
1 

 

Multilayer Networks with Higher-order Interaction Reveal the Impact of Collective Behavior on 

Epidemic Dynamics 

Jinming Wana, Genki Ichinoseb, Michael Smallc,d, Hiroki Sayamaa, Yamir Morenoe,f,g, Changqing Chenga,h,* 

a Department of Systems Science and Industrial Engineering, State University of New York, Binghamton, NY 

13902 
b Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, 

Hamamatsu 432-8561, Japan  
c Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, 

Crawley, WA 6009, Australia 
d Mineral Resources, CSIRO, Kensington, WA 6151, Australia 
e Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain 
f Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain 
g CENTAI Institute, Torino, 10138, Italy 

h ISI Foundation, Torino, 10126, Italy 

 

Abstract: The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the 

absence of pharmaceutical interventions, the population behavioral response, including situational awareness and 

adherence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-

theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease 

contagion, and social networks are critical platforms on which behavior imitation between social contacts, even 

dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored, 

which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer 

network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that 

mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from 

these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the 

social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform 

to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral 

change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on 

coordinated policy design to enhance the preparedness for future pandemics.  

Keywords: COVID-19, Complex and Dynamic System, Simulation, Pandemic 

I. INTRODUCTION 

In the absence of pharmaceutical interventions, situational awareness and collective adoption of protective 

behaviors are pivotal to combat spreadout of infectious diseases, as demonstrated by the ongoing COVID-19 

pandemic and the flare-up or resurgent outbreaks around the world. The integration of awareness into 

mathematical models, mainly through variants of susceptible-infectious-recovered (SIR) models, has been widely 

investigated since the onset of COVID-19 [1]. Most of these models merely capture oversimplified behaviors (e.g., 

social distancing or not) and fail to capture the sophisticated mechanisms underlying behavioral responses, 

including the individual perception of infection risk and bounded rationality, government mandate, socioeconomic 

cost and fatigue on adherence to containment policies, as well as social influence [2-5]. The interplay between the 

collective behavioral response of the population and the contagion dynamics has a significant bearing on the 
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epidemic evolution. 

Game-theoretic models explicitly account for behavioral adaptation and the connection with epidemic spreading 

[6], mostly with a separation of time scales between the spreading dynamics and behavioral response [7-10]. For 

instance, behavioral changes only occur at the beginning of each time period or happen at a much lower frequency. 

Such a time-scale separation does not capture the realism of behavioral responses. Inspired by [11], we study the 

coevolution of the spreading dynamics and behavioral adaptation under the same time scale and investigate the 

decision-making process under the influence of risk perception, behavioral change costs, compliance fatigue, 

social influence, as well as bounded rationality [12]. As behavior dynamics has been recognized as one driving 

force behind resurgent outbreaks of COVID-19, there is a pressing demand for a paradigm shift from purely 

rational and reactive behavior modeling to a more comprehensive response computational framework that can 

predict the epidemic evolution and provide guidance on intervention policy design.  

Network models have been widely deployed to describe agent interactions. For instance, a single-layer network 

was suggested in [13] to incorporate agent behavior to extend the conventional susceptible-exposed-infectious-

recovered (SEIR) model. The decision of each agent to take a certain behavioral response is modeled via an 

evolutionary game model, considering the underlying cost. Ye et al. [11] instead suggested a two-layer network 

to study the interplay between agent behavior from a social layer and the spreading dynamics on a physical layer. 

Particularly, as we have observed during the COVID-19 pandemic, social media play a vital role in reshaping our 

perception towards the risk of infection and in transforming behavioral responses. Nonetheless, in most existing 

works, it is assumed that the infectious population resides in the same physical community. It has been reported 

that contact patterns of residents in one region could be substantially affected by the policies and behavioral 

responses in other distant regions [14]. Or in other words, we imitate behavioral responses of our social contacts 

even if we are located in distant communities. Such a “spillover” effect could crimp the effectiveness of 

intervention policies, and it has not been systematically investigated. On the other hand, numerous behavioral 

models [6], [15-16] have been proposed to quantify how human behaviors adapt and affect the transmission of 

contagious diseases assuming pairwise interactions between agents. It is noted, however, that this pairwise 

interaction assumption may fail to represent more realistic behavioral responses [17]. Instead, a higher-order 

interaction among the population has been suggested for behavioral adaptation on social networks. Recent studies 

also underscore that the presence of higher-order interactions substantially sways the dynamics of networked 

systems, from diffusion and synchronization to social and evolutionary processes, possibly leading to the 

emergence of sophisticated collective phenomena [17-19].    

To account for such phenomena, we propose a three-layer network platform to study the interplay between 

behavioral response and contagion process in two distant communities. These two communities interact via a 

common social network. A simplicial complex is adopted to model the high-order interactions on the social layer, 

and a game-theoretic model is then utilized to elucidate the behavioral change of agents. This theoretic model 

could help harvest policy-relevant insights into the course of contagion spreading dynamics.  

It is noteworthy to highlight that our model is not intended to replicate real curves because we are more interested 

in specific system reactions, such as behavioral responses and changes. Generally, most results caused by diverse 

behaviors are inadequate data to characterize behaviors. If we fully focus on the result and ignore the mechanisms 
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underlying these behaviors, the result will no longer be precise when the behavioral responses are changed. 

Currently, most COVID-19 predictions are inaccuracy and their prediction curve are too smooth to be true because 

the practical curves are oscillations. Thus, we do not target reproducing real results or curves but focus on 

analytical insights. 

II. BACKGROUND  

Modeling and simulation of epidemics abound in the literature. Such models provide critical insight into the 

spreading dynamics and are imperative in the optimal design of knowledge-informed intervention policies. 

Compartment models and their variants (e.g., SIR [20]) are the most popular approaches in epidemic modeling. 

They divide the population into different compartments and use ordinary differential equations to capture the 

dynamic evolution of population flow across the different compartments. The SEIR variant includes an exposed 

compartment between the susceptible and infectious to account for the incubation period of the disease, and it has 

been used to predict COVID-19 infection and hospital resource shortage at the state-level in the U.S. [21] and 

other countries. However, a classical compartmental model typically relies on a key assumption of population 

homogeneity in a certain region or community of interest, and each compartment represents an aggregate of 

indistinguishable individuals. This is not realistic to unveil the critical distinctions pertaining to epidemic 

dynamics. Admittedly, recent studies have set forth strong evidence of spatial heterogeneity and disparities in 

COVID-19 transmissions [23-24]. Socioeconomic, cultural, and environmental factors, which differ across 

geographic communities, could substantially affect human behavior, and consequently, the spread of COVID-19. 

Thus, accurate modeling requires a more refined approach to address the heterogeneity of populations. Prem et al. 

[24] proposed an age-structured SEIR model and divided the whole population into 16 age groups to assess the 

effectiveness of physical distancing measures in containing COVID-19 in Wuhan, China. Kucharski et al. [25] 

investigated a stochastic SEIR model with random contact rates to forecast the case count of COVID-19 in Wuhan 

and other cities. In the metapopulation SEIR model, a certain geographic area is divided into multiple distinct 

communities, each with unique geographic and demographic features. A local SEIR model is then imposed for 

each region, and those local SEIR models are coupled together to quantify the daily transmission within and 

between the regions. Tran-Thi et al. [26] proposed a stochastic SEIR metapopulation model that included both 

population migration and environmental transmission (seasonal average contact rate) for the spread of infectious 

diseases. Similarly, Venkatramanan et al. [27] integrated short- and long-range mobility patterns in a SEIR 

metapopulation model to study the contagion of seasonal influenza. Brockmann and Helbing [28] replaced the 

conventional geographic distance with effective distance derived from the mobility network and built a simplified 

and homogeneous metapopulation SIR model to predict arrival times of infection peaks. Acknowledging that 

epidemiological parameters are often hard to calibrate and typically associated with huge uncertainty, which may 

render the model useless, this simplified and homogenous modeling approach relies on only a small fraction of 

transport connections with fewer parameters to fit. 

Yet, the resurgent outbreaks and flare-up of case counts around the world suggest that population behavior plays 

a critical role in shaping the spreading dynamics. For example, Rǎdulescu et al. [29] incorporated different 

population behaviors (social distancing, mobility restrictions, and lockdowns) into a conventional SEIR model to 

simulate the epidemic dynamics. The results indicated that whereas social distancing is effective in flattening the 

contagion curve, it cannot completely rule out resurgent outbreaks. Weitz et al. [30] combined a SEIR model with 
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fatality-driven awareness and reported that the situational awareness leads to asymmetric epidemic curves with 

lagged oscillations. Lockdown fatigue was also considered to examine the impact from premature relaxation of 

mobility reductions on the resurgence of outbreaks [30]. In a similar vein, Johnston and Pell [31] proposed a 

behavior-perception SEIR model that incorporates fear of infection and frustration of social distancing to study 

the second-wave of COVID-19.  

We also note that the heterogeneity of individual behavioral responses to the government mandate has complicated 

the effort to contain the spread. Scabin et al. developed a multi-layer network to consider social activities in 

different scenarios, including home, workplace, transportation, and school, and the impact on a seven-state 

compartment model [32]. Chinazzi et al. [33] combined the SEIR model and metapopulation network with real-

world airline transportation data to predict the infection rates in major cities in China. Similarly, Wu et al. [34] 

applied a SEIR model to a transportation network that connects spatially disjoint regions to predict the spread of 

COVID-19 in China. Cui et al. [35] applied a SEIR model on different Barabási-Albert (BA) [36] networks to 

simulate transmission of COVID-19 with different physical contacts, subject to the testing procedure set by the 

government. Considering the inflows and outflows of interstate travel, a mobility network-based SEIR model was 

developed to project state-wise COVID-19 infection in the U.S. and to assess the impact of non-pharmaceutical 

intervention policies at the state level [21]. In [37], a metapopulation SEIR model was overlaid on a mobility 

network, which governs how populations from different social groups interact as they visit points of interest. The 

data from Safegraph company, was then utilized to predict the growth trajectory of COVID-19 infection in 10 

large U.S. metropolitan areas. Similarly, Meloni et al.[38] also, implement a metapopulation model into a mobility 

network but consider various self-initiated behavioral responses for individual’s mobility pattern. The authors 

analyzed the behavioral responses in both synthetic and data-driven scenarios and indicated that behavioral 

responses with the goal of limiting and decreasing the pandemic may have the exact opposite impact. 

Social networks play an increasingly important role in shaping our daily behaviors [15], including our attitude 

and response to the prevalence of infections. Alvarez-Zuzek et al. [39] developed a two-layer network to evaluate 

the influence of social opinion in vaccination on epidemic spreading. Similar studies [40]–[43] also implied that 

agent interaction on the social layer has a tremendous influence on the incidence of infection and the outbreak of 

epidemics on the physical layer. In [44], the authors claimed that diffusion of negative or positive opinion towards 

the infection can lead to risk-taking or risk-averse behaviors, respectively, which further elevate or suppress the 

prevalence rate. Other factors and their influence on the behavioral response have also been studied, including 

risk perception (awareness) [7], [43], compliance cost [45], bounded rationality [12], and non-pharmaceutical 

intervention policy (containment measure) [46]–[48].  

In these modeling studies, the population resides in the same physical and virtual communities. Their perception 

of infection risk and opinion formed from their social interactions reshape their behavioral response in the physical 

community. In reality, we also interact with social contacts in disjoint communities and may imitate their response 

to the infection. This cannot be elucidated via the above-mentioned network modeling approaches. In particular, 

pair-wise interactions between agents on the social network are widely used, which are oftentimes not sufficient 

to account for the rich collective dynamics underneath a variety of social imitation phenomena, including opinion 

formation and behavioral adaptation. Indeed, pairwise links do not operate alone on the social layer. Rather, they 

are usually reinforced by group pressure. It has been suggested that complex mechanisms of higher-order 
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influence and reinforcement are at play and responsible for a variety of emergent collective behaviors [19]. In this 

investigation, we describe such higher-order interactions on the social network with simplicial complexes and 

study the social influence on infection dynamics in two distant physical communities.  

III. MODEL 

We present a multilayer network platform to elucidate how the collective behavior of individual agents affects the 

contagion dynamics on disjoint physical communities. This platform comprises two physical layers that represent 

two isolated communities 𝐴 and 𝐵, on top of which a networked SEIR model is implemented to capture the 

disease spreading dynamics. Here, for simplicity, we construct the communities 𝐴 and 𝐵 as Barabási-Albert (BA) 

networks, since many realistic networks follow the preferential attachment principle [36]. The physical networks 

of communities 𝐴 and 𝐵 have 𝑁𝑎 and 𝑁𝑏 nodes or agents, respectively. In essence, starting with an initial network 

𝐺0 of 𝑁0 connected nodes, new nodes are attached to 𝑚 < 𝑁0 original ones to form new edges according to the 

preferential attachment principle, i.e., with a probability proportional to the degree of existing nodes.  

Agents from both communities 𝐴  and 𝐵  collectively define a social community 𝐶 that accommodates social 

interactions, thus the size 𝑁𝑐 = 𝑁𝑎 + 𝑁𝑏, which indicates that every agent cannot travel between two physical 

communities 𝐴 and 𝐵 (see Fig. 1). These two physical layers have time-varying undirected links, which symbolize 

the physical contacts or the avenue for disease transmission [49]. Each agent adjusts their risk-taking or risk-

averse behaviors as they parse information regarding the global prevalence of the contagion and the response of 

their neighbors on the social layer. Therefore, the two distant communities could still affect each other regarding 

the spreading dynamics indirectly via the social network, even without human mobility in between. This mimics 

how we perceive information from social media and adapt our behaviors accordingly.  

 

We define two utility functions 𝜋𝑎
𝑖  and 𝜋𝑟

𝑖  to characterize the payoff for risk-averse and risk-taking behaviors of 

agent 𝑖, which hinges on the effective intervention policy 𝛿(𝑡), imitation of social influence 𝜔𝑖(𝑡), compliance 

Fig. 1 Illustration of the 3-layer network platform as time evolves: the upper layer and lower layer represent 

the two physical contact networks or communities 𝐴 and B; the middle layer represents the social influence 

network  
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cost 휀𝑖(𝑡) (e.g., economic cost, mental stress, and physical fatigue), and the community’s risk perception 𝜂(𝑡) 

[11]. 

                                                                         𝜋𝑎
𝑖 (𝑡) = 𝜔𝑖(𝑡) + 𝜂(𝑡) − 휀𝑖(𝑡)                                                                    (1a) 

                                                                              𝜋𝑟
𝑖 (𝑡) = −𝛿(𝑡) − 𝜔𝑖(𝑡)                                                                           (1b) 

With a large 𝜋𝑎
𝑖 , agent 𝑖 has a strong sense of situational awareness and tends to be risk-averse, disregarding the 

effective intervention policy 𝛿. It is further assumed that conservative agents are sensitive to risk perception 𝜂(𝑡) 

and compliance cost 휀𝑖(𝑡), as displayed in Eq. (1a). Conversely, a large 𝜋𝑟
𝑖  indicates that agent 𝑖 is risk-prone. 

The risk-taking agents generally ignore the risk perception 𝜂(𝑡) and compliance cost 휀𝑖(𝑡). They instead subject 

their behaviors to government regulations. 𝜔𝑖(𝑡)  prescribes the social influence on agent 𝑖  resulting from 

imitating the behaviors of social contacts. Positive 𝜔𝑖(𝑡)  indicates imitation of protective behaviors from 

neighbors, thus boosting 𝜋𝑎
𝑖 (𝑡) ; negative 𝜔𝑖(𝑡)  implies imitation of risk-taking responses, elevating 𝜋𝑟

𝑖 (𝑡) . 

Following this, we construct a Markov model to characterize the time-dependent behavioral adaption via behavior 

quotient (BQ) 𝑥𝑖(𝑡 + 1) of agent 𝑖 at time stamp 𝑡 + 1 with bounded rationality assumption: 

                                                                            𝑥𝑖(𝑡 + 1) =
𝑒𝜎𝜋𝑎

𝑖 (𝑡)−𝑒𝜎𝜋𝑟
𝑖 (𝑡)

𝑒𝜎𝜋𝑎
𝑖 (𝑡)+𝑒𝜎𝜋𝑟

𝑖 (𝑡)
 ,                                                                 (2) 

where 𝜎 > 0 is a rational scale in the decision-making process. A finite constant 𝜎 is assumed for all agents with 

bounded rationality. As a side note, the two extreme cases of 𝜎 → ∞ and 𝜎 = 0 indicate fully rational and fully 

irrational behaviors, respectively. The BQ 𝑥𝑖(𝑡) ∈ (−1,1)  is a continuous variable capturing the effective 

behavioral response of agent 𝑖: if 𝑥𝑖(𝑡) > 0, agent 𝑖 avoids risk and takes protective behavior; for 𝑥𝑖(𝑡) = 0, agent 

𝑖 is risk-neutral; if 𝑥𝑖(𝑡) < 0, risky behavior is in favor, which could potentially boost the probability of infection. 

It is noteworthy that the formulation of BQ 𝑥𝑖(𝑡) is a significant departure from the model proposed in [11], in 

that each agent mimics both risk-averse and risk-taking behaviors. The public weighs the trade-off to adjust their 

behavioral response, considering the behavior of their social contacts, risk perception, government intervention 

policy, and compliance cost. 

A. Imitation of social behavior  

On the social influence layer, we define an imitation function 𝜔𝑖(𝑡) to characterize how agent 𝑖 imitates the 

behaviors of their social contacts. The simplicial complex has been extensively used to reveal such higher-order 

interactions: the behavioral imitation occurs with nonlinear reinforcement characterized by the simplex dimension, 

rather than bilinearly depending on the number of connecting nodes and their behaviors. Formally, a simplex of 

dimension 𝑑 or 𝑑-simplex is a collection of 𝑑 + 1 vertices 𝜎𝑑 = [𝑗0, 𝑗1, … , 𝑗𝑑], and any subset 𝜎𝑑′  (𝑑′ ≤ 𝑑) of 

𝜎𝑑  is its sub-simplex or 𝑑′-face [17]. That said, 𝜎𝑑 subsumes all subset simplices of dimension 𝑑 − 1, and so on 

recursively. The vertices are called 0-simplices, the edges the 1-simplices and the full triangles the 2-simplices. 

The collection of simplices and all the sub-simplices or faces defines a simplicial complex. As illustrated in Fig. 

2 (b), the agent 𝑖 (the orange node) interacts with a set of social contacts 𝑗1, 𝑗2 and 𝑗3 via a simplicial 2-simplex, 

which contains a 1-simplex (e.g., pairwise link of [𝑖, 𝑗1]) and a 2-simplex (the full triangle [𝑖, 𝑗2, 𝑗3]). Conversely, 

Fig. 2 (a) illustrates a simplicial 1-complex with only the pairwise interactions. The imitation of social behavior, 

indexed by 𝜔𝑖, is induced on the simplicial complex. For computational easiness, we only consider the simplicial 

complex up to dimension 3 in this study.  
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The enhancement effect for collective interaction of a 𝑑′-simplex is given as 𝜃𝑑′ = (1 + 𝜌𝑑′)𝜆
𝑑′ , where 𝜌𝑑′ is the 

proportion of number counts of 𝑑′-simplices in the simplicial 3-complex. 𝜆𝑑′ = (𝑑′+1
3

) underscores the influence 

of high-order interactions. 𝜆𝑑′ = 0 for 𝑑′ < 2, 𝜆2 = (2+1
3

) = 1, and 𝜆3 = (3+1
3

) = 4. In the illustrative example 

depicted in Fig. 2 (c), a simplicial 3-complex contains three 1-simplices, four 2-simplices, and three 3-simplices, 

thus 𝜌1 = 𝜌3 =
3

10
, 𝜌2 =

4

10
. Correspondingly, the enhancement coefficient for pairwise interaction is fixed as 

𝜃1 = 1 with 𝜆1 = 0. Therefore, the imitation of social behavior function for agent 𝑖 at time 𝑡 can be represented 

as:  

                                                                       𝜔𝑖(𝑡) = 𝜉
𝜃1 ∑ �̅�𝑣

1𝑛𝑖1
𝑣=1 +𝜃2 ∑ �̅�𝑣

2𝑛𝑖2
𝑣=1 +𝜃3 ∑ �̅�𝑣

3𝑛𝑖3
𝑣=1

𝑛𝑖
 ,                                                            (3) 

where 𝜉 is the imitation factor that scales the influence of imitation behavior in utility functions 𝜋𝑎
𝑖  and 𝜋𝑟

𝑖 , 𝑛𝑖1 is 

the number of 1-faces, 𝑛𝑖2 is the number of 2-faces, and 𝑛𝑖3 is the number of 3-faces associated with agent 𝑖. 

Variables �̅�𝑣
1, �̅�𝑣

2, and �̅�𝑣
3 represent the average BQ of the 𝑣𝑡ℎface with orders 1, 2, and 3 respectively. The 1-face 

is included not only in the 1-simplex but also in the 2-simplex and 3-simplex. Each 1-face contains one 

neighboring agent for agent 𝑖 with the average BQ �̅�𝑣
1(𝑡). Here �̅�𝑣

1(𝑡) = 𝑥𝑗𝑣
(𝑡), 𝑣 = 1, … , 𝑛𝑖1 = 20 as shown in 

Fig. 2 (c). Similarly, the 2-face is included not only in the 2-simplex but also in the 3-simplex, and 2-face contains 

two neighboring agents with average BQ �̅�𝑣
2(𝑡). There are thirteen 2-faces for agent 𝑖 in Fig. 2 (c), which are 

�̅�1
2(𝑡) =

𝑥𝑗1(𝑡)+𝑥𝑗2(𝑡)

2
, �̅�2

2(𝑡) =
𝑥𝑗1(𝑡)+𝑥𝑗3(𝑡)

2
, �̅�3

2(𝑡) =
𝑥𝑗2(𝑡)+𝑥𝑗3(𝑡)

2
, �̅�4

2(𝑡) =
𝑥𝑗4(𝑡)+𝑥𝑗5

(𝑡)

2
, �̅�5

2(𝑡) =
𝑥𝑗8(𝑡)+𝑥𝑗9(𝑡)

2
, 

�̅�6
2(𝑡) =

𝑥𝑗11(𝑡)+𝑥𝑗12(𝑡)

2
, �̅�7

2(𝑡) =
𝑥𝑗11(𝑡)+𝑥𝑗13(𝑡)

2
, �̅�8

2(𝑡) =
𝑥𝑗12(𝑡)+𝑥𝑗13(𝑡)

2
, �̅�9

2(𝑡) =
𝑥𝑗14(𝑡)+𝑥𝑗15

(𝑡)

2
, �̅�10

2 (𝑡) =

𝑥𝑗16(𝑡)+𝑥𝑗17(𝑡)

2
, �̅�11

2 (𝑡) =
𝑥𝑗16(𝑡)+𝑥𝑗18(𝑡)

2
, �̅�12

2 (𝑡) =
𝑥𝑗17(𝑡)+𝑥𝑗18(𝑡)

2
, and �̅�13

2 (𝑡) =
𝑥𝑗19(𝑡)+𝑥𝑗20(𝑡)

2
. Lastly, the 3-face is 

only included in the 3-simplex, and there are three 3-faces in the illustrative example in Fig. 2 (c). The average 

BQ �̅�1
3(𝑡) =

𝑥𝑗1
(𝑡)+𝑥𝑗2

(𝑡)+𝑥𝑗3(𝑡)

3
, �̅�2

3(𝑡) =
𝑥𝑗11

(𝑡)+𝑥𝑗12
(𝑡)+𝑥𝑗13(𝑡)

3
, and �̅�3

3(𝑡) =
𝑥𝑗16

(𝑡)+𝑥𝑗17
(𝑡)+𝑥𝑗18(𝑡)

3
. 

B. Risk perception  

The risk perception reflects how the public perceives the disease prevalence 𝑧, the fraction of the population that 

Fig. 2 Illustration of different interactions in the network for agent 𝑖: (a) only pairwise interactions; (b) 

simplical 2-complex, including the pairwise and full-triangle interactions; (c) a simplicial 3-complex with 

three 3-simplices, four 2-simplices, and three 1-simplices.   
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is infected (exposed and infectious) [50]. A power function for risk perception, 𝑧(𝑡) ∈ [0,1], has been suggested 

in [11]: 

                                                                                         𝜂(𝑡) = 𝑘𝑧(𝑡)𝑢,                                                                          (4) 

where 𝑘 > 0 is the scaling factor and the risk index 𝑢 > 0 captures the population attitude towards the prevalence 

or the risk. Since 𝑧 ∈ (0, 1), 𝑢 > 1 indicates that the population discounts the infection risk, and 𝑢 < 1 implies 

that the public tends to overrate the underlying risk. 

C. Government intervention policies 

To contain the spreading of infection, the government enacts non-pharmaceutical interventions, such as social 

distancing, face mask requirement, and lockdowns. 𝑝(𝑡) > 0 quantifies the strength of such policies at time 𝑡, and 

the policy is adjusted periodically (e.g., every 10 time steps) for each community according to the average 

prevalence 𝑧(̅𝑡∗)  of the previous time interval 𝑇 ∈ [𝑡∗ − 10, 𝑡∗ − 1] , where 𝑡∗ = 10 × ⌊
𝑡

10
⌋  and ⌊∙⌋  is a floor 

function. Remarkably, public compliance with social restrictions diminishes as fatigue sets in. To account for the 

“lockdown fatigue”, a fatigue function 𝜓(𝑡) = 𝑒
−(

𝑡

𝜇
)
 is introduced to portray the diminishing public compliance 

to the intervention policy as time elapses, regulated by the complying factor 𝜇. Thus, the effective intervention 

policy 𝛿 is given as:  

                                                                                          𝛿(𝑡) = 𝜓(𝑡)𝑝(𝑡) ,                                                                 (5a) 

                                                                      𝑝(𝑡) = {

0.8,  𝑧̅(𝑡∗) > 0.1

0.5, 0.05 ≤ 𝑧̅(𝑡∗) ≤ 0.1

0.3,
0.0,

0.03 ≤ 𝑧̅(𝑡∗) < 0.1 

𝑧(̅𝑡∗) < 0.03

,                                                       (5b) 

Here, the values of 𝑝(𝑡) are set arbitrarily, and we do not seek to find the optimal intervention policy. Different 

evolution trajectory of the infection of the two different communities causes different intervention policies 𝑝(𝑡), 

as shown in Eq. 5 (b). We name this as an adjustable policy, in comparison to the rigid policy to be discussed in 

section IV.  

D. Compliance cost 

Studies on historical contagion indicates that adherence to government mandate is crucial to slowing the spread 

of the pandemic [14]. The compliance cost 휀𝑖(𝑡) symbolizes the cost of abiding by government policies, and it 

hinders the agent from taking protective behaviors (e.g., shelter-at-home and wearing face masks). The 

compliance cost 휀𝑖(𝑡) comprises two components: the immediate cost 𝑐 ≥ 0, e.g., basic sanitization cost and 

psychological frustration, and cumulative protective cost.  

                                                                   휀𝑖(𝑡) = 𝑐 + ∑ 𝑎𝑡−𝜏𝑡
𝜏=1 (𝜑[𝑥𝑖(𝜏) − 0.2]+)                                                      (6) 

𝑎 ∈ [0, 1] is the cumulative factor representing how the past protective behaviors affect the current compliance 

cost. As agents respond to the infection in a different way, the cumulative cost hinges on each BQ 𝑥(𝑡). 𝑎 = 0 

implies a memoryless protective cost structure, such that the protective action course in the history does not affect 

the current compliance cost. Cost scaling 𝜑  indicates the cost associated with the protective behaviors. 

[𝑥𝑖(𝜏) − 0.2]+ = max (0, 𝑥𝑖(𝜏) − 0.2) represents that the BQ less than 0.2 will not incur a cost at time 𝜏.  

E. Transition probability  

On the two physical contact layers (communities 𝐴 and 𝐵), each agent 𝑖 is in one of 4 possible states ℎ𝑖(𝑡) =

{𝑆, 𝐸, 𝐼, 𝑅} at any time  𝑡. The infectious (I) spreads the disease to their susceptible (S) neighbors, who then become 
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exposed (E) with a probability 𝑃(ℎ𝑖(𝑡 + 1) = 𝐸|ℎ𝑖(𝑡) = 𝑆): 

                                                𝑃(ℎ𝑖(𝑡 + 1) = 𝐸|ℎ𝑖(𝑡) = 𝑆) =
1−𝑥𝑖(𝑡)

2
× (1 − (1 − 𝛽)𝑁𝑖(𝑡)),                                   (7) 

where 𝛽 is the infection rate when the susceptible agent 𝑖 contacts infectious neighbors. 𝑁𝑖(𝑡) is the number of 

infectious neighbors for agent 𝑖 at time 𝑡, and it is time-varying because of the change of agents’ states. The 

expression 
1−𝑥𝑖(𝑡)

2
∈ (0,1) symbolizes the effective disease transmission, citing variation of BQ 𝑥𝑖(𝑡). When 

𝑥𝑖(𝑡) = 1, agent 𝑖  refrains from taking any risk, and 𝑥𝑖(𝑡) = −1 implies that agent 𝑖  completely ignores the 

infection risk. The exposed (E) transitions to the infectious (I) with a probability 𝑃(ℎ𝑖(𝑡) = 𝐼|ℎ𝑖(𝑡𝐸) = 𝐸):  

                                                             𝑃(ℎ𝑖(𝑡) = 𝐼|ℎ𝑖(𝑡𝐸) = 𝐸) = 1 − 𝑒−𝛼(𝑡−𝑡𝐸),                                                         (8) 

where 𝑡𝐸  is the time at which agent 𝑖 became exposed (E). This transition occurs at an exponential rate 𝛼, or 

equivalently with an average latent period of 1 𝛼⁄ . In a similar vein, the infectious (I) recovers with a probability 

𝑃(ℎ𝑖(𝑡) = 𝑅|ℎ𝑖(𝑡𝐼) = 𝐼):   

                                                               𝑃(ℎ𝑖(𝑡) = 𝑅|ℎ𝑖(𝑡𝐼) = 𝐼) = 1 − 𝑒−𝛾(𝑡−𝑡𝐼),                                                         (9) 

where 𝑡𝐼 is the time at which agent 𝑖 becomes infectious (I). The recovery process occurs at an exponential rate 𝛾, 

or equivalently with an average recovery period of 1 𝛾⁄ . 

IV. NUMERICAL RESULTS 

We utilize the Facebook social network dataset from Network Repository (NR) [51] for the social influence layer, 

which includes 10004 individual Facebook users or nodes. We construct a simplicial 3-complex for each agent at 

each time 𝑡 by randomly selecting a different number of neighbors (from 1 to 3) to formulate different order 

simplices. We generate an Erdös-Rényi (ER) random network as the initial network 𝐺0 with size 𝑁0 = 1000 and 

the probability of node connection 𝐶0 = 0.1 to construct two BA networks to represent the communities 𝐴 (the 

first physical contact layer in our multilayer network) and 𝐵 (the second physical contact layer) of equal size 𝑁𝑎 =

𝑁𝑏 = 5002 but with disparate density of links. The densely connected network symbolizes the urban area, denoted 

as community 𝐴: each of the new coming nodes will connect to 𝑚𝑎 = 250 nodes to extend the initial network. 

The sparsely connected network is analogous to the rural area, denoted as community 𝐵: each new coming node 

will be connected to only 𝑚𝑏 = 50 existing nodes. The connectivity of these two BA networks represents the 

maximal physical contacts for each agent throughout the epidemic process. As time evolves, a random set of edges 

from this connectivity will be chosen for each agent to form the time-varying network. This does not preclude 

other temporal formation mechanisms [11]. We stress that whereas some epidemic models can reproduce key 

features of the spreading dynamics, the abundance of mutually incompatible models suggest that there is still 

substantial uncertainty in data collection and model parameterization, as well as a lack of fundamental 

understanding of the observed spatiotemporal dynamics [28]. Thus, we do not aim to replicate the infection curve 

in any particular regions. Rather, we parameterize the model to reveal the general impact of the social interplay 

on the infection dynamics.    

We implement the SEIR compartment model previously described on the two physical layers (the communities 

𝐴  and 𝐵), which possess the same key parameters for the COVID-19 pandemic, including the transmission 

probability per contact 𝛽, the incubation rate 𝛼, and the recovery rate 𝛾. According to recent studies of COVID-

19 [49-50], we set 𝛽 = 0.06, 𝛼 = 1/7 and 𝛾 = 1/21. That is to said, we set the incubation period to 7 days and 
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the recovery time to 21 days. To start with, we randomly assign a 1% of the population for communities 𝐴 and 𝐵 

to the infectious compartment, and initialize the BQ 𝑥(0) = 0 and the effective intervention policy 𝛿(0) = 0 for 

all agents. Disregarding the social influence and behavioral response, the contagion dynamics for the densely-

connected urban community 𝐴  and the sparsely-connected rural community 𝐵  regulated by the conventional 

SEIR are showcased in Fig. 3: community 𝐴 reaches a higher peak infection rate with an earlier arrival time. 

Nonetheless, there is a far cry between the reality and those curves in Fig. 3: ebbs and flows of COVID-19 case 

count have been reported globally, and multiple resurgent outbreaks are also observed in the U.S.  

 

A. Spreading dynamics under different risk perceptions  

We set the model parameters on the social layer so as to have immediate cost 𝑐 = 0.1, accumulative factor 𝑎 =

0.4, cost scaling 𝜑 = 0.7, imitation factor 𝜉 = 0.2, rational rate 𝜎 = 10, and complying factor 𝜇 = 50. We 

initialize the BQ 𝑥(0) = 0 for all agents on the social layer, i.e., they are all risk neutral at the onset of infection. 

We also assume a scaling factor 𝑘 = 2 and risk index 𝑢 = 0.5 for a high level of situational awareness of the 

infection. In this scenario, the public tends to take risk-averse behaviors in line with the prevalence rate, and the 

compartment flow dynamics are shown in Fig. 4 (a) and (b) for communities 𝐴 and 𝐵, respectively. Compared to 

the conventional SEIR model, the infectious compartment exhibits oscillatory patterns, and a much lower peak 

infectious fraction is observed. Conversely, 𝑘 = 0.5 and 𝑢 = 4 are used for a low level of risk awareness. Hence, 

the public tends to take risky behaviors, resulting in marked increase of the infectious population, as shown in Fig. 

4 (c) and (d). Numerically, such risky behaviors lead to BQ 𝑥 → −1 or 
1−𝑥𝑖(𝑡)

2
→ 1 for most agents at the earlier 

stage of the contagion. According to Eq. (7), our model is approximately equivalent to the conventional SEIR 

model in this condition, particularly the first 10 time steps before triggering the intervention policy. Next, the non-

pharmaceutical intervention is enacted to suppress the spread of contagion. For community 𝐴 with high population 

density, the adjustable intervention is not sufficiently intense to contain the disease spread when the public is 

averse to safeguard measures, which is distinguishable from the infection curves in Fig. 3 (a) and Fig. 4 (c). For 

community B, the susceptible levels off rapidly after the policy is enacted, which represents a significant departure 

from the curve in Fig. 3 (b). 

Fig. 3 Population fraction of each compartment under the conventional network SEIR model for (a) 

communities 𝐴 and (b) community 𝐵, respectively.  
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At the onset of the pandemic, the prevalence 𝑧(𝑡) edges up rapidly. When the public possesses high risk aversion 

(with 𝑘 = 2 and 𝑢 = 0.5), the risk perception 𝜂 increases at a faster pace than the compliance cost 휀𝑖, promoting 

risk-averse behaviors (see Eq. 1 (a)). The imitation of social behaviors further elevates the population BQ, 

eventually bending the infection curve. The counterbalance between the constituent components of the utility 

functions is manifested as the spikes on the prevalence curves in Fig. 5 (a) and (b). When the public generally 

ignores the infection risk with 𝑘 = 0.5 and 𝑢 = 4, the compliance cost 휀𝑖  dominates the utility function. The 

behavior imitation further enhances such risk-prone behaviors. Overall, at this extreme risk ignorance, all agents 

behave without considering the infection, thus the prevalence is fairly similar to the conventional SEIR model 

without behavioral response (see Fig. 5 (c) and (d)). We also note that with high-order interactions between agents, 

the imitation of social behaviors captures the reinforcement effect. As displayed in Fig. 5 (a) and (b), when the 

population is on high alert, the prevalence rate curves exhibit a lower peak for both communities 𝐴 and 𝐵 under 

the simplicial complex framework compared to the pairwise interaction. At the low risk perception level, the 

reinforcement of risky responses leads to elevated peaks for communities 𝐴 and 𝐵, though the difference is not 

substantial as illustrated in Fig. 5 (c) and (d).  

Fig. 4 Population fraction of each compartment under the proposed game-theoretic network SEIR model for 

(a) community 𝐴 and (b) community 𝐵 with risk-averse behavioral response, and (c) community 𝐴 and (d) 

community 𝐵 with risk-taking behavioral response.  
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B. The influence of control policy 

We conduct another set of simulations to investigate how the control policy in one community affects the other 

indirectly via the social layer, with 2 levels of intensity, namely, weak 𝛿(𝑡) = 0.1 and strict 𝛿(𝑡) = 1.0 for all 

time 𝑡, instead of the adjustable control policies given in Eq. (5). Here, we only consider the risk averse scenario. 

First, we apply a strict control policy to community 𝐴  and maintain the adjustable policy in line with the 

prevalence rate for community 𝐵. As shown in Fig. 6 (a), the bold action against the infection significantly 

suppresses the prevalence rate for community 𝐴, compared to the adjustable policy in Fig. 5 (b). Such a strict 

policy substantially subdues the utility for risky behaviors, thus promoting conservative responses. 

Simultaneously, agents in community 𝐵 imitates the behavior of their social contacts, resulting in fluctuation of 

the prevalence. As time evolves, with the strict government mandate in place, more and more agents adopt the 

risk-averse responses, and the prevalence in community B also settles at a low level. Next, we impose a strict 

control policy on community 𝐵 and maintain the adjustable policy for community 𝐴. As shown in Fig. 6 (b), the 

strict policy suppresses the prevalence for community 𝐵  and agents in community 𝐴  imitate the protective 

behaviors in community 𝐵 to also diminish their prevalence as compared to the scenario of adjustable policies for 

both communities in Fig. 5 (b).  

Fig. 5 The prevalence rate 𝑧(𝑡) from the game-theoretic network SEIR for the two communities with (a) 

pairwise and (b) high-order interactions on the social influence layer under risk-averse behavioral response, 

and with (c) pairwise and (d) high-order interactions on the social influence layer under risk-taking response. 
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Subsequently, a weak control policy is enacted for one community and an adjustable policy is maintained for 

another one. As illustrated in Fig. 6 (c) and (d), overall, as the population is risk averse, the weak control policy 

has only a modest impact on agent behaviors and the prevalence of both communities. Compared to Fig. 5 (b), 

the prevalence in community 𝐴 with weak control policy (see Fig. 6 (c)) is slightly decreased in the first 10 time 

steps, because the adjustable policy is inactive. Likewise, a weak control policy is also imposed on community 𝐵 

leading to a slightly smaller prevalence in community 𝐵. It is further noted that the strength of the weak control 

policy (𝛿(𝑡) = 0.1) is lower than the active adjustable policy (𝛿(𝑡) ≥ 0.3) in community 𝐴 but higher than the 

inactive adjustable policy (𝛿(𝑡) = 0.0) in community 𝐵, as given by the average disease prevalence in both Fig. 

6 (c) and (d). Therefore, the overall prevalence in community 𝐴 with a weak control policy is higher than the 

adjustable policy but the overall prevalence rate in community 𝐵 with a weak control policy is lower than the 

adjustable policy.  

Based on the results of Fig. 6, we conclude that the control policy for one community can have a significant 

influence on another community due to the imitation of social behavior 𝜔. Thus, it appears that to reduce the 

prevalence of the pandemic fast, the best way is to impose a strict control policy on the denser population. 

Conversely, imposing a strict control policy on a lowly dense population community cannot halt the pandemic 

Fig. 6 The prevalence rate 𝑧(𝑡) from the game-theoretic network SEIR for the two communities with different 

levels of control policies: (a) strict control policy 𝛿(𝑡) = 1.0 for community 𝐴; (b) strict control policy 

𝛿(𝑡) = 1.0 for community 𝐵; (c) weak control policy 𝛿(𝑡) = 0.1 for community 𝐴; (d) weak control policy 

𝛿(𝑡) = 0.1 for community 𝐵. 
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fast. 

V. CONCLUSIONS and DISCUSSION 

In this study, we build a 3-layer network to inspect the interplay between two isolated physical communities via 

a common social-influence layer, and articulate the coevolution of behavioral changes of the agents and spreading 

dynamics of epidemics. A game-theoretic model is developed to capture the coupled behavior-disease dynamics, 

subject to measures that mimic the impact of government intervention policy, risk perception, compliance cost, 

and imitation of social contact’s behaviors. To avoid a simplistic pairwise interaction formulation, we employ a 

framework that allows for high-order social interactions in the form of simplicial complexes. Results suggest that 

the simplicial complex setting for the interaction among the agents enhances the risk-averse or risk-taking 

behaviors, depending on the contact’s response to the social influence (see Fig. 5). Moreover, the conventional 

SEIR model generally miscalculates the infection case count, since the public may possess different perception 

on the infection risk and adherence to the government mandate.  

Furthermore, as social networks are becoming key avenues for information and opinion formation, particularly 

during periods of low physical interactions, behavioral adaptation due to social influence has become one critical 

component to account for in modeling epidemics. This also suggests that policymakers should carefully deal with 

misinformation and disinformation in a timely manner. Notably, the flareup or resurgent outbreaks of COVID-19 

around the world imply that the patchwork intervention policy does not work as anticipated, partially owing to 

lack of compliance and behavior imitation from social contacts who may reside in a remote community. Thus, 

coordinated intervention is anticipated to improve the effectiveness of control and mitigation policies. In this sense, 

our multi-layer network model provides a more sophisticated framework to study this phenomenon, and the insight 

gleaned therefrom can be adopted to guide policy design for future pandemics, once the model is properly 

parameterized -which was not an objective of this study. For simplicity, we did not consider human mobility 

between different physical communities in the current work. As human mobility is regarded as the driving force 

behind the spatiotemporal dynamics of contagions, we plan to include it in our future investigations. Another 

mechanistic limitation of this work is that we only adjust the non-pharmaceutical intervention policy in a passive 

way. Therefore, in our ongoing work, we will also investigate the optimal policy design to prevent contagion 

resurgence and avoid unnecessary costs by developing intervention policy in advance based on the predictive data 

from the predictive control framework. Such an exercise is needed given that even if extreme government 

mandates (e.g., complete lockdown) can effectively reduce human contacts and eradicate the infection, they 

inevitably inflict huge economic and societal costs. Thus, very restrictic and static interventions are meant to be 

implemented only on extreme cases and not for a long duration. An optimal policy design that subdues the future 

infection load and simultaneously maintains a certain level of social functionalities or human mobility is thus 

desired.  

DATA AVAILABILITY STATEMENT 

The data that support the findings of this study are openly available in Network Repository (NR), reference 

number [51]. 

ACKNOWLEDGEMENT 

The author CC acknowledges support from the National Science Foundation (Award Number 2119334, 1927418 



15 

 

and 1927425) of the United States and Interdisciplinary Collaborations Grant of Binghamton University. The 

author YM acknowledges partial support from the Government of Aragon, Spain and “ERDF A way of making 

Europe” through grant E36‐20R (FENOL), from Ministerio de Ciencia e Innovación, Agencia Española de 

Investigación (MCIN/AEI/10.13039/501100011033) Grant No. PID2020‐115800GB‐I00; and from Soremartec 

S.A. and Soremartec Italia, Ferrero Group. The funders had no role in study design, data collection, and analysis, 

decision to publish, or preparation of the manuscript. 

Reference 

[1] D. Wang, M. Small, and Y. Zhao, “Exploring the optimal network topology for spreading dynamics,” 

Physica A: Statistical Mechanics and its Applications, vol. 564, p. 125535, Feb. 2021, doi: 

10.1016/j.physa.2020.125535. 

[2] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A time-dependent SIR model for covid-19 with 

undetectable infected persons,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 

3279–3294, 2020, doi: 10.1109/TNSE.2020.3024723. 

[3] G. C. Calafiore, C. Novara, and C. Possieri, “A modified SIR model for the covid-19 contagion in italy,” 

in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 3889–3894. doi: 

10.1109/CDC42340.2020.9304142. 

[4] I. Cooper, A. Mondal, and C. G. Antonopoulos, “A SIR model assumption for the spread of COVID-19 in 

different communities,” Chaos, Solitons & Fractals, vol. 139, p. 110057, Oct. 2020, doi: 

10.1016/j.chaos.2020.110057. 

[5] Z. Liao, P. Lan, Z. Liao, Y. Zhang, and S. Liu, “TW-SIR: time-window based SIR for COVID-19 forecasts,” 

Sci Rep, vol. 10, no. 1, p. 22454, Dec. 2020, doi: 10.1038/s41598-020-80007-8. 

[6] A. Rizzo, M. Frasca, and M. Porfiri, “Effect of individual behavior on epidemic spreading in activity-driven 

networks,” Phys. Rev. E, vol. 90, no. 4, p. 042801, Oct. 2014, doi: 10.1103/PhysRevE.90.042801. 

[7] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, and S. Merler, “Spontaneous behavioural changes in response 

to epidemics,” Journal of Theoretical Biology, vol. 260, no. 1, pp. 31–40, Sep. 2009, doi: 

10.1016/j.jtbi.2009.04.029. 

[8] A. Vespignani, “Modelling dynamical processes in complex socio-technical systems,” Nature Phys, vol. 8, 

no. 1, Art. no. 1, Jan. 2012, doi: 10.1038/nphys2160. 

[9] I. Belykh, M. Di Bernardo, J. Kurths, and M. Porfiri, “Evolving dynamical networks,” Physica D: 

Nonlinear Phenomena, vol. 267, pp. 1–6, Jan. 2014, doi: 10.1016/j.physd.2013.10.008. 

[10] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, “Activity driven modeling of time varying 

networks,” Sci Rep, vol. 2, no. 1, Art. no. 1, Jun. 2012, doi: 10.1038/srep00469. 

[11] M. Ye, L. Zino, A. Rizzo, and M. Cao, “Game-theoretic modeling of collective decision making during 

epidemics,” Phys. Rev. E, vol. 104, no. 2, p. 024314, Aug. 2021, doi: 10.1103/PhysRevE.104.024314. 

[12] H. A. Simon, “Bounded rationality in social science: Today and tomorrow,” Mind & Society, vol. 1, no. 1, 

pp. 25–39, Mar. 2000, doi: 10.1007/BF02512227. 

[13] K. M. A. Kabir and J. Tanimoto, “Evolutionary game theory modelling to represent the behavioural 

dynamics of economic shutdowns and shield immunity in the COVID-19 pandemic,” Royal Society Open 

Science, vol. 7, no. 9, p. 201095, doi: 10.1098/rsos.201095. 

[14] D. Holtz et al., “Interdependence and the cost of uncoordinated responses to COVID-19,” Proceedings of 

the National Academy of Sciences, vol. 117, no. 33, pp. 19837–19843, Aug. 2020, doi: 

10.1073/pnas.2009522117. 

[15] C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between awareness and epidemic spreading in 

multiplex networks,” Phys. Rev. Lett., vol. 111, no. 12, p. 128701, Sep. 2013, doi: 

10.1103/PhysRevLett.111.128701. 

[16] Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and C. T. Bauch, “Coupled disease–behavior dynamics on 

complex networks: A review,” Physics of Life Reviews, vol. 15, pp. 1–29, Dec. 2015, doi: 

10.1016/j.plrev.2015.07.006. 

[17] I. Iacopini, G. Petri, A. Barrat, and V. Latora, “Simplicial models of social contagion,” Nat Commun, vol. 

10, no. 1, p. 2485, Dec. 2019, doi: 10.1038/s41467-019-10431-6. 

[18] D. Guilbeault, J. Becker, and D. Centola, “Complex contagions: a decade in review,” in Complex Spreading 

Phenomena in Social Systems, S. Lehmann and Y.-Y. Ahn, Eds. Cham: Springer International Publishing, 

2018, pp. 3–25. doi: 10.1007/978-3-319-77332-2_1. 

[19] D. Wang, Y. Zhao, H. Leng, and M. Small, “A social communication model based on simplicial complexes,” 

Physics Letters A, vol. 384, no. 35, p. 126895, Dec. 2020, doi: 10.1016/j.physleta.2020.126895. 

[20] W. O. Kermack, A. G. McKendrick, and G. T. Walker, “A contribution to the mathematical theory of 



16 

 

epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical 

and Physical Character, vol. 115, no. 772, pp. 700–721, 1927, doi: 10.1098/rspa.1927.0118. 

[21] S. Chen, Q. Li, S. Gao, Y. Kang, and X. Shi, “State-specific projection of COVID-19 infection in the United 

States and evaluation of three major control measures,” Sci Rep, vol. 10, no. 1, Art. no. 1, Dec. 2020, doi: 

10.1038/s41598-020-80044-3. 

[22] L. J. Thomas et al., “Spatial heterogeneity can lead to substantial local variations in COVID-19 timing and 

severity,” Proceedings of the National Academy of Sciences, vol. 117, no. 39, pp. 24180–24187, Sep. 2020, 

doi: 10.1073/pnas.2011656117. 

[23] S. Adhikari, N. P. Pantaleo, J. M. Feldman, O. Ogedegbe, L. Thorpe, and A. B. Troxel, “Assessment of 

Community-Level Disparities in Coronavirus Disease 2019 (COVID-19) Infections and Deaths in Large 

US Metropolitan Areas,” JAMA Network Open, vol. 3, no. 7, p. e2016938, Jul. 2020, doi: 

10.1001/jamanetworkopen.2020.16938. 

[24] K. Prem et al., “The effect of control strategies to reduce social mixing on outcomes of the COVID-19 

epidemic in Wuhan, China: a modelling study,” The Lancet Public Health, vol. 5, no. 5, pp. e261–e270, 

2020, doi: 10.1016/S2468-2667(20)30073-6. 

[25] A. J. Kucharski et al., “Early dynamics of transmission and control of COVID-19: a mathematical 

modelling study,” The Lancet Infectious Diseases, vol. 20, no. 5, pp. 553–558, May 2020, doi: 

10.1016/S1473-3099(20)30144-4. 

[26] C.-G. Tran-Thi, M. Choisy, and J. Daniel Zucker, “Quantifying the effect of synchrony on the persistence 

of infectious diseases in a metapopulation,” in 2016 IEEE RIVF International Conference on Computing 

Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2016, pp. 229–234. 

doi: 10.1109/RIVF.2016.7800299. 

[27] S. Venkatramanan et al., “Spatio-temporal optimization of seasonal vaccination using a metapopulation 

model of influenza,” in 2017 IEEE International Conference on Healthcare Informatics (ICHI), 2017, pp. 

134–143. doi: 10.1109/ICHI.2017.83. 

[28] D. Brockmann and D. Helbing, “The hidden geometry of complex, network-driven contagion phenomena,” 

Science, vol. 342, no. 6164, pp. 1337–1342, Dec. 2013, doi: 10.1126/science.1245200. 

[29] A. Rǎdulescu, C. Williams, and K. Cavanagh, “Management strategies in a SEIR-type model of COVID 19 

community spread,” Sci Rep, vol. 10, no. 1, p. 21256, Dec. 2020, doi: 10.1038/s41598-020-77628-4. 

[30] J. S. Weitz, S. W. Park, C. Eksin, and J. Dushoff, “Awareness-driven behavior changes can shift the shape 

of epidemics away from peaks and toward plateaus, shoulders, and oscillations,” Proc. Natl. Acad. Sci. 

U.S.A., vol. 117, no. 51, pp. 32764–32771, Dec. 2020, doi: 10.1073/pnas.2009911117. 

[31] M. D. Johnston and B. Pell, “A dynamical framework for modeling fear of infection and frustration with 

social distancing in COVID-19 spread,” MBE, vol. 17, no. 6, Art. no. mbe-17-06-401, 2020, doi: 

10.3934/mbe.2020401. 

[32] L. F. S. Scabini, L. C. Ribas, M. B. Neiva, A. G. B. Junior, A. J. F. Farfán, and O. M. Bruno, “Social 

interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil,” 

Physica A: Statistical Mechanics and its Applications, vol. 564, p. 125498, Feb. 2021, doi: 

10.1016/j.physa.2020.125498. 

[33] M. Chinazzi et al., “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-

19) outbreak,” Science, vol. 368, no. 6489, pp. 395–400, Apr. 2020, doi: 10.1126/science.aba9757. 

[34] J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the potential domestic and international 

spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study,” The Lancet, vol. 395, 

no. 10225, pp. 689–697, Feb. 2020, doi: 10.1016/S0140-6736(20)30260-9. 

[35] Y. Cui, S. Ni, and S. Shen, “A network-based model to explore the role of testing in the epidemiological 

control of the COVID-19 pandemic,” BMC Infect Dis, vol. 21, no. 1, p. 58, Dec. 2021, doi: 10.1186/s12879-

020-05750-9. 

[36] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod. Phys., vol. 74, no. 

1, pp. 47–97, Jan. 2002, doi: 10.1103/RevModPhys.74.47. 

[37] S. Chang et al., “Mobility network models of COVID-19 explain inequities and inform reopening,” Nature, 

vol. 589, no. 7840, Art. no. 7840, Jan. 2021, doi: 10.1038/s41586-020-2923-3. 

[38] S. Meloni, N. Perra, A. Arenas, S. Gómez, Y. Moreno, and A. Vespignani, “Modeling human mobility 

responses to the large-scale spreading of infectious diseases,” Sci Rep, vol. 1, no. 1, Art. no. 1, Aug. 2011, 

doi: 10.1038/srep00062. 

[39] L. G. Alvarez-Zuzek, C. E. L. Rocca, J. R. Iglesias, and L. A. Braunstein, “Epidemic spreading in multiplex 

networks influenced by opinion exchanges on vaccination,” PLOS ONE, vol. 12, no. 11, p. e0186492, Nov. 

2017, doi: 10.1371/journal.pone.0186492. 

[40] C. Granell, S. Gómez, and A. Arenas, “Competing spreading processes on multiplex networks: Awareness 

and epidemics,” Phys. Rev. E, vol. 90, no. 1, p. 012808, Jul. 2014, doi: 10.1103/PhysRevE.90.012808. 

[41] E. Massaro and F. Bagnoli, “Epidemic spreading and risk perception in multiplex networks: A self-



17 

 

organized percolation method,” Phys. Rev. E, vol. 90, no. 5, p. 052817, Nov. 2014, doi: 

10.1103/PhysRevE.90.052817. 

[42] C. Buono, L. G. Alvarez-Zuzek, P. A. Macri, and L. A. Braunstein, “Epidemics in partially overlapped 

multiplex networks,” PLOS ONE, vol. 9, no. 3, p. e92200, Mar. 2014, doi: 10.1371/journal.pone.0092200. 

[43] P. C. V. da Silva, F. Velásquez-Rojas, C. Connaughton, F. Vazquez, Y. Moreno, and F. A. Rodrigues, 

“Epidemic spreading with awareness and different timescales in multiplex networks,” Phys. Rev. E, vol. 

100, no. 3, p. 032313, Sep. 2019, doi: 10.1103/PhysRevE.100.032313. 

[44] Z. Wang, C. Xia, Z. Chen, and G. Chen, “Epidemic propagation with positive and negative preventive 

information in multiplex networks,” IEEE Transactions on Cybernetics, vol. 51, no. 3, pp. 1454–1462, Mar. 

2021, doi: 10.1109/TCYB.2019.2960605. 

[45] M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review,” 

International Journal of Surgery, vol. 78, pp. 185–193, Jun. 2020, doi: 10.1016/j.ijsu.2020.04.018. 

[46] S. Flaxman et al., “Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe,” 

Nature, vol. 584, no. 7820, Art. no. 7820, Aug. 2020, doi: 10.1038/s41586-020-2405-7. 

[47] A. Aleta and Y. Moreno, “Evaluation of the potential incidence of COVID-19 and effectiveness of 

containment measures in Spain: a data-driven approach,” BMC Med, vol. 18, no. 1, p. 157, Dec. 2020, doi: 

10.1186/s12916-020-01619-5. 

[48] P. C. Ventura, A. Aleta, F. A. Rodrigues, and Y. Moreno, “Modeling the effects of social distancing on the 

large-scale spreading of diseases,” Epidemics, vol. 38, p. 100544, Mar. 2022, doi: 

10.1016/j.epidem.2022.100544. 

[49] N. Masuda, J. C. Miller, and P. Holme, “Concurrency measures in the era of temporal network 

epidemiology: a review,” Journal of The Royal Society Interface, vol. 18, no. 179, p. 20210019, doi: 

10.1098/rsif.2021.0019. 

[50] C. S. McMahan et al., “COVID-19 wastewater epidemiology: a model to estimate infected populations,” 

The Lancet Planetary Health, vol. 5, no. 12, pp. e874–e881, Dec. 2021, doi: 10.1016/S2542-

5196(21)00230-8. 

[51] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and 

visualization,” 29th AAAI Conference on Artificial Intelligence, pp. 4292–4293, Jan. 2015. 

[52] S. M. Moghadas et al., “The implications of silent transmission for the control of COVID-19 outbreaks,” 

Proc. Natl. Acad. Sci. U.S.A., vol. 117, no. 30, pp. 17513–17515, Jul. 2020, doi: 10.1073/pnas.2008373117. 

[53] C. Hou et al., “The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 

(COVID‐19): A well‐mixed SEIR model analysis,” J Med Virol, vol. 92, no. 7, pp. 841–848, Jul. 2020, doi: 

10.1002/jmv.25827. 

 

 

 

 

 

 


