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Regression is the most widely used modeling tool in statistics. Quantile
regression offers a strategy for enhancing the regression picture beyond cus-
tomary mean regression. With time-series data, we move to quantile autore-
gression and, finally, with spatially referenced time series, we move to space-
time quantile regression. Here, we are concerned with the spatiotemporal
evolution of daily maximum temperature, particularly with regard to extreme
heat. Our motivating data set is 60 years of daily summer maximum temper-
ature data over Aragón in Spain. Hence, we work with time on two scales—
days within summer season across years—collected at geocoded station lo-
cations. For a specified quantile, we fit a very flexible, mixed-effects autore-
gressive model, introducing four spatial processes. We work with asymmetric
Laplace errors to take advantage of the available conditional Gaussian rep-
resentation for these distributions. Further, while the autoregressive model
yields conditional quantiles, we demonstrate how to extract marginal quan-
tiles with the asymmetric Laplace specification. Thus, we are able to interpo-
late quantiles for any days within years across our study region.

1. Introduction. Quantile regression (QR) has a rich history by now, dating to Koenker
and Bassett (1978), with much seminal work by Koenker and colleagues (see, e.g., Koenker
and Machado (1999), Koenker (2005), Koenker and Xiao (2006)). Many facets are considered
in the literature including choice of optimization function (equivalently error distribution),
dependence through autoregression, and quantile crossing. We review this literature briefly
below. Here, our contribution is to consider QR in the context of a complex spatiotemporal
model. This model specifies temporal dependence through autoregression, adopting two time
scales, and introduces needed spatial dependence through four Gaussian processes (GPs).
We are motivated by mean modeling work developed in Castillo-Mateo et al. (2022) but
now seeking quantiles associated with time series of daily maximum temperature during the
summer season over a period of 60 years. We use data obtained from monitoring stations
in the Comunidad Autónoma de Aragón, Spain. Our interest is in extreme heat; specifically,
we work with daily maximum temperatures and primarily inferential focus on the τ = 0.95
quantile. Throughout the paper, when we refer to temperature it is a daily maximum tem-
perature. However, our model could be applied to arbitrary quantiles of, for example, daily
average temperature or daily minimum temperature.

More precisely, we specify a spatial conditional autoregression model on a daily scale
using the asymmetric Laplace (AL) distribution. Our quantile autoregression is an AR(1)

form, producing conditional temperature quantiles given the previous day’s temperature. The
specification enables spatial autoregression at daily and annual scale. We first present the
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inference associated with the conditional model, discussing the resulting conditional quan-
tiles and employing model performance assessment by location. The conditional quantiles
facilitate assessment of persistence, for example, according to yesterday’s temperature, what
are today’s temperature quantiles? Next, we offer an attractive approach to obtain marginal
quantiles at daily scale. The marginal quantiles enable interpolation. We can show the spatial
surface for a given marginal quantile. We can also consider averaging to provide marginal
quantiles associated with say, 7-day average temperatures. We consider these both spatially
and also dynamically. In fact, we show how to provide marginal quantiles associated with
7-day averages over a specified region. We work in a hierarchical Bayesian framework, en-
abling full posterior inference for all of the quantiles we develop.

There are two modeling approaches for QR in the literature. The first follows the original
ideas by Koenker and Bassett (1978) and offers a separate regression model for each of the
quantiles of interest. This approach is usually called multiple QR, and inference typically pro-
ceeds by minimizing a check loss function or assuming an AL error term. Examples of multi-
ple QR with AL errors appear in Yu and Moyeed (2001) while Kozumi and Kobayashi (2011)
present a Gibbs sampler for a Bayesian QR model. The second approach, which is usually
called joint QR, specifies an appropriate joint model for all quantiles (see, e.g., Tokdar and
Kadane (2012), Yang and Tokdar (2017), Das and Ghosal (2017a)). Broad implementation
for joint QR has proven challenging.

We can also classify the models in terms of whether they incorporate temporal, spatial, or
spatiotemporal dependence. Koenker and Xiao (2006) established the basis for joint quan-
tile autoregression (QAR) models in time series. A detailed overview of the different strands
of time-series QR modeling can be found in Peters (2018). Recently, spatial quantiles have
been an active area of research. Hallin, Lu and Yu (2009) introduce spatial multiple QR that
is nonparametric, focusing on asymptotic behavior using assumptions associated with time-
series asymptotics. Reich, Fuentes and Dunson (2011) develop a spatial joint QR model that
incorporates spatial dependence through spatially varying regression coefficients, which are
expressed as a weighted sum of Bernstein basis polynomials where the weights are con-
strained spatial GPs. Lum and Gelfand (2012) consider spatial multiple QR with AL errors
and then extend it to capture spatial dependence by introducing the AL process. Yang and
He (2015) consider a nonparametric approach based on Bayesian spatial QR using empiri-
cal likelihood as a working likelihood and spatial priors. Chen and Tokdar (2021) specify a
spatial joint QR based on the so-called constraint-free reparametrization by generalizing the
model of Yang and Tokdar (2017) and characterizing spatial dependence via a Gaussian or
t-copula process on the underlying quantile levels of the observation units. Spatiotemporal
quantile models are the most challenging and little work has been done in that regard. For
example, Reich (2012) follows Reich, Fuentes and Dunson (2011), but allows for residual
correlation via a spatiotemporal copula model. Neelon et al. (2015) propose a multiple QR
model for areal data. They model the random effects via intrinsic conditionally autoregres-
sive priors, and they adopt the Bayesian approach based on the AL errors. Das and Ghosal
(2017b) develop a joint QR model with a single explanatory variable following the represen-
tation of quantile functions given by Tokdar and Kadane (2012) and Das and Ghosal (2017a).
The explanatory variable is a linear trend over time and spatial dependence is captured by a
B-spline basis expansion prior.

The primary advantage of joint QR models is that they avoid the possibility of quantile
crossing. This can occur in methods that estimate and infer about quantiles separately. How-
ever, joint methods have the disadvantage of restrictive assumptions on covariates and very
demanding computation. Further, suppose we work with quantiles of an error distribution
such as the AL, that is, we model Y = μτ + ετ where the distribution for ετ has zero as
the τ quantile. Therefore, P(ετ ≤ 0) = τ so μτ provides a τ -QR for Y . If we model in this
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way, we impose a soft (stochastic) order on the quantiles. More precisely, if we also write
Y = μτ∗ + ετ∗ with τ < τ ∗, then ετ∗ will be stochastically smaller than ετ , equivalently μτ∗
will be stochastically larger than μτ , yielding the stochastic order.

Recently, QR models have become widely used in climate studies (see, e.g., Haugen et al.
(2018), McKinnon and Poppick (2020)). Gao and Franzke (2017) fit a local joint QR to
analyze the spatial and temporal pattern of extreme daily temperature. The Bayesian spa-
tiotemporal quantile model in Reich (2012) is used by Tan, Gan and Chen Shu Liu (2019)
to identify climate changes in accumulated precipitation in Canada. None of those models
include serial dependence in daily variables, but Yang, Li and Xu (2018) propose a semipara-
metric autoregressive QR model including lagged data to estimate the thresholds to define
quantile-based temperature extreme indices.

Our interest focuses on the analysis of the temporal evolution of the distributional changes
in the daily maximum temperatures during the summer periods from 1956 to 2015 around the
Comunidad Autónoma de Aragón, in the northeast of Spain. The region includes part of the
Ebro Valley in the center, with mountainous areas in the south (Iberian System) and the north
(Pyrenees). Despite its relatively small size, the region shows a diverse orography, with a
warm homogeneous climate in the center and greater climatic variability in the mountainous
areas.

Lastly, in this article we discuss many different quantiles—empirical and modeled,
marginal and conditional (perhaps conditioned on a marginal quantile). So, we offer some no-
tation to hopefully help in what follows. Our primary model is for a spatial QAR in the form
of conditional quantiles. So, we define QV (τ | y) as the τ quantile for variable V given y.
Hence, for example, QYt�(s)(τ | Yt,�−1(s)) is the τ conditional quantile for the daily temper-
ature variable for day � in year t at location s given the previous day’s temperature at that
site. Also, y might be an empirical quantile as we clarify below. Marginal quantiles, extracted
from our spatial QAR (employing adjustment), are denoted by q̃V (τ ). So, q̃Yt�(s)(τ ) is the τ

marginal quantile for the daily temperature variable for day � in year t at location s. Empirical
quantiles are denoted by q

emp
V (τ ∗). They may be indexed by site, averaged over days within

a year, years for a given day, or both. When they appear, an explicit definition is clarified in
the associated text. They may be used in specifying a conditional quantile and, in this case,
τ ∗ need not equal τ .

The format of the paper is as follows. Section 2 describes the data set with some descriptive
work. Section 3 presents our spatial QAR model with the results of the model fitting and some
model adequacy assessment. Section 4 develops a strategy for extracting marginal quantiles
from our QAR model and then develops interpolation and averaging over time and space for
them. Section 5 concludes with a summary and future work.

2. The data. The analyses presented here consider daily maximum temperature (◦C)
data at n = 18 sites around the Comunidad Autónoma de Aragón (see Figure 1) provided by
the Agencia Estatal de Meteorología (AEMET) in Spain. The data are available at a daily
scale from 1956 to 2015, but the focus of the analyses is in the warm months of June, July,
and August (denoted as JJA); in this regard, we fit the models with data in an extended period
from May 1 to September 30 to avoid boundary issues.

The region of interest, D, is around Aragón, located in the Ebro Basin in northeastern
Spain, with a spatial extent of roughly 53,000 km2. In particular, D has corners at approxi-
mately (40.5◦N,1.7◦W), (42.9◦N,1.7◦W), (42.9◦N,0.0◦E), and (40.5◦N,0.0◦E). Figure 1
shows the name, location, and elevation of the 18 sites. The Ebro River flows from the north-
west to the southeast through a valley bordered by the Pyrenees and the Cantabrian Range in
the north and the Iberian System in the southwest. The maximum elevation is around 3000 m
in the Pyrenees, 2000 m in the Cantabrian Range and the Iberian System, while the elevation
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FIG. 1. Location of the 18 sites around the Comunidad Autónoma de Aragón in northeastern Spain.

in the Central Valley varies between 200–400 m. In summary, roughly 62% of the area is
above 500 m and 28% above 1000 m.

According to AEMET (2011), the central part of the Valley is characterized by a
Mediterranean-continental dry climate with irregular rainfall and a large temperature range.
However, several climate subareas can be distinguished due to the heterogeneous orography
and other influences. Consequently, the region presents a wide variety of climate conditions
in a relatively small area, bringing interest in studying it and challenge in modeling it.

With regard to showing maps over this region, D was partitioned with a resolution of
4 km × 4 km grid cells yielding K = 2342 cells.

2.1. Descriptive analysis. Figure 2 describes the distribution across sites of three features
related to the empirical quantiles of daily temperatures in JJA months for a grid of quantiles.
Each boxplot corresponds to a quantile and is based on 18 points, one point for each observed
site. The first plot shows the empirical quantiles calculated with 60 (years)×92 (days) obser-
vations, that is, each one of the 18 points corresponds to the empirical quantile across 60×92
observations, and each boxplot is across 18 empirical quantiles from the 18 sites. The range
of each boxplot varies around 10◦C to 15◦C, and the difference between the median of the
0.95 and 0.05 quantiles is around 15◦C, indicating a similar variability across sites and across
quantiles. The second plot shows the difference between the empirical quantiles of the 30-
year periods 1986–2015 and 1956–1985 so that each quantile is now calculated with 30 × 92

FIG. 2. Boxplots of the 18 sites across quantiles to describe empirical quantile features.
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observations. Most of the observed increases vary from around −0.5◦C to 2.5◦C, but the ob-
served warming is higher in central quantiles. The variability of this increase across quantiles
is lower than across sites. The third plot shows the quantile autocorrelation, a measure of
quantile dependence based on the correlation between a binary variable indicating whether
the temperature in a day is higher than its empirical quantile and the previous day’s temper-
ature; see Li, Li and Tsai (2015) and Section S1.1 in the Supplementary Material (Castillo-
Mateo et al. (2023)) for the details. This autocorrelation is strong in all sites and quantiles,
but it clearly decreases in both tails. The variability across quantiles is larger than across sites.
Section S1.1 also includes a descriptive analysis of a second-order quantile autocorrelation,
with little or no evidence in favor of including it in the model.

A thorough analysis of the temporal pattern and the effect of elevation and latitude in
the quantiles of temperatures is offered in Section S1.2 of the Supplementary Material. This
analysis shows that elevation of the site has a roughly negative linear relationship in the em-
pirical quantiles and that this effect is slightly higher in the left tail. As expected, given the
size of the region, no latitudinal gradient is observed. Lastly, the data show a strong seasonal
component, with no evidence of changes across quantiles and across time. The increase ob-
served between both 30-year periods is homogeneous during the summer, although relevant
differences are observed across sites and quantiles.

3. The spatial quantile autoregression model.

3.1. Review of the asymmetric Laplace distribution. We introduce the AL distribution as
an error distribution for multiple QR models using the following parametrization. We denote
by ε ∼ AL(μ,σ, τ ) a random variable with probability density function (pdf),

f (ε | μ,σ, τ ) = στ(1 − τ)

{
exp

{−(1 − τ)σ |ε − μ|} if ε < μ,

exp
{−τσ |ε − μ|} if ε ≥ μ.

The cumulative distribution function is

F(ε | μ,σ, τ ) =
{
τ exp

{−(1 − τ)σ |ε − μ|} if ε < μ,

1 − (1 − τ) exp
{−τσ |ε − μ|} if ε ≥ μ.

Here, μ is a location parameter, σ > 0 is a scale parameter, and τ ∈ (0,1) is an asymmetry
parameter. In particular, it is easily checked that μ is the τ quantile of the distribution and we
will typically set μ = 0 so that P(ε ≤ 0) = τ .

The pdf above can be rewritten as f (ε | μ,σ, τ ) = στ(1 − τ) exp{−σδτ (ε − μ)} where
δτ (u) = u(τ − 1(u < 0)) is the check loss function (Koenker and Bassett (1978)). For a
sample {xi : i = 1, . . . , n}, finding arg minμ

∑
δτ (xi − μ) returns the τ empirical quantile.

Just as minimizing the sum of squares loss is associated with normal errors, minimizing
check loss is associated with AL errors.

A convenient strategy for generating ε ∼ AL(0, σ, τ ) variables is to use the following rep-
resentation proven by comparing moment generating functions (see, e.g., Kotz, Kozubowski
and Podgórski (2001)). We can express ε in terms of

ε =
√

2U

σ 2τ(1 − τ)
Z + 1 − 2τ

στ(1 − τ)
U,

where Z ∼ N(0,1) and U ∼ Exp(1). So,

(1) ε | σ,U ∼ N

(
1 − 2τ

στ(1 − τ)
U,

2U

σ 2τ(1 − τ)

)

is normally distributed enabling us to use all of the familiar Gaussian theory.
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3.2. The space-time model. Let τ ∈ (0,1) denote a quantile order, where each quantile
is modeled separately. Our general form for a spatiotemporal τ -QAR with two time scales is
given by

(2)
Yt�(s) = QYt�(s)

(
τ | Yt,�−1(s)

) + ετ
t�(s)

= qτ
t�(s) + ρτ (s)

(
Yt,�−1(s) − qτ

t,�−1(s)
) + ετ

t�(s),

where QYt�(s)(τ | Yt,�−1(s)) is the τ conditional quantile of Yt�(s) given Yt,�−1(s) and the
error term is ετ

t�(s) ∼ ind. AL(0, σ τ (s), τ ). Here, qτ
t�(s) contains fixed and random effects

as below. In addition, ρτ (s) is a spatially varying autoregression coefficient and σ τ (s) is a
spatially varying pure error scale parameter at location s.

Based upon the foregoing exploratory analysis along with that developed in Castillo-Mateo
et al. (2022), we adopt an analogue of their spatiotemporal mean autoregression model. Here,
Yt�(s) denotes the daily maximum temperature for day �, � = 2, . . . ,L of year t , t = 1, . . . , T

at location s, s ∈ D, the study region. We specify ρτ (s) to capture spatial autoregession
dependence through the GP Zτ

ρ(s) = log{(1 + ρτ (s))/(1 − ρτ (s))} with mean Zτ
ρ and ex-

ponential covariance function having variance parameter σ 2,τ
ρ and decay parameter φτ

ρ . In
the same manner, we specify στ (s) to capture spatial scale dependence through the GP
Zτ

σ (s) = log{στ (s)} with mean Zτ
σ and exponential covariance function having variance pa-

rameter σ 2,τ
σ and decay parameter φτ

σ .
As for qτ

t�(s), we adopt

qτ
t�(s) = βτ

0 + ατ t + βτ
1 sin(2π�/365) + βτ

2 cos(2π�/365) + βτ
3 elev(s) + γ τ

t (s),

where γ τ
t (s) = βτ

0 (s) + ατ (s)t + ψτ
t + ητ

t (s). The fixed effects are given by βτ
0 , a global

intercept, ατ t , a global long-term linear trend, sin and cos terms that provide the annual sea-
sonal component, and elev(s), the elevation at s. The random effects given by γ τ

t (s) capture
space-time dependence through GPs. In particular, βτ

0 (s) is a GP with zero mean and expo-

nential covariance function having variance parameter σ
2,τ
β0

and decay parameter φτ
β0

, and it
provides a local spatial adjustment to the intercept. The ατ (s) are a GP, with zero mean and
exponential covariance function having variance parameter σ 2,τ

α and decay parameter φτ
α , to

provide a local slope adjustment to the linear trend. Together, γt (s) supplies a locally linear
trend, an exceptionally rich spatial specification. With the inclusion of seasonality, it is dif-
ficult to imagine that the data could inform about a higher-order local choice. Continuing,
ψτ

t ∼ i.i.d. N(0, σ
2,τ
ψ ) provides annual intercepts to allow for yearly shifts (i.e., for hotter

or colder years),1 and ητ
t (s) ∼ i.i.d. N(0, σ 2,τ

η ) provides local annual intercepts to allow for
local yearly shifts.

We make two further points here. Focusing on performance of conditional quantiles, we
have investigated departures from our first-order regression but have found no reason to adopt
a more elaborate ARMA specification. In the exploratory and residual analysis, no evidence
of second-order correlation has been found while dependence explained by MA terms be-
comes confusing with regard to our conditional objective. Second, we do not introduce spatial
variability in the seasonality in our study. We are interested in the warmest time of the year,
JJA. Our region is small enough to assume that the daily amplitude of solar incidence, that
is, seasonality, during JJA is almost equivalent between the northernmost and southernmost
sites. A brief residual analysis to validate the seasonal term used in the model is given in
Section S2 of the Supplementary Material.

1An autoregression could be considered for ψτ
t . However, Castillo-Mateo et al. (2022) found no such autocor-

relation in their means model.
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We conclude with a technical remark regarding the validity of the Bayesian analysis for
individual quantiles based on the working AL likelihood since this likelihood differs from
that of the data generating process. Sriram, Ramamoorthi and Ghosh (2013) established suf-
ficient conditions for the posterior consistency of model parameters under the AL working
likelihood (at a single quantile level). The situation is more complicated when multiple quan-
tile levels are considered, as this means different likelihoods will be utilized in each of the
Bayesian analyses. When the AL likelihood differs from the data generating process, there
is some literature providing posterior adjustments under the linear quantile regression model
for independent data (see, e.g., Chernozhukov and Hong (2003), Yang, Wang and He (2016)).
While it is useful to be aware of these issues, addressing them is beyond the scope of our
complex spatiotemporal modeling employed here.

3.2.1. Prior distributions and model fitting. Model inference is implemented in a
Bayesian framework. To complete the model, we specify prior distributions for all model
parameters. In this setting, diffuse and, when available, conditionally conjugate prior distribu-
tions are chosen. Recall that the model adopts a conditional AL distribution for all Yt�(s), and
that this distribution can be expressed as normal when it is conditioned on Uτ

t�(s) ∼ Exp(1).
Therefore, the coefficient parameters βτ

0 , ατ , βτ
1 , βτ

2 , and βτ
3 are each assigned independent

normal prior distributions with mean 0 and standard deviation 100. The variance parameters,
σ

2,τ
ψ and σ 2,τ

η , are assigned independent Inverse-Gamma(0.1,0.1) prior distribution.
The specification of the GPs is as follows. First, Zρ and Zσ are each given a normal prior

distribution with mean 0 and standard deviation 100. Second, the variance parameter for each
of the four spatial covariances, σ 2,τ

β0
, σ 2,τ

α , σ 2,τ
ρ , and σ 2,τ

σ , is assigned an independent Inverse-
Gamma(0.1,0.1) prior distribution. With an exponential covariance function, the product
of the variance and the decay parameter is identified but the individual parameters are not
(Zhang (2004)). With stronger interest in the spatial variability, we adopt weak priors and
let the data inform about the σ 2’s. We are more precise with regard to the decay parameters.
In fact, with information well informed by the spatial scale of our study region, we fix the
decay parameters φ ≡ φτ

β0
= φτ

α = φτ
ρ = φτ

σ = 3/dmax, where dmax is the maximum distance
between any pair of spatial locations. That is, with an exponential covariance function, the
decay parameter is 3/range, and it is set to the value associated with the largest spatial range
for the observed data locations.

We develop a Metropolis-within-Gibbs algorithm to obtain Markov chain Monte Carlo
(MCMC) samples from the joint posterior distribution. In particular, we derive full condi-
tional distributions for each of the parameters, including the n×T × (L− 1) latent exponen-
tial variables ξτ

t�(s) = Uτ
t�(s)/σ

τ (s). This parametrization is adopted to obtain a gamma full
conditional distribution for the scale parameter in the AL (Kozumi and Kobayashi (2011)).
However, in our case, with a GP prior for the log-scale parameter, the full conditional is
still nonstandard so we do not benefit from this parametrization. For the fitting, we introduce
β̃τ

0 (s) = βτ
0 + βτ

0 (s) and α̃τ (s) = ατ + ατ (s) within γ τ
t (s) to enable the benefits of hierar-

chical centering in the model fitting (Gelfand, Sahu and Carlin (1995)). Details of the Gibbs
sampler used for the model fitting are provided in Section S3 of the Supplementary Material.
All the covariates have been centered and scaled to have mean zero and standard deviation
one to improve the mixing of the algorithm.

3.3. Results of model fitting. This section summarizes the results of the QAR models
for τ ∈ {0.05,0.10,0.20, . . . ,0.80,0.90,0.95} quantiles fitted to the temperature series de-
scribed in Section 2. The parameters ατ ,βτ

1 , βτ
2 , βτ

3 , ατ (s), and στ
α have been rescaled to

interpret them in terms of the original scales of the covariates. For each τ , using MCMC and
the Gibbs sampling algorithm (see Section S3), we ran three chains, each with different initial
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FIG. 3. Posterior median and 90% credible interval of the main parameters and posterior mean of the centered
seasonal pattern captured by the harmonic terms (first row central plot) across quantiles.

values, out to 1,000,000 iterations for each chain, to obtain samples from the joint posterior
distribution. The first 100,000 samples were discarded as burn-in and the remaining 900,000
samples were thinned to retain 1000 samples from each chain for posterior inference. Exper-
iments were run on a computer with an Intel Core i9-10900K processor running at 3.70 GHz
using 64 GB of RAM, running Windows 10 Pro version 21H2. Under this setup, fitting eleven
models in parallel, we were able to fit the 3 (chains) × 11 (τ ’s) models in 3 × 36 hours. Con-
vergence was monitored by usual trace plots (not shown), and the marginal and multivariate
potential scale reduction factors (Brooks and Gelman (1998)).

Figure 3 shows a summary across quantiles for the fixed effects parameters and for ρτ , the
mean of the spatial process ρτ (s). Figure S7 of the Supplementary Material provides the rest
of the model parameters. As expected, βτ

0 increases monotonically with the quantiles, but it is
not a linear function of τ since the slope varies from τ = 0.60. The seasonal pattern obtained
from the harmonic terms is very similar across the τ ’s. The elevation coefficient βτ

3 is close
to −7◦C/km, the environmental lapse rate (Navarro-Serrano et al. (2018)), for τ greater than
or equal to 0.40. This value decreases below −9◦C/km for τ ’s close to the extreme cold. The
posterior median of ατ is above 0.30◦C/decade in the central quantiles, close to the trend of
0.27◦C/decade estimated by Peña-Angulo et al. (2021) for the daily temperature in Spain in
the summer period 1956–2015, and decreases to about 0.10◦C/decade in the tails. The results
of ρτ show a strong autoregression in all the quantiles, varying from 0.55 for τ = 0.05 to 0.75
in the central quantiles.

Figure 4 shows the posterior mean of the spatial random effects, β̃τ
0 (s), α̃τ (s), ρτ (s), and

στ (s) at each observed site across quantiles. Figure 5 shows spatially the posterior mean of
the previous spatial processes (showing βτ

0 (s) instead of β̃τ
0 (s)) for τ = 0.05,0.50,0.95. See

also Figure S8 of the Supplementary Material for posterior boxplots of these processes at
the observed sites and Figure S9 to get an idea of the uncertainties of these estimates. These
figures show wide spatial variability in the four spatial processes at all quantiles. In particular,
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FIG. 4. Posterior mean of the four spatial random effects in the 18 observed sites across quantiles.

the spatially varying intercept βτ
0 (s) captures climate variability not explained by elevation.

The similarity of the spatial pattern for β0.50
0 (s) and β0.95

0 (s) versus β0.05
0 (s) is noteworthy.

There are clear differences across quantiles in the spatial pattern of the linear trend α̃τ (s).
For τ = 0.50, the trends are positive in all of the regions while negative values are observed
in the northwest for τ = 0.05 and in the central part and northeast for τ = 0.95. The areas
where the 80% credible intervals do not contain a null trend are shown in Figure S10 of the
Supplementary Material. The range and spatial pattern of the autoregression term ρτ (s) also
vary across quantiles. The posterior mean varies from 0.72 to 0.80 in τ = 0.50, from 0.53 to
0.69 in τ = 0.95, and from 0.36 to 0.64 in τ = 0.05.

The random evolution across years of the posterior distribution of the temporal random ef-
fects ψτ

t (see Figure S11 in the Supplementary Material) confirms that a more complex trend
would not improve the fit of the linear trend. Again, we note the similarity of the distribution
of ψ0.50

t and ψ0.95
t , while ψ0.05

t is slightly different and has a greater variance.

3.3.1. Conditional quantiles. As an illustration of the output provided by the model,
Figure 6 shows the posterior mean of the conditional quantiles QYt�(s)(τ | y) on July 15, 2015
(t = 60 and � = 76) under three different situations for y and for τ = 0.05,0.50,0.95. An
important feature of daily temperature is its high persistence, evidenced by the autoregression
coefficients ρτ (s) of the model. The selected values of y correspond to location dependent
cold, mild, and warm situations, that is, we use local empirical quantiles q

emp
Y (s)(τ

∗) for τ ∗ =
0.05,0.50,0.95. First, the empirical quantiles at the observed sites are obtained using the
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FIG. 5. Maps of the posterior mean of the four spatial random effects for τ = 0.05,0.50,0.95.

30 × 92 observations of the JJA months in the reference period 1981–2010. Later, to obtain a
value for each s, the observed values are interpolated by means of a simple kriging.

Though the posterior mean level changes, the spatial pattern in all the conditional quantiles
is similar. However, as a consequence of the different persistence across quantiles, the poste-
rior mean of the difference between QYt�(s)(0.50 | y) and QYt�(s)(0.05 | y) varies noticeably
depending on the value of the previous day’s temperature. For example, in Zaragoza, it is
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FIG. 6. Maps of the posterior mean of the conditional quantiles QY60,76(s)(τ | q
emp
Y(s)(τ

∗)) on July 15, 2015, for

τ, τ∗ = 0.05,0.50,0.95.

2.8◦C, 5.7◦C and 8.6◦C for y = 20,30,40◦C, respectively. Analogously, the posterior mean
of the difference between QYt�(s)(0.95 | y) and QYt�(s)(0.50 | y) is 4.3◦C, 3.7◦C, and 3.1◦C
for the previous values of y. Another consequence is that an increase of around 1◦C in the
previous day’s temperature, y, yields an increase of around 0.44◦C in the posterior mean of
the 0.05 conditional quantile, 0.73◦C in the conditional median, and around 0.66◦C in the
0.95 conditional quantile.

3.4. Model assessment through cross-validation. Here, we take up model assessment in
the context of performance across the n locations. That is, we are not implementing model
comparison; rather, we are looking at local and global adequacy of the model employing
three different quantiles, τ = 0.05,0.50,0.95. In particular, a leave-one-out cross-validation
is carried out. That is, each site is held out one at a time and subsequently the model is fitted
with the remaining n − 1 sites. Then the conditional quantiles are obtained using one-step
ahead prediction since, for held-out site, we know the Yt,�−1(s) to condition on.
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We consider two types of residuals. The first type is defined as R
(b)
t� (τ ; s) = Yt�(s) −

Q
(b)
Yt�(s)

(τ | Yt,�−1(s)) for b = 1,2, . . . ,B , where b denotes an MCMC posterior realization of
the τ conditional quantile on day �, year t at site s. A simpler type based on the mean of those
realizations yields the single residual value Rt�(τ ; s) = Yt�(s) − E[QYt�(s)(τ | Yt,�−1(s)) |
data]. The simpler version only looks at Yt�(s) relative to the associated mean of the con-
ditional quantile. The replicated version looks at Yt�(s) relative to the distribution of the
associated conditional quantile.

Now, we define three measures of model assessment. First, we propose an approximation
to the probability (an integral) that the observed Yt�(s) is less than the conditional quantile
on day �, year t , site s. This probability is estimated as pt�(τ ; s) = ∑

b 1(R
(b)
t� (τ ; s) < 0)/B .

The mean value of these probabilities should be τ . As a result, a global measure is defined as

p(τ) = 1

nT (L − 1)

n∑
i=1

T∑
t=1

L∑
�=2

pt�(τ ; si ).

Under an adequate model, this should take a value close to τ . Analogous versions without
averaging over days, years, or sites are denoted by p�(τ), pt(τ ), or p(τ ; s), respectively.

Second, to evaluate potential overfit in terms of out of sample performance, we employ
the asymmetrically τ -weighted mean absolute error (Koenker and Bassett (1978)), which we
denote by WMAE(τ ). Using the check loss function δτ (u) = u(τ − 1(u < 0)) defined in
Section 3.1, this measure is given by

WMAE(τ ) = 1

nT (L − 1)

n∑
i=1

T∑
t=1

L∑
�=2

δτ

(
Rt�(τ ; si)

)
.

Equivalently, this measure calculates the mean value of the absolute errors weighted by 1 − τ

if Rt�(τ ; s) < 0 or τ otherwise. The smaller its value, the better the model performance. The
analogous site-level version is denoted by WMAE(τ ; s).

The third measure is calculated as R1(τ ) according to Koenker and Machado (1999). This
goodness-of-fit measure is viewed as an analogue of R2 for the classical residual sum of
squares; the check loss function for quantiles replaces the least-squares loss function and the
τ empirical quantile q

emp
Y (s)(τ ) replaces the sample mean. In this section, q

emp
Y (s)(τ ) is calculated

with the T × (L − 1) observations of the held-out site. Thus, this measure is given by

R1(τ ) = 1 −
∑n

i=1
∑T

t=1
∑L

�=2 δτ (Rt�(τ ; si))∑n
i=1

∑T
t=1

∑L
�=2 δτ (Yt�(si ) − q

emp
Y (si )

(τ ))
.

Note that in-sample, but not out-of-sample, R1(τ ) would fall between 0 and 1. In both cases,
it measures the relative success of the corresponding QR models at a specific quantile in
terms of an appropriately weighted sum of absolute residuals. Thus, R1(τ ) provides a local
measure of goodness-of-fit for a particular quantile rather than a global measure of goodness-
of-fit over the entire conditional distribution. The analogous site-level version is denoted by
R1(τ ; s).

Table 1 shows global performance metrics and Table 2 shows the results by site. The
performance is good for the three values of τ according to p(τ). Further, for most of the
stations, p(τ ; s) is within τ ± 0.02. The goodness-of-fit considering R1(τ ) is around 0.367
for τ = 0.05, with values above 0.4 in some sites. This criteria is around 0.464 and 0.442 for
τ = 0.50 and 0.95, respectively, but it is above 0.5 in some sites. Quantiles 0.50 and 0.95
perform better than the left tail.
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TABLE 1
Performance metrics for the models with τ = 0.05,0.50,0.95

τ p(τ) WMAE(τ ) R1(τ )

0.05 0.056 0.378 0.367
0.50 0.505 1.192 0.464
0.95 0.944 0.272 0.442

Less accurate results appear in sites located in the western part of the region. Tornos has
a climate that is affected by plateau conditions, and presents the worst values in p(τ ; s) and
R1(τ ; s) for τ = 0.95. Pamplona has colder conditions related to Cantabrian Sea effects, and
the actual τ = 0.05 quantile is much colder than expected by the model. Furthermore, its
median is the most poorly captured across the sites. The performance of the other sites is
reasonably homogeneous based on the three measures for the three values of τ .

Figure 7 shows the evolution of pt(τ ) and p�(τ) across t and �, respectively. It reveals that
the temporal evolution of days-within-years and years is well captured and there seems to be
no bias in the estimates.

4. Marginal quantiles. Here, we present a general strategy for obtaining marginal quan-
tiles from the conditional quantiles. Implementation is straightforward working with AL er-
rors, employing the conditional Gaussian representation.

Marginal quantiles enjoy direct interpretation as well as the benefit of spatial interpolation.
That is, to be locally appropriate, conditional quantiles would require the local previous day’s
temperature, which will not be available at unobserved locations.2 We present the approach

TABLE 2
Performance metrics for models with τ = 0.05,0.50,0.95 for the 18 sites

p(τ ; s) WMAE(τ ; s) R1(τ ; s)

Location 0.05 0.50 0.95 0.05 0.50 0.95 0.05 0.50 0.95

Pamplona 0.140 0.582 0.933 0.501 1.619 0.359 0.144 0.333 0.369
Buñuel 0.069 0.519 0.954 0.368 1.227 0.270 0.345 0.422 0.430
El Bayo 0.036 0.485 0.952 0.367 1.162 0.262 0.361 0.457 0.444
Morella 0.035 0.531 0.953 0.342 1.046 0.250 0.418 0.488 0.460
Huesca 0.040 0.485 0.954 0.341 1.005 0.225 0.398 0.520 0.515
Tornos 0.051 0.446 0.876 0.436 1.392 0.349 0.386 0.458 0.347
Santa Eulalia 0.037 0.463 0.951 0.390 1.137 0.257 0.393 0.510 0.480
Calatayud 0.044 0.504 0.944 0.372 1.221 0.279 0.411 0.473 0.451
Panticosa 0.042 0.568 0.976 0.346 1.110 0.267 0.402 0.491 0.419
La Puebla de Híjar 0.063 0.465 0.925 0.377 1.118 0.252 0.342 0.462 0.449
Ansó 0.045 0.524 0.969 0.370 1.160 0.262 0.392 0.490 0.463
Daroca 0.053 0.523 0.968 0.380 1.275 0.274 0.394 0.454 0.456
Zaragoza 0.066 0.505 0.957 0.365 1.176 0.244 0.350 0.446 0.484
La Sotonera 0.055 0.506 0.941 0.361 1.094 0.251 0.378 0.493 0.470
Pallaruelo 0.058 0.481 0.932 0.373 1.106 0.250 0.375 0.488 0.463
Cueva Foradada 0.046 0.573 0.976 0.326 1.027 0.246 0.396 0.477 0.452
Sallent de Gállego 0.060 0.465 0.914 0.373 1.167 0.276 0.389 0.487 0.429
Yesa 0.062 0.464 0.910 0.423 1.414 0.316 0.324 0.416 0.411

2Of course, we can always interpolate conditional quantiles given illustrative choices of previous day’s temper-
ature.
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FIG. 7. Evolution of pt (τ ) across t (left) and p�(τ) across � (right) for τ = 0.05,0.50,0.95.

for extracting a marginal quantile from a conditional quantile after fitting the conditional
quantile model. In the setting of an AL specification for the errors, first we show how to
implement this procedure for a single day. Next, we clarify how the spatial kriging is imple-
mented using these marginal quantiles and supply a spatial map of the marginal τ -quantile
temperature surface in our study region for a given day. Then we move to the marginal quan-
tile associated with an average over days. Such averaging is helpful in providing say, weekly
quantiles; in our application, 7-day average temperatures quantiles in the summer may be
useful, particularly for comparison over years. Such quantiles can be kriged over a spatial
region to reveal the quantile surface. Lastly, such a daily or weekly quantile surface can be
averaged over a region of interest to obtain areal daily or weekly quantiles. The tool here is
block averaging (Banerjee, Carlin and Gelfand (2015), Chapter 7).

4.1. Obtaining marginal quantiles from conditional quantiles in an autoregression. Con-
sidering expression (2), it is attractive to think about qτ

t�(s) as a version of a marginal τ quan-
tile for Yt�(s). However, P(Yt�(s) ≤ qτ

t�(s)) 	= τ . So, we seek an additive adjustment to qτ
t�(s),

which depends upon the model for Yt�(s), so that it adjusts this probability to τ . Then qτ
t�(s)

plus this adjustment becomes the marginal τ quantile we want.
To present the idea in its simplest form, we ignore space and years and suppress the

superscript τ in the parameters. So, we have Y� = q� + ρ(Y�−1 − q�−1) + ε� where the
ε� ∼ i.i.d. AL(0, σ, τ ). In this notation, QY�

(τ | Y�−1) = q� + ρ(Y�−1 − q�−1) is the τ quan-
tile of the QAR. For convenience, write this model as W� = ρW�−1 + ε� with W� = Y� − q�.
Upon substitution, we have W� = ρ�W0 +∑

j ρj ε�−j . Using the conditional normal form for
ε� in (1), we have

ε̃� | ρ,σ,U�,U�−1, . . . ,U1 ≡
�−1∑
j=0

ρjε�−j | ρ,σ,U�,U�−1, . . . ,U1

∼ N

(
1 − 2τ

στ(1 − τ)

�−1∑
j=0

ρjU�−j ,
2

σ 2τ(1 − τ)

�−1∑
j=0

ρ2jU�−j

)
.

We want the τ quantile of W�, call it dτ
� (ρ, σ ), so that W� −dτ

� (ρ, σ ) has 0 as its τ quantile
and, therefore, Y� has q� +dτ

� (ρ, σ ) as the τ marginal quantile. The τ quantile of W� is ρ�W0
plus the τ quantile of ε̃�. While 0 is the τ quantile of ε�, the τ quantile of ε̃� will not be 0.
That is, each term in ε̃� has τ quantile 0 but the sum will not.

Though ε̃� does not have an AL distribution, we can find its τ quantile. For any d , we seek
P(ε̃� < d | ρ,σ ). However,

P(ε̃� < d | ρ,σ )

=
∫ ∫

· · ·
∫

P
(
ε̃� < d | ρ,σ, {Uj : j = 1,2, . . . , �})[{Uj }]dU1 dU2 · · · dU�.
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But given {Uj : j = 1,2, . . . , �}, we have the distribution for ε̃� above. So, we can calculate
P(ε̃� < d | ρ,σ, {Uj : j = 1,2, . . . , �}). In fact, we can do a Monte Carlo integration to calcu-
late P(ε̃� < d | ρ,σ ) by generating many sets {Uj : j = 1,2, . . . , �}, all i.i.d., all distributed
as Exp(1). We can do this for any value d , in fact, using the same Monte Carlo samples.
Then, using a simple search, we can find dτ

� (ρ, σ ). Moreover, we can use the same Monte
Carlo samples for any ρ and σ so computation is not demanding.

In our modeling setting, we need dτ
t�(ρ

τ (s), σ τ (s)) to accompany qτ
t�(s). From the model

fitting described in Section 3.2.1, we have random samples of ρτ (s) and σ τ (s), which can
produce random samples of dτ

t�(ρ
τ (s), σ τ (s)). These can be used with posterior samples of

qτ
t�(s) to create the posterior distribution of the τ marginal quantile for any year, day, and site.

In the sequel, we denote this as q̃Yt�(s)(τ ) ≡ qτ
t�(s)+ dτ

t�(ρ
τ (s), σ τ (s)). Again, we can use the

same sets of {Uj }’s. Moreover, we can do this for any τ . Generating the entire collection of
marginal quantiles of interest is straightforward.

4.2. Kriging marginal quantiles and block averaging of marginal spatial quantiles. As
above, for a given τ , year, and day within year, marginal quantiles enable kriging to un-
observed locations. More precisely, at new site s0, we can obtain the posterior distribution
of q̃Yt�(s0)(τ ). To obtain a sample of q̃Yt�(s0)(τ ), we need a sample of the model part plus
a sample of the adjustment part, dτ

t�(ρ
τ (s0), σ

τ (s0)). The model part is a function of the
parameters and process realizations while the correction part is a function of just process
realizations. Posterior samples for the parameters are available from the model fitting. Pos-
terior samples for the GPs are available, using posterior samples of the parameters, through
usual Bayesian kriging (Banerjee, Carlin and Gelfand (2015), Chapter 6). Therefore, we can
interpolate marginal quantiles to any desired location in the study region. If we do this to a
sufficiently spatially resolved grid, we can obtain the posterior mean at each point and “see”
the posterior τ quantile surface for the given day within year.

Further, we might seek the average of the τ quantile over some subregion B ⊆ D for day
� in year t . This becomes a block average, q̃Yt�(B)(τ ) ≡ ∫

B q̃Yt�(s)(τ ) ds/|B|. As is customary,
we approximate this integral by Monte Carlo integration of the form

∑K
k=1 q̃Yt�(sk)(τ )/K for

{sk ∈ B}, drawing the sk from above grid. Lastly, we note that in the above, we are interpo-
lating a parameter, not an observation. We are obtaining posterior distributions, not posterior
predictive distributions.

4.2.1. Marginal quantiles for one day at unobserved locations. For each of the 3000
posterior samples of ρτ (si ) and σ τ (si ) (i = 1, . . . , n) stored in Section 3.3, we use Bayesian
kriging to obtain 3000 samples of ρτ (sk) and στ (sk) (k = 1, . . . ,K) in a grid of the study
region D (see Section 2 for grid details). For each of them, we sample 1000 sets of {Uj }’s
to calculate P(ε̃� < d | ρ,σ ), and obtain a sample of dτ

t�(ρ
τ (sk), σ

τ (sk)) through a one-
dimensional rootfinder. In particular, ρ�W0 drops rapidly to zero as � tends to infinity, so it
becomes negligible.

As an illustration of the output provided by the marginal quantiles, Figure 8 shows maps of
the posterior mean of q̃Yt�(s)(τ ) on July 15, 2015 (t = 60 and � = 76) for τ = 0.05,0.50,0.95.
For all quantiles, the maximum temperature is reached in the Valley, center and southeast, and
the minimum in the Pyrenees in the northeast. For τ = 0.05, the temperature range goes from
6.0◦C to 27.9◦C, for τ = 0.50 from 19.7◦C to 37.1◦C, and for τ = 0.95 from 23.3◦C to
41.1◦C.

We use the marginal quantiles to analyze climate change for τ = 0.05,0.50,0.95 in Fig-
ure 9. The first row shows spatially

(3) E

(
1

10

∑
t∈D6

q̃Yt�(s)(τ ) − 1

10

∑
t ′∈D1

q̃Yt ′�(s)(τ )
∣∣∣ data

)
,
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FIG. 8. Maps of the posterior mean of the marginal quantiles q̃Y60,76(s)(τ ) on July 15, 2015, for
τ = 0.05,0.50,0.95.

where D1 is the first decade (1956–1965) and D6 the last (2006–2015). The result does not
depend on � since it can be summed up to the change in the terms ατ t + γ τ

t (s). The posterior
mean in (3) supplies the mean change in temperature between the marginal quantile of a day
averaged over the first decade and the marginal quantile of that same day averaged over the
last decade, that is, we use averages of daily quantiles. The spatial pattern appears different
across quantiles, with a smaller range of change for the median than for the extreme quantiles.
Warming is general, exceeding 3◦C in the southwest for τ = 0.95. But cooling patterns also
appear in the northwest for τ = 0.05.

The second row shows spatially

(4) P
(
q̃Yt ′�(s)(τ ) < q̃Yt�(s)(τ ) | t ′ ∈ D1, t ∈ D6,data

)
.

FIG. 9. Top: Difference (in ◦C) between the marginal quantiles of the last and the first decades in (3). Bottom:
Posterior probability in (4) that a marginal quantile in a day in a year of the first decade is colder than the same
day in a year of the last decade. For τ = 0.05,0.50,0.95.
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FIG. 10. Evolution of the block average q̃Yt,76(D)(τ ) on July 15 against year for τ = 0.05,0.50,0.95.

This value represents the posterior probability that the marginal quantile of a day in any year
of the first decade is colder than the marginal quantile of that same day for any year of the
last decade. The pattern is the same as above, but in this case instead of seeing results in ◦C,
we see them in terms of probabilities. To summarize the results, if we also condition on s ∈ D
in (4), these posterior probabilities are 0.67 for τ = 0.50, 0.66 for τ = 0.95, and 0.57 for
τ = 0.05.

Figure 10 shows the evolution over the years of the block average q̃Yt�(D)(τ ) for July 15
(� = 76). A warming trend is observed in all three quantiles. Although the baseline may
change for other choices of �, the pattern through the years will be common.

4.3. Marginal quantiles for averages. Next, we take up averaging over time to obtain
say, a weekly τ quantile at site s in year t . To simplify notation, we suppress the year, the
site, and the superscript τ . Suppose we want to average back r days, starting at day � ≥ r .
So, we are seeking the marginal τ -quantile of Ȳ

(r)
� = 1

r

∑�
j=�−r+1 Yj . To be clear, we want

the quantile of this average, not the average of the daily quantiles. Going one step further,
if we want to average over space (as above) and time, we should first average over time and
then average over space. That is, the quantile of the temporal average is not the average of
the temporal quantiles but q̃Yt�(B)(τ ), by definition, is an average of quantiles.

From above, we have Y� = q� +ρ(Y�−1 −q�−1)+ ε� where the ε� ∼ i.i.d. AL(0, σ, τ ). So,
again, QY�

(τ | Y�−1) = q� + ρ(Y�−1 − q�−1) is the τ quantile for the QAR for day �. Again,
for convenience, write this model as W� = ρW�−1 + ε� with W� = Y� − q�.

Then, if W̄
(r)
� = 1

r

∑�
j=�−r+1 Wj , W̄

(r)
� = Ȳ

(r)
� − q̄

(r)
� where q̄

(r)
� averages the q’s accord-

ingly. So, the marginal τ quantile for Ȳ
(r)
� will be q̄

(r)
� plus an adjustment.

Since Wj = ρjW0 + ∑j−1
k=0 ρkεj−k , we need the τ quantile of

¯̃ε(r)
� ≡ 1

r

�∑
j=�−r+1

j−1∑
k=0

ρkεj−k.

Note that, while the double sum is over r(�−r)+r(r +1)/2 terms, it only involves ε1, . . . , ε�.
We can rewrite the sum in terms of these � distinct ε’s but to no advantage. Rather, we need to
generate � associated U ’s, that is, � i.i.d. Exp(1) random variables. For each ρ, σ , and given
these U ’s,

¯̃ε(r)
� ∼ N

(
1 − 2τ

στ(1 − τ)

1

r

�∑
j=�−r+1

j−1∑
k=0

ρkUj−k,
2

σ 2τ(1 − τ)

1

r2

�∑
j=�−r+1

j−1∑
k=0

ρ2kUj−k

)
.
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FIG. 11. Left: Map of the posterior mean of the weekly marginal quantiles q̃
Ȳ

(7)
60,79(s)

(0.95) centered on July 15,

2015. Right: Evolution of the block average of the weekly marginal quantiles q̃
Ȳ

(7)
t,79(D)

(0.95) centered on July 15
against year.

Again, using a simple search, we can find the τ quantile of ¯̃ε(r)
� and, therefore, we can find

the adjustment to obtain the τ marginal quantile for Ȳ
(r)
� . In our modeling setting, we de-

note this quantile by q̃
Ȳ

(r)
t� (s)(τ ). With posterior samples from the model fitting, we can create

a posterior distribution for this marginal quantile. We can do this for any location, averag-
ing back from any day within a year, and for any year. Thus, we can create an associated
spatial surface. Note that we can reuse the U ’s except the number that we require depends
upon � as above. Finally, if we want this τ marginal quantile averaged over a region say, B,
we can implement an analogous Monte Carlo integration as above, replacing q̃Yt�(s)(τ ) with
q̃
Ȳ

(r)
t� (s)(τ ).

4.3.1. Weekly marginal quantiles at a given site. Note that in climate analysis some ex-
treme events are defined by the integration of the temperature series over several days. For
example, Cattiaux and Ribes (2018) study the probability of extremely hot temperatures dur-
ing a moving-window of r = 2,3, . . . ,15 days in Paris, and Lee (2021) analyzes trends in
extreme “weather whiplash” events defined by daily temperature in a 7-day moving window.
Here, as an example of application of the proposed methodology, we follow the setup in Sec-
tion 4.2.1 to obtain weekly marginal quantiles q̃

Ȳ
(r)
t� (s)(τ ) centered at July 15, 2015 (t = 60,

� = 79 and r = 7), for τ = 0.95.
In particular, the plot on the left of Figure 11 shows the map of the posterior mean of

q̃
Ȳ

(r)
t� (s)(τ ) centered on July 15, 2015 (t = 60, � = 79 and r = 7) for τ = 0.95. The spatial

pattern is the same as for the daily marginal quantiles, but the temperature range is 21.2–
38.9◦C. The plot on the right of Figure 11 shows the weekly block average centered on July
15 across years for τ = 0.95.

Lastly, other values of r can be considered but, if r is taken too large, many values will be
averaged and, therefore, the quantiles from this averaging will get closer and closer. This can
cause quantile crossing even for quantiles that are far from each other.

5. Summary and future work. This paper develops a modeling approach to predict a
specific quantile in a spatiotemporal framework. We have specified a spatial conditional au-
toregressive model on a daily scale using the AL distribution for the errors. The considered
specification enables spatial autoregression at a daily scale that captures serial correlation and
facilitates assessment of persistence. The flexibility of the model is increased by considering
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two scales of time—days within summer season and years—as well as seasonal behavior,
time trend, and four GPs that represent the spatial dependence of the intercept, the trend, the
serial dependence, and the scale of the AL errors. Bayesian model fitting enables full poste-
rior inference for a given quantile. Although the model gives conditional quantiles, we offer
an attractive approach to obtain marginal quantiles at daily scale. These marginal quantiles
enable interpolation. The approach can also provide marginal quantiles associated with aver-
ages of the response variable, both spatially and dynamically. Posterior inference to evaluate
changes between marginal quantiles of spatial and time averages can also be implemented.

The suggested QAR modeling approach is shown to be flexible enough to represent the
evolution of different quantiles of the distribution of daily maximum temperatures and to
capture the effects of climate change during the period 1956–2015 in Aragón, a small region
but with a wide variety of climate conditions. The strong serial correlation of daily temper-
ature is adequately captured by the autoregressive structure. The elevation, the only spatial
covariate in the model, together with the four considered GPs are able to capture the great
variability in climate conditions over the region; in particular, they capture observed features
of temperature by allowing mean levels, trends over time, and serial correlation of tempera-
ture to vary spatially. The QAR models fitted for τ = 0.05,0.50,0.95 show different spatial
and temporal patterns, revealing important differences in the behavior of the tails versus the
central part of the distribution of daily temperature in summer. More precisely, comparing
the increases over time observed in the median, the 0.95 quantile shows higher increases in
some areas of the Valley, while for the 0.05 quantile, no increase is observed in the north-
west. These differences confirm the importance of modeling the entire distribution of daily
temperature, rather than just the mean (as done in many climate studies). A useful climate
application of the proposed methodology to estimate quantiles is the computation of thresh-
olds to define extreme indexes or extreme events, taking into account changes over time of
temperature.

Future work will consider different spatial regions providing more spatial sites than our
sparse Aragón data set. This will enable comparison of temperature trends at larger spatial
scales. Additionally, our modeling approach could be useful in other environmental analyses
such as pollution exposure or biological experimental data, where the objective is to identify
distributional changes over time and compare these changes across different spatial locations.
Further, though the proposed modeling analyzes daily series across years, the approach could
be applied to other time scales.
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