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Fig. 1: We present D-SAV360, the most extensive dataset of viewing behavior on 360◦ ambisonic videos to date. We have collected
gaze and head data from 87 different participants viewing 85 dynamic 360◦ videos with directional ambisonic sound, leading to
a total of 4,609 scanpaths, larger than previously available datasets of comparable scope. We have thoroughly analyzed this
gathered data, and provide valuable insights about viewing behavior and the importance of factors such as viewing conditions,
gender, or the type of content shown. We additionally discuss potential applications for our dataset, including benchmarking
of audiovisual saliency models, scanpath prediction, or stitching quality assessment, among others. Our dataset is available at
https://graphics.unizar.es/projects/D-SAV360.

Abstract—Understanding human visual behavior within virtual reality environments is crucial to fully leverage their potential. While
previous research has provided rich visual data from human observers, existing gaze datasets often suffer from the absence of
multimodal stimuli. Moreover, no dataset has yet gathered eye gaze trajectories (i.e., scanpaths) for dynamic content with directional
ambisonic sound, which is a critical aspect of sound perception by humans. To address this gap, we introduce D-SAV360, a dataset
of 4,609 head and eye scanpaths for 360◦ videos with first-order ambisonics. This dataset enables a more comprehensive study
of multimodal interaction on visual behavior in virtual reality environments. We analyze our collected scanpaths from a total of 87
participants viewing 85 different videos and show that various factors such as viewing mode, content type, and gender significantly
impact eye movement statistics. We demonstrate the potential of D-SAV360 as a benchmarking resource for state-of-the-art attention
prediction models and discuss its possible applications in further research. By providing a comprehensive dataset of eye movement data
for dynamic, multimodal virtual environments, our work can facilitate future investigations of visual behavior and attention in virtual reality.

Index Terms—Gaze, Saliency, Fixations, Ambisonics, 360◦ Videos, Dataset

1 INTRODUCTION

As virtual reality (VR) techniques and applications continue to blossom,
creating engaging experiences that exploit their potential becomes
increasingly important. To achieve this, understanding and being able
to systematically predict human visual behavior plays a fundamental
role. For instance, a detailed understanding of visual behavior in VR
can enhance storytelling by enabling creators to design more engaging
experiences [45, 48], or inform the development of efficient content-
aware compression [46] and rendering techniques [40] that take into
account visually attractive regions to reduce computational costs. This,
in turn, requires the availability of a substantial dataset that contains a
wide range of scenarios, with corresponding gaze data collected from a
diverse and extensive group of observers.

Sitzmann et al. [46] made one of the earliest attempts to create a com-
prehensive dataset of gaze data in VR. The authors recorded viewing
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data from 169 users in twenty-two 360◦ environments, analyzing it to
obtain meaningful insights from which they derived applications such
as alignment of cuts, panorama thumbnail generation, video synopsis,
or saliency-aware image compression.

However, this dataset has two main limitations. First, all twenty-two
scenes used are static, meaning that there is no motion or plot that could
affect the observers’ attention. This lack of dynamic scenes restricts the
generalizability of the conclusions drawn from the data. And second,
it is limited to visual-only stimuli, while our perception of the world
around us is multimodal, involving inputs from multiple senses [30].
In particular, although vision is usually our predominant source of
information [4, 51], auditory cues can complement our perception of
the world, making it more realistic and believable. In fact, some visual
stimuli may appear incomplete and break immersion without a coherent
sound source [22].

While follow-up datasets have tackled these limitations by col-
lecting gaze data for 360◦ videos, they either do not include audio
sources [13, 26, 59] or overlook sound directionality [58], which is a
key aspect. Humans inherently perceive sound through a combina-
tion of frequency, amplitude, and direction, which determines the two
main binaural cues: the interaural time differences (ITD) between the
sound’s arrival at our inner ears, and the interaural sound intensity or



Table 1: Comparison of D-SAV360 to currently available datasets. D-SAV360 is the first to include head and gaze data in 360◦ videos with
directional sound (first-order ambisonics). It surpasses previous datasets in the amount of captured gaze scanpaths and also provides additional
information such as audio energy maps, additional stereoscopic videos, optical flow, and depth estimation. Our dataset maintains common technical
characteristics such as resolution and frame rate.

Dataset Head
Data

Gaze
Data

Ambisonic
Sound

Nº of
Observers

Nº of
Scanpaths

Stereoscopic
Images

Depth
Estimation

Opt. Flow
Estimation

Nº of
Videos Duration Resolution FPS

360AVD [42] ✗ ✗ ✓ - - ✗ ✗ ✗ 256 10s 1K to 5K 24 to 60

Morgado et al. [37] ✗ ✗ ✓ - - ✗ ✗ ✗ 5506 10s to 5h 1K to 5K 24 to 60

Urban Soundscapes [14] ✗ ✗ ✓ - - ✗ ✗ ✗ 130 60s 4K 30

ASOD60K [58]1 ~ ~ ~ 20 1,340 ✗ ✗ ✗ 67 29.6s 4K 24 to 60

Chao et al. [7] ✓ ✗ ✓ 15 675 ✗ ✗ ✗ 15 25s 4K 24 to 60

D-SAV360 (Ours) ✓ ✓ ✓ 87 4,609 ✓ ✓ ✓ 85 30s 4K 60

1 A recent update of this dataset (now called PAVS10K [57]) includes ambisonic sound; however, the scanpaths were collected with mono sound.

level difference (ILD) caused by the shape of our head and outer ears.
This ability to locate the sound source significantly impacts our visual
behavior by frequently diverting our attention toward the direction of
sound sources [38]. Therefore, gaze data collected without sound direc-
tionality does not fully capture the multimodal interactions that drive
human visual behavior [34, 53].

In this work, we present D-SAV360, a dataset of 4,609 gaze trajecto-
ries (i.e., scanpaths) with eye and head tracking data in 85 diverse 360◦
videos featuring dynamic scenes and directional sound recordings using
first-order ambisonics. To the best of our knowledge, this is the first
dataset with these characteristics (see Table 1), which we hope helps
researchers derive more accurate models of human visual behavior, and
develop more engaging virtual and augmented reality applications. In
addition, we have also captured gaze data for stereoscopic viewing, to
assess the impact of binocular disparity on gaze behavior.

Furthermore, we have conducted a detailed analysis of our collected
data, leading to notable observations. For instance, we have identified
a high inter-observer congruency, indicating the existence of underly-
ing patterns in our data that drive human attention. Additionally, we
have detected an equator bias, which had previously been observed
in the context of static [46] and dynamic [59] scenes without audio.
Our statistical analysis also shows that factors such as stereoscopic vs
monoscopic viewing, scene content, and gender affect the tendencies
of eye movements.

Lastly, we discuss various potential applications of our dataset, in-
cluding its use as a benchmark for audiovisual saliency models and as
a valuable resource for training novel audiovisual scanpath predictors,
among others.

We publicly release our dataset to support future research, which
includes 85 dynamic 360◦ ambisonic videos, 50 of which are also
available in stereoscopic format, as well as their corresponding raw
scanpaths and saliency maps. The dataset also includes six fish-eye
camera recordings from each of our captured videos and additional
computed information such as audio energy maps (AEM), optical flow,
and depth estimations. Our dataset is available at https://graphics.
unizar.es/projects/D-SAV360.

In summary, our main contributions are as follows:

• We have gathered 4,609 scanpaths for 87 participants viewing
eighty-five 360◦ videos with ambisonic audio.

• We have studied the impact of binocular disparity on eye move-
ments by capturing scanpaths for a subset of our dataset consisting
of 50 stereoscopic 360◦ videos with ambisonic sound.

• We have analyzed multiple aspects of our dataset and gaze data
covering aspects such as inter-observer congruency, the presence
of an equator bias, gender differences, or the impact of scene
content on visual behavior.

• We finally discuss further applications of our dataset and showcase
its use as a benchmark for evaluating state-of-the-art audiovisual
attention prediction models.

2 RELATED WORK

2.1 360◦ Video Datasets

In recent years 360◦ video has gained significant interest, leading to
the creation of several datasets for different purposes. For instance,
Morgado et al. [36] collected a dataset of 360◦ videos to generate and
align spatialized audio taking into account the visual content [36, 37].
Although this dataset contains a large number of videos, they were
batch downloaded from YouTube, leading to inconsistencies in length,
resolution, and frame rate, as well as a limited variety of scenes due to a
lack of curation. Similarly, Rana et al. [42] created 360AVD, a dataset
for learning to generate ambisonics from visual cues featuring short
10-second clips. De Coensel et al. [14] gathered a dataset of immersive
audiovisual recordings of cityscapes to evaluate the perceptual influ-
ence of noise control and soundscaping measures through auralization.
However, despite the usefulness of these datasets, none of them include
head and gaze data, which is crucial for gaining insights into how
users perceive and process auditory and visual stimuli in immersive
environments.

In this direction, some works have gathered datasets of 360◦ videos
with associated eye and head movement data to analyze the exploration
behavior of users [13, 26, 55, 59]. However, their videos were played
without directional audio or even without sound, which is an important
element for immersion and has been shown to affect participants’ visual
behavior [7]. More recently, Zhang et al. [58] introduced ASOD60K, an
audiovisual 360◦ dataset that also captured gaze and head movements.
However, in their studies, their videos were presented only with mono
sound, which limits the immersive experience. Further, spatialized
sound has been shown to play an important role in guiding viewers’
visual attention in 360◦ content [33, 34]. Closer to our contribution,
Chao et al. [7] introduced a dataset that included ambisonics, which
they used to compare viewing behavior between muted, mono, and
ambisonic sound. While their dataset does provide head data, it does not
include gaze data and is limited to fifteen videos and fifteen participants.

To our knowledge, there is currently no comprehensive dataset that
includes 360◦ videos with ambisonic sound together with head and gaze
data with a sufficient number of participants or videos (see Table 1 for
a summary of existing datasets). To address this gap, we introduce D-
SAV360, a large dataset consisting of 85 videos with ambisonic sound,
accompanied by head and gaze data from 87 participants. All our
stimuli have high resolution (4K) and a high frame rate (60 fps). We also
provide additional data, including both monoscopic and stereoscopic
images for a subset of the videos, audio energy maps, optical flow
estimation, and depth estimation (see Figure 1 for a glimpse).

2.2 Analyzing and Predicting Viewing Behavior in VR

Analysis Understanding viewing behavior in VR is a key challenge
for developing more engaging experiences. Some of the first works
towards this goal captured and analyzed viewing data in static 360◦
images [41, 46], and found very relevant insights, such as the existence
of an equator bias when visualizing this content. Other works [43, 45]
analyzed common behaviors when viewing dynamic content, and found
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Fig. 2: Sample frames from eight of our captured videos. We have designed our dataset to contain videos with varied scene content and conditions
(see Section 3), as it is reflected by the distribution of Spatial Information (SI) and Motion Vector (MV) values in the bottom-right graph. SI measures
the level of spatial detail, and MV quantifies the temporal changes (i.e., movement) between frames. The higher number of videos in our dataset
allows us to cover a larger MV-SI space than other works of comparable scope [7] (see Table 1 for more details about previous datasets).

that the existence of clear regions of interest affect users’ viewing behav-
ior. Other works have focused on analyzing how different visualization
conditions affect eye motion. For instance, Ozcinar et al. [40] studied
the relationship between the number of fixations and scene complexity.
Further, Skaramagkas et al. [47] and Da Silva et al. [11] studied how
emotional and cognitive processes affect some of the most common
eye-tracking metrics, such as duration and number of fixations, saccadic
amplitude, or blink ratio. Leveraging our dataset, we compute these
metrics to analyze how stereoscopic viewing, gender, and content type
affect eye movement behavior.

Prediction Alongside with achieving a deeper understanding of
viewing behavior, several works have attempted to model and predict it.
First approaches tackled this problem from a static, single-image per-
spective, resorting to saliency [32,56] or scanpath [2,31,61] prediction.
However, as VR environments are often dynamic, these models may
not be sufficient for certain applications. To address this, some recent
works have focused on attention prediction in 360◦ videos [3, 9, 12].
Nevertheless, all these models only take visual stimuli as input, and
therefore they do not take into account the potential influence of sound
in VR environments [30]. Particularly, auditory cues can strongly influ-
ence users’ attention [28, 33]. More recent works have addressed this
problem, taking into account visual and auditory information, both for
traditional media [49] and 360◦ videos [8, 10, 60]. All of these mod-
els rely on data-driven deep-learning approaches and their accuracy
depends on the availability of large and diverse datasets. Therefore,
we expect that our dataset will facilitate research in this area both for
benchmarking existing models and training novel ones.

3 DATASET OVERVIEW

3.1 Video Data

Our dataset comprises a total of 85 monoscopic 360◦ videos with
first-order ambisonic sound, consisting of 50 new videos captured
by us, which contain varied scenes and scene distributions, and 35
videos curated from the dataset of Morgado et al. [37], which we
will refer to as Morgado in the rest of the paper for brevity. Our

dataset additionally includes the same 50 videos that we captured in
stereoscopic format, which is critical in virtual reality to create a sense
of depth and realism for a more immersive experience. The addition
of these videos allows us to investigate potential differences in user
behavior for stereoscopic videos (Section 5.5). Our captured videos
contain a balanced distribution of indoor and outdoor scenes, featuring
both simple and complex scenarios that encompass both natural and
urban environments. They also include a diverse range of exploratory
scenes with multiple visual regions of interest, as well as simple scenes
that offer clear regions of focus. Additionally, our ambisonic recordings
feature different layouts of auditory regions of interest as well as scenes
with background sound. See Figure 2 for some example frames and
Section S.1 in the supplementary for representative frames of all our
videos.

In addition, we estimate the optical flow for each of the videos
using the deep learning model called RAFT [50] and compute the
audio energy maps (AEM) with the decoder employed by Morgado et
al. [37]. The optical flow provides insights about the motion patterns in
the video, while the AEMs represent the spatial distribution of sound,
allowing for a better understanding of how the sound interacts with
the virtual environment. These additional pieces of information are
valuable resources for analyzing and understanding the videos in more
detail.

We evaluate the diversity of our dataset using a state-of-the-art
method for characterizing 360◦ content [15]. Specifically, we use spa-
tial information (SI) and motion vectors (MV) as metrics. SI measures
the level of spatial detail in an image, while MV quantifies the temporal
changes or movement between frames in a video sequence. To compute
SI, we project the equirectangular video frames into cubemaps and
apply Sobel kernels, following the approach of De Simone et al. [15].
For MV, we estimate motion vectors between consecutive frames using
RAFT [50]. See Figure 2 for the results of this evaluation. Although
we observe a higher representation of lower MV values due to the static
camera setup used during video capture, our dataset covers a wide
MV-SI space.
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Fig. 3: Our data collection procedure can be summarized as follows: Each session is formed of two blocks - one for stereoscopic videos and the
other for monoscopic videos, with a large break of fifteen minutes separating them. The diagram represents the steps of each one of these blocks.
At the beginning of each block, participants complete a sickness questionnaire to asses their current state. Following this, they are instructed to
adjust their HMD and perform a calibration procedure, after which they begin viewing the videos. After each phase of the block, participants are
given a short break of five minutes to prevent discomfort or exhaustion. Once all phases are completed, participants fill out sickness and presence
questionnaires (Section 4.2).

3.2 Gaze Data

Head and eye tracking data is a crucial component of our dataset as
it enables comprehensive analyses of user behavior (Section 5) and
facilitates future research in diverse applications in the field (Section 6).
Our dataset includes head and eye tracking data for each of the 85
videos, as well as the 50 additional stereoscopic versions. This tracking
data captures participants’ visual behavior while watching the videos
for 30 seconds. In total, we recorded 4,609 head and gaze trajectories,
providing a rich source of information for future research. Figure 4
shows some representative videos with their saliency maps extracted
from our collected gaze data. The collected tracking data includes head
position and orientation, pupil diameter, eye openness, eye gaze vector,
and gazed image coordinates, all sampled at 120Hz.

Before collecting gaze data (Section 4), we conducted power analy-
ses to determine the necessary number of visualizations (i.e., scanpaths)
per video. For detecting at least medium-sized effects (effect size of
f = 0.25, power 1−β = 0.80), we set the minimum number of visual-
izations per video to 30. To ensure a large enough dataset for studying
the difference between monoscopic and stereoscopic viewing, we also
set the minimum number of visualizations to 30 per stereoscopic video.
The total number of participants in our experiment (Section 4.2) satis-
fied all of these constraints. Participants explored the videos under a
free-viewing condition, and they were not instructed to complete any
specific task. We set for each video a fixed, random longitudinal start-
ing position for participants to start exploring. This approach allows to
start collecting data already from a point of consensus, which is usually
achieved after approximately 5 seconds of free video viewing [13].

4 DATA COLLECTION

4.1 Video Collection

Video acquisition We captured 50 stereoscopic videos using a
Kandao Obsidian S, equipped with six fish-eye lenses. Each camera
records at a resolution of 3000x2160 pixels and a frame rate of 50
fps. We used the software provided with the camera1 to stitch the
videos and obtain depth estimations. To capture first-order ambisonic
audio, a Zoom H2n microphone was used2. The camera was mounted
statically on a tripod, ensuring that its height was similar to that of a
standing person and that there was no camera movement. After the
stitching process, we obtained an equirectangular representation of
both the depth and video, with a resolution of 5760x2880 pixels per
eye panorama and a frame rate of 50 fps. To obtain monoscopic videos
from our 50 stereoscopic recordings, we used the right-eye video as the
video for both eyes. This approach circumvents the need to extract the
central view from the input left and right eyes, which could introduce
significant artifacts into the resulting video [44].

In addition to our captured videos, our dataset includes 35 additional
monoscopic videos from the collection of Morgado, which contains
thousands of videos for monoscopic viewing. However, as the videos
were extracted from YouTube in batches for a different purpose (spatial
audio generation), they did not undergo a thorough curation and inspec-

1https://www.kandaovr.com/
2https://zoomcorp.com/

tion process. Therefore, we carefully selected a diverse set of videos
based on technical specifications and content variety. Our selection
process focused on videos with a uniform resolution, adequate duration,
and semantic diversity. We set the minimum technical requirements for
the resolution at 3840x1920 pixels, and a minimum frame rate of 30
fps, with a preference for videos at 60 fps.

Video processing We standardized our videos before recording
gaze data by downsampling them to a resolution of 3840x1920 pixels3

per eye panorama and unifying the frame rates to 60 fps using the mo-
tion compensation interpolation method from the FFmpeg tool. Gaze
data recording was limited to the most relevant 30 seconds of each
video to minimize participant fatigue and maintain attention. We made
this decision based on previous studies [13] and datasets gathering gaze
data for sequences of similar duration [7, 58]. To evaluate the effect
of these post-processing steps on video quality, we conducted a small
informal study with five participants and four different videos, which
showed that most participants perceived the videos before and after
post-processing to have the same quality.

4.2 Gaze Data Collection
Apparatus Our stimuli were presented on an HTC Vive Pro Eye

head-mounted display (HMD) with a horizontal field of view (FoV) of
110 visual degrees and a vertical FoV of 110 visual degrees, a resolution
of 1440x1600 pixels per eye, and a frame rate of 90 fps. We used
three HTC sensors to track participants’ position, which was logged at
120Hz. For collecting eye tracking data we used the SRanipal Unity
SDK 4 developed for the Tobii eye-tracker integrated into the HTC
Vive Pro Eye. This SDK provides automated calibration and captures
several gaze parameters at a high frequency of 120Hz, including the
eye gaze vector, eye openness, pupil diameter, eye sensor position, and
image coordinates for each gaze vector, and constitutes the primary
eye-tracking data recorded in our experiments.

Our data collection study was supported by a highly customizable
data collection and visualization system that we have developed for this
project. To create our capture pipeline, we utilized Unity 2020.3.25f.
We outline its key features in Section S.2 of the supplementary. In
order to facilitate future user studies, our system is publicly available at
https://graphics.unizar.es/projects/D-SAV360.

Participants A total of 87 participants voluntarily participated in
the data collection study, including 41 females and 46 males, with
no participants identifying themselves as non-binary, not listed, or
preferring not to disclose their gender. The mean average age of the
participants was 25.29 years old (STD = 8.77). Only 16% of partici-
pants reported using VR in an HMD frequently, while 38% reported
never having used an HMD before. All participants were economically
compensated and provided written consent for their voluntary participa-
tion in the study. They were naïve about the final purpose of the study,
and they all reported normal or corrected-to-normal vision and audi-
tion. We additionally conducted tests of visual and auditory acuity (see

3The raw videos with full resolution can be available upon request.
4https://developer-express.vive.com/resources/vive-sense/eye-and-facial-

tracking-sdk/



Fig. 4: Example saliency maps for four sample videos, showing the evolution of participants’ attention over time (from left to right). It can be seen that
attention changes over time, being mostly directed to visual (e.g., warriors in the second row) or auditory (e.g., youngsters in the middle of the frame
on the last row) regions of interest. Warmer colors correspond to areas with higher saliency.

Section 4.2 for more details). As a result of these assessments, seven
participants out of the initial pool of 94 participants were excluded from
the study. The research protocol was approved by the Comité de Ética
de la Investigación de la Comunidad Autónoma de Aragón (CEICA).

Procedure After the reception, participants were informed about
the data collection procedure and signed a written consent for participa-
tion. Then, they filled out a pseudo-anonymous demographic question-
naire, and a pre-experiment short version of the sickness questionnaire
(SSQ) introduced by Kennedy et al. [21]. These questionnaires are
included in Section S.3 in the supplementary. When both question-
naires were completed, we evaluated the visual and auditory acuity of
the participants. We established several inclusion criteria for our study.
Specifically, we required that participants passed the Snellen chart test,
the Ishihara test, and the Titmus stereoscopic test to confirm their vi-
sual acuity, color vision, and stereopsis, respectively. Additionally, we
administered our stereo sound perception test to confirm participants’
ability to perceive stereo sound. More details about these tests can be
found in Section S.4 in the supplementary. Participants who did not
meet these criteria were not included in our study to avoid confounding
effects resulting from different forms of vision or auditory impairment.
Investigating the visual behavior of participants with visual or audi-
tory impairments is outside the scope of this project and would be an
important step for future studies.

After the aforementioned tests were completed, the experiment
started. The experimenter explained to the participants the different
phases and tasks of the experiment and helped them correctly adjust the
HMD. Participants were instructed to freely explore each of the videos
by rotating in place while in a standing position. The experiment was
split into two main blocks, one where we showed the participant 25
stereoscopic videos and another one where we showed 30 monoscopic
videos. Between blocks, participants had a rest of approximately fifteen
minutes. Our procedure ensured that each visualization block contained
either stereoscopic or monoscopic videos to help prevent participants
from getting fatigued or frustrated from having to switch between the
two types of videos. Figure 3 summarizes the different steps performed
in each block. Note that videos from both blocks were different, and

thus participants never saw the same video more than once. For each
participant, we randomly selected which block to start with, and within
each block, the video order was also randomized.

Each block was divided into three phases consisting of ten videos
each, except for the third phase of the stereoscopic videos block, which
consisted of only five videos. Between phases, there was a short break
that lasted up to five minutes. Additionally, when the first block was
completed, they were asked to take off the HMD and rest for at least
fifteen minutes. At the beginning of each block, and before each
subset of ten videos, we performed the integrated HTC Vive Pro Eye
calibration procedure to ensure correct eye tracking throughout the
whole experiment. Following the procedure established by Sitzmann et
al. [46], to guarantee that all participants started at the same position
for a given video, they had to find a red cube in a black room and
lock their gaze on it for the next video to start. In order to maintain
participants’ engagement throughout the experiment and detect non-
compliant participants we included a simple four-alternative forced
choice sentinel question in each of the phases, after one randomly
chosen video. Participants had to use the controller to select the correct
answer. These questions were carefully designed to be very simple and
to not interfere with the free viewing condition of our experiment. Refer
to Section S.5 in the supplementary for more details and a compilation
of these sentinel questions.

When each block was completed, participants filled out a post-
experiment sickness questionnaire identical to the pre-experiment one,
and a presence questionnaire to evaluate the experience. The whole
procedure took one hour and a half on average, and participants were
then economically compensated for their participation. After each ex-
periment, we conducted several important sanity checks on our eye
tracking data. These included verifying sufficient eyes’ openness, valid
pupil diameter values, and discarding points with outlier velocities (see
Section 5.1). Furthermore, we checked for consecutive measures to
identify any instances of eye tracker loss and ensured that the time
between eye tracking samples was approximately 8ms (i.e., 120 Hz).
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Fig. 5: Left: ROC curve showing inter-observer congruency for each
video (gray) and the average for all videos (yellow). The rapid conver-
gence to the maximum suggests a strong agreement between partic-
ipants. Center: Equator bias present in our data represented as an
averaged saliency map obtained from all videos’ fixations across time.
Warmer colors indicate higher fixation frequencies. Right: Laplacian fit
describing the equator bias of the fixation distribution along latitude.

5 ANALYSIS

Leveraging our collected gaze data we perform here a detailed analysis
of viewing behavior while watching dynamic content. We focus on gaze
data since we did not find significant effects of the studied factors in
the presence and sickness questionnaires. We first assess inter-observer
congruency, which is the basis for further exploration (Section 5.2),
as well as the presence of the well-known equator bias in our data
(Section 5.3). We then evaluate whether other insights derived for static
content—such as the existence of two different viewing modes [46]—
hold when participants are watching dynamic content (Section 5.4). The
varied nature of our dataset further enables us to contrast monoscopic
with stereoscopic viewing (Section 5.5), and to assess the impact of the
type of visual content on viewing behavior (Section 5.6). Finally, and
while not the main scope of this work, we succinctly look into gender
differences in viewing patterns (Section 5.7).

5.1 Data Pre-Processing
Prior to the analysis, we classify data into fixations and saccades, and
compute saliency information for our videos. Classification of eye-
tracking data is done using a Velocity-Threshold Identification (I-VT)
algorithm. For this algorithm, fixations are defined as gaze points with
velocities below 30% of the maximum velocity (computed for each
video and participant) and a minimum duration of 100ms. Prior to
the classification, we remove outliers by discarding gaze points with
velocities in the top 2% [45], and filter velocities with a running average
of two samples [46]. We derive saliency maps from the fixations by
tallying the number of fixations at each pixel and then convolving the
resulting data with a Gaussian with a standard deviation of 5◦ of visual
angle. This convolution yields continuous saliency maps, which provide
a representation of the regions in the video that are most salient to the
observers. The longitudinal standard deviation of the Gaussian kernel
is scaled proportionally to the latitude of the panorama to account for
the distortions present in the equirectangular projection [46]. Since our
videos have a frame rate of 60 fps, each frame lasts for 16.67 ms. Given
that fixations typically last for at least 100 ms, to compute saliency
maps we chose to group fixations performed over an 8-frame interval,
which corresponds to 133.36 ms. This approach ensures that each
saliency map includes a sufficient number of fixations, while providing
a more informative visualization of the data.

5.2 Inter-Observer Congruency
The goal of this section is to assess whether viewing behavior is similar
between participants watching the same video. To achieve this, we fol-
low common practice and employ the receiver operating characteristic
(ROC) curve [23, 31, 46]. The ROC curve is computed by measuring
the percentage of fixations from each participant that fall within the
top n% most salient regions of the ground-truth saliency map, which is
obtained with the data of all other participants, excluding the respective
participant. ROC curves are computed for each participant for one-
second intervals, and then averaged across participants for each of our
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Fig. 6: Distribution of longitudinal head velocity (left) and eye eccentricity
(right) while the observer was fixating (pink) and not fixating (blue). Our
data reveal a lower tendency towards re-orienting conducts than that
found in 360◦ images [46].

videos. Figure 5 (left) shows the resulting ROC curves for all our videos
and the average across videos. The rapid convergence of these curves
towards the maximum value of 1 indicates a high level of agreement
between participants. This is consistent with findings from previous
studies on traditional displays [20] and static 360◦ images [46].

5.3 Equator Bias

Previous research has consistently shown an equator bias in visual
attention in traditional images [20, 39], 360◦ panoramas [46], and 360◦
videos [55,59]. To determine whether this equator bias is present in our
data, we average the saliency maps across all videos, and exclude the
first five seconds of fixations from each video since participants started
at a fixed equatorial position. As depicted in Figure 5 (center), our
results show a higher density of fixations along the equator, consistent
with prior findings. Following Sitzmann et al., this equator bias can be
further quantified by fitting a Laplacian distribution to the longitudinal
component of the overall fixations (Figure 5, right). Interestingly, the
fit to our data yields as parameters µ = 90◦ and β = 27◦, which are very
close to those observed by Sitzmann et al. in static panoramas.

5.4 Relation between Head and Gaze Statistics

Sitzmann et al. [46] identify two modes of behavior of observers while
freely viewing 360◦ static images, and they term these modes attention
and re-orientation. Participants show lower head velocities and eye
eccentricities5 when they are fixating, revealing an attention mode, than
when they are not (re-orientation mode). We investigate whether these
two modes are also observable when viewing 360◦ videos.

The results are shown in Figure 6, depicting head velocities and eye
eccentricities when observers are fixating (pink histograms) and when
they are not (blue histograms). While we do observe a certain difference
between these two modes, it is much smaller than the one described
by previous work for the case of static images. Static images yielded
differences of 30 deg/s between mean head velocities, and of 4 deg
in mean eye eccentricities [46], whereas in our case these differences
are around 10 deg/s and 1 deg, respectively. Further, distributions of
head velocity and eye eccentricity in videos, both when fixating and not
fixating, are closer to the ones found in images when observers were
fixating (so-called attention mode).

This discrepancy between images and videos could be due to a lack
of wide re-orientation movements in video viewing. Video content typ-
ically exhibits smooth transitions between regions of interest, thereby
discouraging frequent broad viewport changes. However, when pre-
sented with images, observers engage in more exploratory behaviors
due to the static nature of the content and the consequent lack of a
temporal thread. We therefore do not observe both attention and re-
orientation modes in 360◦ video viewing, but rather a lower tendency
towards re-orientation.

5Offset, in visual degrees, between the directions of the head and the eye.
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5.5 Monoscopic vs. Stereoscopic Viewing
Previous datasets have mainly focused on monoscopic content (see
Table 1). However, since stereoscopic viewing involves additional
factors like vergence and accommodation, it may influence the patterns
of fixation and saccade movements. We therefore explore here the
influence of stereo viewing mode (monoscopic vs. stereoscopic) on
gaze behavior in 360◦ videos.

Statistical analysis We follow the same procedure in Sec-
tions 5.5, 5.6 and 5.7. As dependent variables, we computed for each
video and participant the number of fixations, average fixation du-
ration, number of saccades, average saccade duration, and average
saccade amplitude. For hypothesis testing we used the Yuen-Welch
test for trimmed means for dependent samples [54] that is robust to
non-normality and heterogeneity, and supports dependent samples like
ours. Then, we used the Algina-Keselman-Penfield (AKP) robust stan-
dardized difference for calculating the effect sizes. We report the results
of the analyses indicating the Yue-Welch test parameter and statistic,
the significance (p-value), and the AKP effect size estimate with 95%
confidence intervals. We set the threshold for significance at p = 0.01.

Results and discussion Figure 7 displays the most relevant re-
sults for our discussion, while the remaining results can be found
in Section S.6 in the supplementary. Our analysis revealed signifi-
cant differences of small effect size in the number (tYuen(985) = 6.48,
p < 0.001, ClAKP = [0.14, 0.23]) and duration (tYuen(985) = 5.11,
p < 0.001, ClAKP = [0.11, 0.20]) of fixations, as well as in the num-
ber (tYuen(985) = 6.11, p < 0.001, ClAKP = [0.11, 0.22]) and duration
(tYuen(985) = 6.72, p < 0.001, ClAKP = [0.12, 0.24]) of saccades. No
significant difference was found in saccade amplitude.

These results show that stereoscopic viewing leads to a significantly
higher number of fixations and saccades that were shorter in duration.
This is consistent with previous studies on stereoscopic images [19] and
movies [17] visualized in traditional displays. One possible explanation
for this behavior is that the additional depth information provided by
the stereoscopic content may prompt the viewer to shift their gaze

more frequently to different depth planes. While these differences were
statistically significant, the small effect size indicates that their practical
impact may not be substantial. Nonetheless, these findings provide a
preliminary analysis of the potential differences between stereoscopic
and monoscopic viewing in 360◦ videos and underscore the need for
further research to investigate the underlying mechanisms of visual
processing during stereoscopic viewing.

Additionally, we investigate the effect of stereoscopic visualization
on overall saliency. We compute the widely-used linear correlation
coefficient (CC) metric [23] to compare the saliency maps obtained
for the same videos under monoscopic and stereoscopic viewing. This
metric ranges from -1 (perfectly inversely correlated) to 1 (perfectly
correlated). Across all videos, the average CC score is 0.77, indicating
that regions that attract viewers’ attention in both stereoscopic and
monoscopic videos are consistent. These results have important impli-
cations for visual attention prediction and suggest that the choice of
viewing condition may not strongly impact visual attention.

5.6 Exploratory vs. Focused Content
Existing studies have shown that the presence of regions of interest
(ROIs) significantly affects observers’ viewing behavior during visual-
ization of 360◦ narrative content [29, 45]. Building upon these findings,
we set out to analyze whether the visual content of the video also has an
influence in gaze behavior, even in free exploration viewing of videos
that lack a strong narrative story (as in the case of our dataset). To assess
this, we classified our videos into two categories based on the presence
of ROIs: exploratory and focused videos. Exploratory videos are those
that lack clear visual or auditory ROIs, whereas focused videos feature
distinct ROIs, either auditory, visual, or both (see Section S.7 in the
supplementary for details).

Results and discussion The Yuen-Welch test revealed signifi-
cant differences of medium size for the number (tYuen(350) = 10.59,
p < 0.001, ClAKP = [0.32, 0.57]) and duration (tYuen(350) = 13.06,
p < 0.001, ClAKP = [0.49, 0.67]) of fixations, and the number
(tYuen(350) = 9.57, p < 0.001, ClAKP = [0.31, 0.47]) and amplitude
(tYuen(350) = 8.58, p < 0.001, ClAKP = [0.28, 0.44]) of saccades. No
significant difference was found for the duration of saccades. These
effects can be seen in Figure 8 (please refer to Section S.6 in the
supplementary for the complete results).

Our analysis shows that videos lacking clear ROIs result in more
frequent and shorter fixations, also with more saccades and with greater
amplitudes. These findings are in agreement with previous works in
narrative content [29, 45], and suggest that participants exhibit a more
exploratory behavior when there is no clear focal point, frequently
shifting their gaze across multiple regions of the video.

5.7 Gender Differences
Since our dataset includes a balanced number of male and female
participants6, we explore potential differences in gaze behavior between
genders.

Results and discussion We found significant differences be-
tween genders of small effect size in the number of fixations
(tYuen(1215) = 7.48, p < 0.001, ClAKP = [0.15, 0.24]), and the num-
ber (tYuen(1215) = 8.73, p < 0.001, ClAKP = [0.17, 0.28]), duration
(tYuen(1215) = 10.66, p < 0.001, ClAKP = [0.19, 0.28]) and amplitude
(tYuen(1215) = 6.73, p < 0.001, ClAKP = [0.11, 0.21]) of saccades. We
did not find significant differences in the duration of fixations. Fig-
ure 9 illustrates these effects (see Section S.6 in the supplementary for
additional results).

Specifically, female participants exhibit a lower number of fixa-
tions and saccades. Also, their saccades present a smaller amplitude
and longer duration compared to male participants. These findings
align with prior research on gender differences in conventional (2D)
image exploration [27, 35]. Our insights highlight the importance of
considering potential gender differences in datasets and study designs.

6Our questionnaire follows gender-inclusive language in research guidelines
and provides options for non-binary, unlisted, or undisclosed gender identities.
However, all participants identified as male or female.
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6 APPLICATIONS OF OUR DATASET

D-SAV360 is a versatile and valuable resource that can benefit a wide
range of research areas. We outline in this section some potential
applications for our dataset.

Benchmarking of audiovisual saliency models. Saliency pre-
diction is a well-established area of research in computer vision and
graphics. Over the years, numerous computational models have been
developed to predict where people look in images and videos using
various approaches, including the emerging field of 360◦ content. How-
ever, comparing the performance of different models is difficult as
they are typically evaluated on particular subsets of their data. To ad-
dress this issue, researchers have utilized existing datasets such as the
widely-used MIT saliency benchmark for traditional images [5] and
the dataset introduced by Sitzmann et al. [46] specifically designed for
360◦ images. These datasets have played a critical role in evaluating
the efficacy of saliency models and benchmarking their performance
against each other. Similarly, our dataset can serve as a resource for
benchmarking predictive saliency models of audiovisual attention in
360◦ videos. We showcase this application scenario by evaluating
the performance of recent state-of-the-art audiovisual 360◦ saliency
predictors on D-SAV360, specifically those proposed by Cokelek et
al. [10] and Chao et al. [8]. We chose to implement Cokelek et al.’s
method on top of SST-Sal [3], as it requires a video saliency predictor
as a base architecture. Please refer to Section S.8 in the supplementary
for implementation details. We show in Table 2 the performance of
these two methods using three widely used metrics [16]. As we show
in Table 1, our dataset is the first to provide gaze data for 360◦ videos
with ambisonic audio. Therefore, a direct comparison of these models’
performance with previous datasets is challenging in this particular
application, as the trained models would be inherently different due to
the different training data these other datasets provide.

Scanpath prediction. The prediction of scanpaths (complete
paths of observer fixations over time), similar to saliency, is gaining at-
tention for its potential applications in fields such as image compression
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and foveated rendering [1, 6, 31]. With our dataset’s rich gaze tracking
data, novel data-driven scanpath prediction models could be developed.
Furthermore, the availability of gaze tracking data from multiple view-
ers watching the same 360◦ video provides the opportunity to evaluate
the effectiveness of these algorithms in predicting scanpaths across dif-
ferent individuals, thereby facilitating the development of more robust
and generalizable models.

Stitching quality assessment. Our six-fisheye recordings and
stitched videos provide an opportunity for researchers to explore and
create new stitching algorithms leveraging 360◦ stitching quality assess-
ment metrics [25, 52]. Our dataset includes a diverse range of videos
with varying light conditions, indoor-outdoor scenes, and temporal and
spatial complexity, presenting challenging video conditions for testing
the performance of novel stitching algorithms.

Motion parallax. Captured 360◦ video fails to deliver experiences
with motion parallax due to the lack of wide parallax information re-
sulting from the fixed viewpoint used during the recording. This static
viewpoint can potentially induce motion sickness or lack of immersion,
as the observers tend to move their heads slightly while viewing the
content through HMD. To tackle this limitation, state-of-the-art tech-
niques, such as the one proposed by Serrano et al. [44], leverage depth
estimations to generate a dynamic viewpoint that simulates motion
parallax. Our dataset can serve as a valuable resource for evaluating
and validating the effectiveness of such methods, allowing researchers
to improve and enhance the immersive experience for viewers.

Binaural ambisonics decoders Our first-order ambisonic record-
ing dataset can be a valuable resource for researchers looking to evalu-
ate and improve binaural decoding techniques. While ambisonics are
versatile in reproducing playback on various speaker arrays and easy to
manipulate in post-production, decoding ambisonics binaurally through
headphones can lead to a reduction in audio quality [24]. Our dataset
offers a complex soundscape of real-world audio with overlapping
sources, providing a challenging environment for researchers to test
and compare different binaural decoding methods.



Table 2: Performance of two state-of-the-art models [8, 10] for 360◦

audiovisual saliency prediction. Evaluation is carried out using three
commonly used metrics: linear correlation coefficient (CC), similarity
metric (SIM), and Kullback-Leibler divergence (KLDiv). We show results
when benchmarking the original models with our dataset. The mean
value of the mean calculated across video frames is presented along
with the corresponding mean standard deviation in parentheses.

Models CC ↑ SIM ↑ KLDiv ↓

AVS360 [8] 0.245
(0.098)

0.248
(0.061)

10.800
(2.128)

Cokelek et al. [10] + SST-Sal [3] 0.370
(0.121)

0.313
(0.076)

9.438
(2.306)

7 CONCLUSION

We have presented D-SAV360, a comprehensive dataset that includes
head and gaze tracking data from 87 participants observing 85 different
360◦ ambisonic videos in VR, including both stereoscopic and mono-
scopic videos. Our dataset contains 4,609 distinct scanpaths, making it
a valuable resource for studying and modeling human visual behavior in
immersive environments. In addition to gaze data, our dataset includes
other important features such as audio energy maps, depth, and optical
flow estimations.

Leveraging our dataset, we have performed an extensive analysis
that has yielded important insights with direct implications for future
research. We have confirmed previous findings on equatorial bias and
head-gaze coordination statistics observed in static 360◦ images [46].
Moreover, our findings suggest that stereoscopic viewing results in
more fixations and shorter saccades, which is consistent with previ-
ous studies on stereoscopic images and movies viewed on traditional
displays [17, 19]. We have also observed that content lacking clear
regions of interest leads to more explorative behavior with shorter and
more frequent fixations, as previously reported for VR cinematic con-
tent [29,45]. Our analysis highlights the importance of gender-inclusive
research and diverse participant pools. Specifically, we found that fe-
males tend to exhibit a lower number of fixations and saccades, which
are smaller in amplitude and longer in duration, compared to males
when observing 360◦ videos. Finally, we see great potential for our
dataset to be used for a variety of applications such as audiovisual
attention modeling and benchmarking, and evaluation of different tech-
niques such as stitching algorithms, motion parallax reproduction, and
binaural ambisonic decoding. Our comprehensive dataset and our data
collection and visualization system will be publicly available to the
research community, and we hope that it will inspire further research
and advancements in this field.

Limitations and future work. While our dataset and study offer
valuable resources and insights into studying human visual behavior
in VR environments, there are still potential areas for future research
and improvement. One limitation of our dataset is that it only includes
first-order ambisonics, which may not fully capture the complexity of
auditory perception in VR. Nevertheless, first-order ambisonics remain
widely adopted due to the current high cost of microphones with higher-
order array configurations and the challenges associated with storing
and transmitting the necessary amount of data for higher orders [18].
Future research could explore more advanced audio techniques to inves-
tigate the relationship between auditory perception and visual behavior
in more detail.

Additionally, while we focused on gaze behavior in our study, it
would be valuable to investigate other modalities such as body posture
or physiological responses. For example, combining eye tracking with
electroencephalography (EEG) or electromyography (EMG) could pro-
vide a more comprehensive understanding of the relationship between
visual behavior and physiological responses in VR. While our videos
were designed to avoid eliciting intense emotional responses, studying
how the emotional valence of videos can influence both gaze behavior
and physiological responses is an intriguing line of future work.

Although 360◦ videos are widely used in numerous applications,
they lack important cues such as motion parallax and 6-degrees-of-
freedom interaction. These cues are expected to have an impact on
the visual behavior of observers [44]. Future research could focus on
assessing gaze behavior within synthetically generated content that
offers immersive and interactive experiences.

To improve the generalizability of our results, future studies may
benefit from recruiting participants from a wider range of ages, back-
grounds, and demographics. Although our study achieved a balanced
distribution of male and female participants and we used gender-
inclusive language in our recruitment process, there is still room for
further diversity. Moreover, while we accomplish a varied range of
participants ages (18 to 64 years old) there is a skew toward younger
populations, thus a wider range of ages could be explored. Building on
these foundations, future research can strive for even greater diversity
in participant recruitment to explore how cultural, demographic, and
age factors may impact visual behavior in immersive environments.

Looking ahead, we see potential for our data collection and visu-
alization system to be leveraged in exploring new scenarios such as
interactive scenes or social VR, investigating the influence of tasks, or
studying the presence of motion parallax. By making our methodology
and data collection system publicly available, we hope to encourage
and support future research in this exciting field.

ACKNOWLEDGMENTS

We extend our gratitude to the members of the Graphics and Imaging
Lab for their support and collaboration in the video recordings, espe-
cially to Maria Plaza for her valuable assistance during the capture pro-
cess. We would also like to thank the anonymous reviewers for their in-
sightful comments and the participants in the experiment. Our work has
received funding from the European Union’s Horizon 2020 research and
innovation programme (ERC project CHAMELEON, Grant No 682080,
and Marie Sklodowska-Curie project PRIME, Grant No 956585). This
project was also funded by the Spanish Agencia Estatal de Investigación
(projects PID2019-105004GB-I00 and PID2022-141539NB-I00). Ad-
ditionally, Sandra Malpica, Daniel Martin, and Edurne Bernal-Berdun
were supported by a Gobierno de Aragon predoctoral grant (2018-2022,
2020–2024, and 2021–2025, respectively).

REFERENCES

[1] E. Arabadzhiyska, O. T. Tursun, K. Myszkowski, H.-P. Seidel, and
P. Didyk. Saccade landing position prediction for gaze-contingent render-
ing. ACM Trans. on Graphics, 36(4), 2017. 8

[2] M. Assens Reina, X. Giro-i Nieto, K. McGuinness, and N. E. O’Connor.
Saltinet: Scan-path prediction on 360 degree images using saliency vol-
umes. In Proc. International Conference on Computer Vision (ICCV)
Workshops, pp. 2331–2338, 2017. 3

[3] E. Bernal-Berdun, D. Martin, D. Gutierrez, and B. Masia. SST-Sal: A
spherical spatio-temporal approach for saliency prediction in 360º videos.
Computers & Graphics, 2022. 3, 8, 9

[4] E. Burns, S. Razzaque, A. T. Panter, M. C. Whitton, M. R. McCallus, and
F. P. Brooks. The hand is slower than the eye: A quantitative exploration
of visual dominance over proprioception. In IEEE Conference on Virtual
Reality and 3D User Interfaces (IEEE VR), pp. 3–10, 2005. 1

[5] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. Torralba.
Mit saliency benchmark. http://saliency.mit.edu/. 8

[6] F.-Y. Chao, C. Ozcinar, and A. Smolic. Transformer-based long-term
viewport prediction in 360◦ video: Scanpath is all you need. In IEEE 23nd
International Workshop on Multimedia Signal Processing, pp. 1–6, 2021.
8

[7] F.-Y. Chao, C. Ozcinar, C. Wang, E. Zerman, L. Zhang, W. Hamidouche,
O. Deforges, and A. Smolic. Audio-visual perception of omnidirectional
video for virtual reality applications. In International Conference on
Multimedia & Expo Workshops (ICMEW), pp. 1–6, 2020. 2, 3, 4

[8] F.-Y. Chao, C. Ozcinar, L. Zhang, W. Hamidouche, O. Deforges, and
A. Smolic. Towards audio-visual saliency prediction for omnidirectional
video with spatial audio. In International Conference on Visual Commu-
nications and Image Processing (VCIP), pp. 355–358. IEEE, 2020. 3, 8,
9

[9] H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and M. Sun.
Cube padding for weakly-supervised saliency prediction in 360 videos. In



Proc. Computer Vision and Pattern Recognition (CVPR), pp. 1420–1429,
2018. 3

[10] M. Cokelek, N. Imamoglu, C. Ozcinar, E. Erdem, and A. Erdem. Lever-
aging frequency based salient spatial sound localization to improve 360°
video saliency prediction. In International Conference on Machine Vision
and Applications (MVA), pp. 1–5, 2021. 3, 8, 9

[11] A. C. da Silva, C. A. Sierra-Franco, G. F. M. Silva-Calpa, F. Carvalho, and
A. B. Raposo. Eye-tracking data analysis for visual exploration assessment
and decision making interpretation in virtual reality environments. In
Symposium on Virtual and Augmented Reality (SVR), pp. 39–46, 2020. 3

[12] Y. Dahou, M. Tliba, K. McGuinness, and N. O’Connor. ATSal: An
attention based architecture for saliency prediction in 360 videos. Lecture
Notes in Computer Science, pp. 305–320, 2020. 3

[13] E. J. David, J. Gutiérrez, A. Coutrot, M. P. Da Silva, and P. L. Callet. A
dataset of head and eye movements for 360◦ videos. In Proc. of ACM
Multimedia Systems Conference, pp. 432–437, 2018. 1, 2, 4

[14] B. De Coensel, K. Sun, and D. Botteldooren. Urban soundscapes of the
world: Selection and reproduction of urban acoustic environments with
soundscape in mind. In INTER-NOISE and NOISE-CON Congress and
Conference Proceedings, vol. 255, pp. 5407–5413, 2017. 2

[15] F. De Simone, J. Gutiérrez, and P. Le Callet. Complexity measurement
and characterization of 360-degree content. Electronic Imaging, 31:1–7,
2019. 3

[16] J. Gutiérrez, E. David, Y. Rai, and P. L. Callet. Toolbox and dataset for the
development of saliency and scanpath models for omnidirectional 360◦

still images. Signal Processing: Image Communication, 69:35–42, nov
2018. 8

[17] J. Häkkinen, T. Kawai, J. Takatalo, R. Mitsuya, and G. Nyman. What do
people look at when they watch stereoscopic movies? In Stereoscopic
Displays and Applications XXI, vol. 7524, pp. 129–138, 2010. 7, 9

[18] E. Hellerud, A. Solvang, and U. P. Svensson. Spatial redundancy in
higher order ambisonics and its use for lowdelay lossless compression.
In 2009 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 269–272, 2009. 9

[19] L. Jansen, S. Onat, and P. König. Influence of disparity on fixation and
saccades in free viewing of natural scenes. Journal of Vision, 9(1), 2009.
7, 9

[20] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to predict where
humans look. In Proc. International Conference on Computer Vision
(ICCV), pp. 2106–2113, 2009. 6

[21] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Simulator
sickness questionnaire: An enhanced method for quantifying simulator
sickness. The International Journal of Aviation Psychology, 3(3):203–220,
1993. 5

[22] H. Kim and I. K. Lee. Studying the effects of congruence of auditory and
visual stimuli on virtual reality experiences. IEEE Trans. on Visualization
and Computer Graphics, 28(5):2080–2090, 2022. 1

[23] O. Le Meur and T. Baccino. Methods for comparing scanpaths and
saliency maps: strengths and weaknesses. Behavior Research Methods,
45(1):251–266, 2013. 6, 7

[24] H. Lee, M. Frank, and F. Zotter. Spatial and timbral fidelities of binaural
ambisonics decoders for main microphone array recordings. Journal of
the Audio Engineering Society, 2019. 8

[25] J. Li, K. Yu, Y. Zhao, Y. Zhang, and L. Xu. Cross-reference stitching
quality assessment for 360◦ omnidirectional images. In Proc. of ACM
International Conference on Multimedia, p. 2360–2368. New York, NY,
USA, 2019. 8

[26] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu. 360
video viewing dataset in head-mounted virtual reality. In Proceedings of
the 8th ACM on Multimedia Systems Conference, pp. 211–216, 2017. 1, 2

[27] R. Ma, Y. Luo, and K. Furuya. Gender differences and optimizing women’s
experiences: An exploratory study of visual behavior while viewing urban
park landscapes in tokyo, japan. Sustainability, 15(5), 2023. 7

[28] S. Malpica, A. Serrano, D. Gutierrez, and B. Masia. Auditory stimuli
degrade visual performance in virtual reality. Scientific Reports (Nature
Publishing Group), 2020. 3

[29] C. Marañes, D. Gutierrez, and A. Serrano. Exploring the impact of 360◦

movie cuts in users’ attention. In IEEE Conference on Virtual Reality and
3D User Interfaces (IEEE VR), 2020. 7, 9

[30] D. Martin, S. Malpica, D. Gutierrez, B. Masia, and A. Serrano. Multi-
modality in VR: A survey. ACM Computing Surveys (CSUR), 54(10s):1–
36, 2022. 1, 3

[31] D. Martin, A. Serrano, A. W. Bergman, G. Wetzstein, and B. Masia. Scan-

GAN360: A Generative Model of Realistic Scanpaths for 360◦ Images.
IEEE Trans. on Visualization and Computer Graphics, 28(5):2003–2013,
2022. 3, 6, 8

[32] D. Martin, A. Serrano, and B. Masia. Panoramic convolutions for 360◦

single-image saliency prediction. In CVPR Workshop on Computer Vision
for Augmented and Virtual Reality, 2020. 3

[33] B. Masia, J. Camon, D. Gutierrez, and A. Serrano. Influence of directional
sound cues on users exploration across 360◦ movie cuts. IEEE Computer
Graphics and Applications, 2021. 2, 3

[34] X. Min, G. Zhai, J. Zhou, X.-P. Zhang, X. Yang, and X. Guan. A multi-
modal saliency model for videos with high audio-visual correspondence.
IEEE Trans. on Image Processing, 29:3805–3819, 2020. 2

[35] A. Miyahira, K. Morita, H. Yamaguchi, K. Nonaka, and H. Maeda. Gender
differences of exploratory eye movements: A life span study. Life Sciences,
68(5):569–577, 2000. 7

[36] P. Morgado, Y. Li, and N. Vasconcelos. Learning representations from
audio-visual spatial alignment. In Advances in Neural Information Pro-
cessing Systems, 2020. 2

[37] P. Morgado, N. Nvasconcelos, T. Langlois, and O. Wang. Self-supervised
generation of spatial audio for 360°video. In Advances in Neural Informa-
tion Processing Systems, vol. 31, 2018. 2, 3

[38] T. Noesselt, D. Bergmann, M. Hake, H.-J. Heinze, and R. Fendrich. Sound
increases the saliency of visual events. Brain Research, 1220:157–163,
2008. 2

[39] A. Nuthmann and J. M. Henderson. Object-based attentional selection in
scene viewing. Journal of Vision, 10(8):20–20, 2010. 6

[40] C. Ozcinar and A. Smolic. Visual attention in omnidirectional video for
virtual reality applications. In International Conference on Quality of
Multimedia Experience (QoMEX), pp. 1–6, 2018. 1, 3

[41] Y. Rai, J. Gutiérrez, and P. Le Callet. A dataset of head and eye movements
for 360 degree images. In Proc. of ACM Multimedia Systems Conference,
pp. 205–210, 2017. 2

[42] A. Rana, C. Ozcinar, and A. Smolic. Towards generating ambisonics
using audio-visual cue for virtual reality. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2012–2016, 2019.
2

[43] S. Rossi, C. Ozcinar, A. Smolic, and L. Toni. Do users behave similarly in
vr? investigation of the user influence on the system design. ACM Trans.
on Multimedia Computing, Communications, and Applications (TOMM),
16(2):1–26, 2020. 2

[44] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann,
and B. Masia. Motion parallax for 360◦ RGBD video. IEEE Trans. on
Visualization and Computer Graphics, 25(5):1817–1827, 2019. 4, 8, 9

[45] A. Serrano, V. Sitzmann, J. Ruiz-Borau, G. Wetzstein, D. Gutierrez, and
B. Masia. Movie editing and cognitive event segmentation in virtual reality
video. ACM Trans. on Graphics, 36(4), 2017. 1, 2, 6, 7, 9

[46] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Ma-
sia, and G. Wetzstein. Saliency in VR: How do people explore virtual
environments? IEEE Trans. on Visualization and Computer Graphics,
24(4):1633–1642, 2018. 1, 2, 5, 6, 8, 9

[47] V. Skaramagkas, G. Giannakakis, E. Ktistakis, D. Manousos, I. Karatzanis,
N. Tachos, E. E. Tripoliti, K. Marias, D. I. Fotiadis, and M. Tsiknakis. Re-
view of eye tracking metrics involved in emotional and cognitive processes.
IEEE Reviews in Biomedical Engineering, 2021. 3

[48] Y.-C. Su, D. Jayaraman, and K. Grauman. Pano2vid: Automatic cine-
matography for watching 360 videos. In Asian Conference on Computer
Vision, pp. 154–171, 2016. 1

[49] H. R. Tavakoli, A. Borji, E. Rahtu, and J. Kannala. Dave: A deep audio-
visual embedding for dynamic saliency prediction. ArXiV (Preprint), 2019.
3

[50] Z. Teed and J. Deng. RAFT: recurrent all-pairs field transforms for optical
flow. In ECCV, 2020. 3

[51] N.-O. R. A. Thomas Politzer, O.D. Former NORA President. Vision
Is Our Dominant Sense. https://www.brainline.org/article/
vision-our-dominant-sense, 2008. 1

[52] C. Tian, X. Chai, G. Chen, F. Shao, Q. Jiang, X. Meng, L. Xu, and Y.-S.
Ho. VSOIQE: A novel viewport-based stitched 360◦ omnidirectional
image quality evaluator. IEEE Trans. on Circuits and Systems for Video
Technology, 32(10):6557–6572, 2022. 8

[53] R. Warp, M. Zhu, I. Kiprijanovska, J. Wiesler, S. Stafford, and I. Mavridou.
Moved by sound: How head-tracked spatial audio affects autonomic
emotional state and immersion-driven auditory orienting response in VR
environments. Journal of the Audio Engineering Society, may 2022. 2



[54] R. Wilcox. In Introduction to Robust Estimation and Hypothesis Testing
(Third Edition), Statistical Modeling and Decision Science, pp. 291–377.
2012. 7

[55] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze prediction
in dynamic 360◦ immersive videos. In Proc. Computer Vision and Pattern
Recognition (CVPR), pp. 5333–5342, 2018. 2, 6

[56] R. Zhang, C. Chen, J. Zhang, J. Peng, and A. M. T. Alzbier. 360-degree
visual saliency detection based on fast-mapped convolution and adaptive
equator-bias perception. The Visual Computer, pp. 1–18, 2022. 3

[57] Y. Zhang, F.-Y. Chao, W. Hamidouche, and O. Deforges. PAV-SOD: A
new task towards panoramic audiovisual saliency detection. ACM Trans.
Multimedia Comput. Commun. Appl., 19(3), feb 2023. 2

[58] Y. Zhang, F.-Y. Chao, and L. Zhang. ASOD60K: An audio-induced salient
object detection dataset for panoramic videos. ArXiV (Preprint), 2021. 1,
2, 4

[59] Z. Zhang, Y. Xu, J. Yu, and S. Gao. Saliency detection in 360◦ videos.
In Proc. European Conference on Computer Vision (ECCV), September
2018. 1, 2, 6

[60] D. Zhu, X. Shao, Q. Zhou, X. Min, G. Zhai, and X. Yang. A novel
lightweight audio-visual saliency model for videos. ACM Trans. on Multi-
media Computing, Communications and Applications, 2022. 3

[61] Y. Zhu, G. Zhai, and X. Min. The prediction of head and eye movement for
360 degree images. Signal Processing: Image Communication, 69:15–25,
2018. 3


