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Abstract

There is continuing interest in the investigation of change in temperature over

space and time. For this analysis, we offer statistical tools to illuminate changes

temporally, at desired temporal resolution, and spatially, using data generated

from suitable space–time models. The proposed tools can be used with the output

from any suitable model fitted to any set of spatially referenced time series data.

The tools to assess space and time changes include spatial surfaces of probabilities

and spatial extents for events defined by exceeding a threshold. The spatial sur-

faces capture the spatial variation in the probability or risk of an exceedance

event, while the spatial extents capture the expected proportion of incidence of an

event for a region of interest. This approach is used analyse the changes in daily

maximum temperature in an inland Mediterranean region (NE of Spain) in the

period 1956–2015. The area is very heterogeneous in orography and climate,

including the central Ebro valley and part of the Pyrenees. We use a collection of

daily temperature series obtained from simulation under a Bayesian daily temper-

ature model fitted to 18 stations in that area. The results for the summer period

show that, although there is an increasing risk in all the events used to quantify

the effects of climate change, it is not spatially homogeneous, with the largest

increase arising in the centre of the Ebro valley and the Eastern Pyrenees area.

The risk of an increase in the average daily maximum temperature from 1966–
1975 to 2006–2015 higher than 1�C is higher than 0.5 over all of the region, and

close to 1 in the previous areas. The extent of daily maximum temperature higher

than the reference mean has increased 3.5% per decade. The mean of the extent

indicates that 95% of the area under study has suffered a positive increment of the

average temperature, and almost 70% an increment higher than 1�C.
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1 | INTRODUCTION

Climate change is a global phenomenon, and the interest
in assessing global warming in a spatiotemporal frame-
work is clear. Studies to assess and quantify the trends
and effects of climate change on temperature usually
focus on the study of spatially aggregated signals or on
the individual study of local time series (Gil Alana &
Sauci, 2019). However, individual study is limiting,
because it does not allow us to assess the nature of
changes that may occur over a spatial region of interest.
Further, studying spatially aggregated data sacrifices
insight into local variation in behaviour. Concerning the
time scale, many spatial analyses model annual or sea-
sonal summaries of temperature, see Masson-Delmotte
et al. (2021) for a review. However, the use of a daily
scale is important, since it allows us to incorporate the
inherent variability of data while still enabling aggrega-
tion to a desired broader time scale. This scale is also
essential to study persistence of temperatures. In addi-
tion, many environmental applications require tempera-
ture data at this scale.

The contribution of this work is the analysis in a
space–time framework of the changes in daily maximum
temperature in an inland Mediterranean region around
Arag�on (NE of Spain) in the period 1956–2015. The study
of this area is relevant because an increasing trend in the
mean temperature is detected on Spanish mainland
(Peña-Angulo et al., 2021). Further, the region includes
heterogeneous areas showing relevant climate variability.
The heterogeneity arises from the arid central valley of
the Ebro basin to mountain areas, such as the southern
slopes of the Pyrenees where a large part of the region's
water resources are located. This type of analysis is chal-
lenging since assessment of space and time changes in
daily maximum temperature using empirical approaches
has many limitations, particularly the inability to assess
uncertainty. Dowlatabadi and Morgan (1993) noted that
uncertainty consideration should be an integral part of
the integrated assessment of climate change. Also, Katz
(2002) strongly advised the use of full-fledged uncertainty
analysis as part of climate assessment, recommending
probabilistic modelling and, in particular, Bayesian hier-
archical modelling and Markov chain Monte Carlo
(MCMC) simulation techniques. By now many space–
time environmental science models have been proposed
in a Bayesian framework (Craigmile & Guttorp, 2011;
Crimp et al., 2015).

In this framework, we offer a set of statistical tools
to analyse space–time changes on the evolution of
daily maximum temperatures in a region using data
generated from Bayesian space–time models, or any

suitable model-based stochastic weather generator
(SWG). Suitable SWGs are those that enable simulta-
neous generation of series for arbitrary unobserved sites
(Caraway et al., 2014; Smith et al., 2018; Wilks, 1999,
2009). More precisely, the required data is a collection
(replicates) of daily temperature series at a fine grid of
geo-coded locations in the region under study. Some
SWGs providing this type of data are based on Bayesian
models (see, e.g., Kleiber et al., 2013 or Verdin
et al., 2019).

In this work, the space–time analysis in the study area
is carried out using a collection of posterior predictive
gridded daily maximum temperature series obtained from
the Bayesian model developed in Castillo-Mateo et al.
(2022). This model was fitted using observed daily maxi-
mum temperatures at n=18 sites, from 1956 to 2015. It is
a rich autoregressive mean model which captures needed
spatial dependence through four Gaussian processes
(GPs) modelling intercepts, slope/trend coefficients, vari-
ances and autocorrelations, respectively. While alterna-
tive models could be proposed, the model we employ was
validated for this dataset in Castillo-Mateo et al. (2022) to
reproduce the statistical properties of the central part of
the daily temperature distribution.

We offer two main strategies for quantifying the effect
of climate change on different features of temperature,
each with associated uncertainty. The first calculates
probabilities that will be useful in climate risk assess-
ment. According to Katz (2002), the quantification of
uncertainty in the form of probabilities is required as
input to any decision or risk analysis. The United Nations
Framework Convention on Climate Change (UNFCCC)
defines climate risk as the probability of exceeding one or
more criteria of vulnerability. The approach suggested in
this work aims to compute the occurrence probabilities
of this type of event, defined by exceeding a threshold.
Further, this procedure enables calculation of maps of
surface of probabilities for the events of interest, captur-
ing the spatial behaviour of the probability of a given
excess over threshold event.

The second strategy formalizes the concept of an
extent to investigate a useful objective in spatial climate
analysis, that is, to characterize the extent of occurrence
of a specific feature within a given area. More precisely,
the extent associated with a given region reflects the pro-
portion of the region in which the event is expected to
occur. We can specify this at daily scale but further, we can
average over days to attach this inference to coarser time
scales. Using this approach, we are able not only to identify
the areas where a feature of interest occurs but also to
quantify the mean and uncertainty of the percentage of
area where that feature occurs. There are previous studies
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analysing the idea of extent of extreme temperatures using
observed data (Keellings & Moradkhani, 2020; Rebetez
et al., 2009) or climate model output (Khan et al., 2019;
Lyon et al., 2019). However, they employed descriptive
approaches precluding formal inference. Some formal con-
cepts related to the notion of an extent have been intro-
duced in the statistical literature. Bolin and Lindgren (2015)
and Sommerfeld et al. (2018) consider excursion sets, which
are sets of points in an area where a spatial function is
above a given threshold. Haug et al. (2020) identified excur-
sion sets in Europe with significant trends in summer mean
temperature. Cebri�an et al. (2022) defined the notion of the
extent of an extreme heat event as a stochastic object and
used it to calculate daily, seasonal and decadal averages.
Excursion sets and level sets are examples of local events
whose proportion of incidence, that is, prevalence over a
subregion of interest, enables greater insight into tempera-
ture behaviour.

In the presented analysis, we consider events having
a temperature higher than the corresponding local mean,
or an increase in the mean temperature between two
decades higher than a given value. In addition, any other
event defined in terms of the available time series and a
specified threshold can be considered. Using the pro-
posed strategies, we compute the probabilities of a posi-
tive increment of temperature between two decades.
Further, we characterize, for a given day within a given year,
what proportion of the subregion was above a choice of a
local reference temperature during 1 day or during a run of
consecutive days, in order to study persistent temperatures.
Moreover, we study the behaviour of these extents over
time and also comparatively between subregions. Since our
generating model is autoregressive, correlation structure
in the series is captured and we can formally investi-
gate persistence. More precisely, we can study runs
of days within the same climate event, which is a
common approach to study this feature (Pfleiderer &
Coumou, 2018; Tye et al., 2019). These persistent events
are particular cases of the compound events defined by
Zscheischler et al. (2020). The importance of the study
of the effects of climate change on temperature persis-
tence is underscored by Li and Thompson (2021).

The paper is structured as follows. Section 2 describes
the observed temperature series and the space–time
model by Castillo-Mateo et al. (2022) used to generate the
grid of replicates of temperature series. Section 3 presents
the proposed tools and the different events considered in
the space–time analysis. Section 4 summarizes the results
of the analysis of two types of events, those based on the
comparison of temperature with a reference value, and
those based on the temperature increments between two
decades. It also shows the comparison of the evolution of
the extent in two areas with different climates. Finally,

section 5 summarizes the main conclusions and future
work. Data S1, Supporting Information contains addi-
tional exploratory analyses and further results.

2 | REGIONAL SETTING AND
MODEL TO GENERATE DATA

The regional setting and the dataset are presented in sec-
tion 2.1 and the model fitted to it in section 2.2.

2.1 | Regional setting and exploratory
analysis

The study area is located in the Ebro basin (85,362 km2),
in the northeast of Spain (see Figure 1). Different climate
subareas can be distinguished, due to its location in the
Iberian Peninsula and its heterogeneous orography that
includes the Ebro valley (centre) where elevations
descend to 200 m, and mountains: Pyrenees (north), Can-
tabrian Range (northwest) and Iberian System (south-
west). The mountains reach 3000 m in the Pyrenees and
2000 m in the Iberian System. Mediterranean-continental
dry climate with irregular rainfall and a large tempera-
ture range is the prevailing climate, but also mountain
climates are present in the region. This variety of climate
conditions is one reason for interest in the area.

Figure 1 shows the location of the 18 sites where daily
maximum temperature observed series, from 1956 to 2015,
are available. They have been provided by the Spanish
Meteorological Office (AEMET). Temperature in this region
shows seasonal behaviour, with large differences between
winter and summer months; for example, in Zaragoza (the
main city in the region) this difference is around 22�C. This
seasonal pattern is quite spatially homogeneous in the area.

Castillo-Mateo et al. (2022) performed a thorough
exploratory analysis of the the daily maximum tempera-
tures for the three summer months, JJA, over these
18 sites, and a summary of this analysis is shown in sect.
S1 of Data S1. According to this exploratory analysis, spa-
tial variability in the mean temperatures is linked to ele-
vation, where Panticosa is the highest and coldest
location and La Puebla de Híjar in the valley is the hot-
test. However, elevation is not sufficient to explain the
mean temperature variability, since there are areas at
the south and north of the Ebro river, with similar eleva-
tion, around 1000 m, and different mean temperatures.
The standard deviations of the series show the maximum
variability is in the northwest, 5.6�C in Pamplona, and
the minimum in the southwest, 4.1�C in Cueva Foradada.
The serial correlation is over 0.90 for all series, reflecting
temperature inertia in the short term. It is a key
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distributional feature to be considered in presenting the
statistical inference. To explore the observed change over
time, linear trends are estimated in each series using the
observations in the period JJA 1956–2015. Spatially het-
erogeneous behaviour is found in this feature, with the
smallest changes in the western observatories and the
largest in the valley.

With regard to spatial dependence, a strong correla-
tion is observed between daily temperature series in dif-
ferent sites, and therefore, it should be incorporated
into the analysis. Pairwise Pearson coefficients between
the series at two sites are calculated separately for each
month to avoid the correlation caused by the common
seasonal pattern. The 25th percentile of all pairwise
coefficients is 0.82 in June, 0.74 in July and 0.73 in
August.

Finally, to explore changes over time and space, we con-
sider the “empirical extent” for the event defined as the
increment of daily maximum temperature above a reference
mean eμ sð Þ higher than a value c. The empirical extent is
computed as the observed proportion of the 18 available
stations where the event occurs. Figure 2 summarizes the
average of the empirical extent over days in JJA of each
year during the period 1966–2015 for events based on
increments over the reference mean eμ sð Þ higher than
c= 0, 1 and 2�C. Here, eμ sð Þ is a reference mean (the mean
for JJA in 1966–2015) that is site-specific but constant
over time. The fitted linear trend shows an increase of
the empirical extent of 0:037 per decade for increases
over eμ sð Þ higher than 0 and 0:041 for increases higher
than 2�C. An evident limitation of this empirical extent is
that it is based on only 18 stations.

2.2 | A space–time model to generate
daily maximum temperatures

The tools suggested in this work will be used to analyse
the temperature evolution in Arag�on using as input the
posterior realizations of daily temperature obtained from

FIGURE 1 (left) Relief map of the region under study and location of observed temperature series. (right) Climate classification of the

region (Chazarra-Bernabé et al., 2018) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Yearly averages in JJA of the empirical extent,
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the spatiotemporal model in Castillo-Mateo et al. (2022).
This is a complex model fitted in a Bayesian framework
but, as noted above, any alternative model able to gener-
ate adequate replicates of time series at a fine grid of geo-
coded locations could be used equally well to generate
the temperature realizations required; for example, the
space–time model by Schliep et al. (2021) or the SWG by
Verdin et al. (2019).

A brief summary of this model is included in this
section, but all the fitting and validation details and a
thorough motivation of the model can be found in
Castillo-Mateo et al. (2022). It is noteworthy that the
model in Castillo-Mateo et al. (2022) was fitted using
observations from the warm period from May to
September. Here, we will only consider the series for
JJA, even though the model can generate series for all
5 months. An exploratory analysis of the temperature
dataset showed that a statistical model for daily temper-
atures must include terms that capture the seasonal
behaviour, the spatially heterogeneous standard devia-
tion and trend, as well as the temporal and spatial
dependence observed in the region. To obtain the
desired behaviour, we introduce both fixed effects
terms, that capture elevation as well as trend and sea-
sonal patterns, and random effects terms that capture
spatial and temporal dependence. Then, the daily maxi-
mum temperature for day ℓ within year t and location s,
Yt,ℓ sð Þ, is modelled as

Yt,ℓ sð Þ=mt,ℓ sð Þ+ρ sð Þ Yt,ℓ−1 sð Þ−mt,ℓ−1 sð Þð Þ+εt,ℓ sð Þ,
mt,ℓ sð Þ=μt,ℓ sð Þ+γt sð Þ,

μt,ℓ sð Þ=β0+αt+β1 sin 2πℓ=365ð Þ+β2 cos 2πℓ=365ð Þ+β3elev sð Þ,
γt sð Þ=β0 sð Þ+α sð Þt+ψ t+ηt sð Þ:

ð1Þ

Note that the model introduces temporal dependence
using a first-order autoregressive structure on the temper-
ature anomalies, as suggested in the Fifth IPCC Report
(Hartmann et al., 2013), with the coefficient ρ sð Þ captur-
ing dependence for consecutive days at location s. Zwiers
and Von Storch (1995) and Chandler and Scott (2011)
also state that modelling of the temporal dependence in
the data is important since its omission may lead to
an inappropriate statistical assessment of the trend.
The conditional mean of Yt,ℓ sð Þ given yesterday's temper-
ature Yt,ℓ−1 sð Þ is expressed by mt,ℓ sð Þ+ρ sð Þ
Yt,ℓ−1 sð Þ−mt,ℓ−1 sð Þð Þ. The model assumes that spatial
and temporal dependence is captured by the conditional
mean, so that εt,ℓ sð Þ are pure error terms with indepen-
dent N 0,σ2 sð Þð Þ distribution where σ2 sð Þ is a spatially
varying variance.

Here, mt,ℓ sð Þ contains fixed and random effects,
μt,ℓ sð Þ and γt sð Þ, respectively. The daily fixed effects are
captured by β0, a global intercept, αt, a baseline long-
term linear trend, β1 and β2, the coefficients of a har-
monic that captures the seasonal component, and β3, the
coefficient for the elevation at s, elev sð Þ. The annual ran-
dom effects given in γt sð Þ capture space–time dependence
through GP; for details on GPs see, for example,
chap 3 in Banerjee et al. (2014). A local spatial adjust-
ment to the intercept, β0 sð Þ, and a local slope adjustment,
α sð Þ, enable a flexible, spatially varying, local linear
trend. This locally linear trend substantially extends the
usual linear trend specification adopted in climate analy-
sis (Masson-Delmotte et al., 2021). The terms
ψ t � IIDN 0,σ2ψ

� �
provide annual intercepts to allow for

yearly shifts (associated, e.g., with the ENSO), and
ηt sð Þ� IIDN 0,σ2η

� �
provides local annual intercepts to

allow for local yearly shifts.
The model is fitted in a Bayesian framework using

MCMC; see Banerjee et al. (2014) and Gelfand and Smith
(1990) for details on these methods and sect. S2 of
Data S1 for information regarding prior specification.

As a last comment, the result of the Bayesian model fit-
ting is to produce the posterior distribution of any
unknown in the model, that is, the conditional distribution
of the unknown given the data. Using MCMC to fit the
model, we obtain as many samples as we wish from this
posterior distribution. From these samples, we can learn
arbitrarily well about any features of the distribution of the
unknown including say, the mean and variance, as well as
interval estimates. That means, that the previous model
enables kriging, and it can be used to generate samples of
the value of the daily temperature at unobserved locations
in the region under study for a given day ℓ within year t.

2.2.1 | Dataset generated from the model

As noted above, a collection of independent replicates, of
daily temperature within a year on a spatial grid over D
for the period of interest, Y bð Þ

t,ℓ sð Þ : b=1,…,B
n o

, are gener-

ated using the model in Equation (1). Note that B can be
as large as we wish; it has no connection to the size of
the dataset used to fit the model. As a sample from a pre-
dictive distribution, these replicates provide the funda-
mental material for all of the inference using the tools in
the sequel. They will not only allow us to learn about the
distribution of temperature at any location on any day
but also about the distribution of any other measures of
interest that can be computed as functions of tempera-
tures Yt,ℓ sð Þ, as we describe in the following sections.

CEBRIÁN ET AL. 5

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8305 by U
niversidad D

e Z
aragoza, W

iley O
nline L

ibrary on [12/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We emphasize again that this approach can be
implemented using datasets from other generating
models. That is, for other datasets, over different
regions and appropriate time scales, fitted with different
appropriate models, we can follow the same path for
enhanced learning about temperature behaviour over
space and time.

3 | METHODS: NOVEL TOOLS FOR
ENRICHING SPACE–TIME
ANALYSIS OF EXCESS OVER
THRESHOLD EVENTS

We present tools to illuminate the spatial and temporal
behaviour of daily maximum temperature. Again, the set

Y bð Þ
t,ℓ sð Þ : b=1,…,B

n o
provides samples of any function of

daily temperature over days (ℓ), years (t) or locations (s).
Hence, we can “see” the distribution of this function and
any features of this distribution that are of interest such
as its location, variability or tail behaviour.

A primary intent is to study changes in temperature
over time, to quantify their magnitude, and to identify
areas with different evolution. To obtain conclusions over
space, we use surfaces of probabilities (of risk) and the
concept of extent (proportion of area) linked to “events”
that allow the quantification of the increase in tempera-
ture. The underlying idea is to define events of interest
At,ℓ sð Þ in terms of the daily maximum temperatures
Yt,ℓ sð Þ and using an excess over threshold approach,
for example, the event of maximum temperature at day
t,ℓð Þ at location s being higher than a site-specific refer-
ence value r sð Þ, At,ℓ sð Þ= Yt,ℓ sð Þ>r sð Þf g. From a model-
generated replicate Y bð Þ

t,ℓ sð Þ, we can obtain a realization of
the binary/indicator variable, 1 Yt,ℓ sð Þ>r sð Þð Þ, a variable
that is equal to 1 if Yt,ℓ sð Þ>r sð Þ, and 0 otherwise. For
illustration, all the measures and tools in this section are
defined for the simple event Yt,ℓ sð Þ>r sð Þf g. However,
they can be applied to any other event defined in terms
of Yt,ℓ sð Þ; examples of these events are described later in
section 3.3. All of the ensuing inference is posterior, that
is, conditional given the data. To simplify notation, we
suppress the conditioning below, then P At,ℓ sð Þjdatað Þ will
be denoted P At,ℓ sð Þð Þ.

3.1 | Surfaces of probabilities

The posterior probability associated with an event at loca-
tion s, At,ℓ sð Þ, is obtained by calculating the proportion
of events in the collection of realizations Y bð Þ

t,ℓ sð Þ,

b=1,…,B, that is, the mean of the binary variables indi-
cating the occurrence of the event,

bP At,ℓ sð Þð Þ= 1
B

XB
b=1

1 A bð Þ
t,ℓ sð Þ

� �
, ð2Þ

where A bð Þ
t,ℓ sð Þ is the event defined in terms of the bth

realization Y bð Þ
t,ℓ sð Þ; for example, Y bð Þ

t,ℓ sð Þ>r sð Þ
n o

.
Events based on daily maximum temperature, such as

Yt,ℓ sð Þ>r sð Þf g, are defined for each day t,ℓð Þ, so that it is
straightforward to summarize them over a period of time.
The previous daily probabilities can be summarized by
averaging them in a given period, for example, below, the
920 (10×92) days in JJA in a decade D, denoted by
D-JJA,

P A sð Þð Þ= 1
920

X
t � D,ℓ � JJA

bP At,ℓ sð Þð Þ: ð3Þ

These daily or average probabilities over the grid of
points s can be plotted and smoothed in a map, to reveal
a surface of probabilities, or averaged over a region.

3.2 | Extent for an event

The extent for an event in a region ℬ⊆D is defined as
the proportion/fraction of incidence of that event in the
region (Cebri�an et al., 2022). Formally, the extent in ℬ
for an event At,ℓ sð Þ is the stochastic integral,

Ext At,ℓ ℬð Þð Þ= 1
kℬ k

Z
ℬ
1 At,ℓ sð Þð Þds,

where kℬ k denotes the area of ℬ. Although this inte-
gral cannot be calculated explicitly, it can be approxi-
mated arbitrarily well by Monte Carlo integration as

fExt At,ℓ ℬð Þð Þ=
X
s �ℬ

ws1 At,ℓ sð Þð Þ, ð4Þ

where ws weights the size of the grid cell linked to s,
which cover region ℬ: ws=w�

s=
P

s �ℬw�
s for given size

grid cell w�
s . In other words, it is the weighted average

over the region of the binary variables for
events At,ℓ sð Þ.

We can obtain a realization of an extent from each set
of realizations Y bð Þ

t,ℓ sð Þ for s�ℬ, and with B observations
of the extent, we obtain its posterior predictive distribu-
tion, which is employed for inference. To keep the
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notation simple, if the considered region is the entire
region, ℬ=D, the argument ℬ is omitted.

When we compute daily extents, again, it may be of
interest to summarize them by averaging them over a
period of time, for example, D-JJA,

Ext A ℬð Þð Þ= 1
920

X
t � D,ℓ � JJA

fExt At,ℓ ℬð Þð Þ: ð5Þ

Note that the B realizations available of this average
extent will characterize the distribution of the average,
not a daily extent. This means that the variance will be
much smaller than in the previous example since it is
averaged over a large number of terms.

3.3 | Defining events to quantify the
increase in temperature

There are many ways to define events that allow us to
quantify an increase in temperature. Here, we propose
several ways to define those events, but any other option
that can be evaluated from the daily temperature obser-
vations Yt,ℓ sð Þ can be studied by applying the tools
described in the previous section. We consider two gen-
eral choices of events, one based on increments over a
reference value and the other on increments between two
periods of time.

First, we consider events defined in terms of the
increment in temperature with respect to a reference
value r sð Þ, which is site-specific but constant across time.
The simplest events, Yt,ℓ sð Þ−r sð Þ>cf g, are based on daily
maximum temperature; note that these events corre-
spond to events defined as daily temperature higher than
a value r sð Þ+c. An important feature of temperature is
its persistence across days, so that we define events based
on the daily temperature for k=2 or 3 consecutive days
Yt,ℓ sð Þ−r sð Þ>c;2f g� Yt,ℓ sð Þ−r sð Þ,Yt,ℓ+1 sð Þ−r sð Þ>cf g or
Yt,ℓ sð Þ−r sð Þ>c;3f g� Yt,ℓ−1 sð Þ−r sð Þ,Yt,ℓ sð Þ−r sð Þ,Yt,ℓ+1 sð Þ−r sð Þ>cf g.

An extension is to define events based on an average
temperature in a period of time, for example, the average
in D-JJA,

YD sð Þ= 1
920

X
t � D,ℓ � JJA

Yt,ℓ sð Þ:

Then, we define events based on the increment of
the average temperature over the reference
value, YD sð Þ−r sð Þ>c� �

.
Another important feature to quantify global warm-

ing is the increment of temperature between two periods

of time; here, we will consider the increment between
two decades 1966–1975 (D1) and 2006–2015 (D5). As
above, the increments can be defined using daily temper-
atures or average temperatures. Here we show the analy-
sis of the increment of average temperatures, that is the
events YD5 sð Þ−YD1 sð Þ>c� �

. The analysis of the incre-
ments between two decades at a daily scale is presented
in sect. S4.1 of Data S1. For clarity, Table 1 summarizes
the type and notation of all the events analysed in the fol-
lowing section.

4 | RESULTS FOR THE
SPACE–TIME ANALYSIS

We apply the methodology described in section 3 to
study the effect of climate change on different features
related to daily maximum temperature in a Mediterra-
nean area, a region in the Ebro basin. Section 4.1 shows
the results over the entire region while a comparison of
the extent for different increments of temperatures in
two areas with different climates regimes is carried out
in section 4.2.

The tools are applied to a set of B=500 replicates of

daily maximum temperature Y bð Þ
t,ℓ sð Þ;b=1,…,500

n o
gen-

erated from the model in section 2.2, on a spatial grid
covering the area D drawn in Figure 1, for the 92 days in
JJA in the period 1956–2015. Given the different orogra-
phy in the study region, a grid with 4401 points s with a
locally adapted spatial resolution is adopted. The spatial
changes in temperature in flat areas are slow so a

4×4 km2 grid is used, while in an area in the Pyrenees
with a steep relief, the scale of the grid is resolved to

TABLE 1 Events defined to quantify the effects of climate

change

Event Definition

Yt,ℓ sð Þ−r sð Þ>cf g Increment of daily maximum
temperature over a reference value
r sð Þ, higher than c

Y t,ℓ sð Þ−r sð Þ>c;kf g Increment of daily maximum
temperature over a reference value
r sð Þ, higher than c in k
consecutive days

YD sð Þ−r sð Þ>c� �
Increment of average temperature in
decade D over a reference value r sð Þ
higher than c

YD5 sð Þ−YD1 sð Þ>c� �
Increment of average temperatures
between two decades higher than c

Note: In this work, events are defined for three values c = 0, 1 and 2�C and
two persistence periods k=2 and 3 days, and the reference value r sð Þ is a
local mean.
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1×1 km2. The first decade of the generated realizations,
1956–1965, is reserved to obtain reference values and the
analysis over time is done over the period 1966–2015.

As a simple example of the information provided by
the output series, Figure 3 (left) shows, spatially, the dif-
ference between the medians in decades D1 and D5 (the
medians in each decade are shown in Figure S2).
Although the increase is higher than 0.5�C in all of the
region, the map reflects the spatial variability of the area:
the highest increases, greater than 2�C occur in the cen-
tre of the valley and the east area of the Pyrenees, while
the lowest occur in the NW.

To define the first choice of events, we need a refer-
ence value r sð Þ. Here, we consider a mean value, but
other options, for example a high percentile, could be
used to study the evolution of extreme events, provided
that the considered data generator from the associated
model is able to reproduce adequately the tails of data
distribution. Our site-specific reference value r sð Þ is the
mean temperature in JJA during the reference decade
1956–1965, denoted as the reference mean eμ sð Þ. The
resulting mean surface is shown in Figure 3 (right); the
image is built using the function pimage from the R pack-
age autoimage (French, 2017), that interpolates the previ-
ous points on a regular grid using multilevel B-splines.
The warmest area, with mean temperature higher than
30�C is the Ebro river valley, especially the areas closest
to the river and the eastern part of the valley, while the
coolest areas correspond to the Pyrenees, with mean tem-
peratures lower than 20�C. We will analyse events for
three different increments c= 0, 1 and 2�C. The values

1 and 2 are approximately 1=4 and 1=2 of the standard
deviation of daily maximum temperature, and values in
this range are commonly used to evaluate effects of cli-
mate warming (IPCC, 2018).

4.1 | Analysis of the entire region

4.1.1 | Analysis of increments of daily
maximum temperature over eμ sð Þ

This section summarizes the results of the analysis of
events based on increments of daily maximum tempera-
ture over the reference mean, eμ sð Þ, for 1 day and persis-
tent events for k=2 and 3 days.

Surface of probabilities
The daily posterior probabilities of the previous events
are computed using Equation (2), and averaged over
D-JJA using Equation (3). Figure 4 shows the averages
for decades D1 and D5 of the probabilities of exceeding
the reference mean, Yt,ℓ sð Þ−eμ sð Þ>0f g. In D1, the aver-
aged probabilities vary from 0.42 to 0.47. However, clear
evidence of global warming is observed in D5, since the
probabilities all over the region are higher, attaining
values close to 0.7 in the SW (the area from Zaragoza,
next to the Ebro river, to Daroca and Cueva Foradada,
with a higher elevation) and also in the NE (Pyrenees
area that contains Sallent and Panticosa, the locations
with highest elevation in the observed dataset). That
means that, in those areas, the reference mean corre-
sponds to the 30th percentile of the temperature
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FIGURE 3 (left) Difference in the medians of the daily maximum temperatures (�C) in JJA in decades D5 and D1. (right) Map of the

reference mean eμ sð Þ, that is, mean daily temperature (�C) in JJA in the decade 1956–1965 [Colour figure can be viewed at

wileyonlinelibrary.com]
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distribution during D5. There is also evidence of changes
in temperature persistence, since the analysis of the
events Yt,ℓ sð Þ−eμ sð Þ>0;2f g shows that the risk of positive
increments over the reference mean during two consecu-
tive days is around 0.3 in D1, and in D5 it varies from the
same value 0.3 in the NW, to 0.6.

Extents
Here, Equation (4) is used to compute extents over the entire
region associated with the foregoing events. The average
extent for events based on daily temperature are computed
employing different periods of time. First, we compute
yearly averages Ext At ℬð Þð Þ= 1

92

P
ℓ � JJA

fExt At,ℓ ℬð Þð Þ to
study the evolution across years of the events
At,ℓ sð Þ= Yt,ℓ sð Þ−eμ sð Þ>0f g. Figure 5 (black line) shows
the posterior means of those yearly averages, revealing a
roughly linear increase with a trend equal to 0:0035 and
90% credible interval (CI) 0:0030,0:0039ð Þ; this means an
increase in extent per decade equal to 3:5%. A similar
evolution across years is expected in the extent for events
defined with different increments and persistence; for
example, the linear trends for events with increments
higher than c= 1 and 2�C are equal to 0:0035 and 0:0033,
respectively. As an aside, the trend of empirical extents,
that is, the proportion of observed stations exceeding

their reference value, shown in Figure 2, is similar,
0:0037, for temperatures over the reference mean. How-
ever, an evident limitation of this empirical extent is that
uncertainty of the empirical extents cannot be quantified.
Moreover, it is defined relative to only 18 stations as
opposed to the fine grid of 4401 locations employed in
our posterior predictive simulation.

Regarding the average extents over decades
Ext A ℬð Þð Þ, see Equation (5), Table 2 summarizes their
means for events Yt,ℓ sð Þ−eμ sð Þ>cf g with c=0, 1 and 2�C
in D1 and D5, and for the persistent events defined with
2 and 3 consecutive days. The variability of the average
extents is quite low, with 90% CI of length around 0.06 in
all the cases. This variability is much lower than the vari-
ability across decades, indicating a clear increase in the
extent for all types of events; for example, the mean and
the 90% CI of the average extent for daily temperatures
over eμ sð Þ in D1 and D5 are, respectively, 0:45 0:42,0:48ð Þ
and 0:58 0:55,0:61ð Þ. That increase yields a similar extent
for events Yt,ℓ sð Þ−eμ sð Þ>0f g in D1 and the extent for
events Yt,ℓ sð Þ−eμ sð Þ>2f g in D5, that is, 0:41 0:38,0:45ð Þ.
As a consequence of this warming, the average extent in
D5 with c= 1�C is higher than the average in D1 with
c= 0�C. The increase is also observed in the extent for
persistent events based on 3 days, especially in
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FIGURE 4 Average in D-JJA of probabilities of events Yt,ℓ sð Þ−eμ sð Þ>0f g (first row) and Yt,ℓ sð Þ−eμ sð Þ>0;2f g (second row) in D1 and

D5, and difference between them [Colour figure can be viewed at wileyonlinelibrary.com]
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increments higher than c= 2�C, where the mean of the
average extent in D5 shows a relative increase with
respect to D1, higher than 75%, from 0.13 to 0.23.

4.1.2 | Analysis of increments of average
temperature over eμ sð Þ

This section summarizes the analysis of events based on
the average temperature in D-JJA, YD sð Þ−eμ sð Þ>c� �

for
decades D1 and D5 and values c= 0, 1 and 2�C.

Surface of probabilities
In D1, the risk of average temperature higher than eμ sð Þ
varies slightly throughout the region, from 0.03 to 0.4. In
D5, this risk is much higher (from 0.7 to virtually 1) in all
the region except in the NW, the area closer to the
Cantabrian Sea (see Figure 6). The pattern of the increase
in the risk of this event is different from most of the other
events where the areas with highest risk of suffering the
effects of climate change are the centre of the valley and
the NE areas. Regarding the risk of increments of the
average temperature over eμ sð Þ being higher than 1�C, in
D1, it is quite homogeneous throughout the region: lower
than 0.08 in 75% of the region and always lower than 0.2.
However, although the risk in D5 has increased all over
the region, there are relevant differences depending on
the area: it varies from values lower than 0.2 in the NW
up to more than 0:7 in the central part of the valley.

Extents
First, to characterize the evolution over time, we com-
pute the extent of positive increments of the average tem-
perature in JJA in each year Yt sð Þ−eμ sð Þ>0� �

. Figure 7
shows the boxplots of the posterior distribution of those
yearly extents. The increasing trend of the extent is clear,
demonstrating that the variability between years is higher
than the variability within year. The slope of these
extents is 0:0088, more than double the slope of the
extents based on daily temperatures. In addition to the

increasing trend, this plot permits us to identify years
which were colder with respect to the trend, and with a
lower variability, for example, 1972, 1977, 1984, or hotter
as year 2003 (García-Valero et al., 2015). In the last
decade, two different types of behaviours are observed,
the distribution of the extent in some years is quite high,
centred around 0.9, while others centred around 0.5.

We also analyse the extent for increments of decadal
averages YD sð Þ−eμ sð Þ>c� �

; the last row in Table 2 sum-
marizes the posterior mean of those extents with c= 0, 1
and 2�C and Figure 8 compares their posterior densities
in D1 and D5 for c=0 and 1. The ratio of the mean
extents in D5 and D1 increases with c: it is equal to 3 for
c=0, 9.4 for c=1, and 17 for c= 2�C. The variability of
the posterior distribution of these extents is not large so
that the probability of the extent for events
YD sð Þ−eμ sð Þ>0� �

being higher in D5 than in D1 is virtu-
ally 1 for the three c values. A consequence of this
increase is that the mean of the extent for increments
higher than 0 in D1 is roughly one third its counterpart
in D5, and almost half the extent of increments higher
than 1�C in D5.
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FIGURE 5 Posterior density of the extent for events

YD−eμ sð Þ>c� �
with c=0 (solid line) and c=1 (dotted line) in D1

(red) and D5 (blue) [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Posterior mean of the average extent in D-JJA for increments of daily maximum temperature over the reference mean, for

different values c and persistence in decades D1 (1966–1975) and D5 (2006–2015); last row shows the mean of the extents for increments of

average temperature

c 0�C 1�C 2�C

Decade D1 D5 D1 D5 D1 D5

Yt,ℓ sð Þ−eμ sð Þ>cf g 0.45 0.58 0.37 0.50 0.29 0.41

Yt,ℓ sð Þ−eμ sð Þ>c;2f g 0.34 0.47 0.26 0.38 0.19 0.30

Yt,ℓ sð Þ−eμ sð Þ>c;3f g 0.26 0.39 0.19 0.31 0.13 0.23

YD sð Þ−eμ sð Þ>c� �
0.26 0.78 0.05 0.47 0.01 0.17
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It is noteworthy that the analysis of both probabilities
and extents shows that consequences of global warming
are stronger in average temperatures than in daily
temperatures.

4.1.3 | Analysis of temperature increments
between decades

This section summarizes the analysis of events that quan-
tify the global warming in terms of the increments of

average temperatures, YD5 sð Þ−YD1 sð Þ>c� �
for values

c= 0, 1 and 2�C.

Surface of probabilities
According to Figure 9 the risk of a positive increment of
average temperatures between D1 and D5 is virtually 1
all over the region, except in the NW where it takes
values around 0.7. However, for other c values, the spatial
variability is higher. The risk of an increment higher than
1�C, is close to 1 in some areas and higher than 0.6 except
in the NW where it is roughly 0.25. The risk of

0.0

0.2

0.4

0.6

0.8

1.0

D1

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

0.0

0.2

0.4

0.6

0.8

1.0

D5

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

0.2

0.4

0.6

0.8

Difference

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

0.0

0.2

0.4

0.6

0.8

1.0

D1

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

0.0

0.2

0.4

0.6

0.8

1.0

D5

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

0.2

0.4

0.6

0.8

Difference

long.

la
t.

−1.5 −1.0 −0.5

41
.0

41
.5

42
.0

42
.5

FIGURE 6 Posterior probabilities of increments of average temperatures YD5 sð Þ−YD1 sð Þ>c� �
for c= 0, 1 and 2�C [Colour figure can be

viewed at wileyonlinelibrary.com]
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increments higher than 2�C is lower than 0.4 in most of
the region except some small areas in the centre of the
valley and the NE, where it attains 0.7. Comparing these
results with the analysis of daily increments in sect. S4.1
of Data S1, we note that the risk of an increment between
D1 and D5 higher than c is much higher for average tem-
peratures than for daily temperatures.

Extents
The first row of Table 3 summarizes the means and the
90% CI of the extents for increments between average
temperature in D1 and D5. The CI of the extents show
that between 90 and 98% of the area under study has suf-
fered a positive increment of the average temperatures,
from 58% to 80% an increment higher than 1�C, and from
15% to 36% higher than 2�C.

4.2 | Comparison of the evolution
in areas with different climates

The region considered in this analysis includes areas with
very different climates (see Figure 1). Here, we analyse

whether the consequences of global warming are the same
over the entire region or whether we can identify different
patterns of evolution over time. This type of study is not
possible using the observed database, since the number of
available stations in some areas is sparse. The use of the
output from the statistical model enables that type of com-
parison. More precisely, in this section, we use the
approach described in section 3 to compute the extent for
different events in two regions with different climates, and
to compare the effects of global warming in those areas.

We consider two important regions in the study area,
which according to the Köppen's climate classification
have very different characteristics. Region V (valley) is
the area between parallels 41�N and 42�N with the semi-
arid Bsk climate. It covers the central Ebro valley and it
has a mean elevation of 373m. This area is the most pop-
ulated in Arag�on, and the most important farming areas
in the region are located there. Region P (Pyrenees) is a
mountainous area in the Pyrenees, over parallel 42�N,
with mountain climate Cfb and some small areas with
high mountain climates Dfb and Dfc. The mean elevation
is 1427m but in some points the elevation is over 3000m.
The last glaciers in Spain are located in this area.

4.2.1 | Average extents for increments of
daily maximum temperatures over eμ sð Þ

Table 4 summarizes the mean of the average extent in
D-JJA for events Yt,ℓ sð Þ−eμ sð Þ>cf g, for c= 0 and 2�C in
decades D1 and D5 and regions V and P, and for the
analogous events defined with k=2 and 3 consecu-
tive days.

The increase in extent between decades D1 and D5 is
observed in both regions, but it is clearly higher in V. The
mean of the average extent in D1 is quite similar in both
regions. However, clear differences appear in D5, espe-
cially for the mildest events with c=0: the mean of the
percentage of area with daily maximum temperatures
higher than the reference mean is 60% in V and 54% in
P. These differences become smaller in more exigent
events; for example, the mean of the percentage of area
with increments over μ sð Þ higher than 2�C during three
consecutive days is 24% in V and 20% in P. However, in
both regions the increase is clear since the counterpart in
D1 is 13%.

Figure 5 shows the evolution over time of the mean
of the average extent in JJA in 1 year for events
Yt,ℓ sð Þ−eμ sð Þ>0f g in V, P, and in the entire region D for
the sake of comparison. The corresponding fitted linear
regressions are also plotted. A roughly linear increase is
observed in both regions, but with different trends,
0:0038 and 0:0026, respectively; that means an increase
in extent per decade of 3.8 in V, and 2.6% in P.
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FIGURE 8 Posterior mean across years of the yearly average

extents for events Yt,ℓ sð Þ−eμ sð Þ>0f g for ℬ=D (black), V (blue) and

P (red), and corresponding regression lines [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 3 Posterior mean and CI of the extent for events

YD5 sð Þ−YD1 sð Þ>c� �
for different values c

c 0�C 1�C 2�C

D 0.95 (0.90, 0.98) 0.69 (0.58, 0.80) 0.25 (0.15, 0.36)

V 0.98 (0.95, 1.00) 0.80 (0.68, 0.89) 0.32 (0.18, 0.47)

P 0.93 (0.85, 0.98) 0.63 (0.45, 0.79) 0.19 (0.07, 0.36)

Note: Shown for the entire region (first row) and for the valley and Pyrenees
regions (second and third rows).
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4.2.2 | Extents for increments of average
temperatures over eμ sð Þ

The last row in Table 4 summarizes the mean of the
extents for events YD sð Þ−eμ sð Þ>c� �

with c= 0 and 2�C.
In D1, the mean percentage of area with average temper-
ature higher than the reference mean is quite similar in
both regions, around 25%. However, relevant differences
appear in D5, where the mean percentage is 84 in V and
62% in P. The posterior density of the extents, shown in
Figure S4, enables us to quantify the uncertainty of the
extent and it confirms the shift in location of the distribu-
tion of the extent in D5 between the two regions. In D1,
the posterior probability of the extent for a positive incre-
ment over eμ sð Þ in V being higher than in P is 0.57 and in
D5, 0.94.

4.2.3 | Extents for increments between
average temperatures in D1 and D5

Finally, we compare the extent for increments of average
temperature, YD5 sð Þ−YD1 sð Þ>c� �

in V and P. Table 3
summarizes the mean of those extents for c= 0, 1 and

2�C. The mean percentage of area with a positive incre-
ment is high in both regions, 98% and 93%, respectively.
However, there are differences in the extent of more strict
events; for example, the percentage of area with an incre-
ment higher than c= 1�C is 80% in V and 63% in P. The
posterior density of the extents, shown in Figure S4,
allows us to quantify the uncertainty. The posterior prob-
ability of the extent for a positive increment in V being
higher than in P is 0.96 and for increments higher than
1 and 2�C, 0.94 and 0.87, respectively.

To sum up, the increase in the extent of all the con-
sidered events is stronger in V than in P, although the
magnitude of the increase depends on the type of event.

5 | CONCLUSIONS AND
FUTURE WORK

Acknowledging that climate change with regard to tem-
perature is occurring both temporally and spatially, we
have presented an analysis to quantify this change at dif-
ferent time scales in a Mediterranean region around Ara-
g�on (NE of Spain), for 60 years from 1956 to 2015. The
analysis is based on daily maximum temperature time

TABLE 4 Posterior mean of the

average extent in D-JJA for increments

of daily maximum temperature over the

reference mean higher than c with

different persistence for reference

values c= 0 and 2�C, in decades D1

(1966–1975) and D5 (2006–2015) and
regions V and P

c 0�C 2�C

Decade D1 D5 D1 D5

Region V P V P V P V P
Yt,ℓ sð Þ−eμ sð Þ>0f g 0.45 0.44 0.60 0.54 0.29 0.29 0.42 0.38

Yt,ℓ sð Þ−eμ sð Þ>0;2f g 0.34 0.33 0.49 0.43 0.19 0.19 0.31 0.27

Yt,ℓ sð Þ−eμ sð Þ>0;3f g 0.26 0.26 0.41 0.35 0.13 0.13 0.24 0.20

YD sð Þ−eμ sð Þ>0� �
0.27 0.24 0.84 0.62 0.01 0.01 0.19 0.10

Note: The mean of the extent for increments of average temperatures are shown in the last row.
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FIGURE 9 Probabilities of events YD sð Þ−eμ sð Þ>0� �
(first row), and YD sð Þ−eμ sð Þ>1� �

(second row) in decades D1 and D5 and

differences between them [Colour figure can be viewed at wileyonlinelibrary.com]
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series from 18 locations, and a collection of spatially
referenced time series of temperature data generated
from a Bayesian model fitted to them. More precisely, to
assess the changes on temperature in a space–time frame-
work, we analyse exceedance events around the centre of
the temperature distribution. We offer two basic ideas:
(i) surfaces of probabilities which capture the spatial vari-
ation in the chance of an exceedance event and provide
climate risk maps and (ii) extents which, for a subregion
of interest, capture the expected proportion of incidence
of a given exceedance event over the region. We define
exceedance events in terms of a local mean value or
increments between two decades, but other definitions of
interest could be used. These quantities are defined at
daily scale and can be averaged to any other temporal
scale of interest.

Comparison of temperature evolution has been pre-
sented at daily and seasonal scale both temporally
between decades and spatially between subregions.
The analysis reveals that there is an increase all over the
region in all the features and events used to quantify the
evolution of temperature from 1966 to 2015. However,
that increase is not spatially homogeneous, with the larg-
est increase arising in the centre of the Ebro valley and
NE area. The use of different events allows to quantify
specific features, for example, the probability of a daily
maximum temperature higher than the reference mean
has increased roughly 0.2 from decade D1 (1966–1975) to
D5 (2006–2015), attaining values higher than 0.7 in some
areas. As expected, the increase in features based on aver-
age temperatures is stronger: the probability of the aver-
age temperature being higher than the reference mean
has increased from D1 to D5 a value around 0.5, being
virtually 1 in some areas. In all of the region except a
small NW area, the risk of a positive increment in the
average temperatures between D1 and D5 is virtually 1,
and the risk of an increase higher than 1�C is higher than
0.5, and close to 1 in the south central part of the valley
and NE.

Concerning the spatial incidence in the entire region,
the extent of daily maximum temperature higher than
the reference mean has increased 3.5% per decade. The
mean of the extent with a positive average increment
between D1 and D5 is 0.95. The suggested tools are also
used to compare the evolution of the extent in different
regions. We found that, in all the considered features, the
increase in extent in region V, with a semiarid climate, is
higher than in P, with a mountain climate. We showed
that in D1 the extent of the average temperature higher
than the reference mean is roughly 0.25 in both regions
while in D5 it increases to 0.84 in V, and 0.62 in P. These
results are consistent with those in Peña-Angulo et al.
(2021) and Haug et al. (2020), who found a stronger

change in summer mean temperatures in the centre of
the Ebro valley.

It is noteworthy that the suggested approach based on
the analysis of collection of spatially referenced time
series of temperature data has important advantages
versus the analysis of usually spatially scarce observed
data. Although some empirical measures, such as the
extent, could be directly computed from an observed
dataset, in many cases, they would be based on too few
stations. Further, using only observed series, even
spatially dense gridded series, uncertainty cannot be
easily quantified, and probabilities or CIs such as those
suggested in this work, cannot be computed.

The proposed ideas can be applied to any region of
interest. All that is required is an adequate SWG or
model able to generate replicates of temperatures series
at a fine grid of geo-coded locations in that region. Future
work will investigate other regions of interest, making
further comparisons. We will also investigate events
involving extremes of temperature, using suitable
extreme value modelling, and compound events defined
in terms of maximum and minimum temperatures or
other climate variables. Further, we will explore other
spatially referenced weather time series. We also will
attempt to forecast future temperature change, using a
suitable version of our modelling, applied to climate
scenarios.
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