a11 + a2

8 − a2
9

A = −2a8a9, B = −2a10a8, C = 2a10a9

e(1,1) ρ = a1e123 + a2e124 + a3e134 + a4e234 + a5(e146 + e235) + a6(e145 + e236) + a7(e245 − e136)

+a8(e246 − e135) + a9(e345 − e126) + a10(e346 − e125) + a11e456

λ = a2
10 − a1a11 − a2

5 + a2
6 + a2

7 − a2
8 − a2

9, μ = a2
10 − a1a11 + a2

5 − a2
6 − a2

7 + a2
8 − a2

9
τ = −a2

10 − a1a11 + a2
5 − a2

6 + a2
7 − a2

8 + a2
9

A = 2(a5a8 − a6a7), B = 2(a10a5 − a6a9), C = 2(a10a8 − a7a9)

e(2) ρ = a1e123 + a2e124 + a3e134 + a4e234 + a5(e146 + e235) + a6(e236 − e145) + a7(e136 + e245)

+a8(e246 − e135) + a9(e126 + e345) + a10(e346 − e125) + a11e456

λ = a2
10 − a1a11 − a2

5 − a2
6 − a2

7 − a2
8 + a2

9, μ = a2
10 − a1a11 + a2

5 + a2
6 + a2

7 + a2
8 + a2

9
τ = −a2

10 − a1a11 + a2
5 + a2

6 − a2
7 − a2

8 − a2
9

A = 2(a5a8 − a6a7), B = 2(a10a5 − a6a9), C = 2(a10a8 + a7a9)

sl(2,R) ρ = a1e123 + a2(e234 −e156) + a3(e146 + e235) + a4(e145 + e236) + a5(e245 −e136) + a6(e246 −e135)

+a7(e134 + e256) + a8(e345 − e126) + a9(e346 − e125) + a10(e124 + e356) + a11e456

λ = −a2
10 − a1a11 + a2

2 − a2
3 + a2

4 + a2
5 − a2

6 + a2
7 − a2

8 + a2
9

μ = −a2
10 − a1a11 − a2

2 + a2
3 − a2

4 − a2
5 + a2

6 − a2
7 − a2

8 + a2
9

τ = a2
10 − a1a11 − a2

2 + a2
3 − a2

4 + a2
5 − a2

6 + a2
7 + a2

8 − a2
9

A = −2(a4a5 − a3a6 + a2a7), B = −2(a10a2 + a4a8 − a3a9), C = −2(a10a7 + a5a8 − a6a9)

so(3) ρ = a1e123 + a2(e234 −e156) + a3(e146 + e235) + a4(e236 −e145) + a5(e136 + e245) + a6(e246 −e135)

+a7(e134 + e256) + a8(e126 + e345) + a9(e346 − e125) + a10(e124 + e356) + a11e456

λ = a2
10 − a1a11 − a2

2 − a2
3 − a2

4 − a2
5 − a2

6 − a2
7 + a2

8 + a2
9

μ = a2
10 − a1a11 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7 + a2

8 + a2
9

τ = −a2
10 − a1a11 + a2

2 + a2
3 + a2

4 − a2
5 − a2

6 − a2
7 − a2

8 − a2
9

A = −2(a4a5 − a3a6 + a2a7), B = −2(a10a2 + a4a8 − a3a9), C = 2(a10a7 + a5a8 + a6a9)

Table 2
Closed 3-forms ρ on g = so(3) ⊕ g2 and the values λ, μ, τ , A, B, C (up to the constant |λ̃(ρ)|−1/2) of the linear 
endomorphism F of so(3) in Lemma 2.3 (ii) induced by J̃ρ .

g2 Lie algebra g = so(3) ⊕ g2

R3 ρ = a1e123 + a2e124 + a3e125 + a4e126 + a5e134 + a6e135 + a7e136 + a8e234 + a9e235

+a10e236 + a11e456

λ = μ = τ = −a1a11, A = B = C = 0
h3 ρ = a1e123 + a2e124 + a3e125 + a4e126 + a5e134 + a6e135 + a7e136 + a8e234 + a9e235

+a10e236 + a11e456

λ = −a2
10 − a1a11 + a2

8 − a2
9, μ = −a2

10 − a1a11 − a2
8 + a2

9, τ = a2
10 − a1a11 − a2

8 − a2
9

A = −2a8a9, B = −2a10a8, C = 2a10a9

e(1,1) ρ = a1e123 + a2e124 + a3e134 + a4e234 + a5(e146 + e235) + a6(e145 + e236) + a7(e245 − e136)

+a8(e246 − e135) + a9(e126 + e345) + a10(e125 + e346) + a11e456

λ = −a2
10 − a1a11 + a2

5 − a2
6 + a2

7 − a2
8 + a2

9, μ = −a2
10 − a1a11 − a2

5 + a2
6 − a2

7 + a2
8 + a2

9
τ = a2

10 − a1a11 − a2
5 + a2

6 + a2
7 − a2

8 − a2
9

A = 2(a5a8 − a6a7), B = 2(a10a5 − a6a9), C = 2(a10a8 − a7a9)

e(2) ρ = a1e123 + a2e124 + a3e134 + a4e234 + a5(e146 + e235) + a6(e236 − e145) + a7(e136 + e245)

+a8(e246 − e135) + a9(e345 − e126) + a10(e125 + e346) + a11e456

λ = −a2
10 − a1a11 + a2

5 + a2
6 − a2

7 − a2
8 − a2

9, μ = −a2
10 − a1a11 − a2

5 − a2
6 + a2

7 + a2
8 − a2

9
τ = a2

10 − a1a11 − a2
5 − a2

6 − a2
7 − a2

8 + a2
9

A = 2(a5a8 − a6a7), B = 2(a10a5 − a6a9), C = 2(a10a8 + a7a9)

so(3) ρ = a1e123 + a2(e234 − e156) + a3(e146 + e235) + a4(e236 − e145) + a5(e136 + e245) + a6(e246 − e135)

+a7(e134 + e256) + a8(e126 + e345) + a9(e346 − e125) + a10(e124 + e356) + a11e456

λ = −a2
10 − a1a11 + a2

2 + a2
3 + a2

4 − a2
5 − a2

6 − a2
7 − a2

8 − a2
9

μ = −a2
10 − a1a11 − a2

2 − a2
3 − a2

4 + a2
5 + a2

6 + a2
7 − a2

8 − a2
9

τ = a2
10 − a1a11 − a2

2 − a2
3 − a2

4 − a2
5 − a2

6 − a2
7 + a2

8 + a2
9

A = −2(a4a5 − a3a6 + a2a7), B = −2(a10a2 + a4a8 − a3a9), C = 2(a10a7 + a5a8 + a6a9)
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Table 3
Generic closed three-forms ρ and the corresponding four-form d( J̃ρρ) and scalar λ̃(ρ) on the Lie 
algebra g = L6,1, L6,4.

g

L6,1 ρ = a1e123 + a2e126 + a3e135 + a4(e136 − e125) + a5e234 + a6(e235 − e134)

+a7(e124 + e236) + a8(e146 + e256) + a9(e245 + e346) + a10(e356 − e145) + a11e456,
d
(

J̃ρρ
) = q1e1234 + q2e1235 + q3e1236 + q4e1245 + q5(e1246 + e1345) + q6(e1256 + e2345)

+q7e1346 + q8(e1356 + e2346) + q9e2356,
λ̃(ρ) = (a1a11)2 + a10q2 + a3q4 + a4q5 − a6q8 + a3q9, where:
q1 = 4(a10a2a6 + a10a4a7 − a4a6a8 + a3a7a8 + a2a3a9 + a2

4a9),
q2 = −4(a10a2a5 − a10a2

7 − a4a5a8 − a6a7a8 − a2a6a9 − a4a7a9),
q3 = −4(a10a4a5 + a10a6a7 + a3a5a8 + a2

6a8 − a4a6a9 + a3a7a9),
q4 = 2(a2

10a2 + a11a2a3 + a11a2
4 − a2

10a5 − a11a2a5 − a11a3a5 − a11a2
6 + a11a2

7−2a10a4a8 − a3a2
8 + a5a2

8 + 2a10a6a9 + 2a7a8a9 + a2a2
9 + a3a2

9),
q5 = −4(a11a4a5 + a11a6a7 − a10a5a8 − a10a7a9 + a6a8a9 − a4a2

9),
q6 = −4(a11a4a6 − a2

10a7 − a11a3a7 − a10a6a8 − a10a4a9 − a3a8a9),
q7 = 2(a2

10a2 + a11a2a3 + a11a2
4 + a2

10a5 + a11a2a5 + a11a3a5 + a11a2
6 − a11a2

7−2a10a4a8 − a3a2
8 − a5a2

8 − 2a10a6a9 − 2a7a8a9 − a2a2
9 − a3a2

9),
q8 = 4(a11a2a6 + a11a4a7 − a10a7a8 − a6a2

8 − a10a2a9 + a4a8a9),
q9 = −2(a2

10a2 + a11a2a3 + a11a2
4 − a2

10a5 + a11a2a5 − a11a3a5 − a11a2
6 − a11a2

7−2a10a4a8 − a3a2
8 − a5a2

8 + 2a10a6a9 − 2a7a8a9 − a2a2
9 + a3a2

9).

L6,4 ρ = a1e123 + a2e124 + a3(e126 + e134) + a4e136 + a5(e234 − 2e125) + a6e235

+a7(e236 − 2e135) + a8(2e145 + e246) + a9(e256 + e345) + a10(e346 − 2e156) + a11e456,
d
(

J̃ρρ
) = q1e1234 + q2e1235 + q3e1236 + q4e1245 + q5(e1246 + e2345) + q6(e1256 + e1345)

+q7(e1346 − e2356) + q8e1356 + q9e2346,
λ̃(ρ) = (a1a11)2 + a10q1 − a4

2 q4 − a7q5 + a3
2 q6 + a3q9, where:

q1 = 8(2a10a2
5 + a10a2a6 − a3a6a8 − 2a5a7a8 + a3a5a9 − a2a7a9),

q2 = −8(2a10a3a5 − 2a10a2a7 − 2a4a5a8 + 2a3a7a8 + a2
3a9 − a2a4a9),

q3 = −8(a10a3a6 + 2a10a5a7 − a4a6a8 − 2a2
7a8 + a4a5a9 − a3a7a9),

q4 = 8(2a11a2
5 + a11a2a6 − 2a6a2

8 + 4a5a8a9 + a2a2
9),

q5 = −8(a11a3a5 − a11a2a7 − 2a10a5a8 + 2a7a2
8 − a10a2a9 + a3a8a9),

q6 = 4(2a2
10a2 + a11a2

3 − a11a2a4 − 4a10a3a8 + 2a4a2
8),

q7 = −8(2a2
10a5 − a11a4a5 + a11a3a7 − 2a10a7a8 + a10a3a9 − a4a8a9),

q8 = −8(2a2
10a6 − a11a4a6 − 2a11a2

7 − 4a10a7a9 − a4a2
9),

q9 = −2(2a2
10a2 + a11a2

3 − a11a2a4 − 2a11a3a6 − 4a11a5a7 − 4a10a3a8 + 4a10a6a8

+2a4a2
8 − 4a10a5a9 − 4a7a8a9 − 2a3a2

9).
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