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Abstract: Background: Evidence suggests that lipoprotein subclass particles are critical markers
of cardiovascular disease (CVD) risk. Older women have increased CVD risk related to age. The
purpose of this study was to determine whether low and moderate doses of exercise influence
lipoprotein subclasses. Methods: Women (60–75 years) were randomized into groups for 16 weeks
of moderate-intensity exercise training at a low or moderate dose (33.6 and 58.8 kJ/kg body weight
weekly, respectively). Lipoprotein subclasses were determined by nuclear magnetic resonance
spectroscopy before and after the training. RESULTS: The average weekly exercise duration was
109 and 164 min, for low- and moderate-dose groups, respectively. In the low-dose group, high-
density lipoprotein particle (HDL-P) concentration decreased (∆ = −1.9 ± 3.1 µmol/L, mean ± SD,
p = 0.002) and mean HDL-P size increased (∆ = 0.1 ± 0.3 nm, p = 0.028). In the moderate-dose group,
mean HDL-P size (∆ = 0.1 ± 0.2 nm; p = 0.024) and low-density lipoprotein particle size increased
(∆ = 0.4 ± 3.9 nm; p = 0.007). Baseline body mass index, peak oxygen consumption and age were
associated with changes in a few lipoprotein subclasses. Conclusions: In this sample of inactive older
women, moderate-intensity exercise training at a dose equivalent to or even lower than the minimally
recommended level by public health agencies induced changes in lipoprotein subclasses in line with
reduced CVD risk. However, higher doses are encouraged for greater health benefits.

Keywords: exercise training; lipoprotein subclass; lipoprotein particle; older women

1. Introduction

Cardiovascular disease (CVD) is the leading cause of mortality and accounts for 23%
of adult deaths in the United States [1]. According to a 2016 report by the American Heart
Association (AHA), 69% of men and 68% of women 60–79 years of age and 85% of men
and 86% of women 80+ years of age have CVD [2]. Though many different factors have
been utilized to determine CVD risk, blood lipid and lipoprotein cholesterol concentrations
are among the most established and universally accepted CVD risk determinants [3–5].
Traditional blood lipid and lipoprotein profiles include triglycerides (TG), total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and the ratio of TC to HDL-C. Predicting CVD risk through the investigation
of blood lipoprotein particle concentration and size has become more readily available
with the advent of technological assessment beyond traditional lipid and lipoprotein
profiles [6]. Prior studies suggest that lipoprotein subclasses are critical markers of CVD
risk independent of lipid and lipoprotein cholesterol [7–16].
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Exercise is well recognized for its health benefits, including its reduction of CVD
risk [17]. Earlier studies indicate that a dose-response relationship between exercise and
lipids and lipoprotein cholesterol exists, and noticeable desired lipid changes are likely to
occur when weekly exercise accrues to 1200–2200 kcal (285–524 kJ) [18]. A few studies have
demonstrated that exercise can impact lipoprotein subclasses [19–23]. A meta-analysis
of six studies concluded that exercise training decreased the concentrations of large very
low-density lipoprotein particles (VLDL-Ps), small LDL particles (LDL-Ps), medium HDL
particles (HDL-Ps), and mean VLDL-P size, and increased large LDL-P and large HDL-P
concentrations and mean LDL-P size [24].

Though exercise impacts lipoprotein subclasses, few studies have specifically inves-
tigated whether the dose or amount of exercise influences lipoprotein subclass particle
concentrations and sizes. Kraus et al. demonstrated that middle-aged overweight and
obese adults with dyslipidemia completing higher exercise training amounts had greater
health improvements than those completing lower exercise training amounts concerning
most lipoprotein variables, while a lower exercise amount had better responses in all
variables than the control group [21].

As women age, their risk of CVD increases, and their physical fitness
declines [25,26]. Therefore, exercise is likely a therapeutic means to improve women’s
cardiovascular health. The doses of the exercise in the study by Kraus et al. (high amount:
an average of 176 min/week at high intensity; low amount: an average of 176 min/week
at moderate intensity or 117 min at high intensity) [21] were higher than the minimum
recommended for the general population to achieve health benefits [27]. Due to age-related
decline in physical activity and physical performance [25], participating in a higher exercise
dose may be challenging for older adults, specifically older women who have not been
habitually active. Thus, examining responses to an exercise dose at or even lower than the
recommended level would provide useful information for public health. Therefore, the
purpose of this study was to investigate the effects of 16 weeks of exercise training at a dose
equivalent to the recommended minimum dose and a lower dose on the blood lipoprotein
subclass profile in older women.

2. Methods
2.1. Study Population

The current secondary analysis utilized data from the Women’s Energy Expenditure
in Walking Programs (WEWALK; clinicaltrials.gov registration number—NCT01722136)
study [28]. The WEWALK study protocol was reviewed and approved by the University
of South Carolina Institutional Review Board (IRB# Pro00016306). Prior to beginning the
study, all participants signed an informed consent form. In brief, all participants of this
study were female, 60–75 years of age, weight stable (±3% body weight for previous three
months), inactive (no more than 20 min of structured exercise three times per week for the
past three months), and non-smoking in the last year; had a body mass index (BMI) ≥ 18
and ≤30 kg/m2; and were free from CVD, metabolic or respiratory disease and any other
condition that may affect adherence to the study protocol.

2.2. Exercise Intervention

Prior to commencing the exercise intervention, participants were randomized to one of
two moderate-intensity treadmill-walking groups that differed by exercise dose, defined by
weekly exercise energy expenditure. Age and BMI were considered in randomization so that
for every two participants in the same categories of age (60–64.9, 65–69.9, and 70–75 years)
and BMI (<25 and ≥25 kg/m2), one was allocated into each group using a list of random
numbers generated using Research Randomizer (www.randomizer.org). The low-dose
group and the moderate-dose group were prescribed an exercise dose of 8 kilocalories
(33.6 kJ) and 14 kilocalories (58.8 kJ) per kilogram of body weight per week, respectively.
Weekly target energy expenditure was determined by multiplying the participant’s weight
by their assigned dosage. The two different doses were achieved by varying the total

clinicaltrials.gov
www.randomizer.org
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duration of exercise completed in a week. Three to four exercise sessions per week were
prescribed. The target exercise intensity was 50–55% of heart rate reserve, which was
calculated using resting heart rate and the peak heart rate achieved during the graded
exercise test at baseline (see below).

All training sessions were supervised in a clinical exercise research setting. The exercise
intensity and weekly duration were incrementally increased. The target intensity and dose
were reached by week five in the low-dose group and week eight in the moderate-dose
group. A 3 min warm-up and cool-down was conducted for each exercise session. Heart
rate monitors (FT1; Polar, Lake Success, NY, USA) were utilized to continuously monitor
exercise training intensity. If the heart rate was out of range, exercise intensity was adjusted.
Blood pressure was measured before, at the mid-point, and after each exercise session.

All participants were provided individualized exercise prescriptions. Small incentives,
such as t-shirts and water bottles, were given to assist with participant retention. Certifi-
cates for participation were provided to selected participants each month, such as “best
attendance” and “best effort”. All participants were instructed to put a ticket in a bottle
each time they attended exercise training in our research center. A winning ticket was
drawn from the bottle each month and the specific participant was given a USD 20 prize.
Monetary compensation was additionally provided for completing baseline measurements
(USD 50) and post-intervention measurements (USD 50).

2.3. Measurements
2.3.1. Body Mass Index (BMI)

Height and weight were measured to the nearest 0.1 cm and 0.1 kg, respectively. Body
weight was measured with participants wearing standard scrubs, without shoes or other
outer garments on a digital scale (Health O Meter® 10 Professional, Pelstar LLC, McCook, IL,
USA) that was calibrated annually (CC Vaughan & Sons, Incorporated, Columbia, SC, USA).
Two consecutive height and weight measurements were averaged and utilized to calculate
BMI (kg/m2) for each participant before and after the completion of the intervention.

2.3.2. Graded Exercise Test

Treadmill-graded exercise testing was utilized to determine participants’ cardiorespi-
ratory fitness before and after exercise training. The protocol began at 0% grade and the
participant’s self-selected pace. Every two minutes, the incline was increased by 2%. Oxy-
gen consumption (

.
VO2) was continuously measured utilizing a metabolic cart (TrueOne

2400; ParvoMedics, Sandy, UT, USA). Blood pressure was measured at rest and in the last
30 s of every exercise stage utilizing a stethoscope and sphygmomanometer. Participants
were encouraged to continue exercising to volitional fatigue. During the test and for 10 min
following the test, heart rhythm was monitored by a health care professional utilizing a
standard 12-lead electrocardiogram (ECG) (Q-Stress®; Cardiac Science, Bothell, WA, USA).
Test results were considered peak if at least two of the following four criteria were met:
a plateau of

.
VO2 (within 2 mL/kg/min in last 2 min), a maximal heart rate greater than

90% of age-predicted maximal HR (HRmax) (220–age), a self-reported rating of perceived
exertion greater than 17 on the 6–20 Borg scale, and/or a respiratory exchange ratio greater
than or equal to 1.10. Peak oxygen consumption (

.
VO2peak) was determined by the highest

30 s
.

VO2 average recorded during the test.

2.3.3. Blood Sample Collection and Lipoprotein Subclass Measurements

Blood samples were collected following an overnight fast at baseline and after the
16-week exercise training. The post-intervention blood sample was collected at least 24 h
after but within 7 days of the last exercise training session. The median cubital or cephalic
vein in the cubital fossa of the elbow was used to collect blood unless these veins were
compromised. Blood was collected into a vacutainer® EDTA tube and centrifuged at
3000 rpm to separate the blood cells from plasma. Plasma was then aliquoted and stored at
−80 ◦C until analysis.
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Plasma samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy at
LipoScience, Inc. (Raleigh, NC, USA), using their proprietary NMR platform [6]. The inter-
assay and intra-assay coefficients of variation were between 2.6 and 5.8% for LDL-P [29]
and between 2.0 and 3.9% for HDL-P [30]. Each measurement provides concentrations of
large VLDL and chylomicron particles, medium and small VLDL-Ps and HDL-Ps, large and
small LDL-Ps, and intermediate-density lipoprotein particles (IDL-Ps), as well as weighted-
average VLDL-P, LDL-P, and HDL-P sizes. The weighted average particle diameter for each
lipoprotein is calculated as the sum of the lipoprotein subclass diameters multiplied by its
relative mass percentage as estimated from the amplitude of its methyl NMR signal. Total
VLDL-P, LDL-P, and HDL-P concentrations were calculated as the sum of their respective
subclass concentrations. Total TG, VLDL, chylomicron TG, and HDL-C concentrations
were calculated and provided by LipoScience, Inc. (Raleigh, NC, USA).

3. Statistics

Descriptive statistics were calculated and reported as means and standard deviations
(SDs) for each exercise intervention group. Independent sample t-tests or Chi-square tests
were utilized to determine differences in baseline characteristics between exercise groups.
General linear models with repeated measures, including a group-by-time interaction,
were utilized to determine if any variable changed differently between the two groups
following the respective interventions. When the interaction term was not statistically
significant, the two intervention groups were combined to determine whether there was a
significant effect of exercise training regardless of exercise dose. We were interested in the
effects of both exercise interventions; therefore, general linear models were also used to
determine changes in each group. In further analyses, age, BMI, and

.
VO2peak at baseline

were adjusted.
Lastly, we performed linear regression analyses to determine the associations of baseline

age, BMI, and
.

VO2peak, with changes in lipoprotein subclasses, in order to understand
whether baseline characteristics influenced responses to the exercise intervention. The changes
in lipoprotein subclasses were calculated using values after interventions minus at baseline.
Baseline age, BMI, and

.
VO2peak were examined as both continuous and categorical variables:

age (<64.5 years or ≥64.5 years), BMI (normal weight or overweight), and
.

VO2peak (low
<20.2 mL/kg/min, or high: ≥ 20.2 mL/kg/min). Statistical significance was set at p < 0.05.
All analysis was performed utilizing SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

4. Results
4.1. Participant Characteristics

A total of 65 participants (35 in the low-dose and 30 in the moderate-dose group)
completed the exercise intervention and had lipoprotein subclass data at both baseline
and post-intervention. In the parent trial, 87 participants were randomized and began
exercise intervention and 72 completed the study [28]. However, blood samples were
not available at baseline and/or post-intervention for seven participants who completed
the study; therefore, these participants were not included in this analysis. These seven
participants were not different from those who had complete lipoprotein data in age, body
weight, BMI, or

.
VO2peak at baseline.

Participant characteristics are presented in Table 1. The average age of the participants
was 65.1 ± 4.2 years, and they were mostly white (86%). No significant differences were
found between the two exercise groups for age, racial/ethnic distribution, education, income,
employment, marital status, body weight, BMI, or

.
VO2peak at baseline. As by trial design, the

average heart rate during exercise sessions was similar between the two groups, and weekly
exercise duration was longer in the moderate-dose compared to the low-dose group.
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Table 1. Participant characteristics at baseline and post-intervention.

Overall
(n = 65)

Low Dose
(n = 35)

Moderate Dose
(n = 30)

Age, years 65.1 ± 4.2 65.6 ± 4.7 64.6 ± 3.6
Race, n (%)
White 56 (86.2) 32 (91.4) 24 (80.0)
Black 8 (12.3) 3 (8.6) 5 (16.7)
Hispanic 1 (1.5) 0 (0.0) 1 (3.3)
Education, n (%)
<College Graduate 22 (33.8) 11 (31.4) 11 (36.7)
≥College Graduate 42 (64.6) 23 (65.7) 19 (63.3)
Missing 1 (1.6) 1 (2.9) 0 (0.0)
Income, n (%)
<$50,000 USD/year 18 (27.7) 9 (25.7) 9 (30.0)
≥$50,000 USD/year 46 (70.7) 25 (71.4) 21 (70.0)
Missing 1 (1.6) 1 (2.9) 0 (0.0)
Employment, n (%)
Employed 32 (49.2) 19 (54.3) 13 (43.3)
Unemployed/Retired 32 (49.2) 15 (42.8) 17 (56.7)
Missing 1 (1.6) 1 (2.9) 0 (0.0)
Marital Status, n (%)
Married 38 (58.4) 20 (57.1) 18 (60.0)
Not Married/Widowed 26 (40.0) 14 (40.0) 12 (40.0)
Missing 1 (1.6) 1 (2.9) 0 (0.0)
Body Weight, kg
Baseline 67.5 ± 9.7 67.4 ± 10.1 67.6 ± 9.3
Post-Intervention 66.7 ± 9.5 b 66.7 ± 10.0 66.8 ± 9.2
Body Mass Index, kg/m2

Baseline 25.6 ± 3.6 25.8 ± 4.0 25.5 ± 3.1
Post-Intervention 25.3 ± 3.6 c 25.4 ± 4.0 a 25.1 ± 3.1 b
.

VO2peak, mL/kg/min
Baseline 20.4 ± 3.7 20.4 ± 3.7 20.4 ± 3.7
Post-Intervention 21.9 ± 4.7 c 21.1 ± 4.3 22.8 ± 5.1 c

Exercise Sessions
Heart Rate, beats/min 114.2 ± 10.8 115.9 ± 10.2
% Heart Rate Reserve, % 48.5 ± 11.5 48.7 ± 12.2
Duration, minutes/week 108.5 ± 9.1 163.5 ± 12.6
Actual/Prescribed Exercise Dose, % 105.1 ± 8.1 98.9 ± 7.7

.
VO2peak, peak volume of oxygen consumption during graded exercise test. Compared to respective baseline:
a, p < 0.05; b, p < 0.01; c, p < 0.001.

Body weight, BMI, and
.

VO2peak after exercise interventions are also included in Ta-
ble 1. The two groups did not change differently in body weight or BMI from baseline
to post-intervention (p for group x time interaction = 0.988 and 0.935, respectively). Body
weight significantly decreased by 0.8 ± 2.1 kg (p = 0.007), and BMI significantly decreased
by 0.3 ± 0.8 kg/m2 (p < 0.001) in the overall sample. A significant group x time interaction
was observed for change in

.
VO2peak from baseline to post-intervention (p = 0.029). Specifi-

cally,
.

VO2peak significantly increased in the moderate-dose group by 2.4 ± 3.2 mL/kg/min
(p < 0.001) while remaining unchanged in the low-dose exercise group after intervention
(p = 0.15).

4.2. Lipoprotein Subclass

Table 2 includes lipoprotein subclass particle concentrations and sizes at baseline and
post-intervention. At baseline, no differences between the two exercise groups in any of
these measures (0.155 ≤ p ≤ 0.916 for all) existed. No significant differences between the two
exercise groups were found for changes in any lipoprotein subclass particle concentration
or size (p values for group x time interaction range: 0.062–0.994).
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Table 2. Lipoprotein subclass profile at baseline and post-intervention measured by nuclear magnetic
resonance (NMR) spectroscopy.

Overall (n = 65) Lower Dose (n = 35) Higher Dose (n = 30)

Baseline Post-Intervention Baseline Post-Intervention Baseline Post-Intervention

VLDL and Chylomicron Particle, nmol/L
Total 49.1 ± 20.0 45.3 ± 17.7 48.8 ± 18.2 42.6 ± 15.0 49.5 ± 22.3 48.5 ± 20.2
Large VLDL and Chylomicron-P 3.8 ± 2.9 3.6 ± 3.6 4.1 ± 3.0 3.2 ± 3.2 3.6 ± 2.8 4.0 ± 3.9
Medium VLDL-P 14.7 ± 9.7 15.3 ± 9.8 14.6 ± 9.8 14.4 ± 8.8 14.8 ± 9.8 16.4 ± 10.9
Small VLDL-P 31.0 ± 14.4 27.2 ± 12.6 a 31.0 ± 12.7 26.4 ± 14.0 31.1 ± 16.4 28.1 ± 11.1
IDL and LDL Particle, nmol/L
Total 1034.4 ± 290.5 1020.8 ± 318.5 1016.0 ± 325.5 1015.1 ± 355.3 1055.9 ± 247.2 1046.9 ± 274.3
IDL-P 274.7 ± 147.9 282.6 ± 133.0 270.7 ± 143.3 303.7 ± 122.8 279.4 ± 155.5 258.0 ± 142.1
Large LDL-P 281.8 ± 195.2 303.4 ± 196.0 307.4 ± 204.7 315.0 ± 215.3 252.8 ± 183.0 290.2 ± 174.4
Small LDL-P 490.8 ± 300.4 448.6 ± 371.1 455.5 ± 320.5 405.5 ± 405.7 532.0 ± 274.8 495.8 ± 325.8
HDL Particle, µmol/L
Total HDL-P 38.8 ± 5.9 37.4 ± 5.5 b 39.4 ± 5.6 37.6 ± 5.6 c 38.1 ± 6.3 37.2 ± 5.5
Large HDL-P 9.9 ± 3.2 10.2 ± 3.4 10.2 ± 3.7 10.5 ± 3.7 9.7 ± 2.4 9.8 ± 3.0
Medium HDL-P 13.7 ± 8.0 12.8 ± 7.3 14.6 ± 7.5 13.3 ± 7.0 12.8 ± 8.7 12.1 ± 7.7
Small HDL-P 15.6 ± 7.6 15.2 ± 8.3 15.1 ± 8.1 14.5 ± 9.0 16.2 ± 7.1 16.2 ± 7.4
Particle Size, nm
VLDL-P 49.4 ± 7.0 49.2 ± 7.1 50.5 ± 7.6 49.9 ± 7.1 48.0 ± 6.1 48.3 ± 7.1
LDL-P 20.7 ± 0.6 20.8 ± 0.7 20.8 ± 0.6 20.8 ± 0.7 20.6 ± 0.5 20.9 ± 0.7 a

HDL-P 9.7 ± 0.4 9.8 ± 0.5 b 9.7 ± 0.5 9.8 ± 0.6 a 9.7 ± 0.4 9.8 ± 0.5 a

NMR Calculated Lipids, mg/dL
TG 114.8 ± 47.1 112.6 ± 52.5 116.9 ± 41.9 105.5 ± 43.5 a 112.4 ± 53.3 120.9 ± 61.1
VLDL and Chylomicron TG 76.6 ± 30.8 74.8 ± 34.4 77.6 ± 27.3 70.5 ± 27.3 a 75.5 ± 34.9 79.8 ± 41.2
HDL-C 68.2 ± 15.4 67.2 ± 16.0 69.9 ± 16.2 68.9 ± 17.2 66.2 ± 14.4 65.3 ± 14.4

Compared to respective baseline: a, p < 0.05; b, p < 0.01; c, p < 0.001.

Mean HDL-P size increased in both the low-dose (∆ = 0.1 ± 0.3 nm, p = 0.028) and
moderate-dose group (∆ = 0.1 ± 0.2 nm; p = 0.024), resulting in an increase in the over-
all sample (∆ = 0.1 ± 0.3 nm; p = 0.002). Total HDL-P concentration decreased in the
low-dose exercise group (∆ = −1.9 ± 3.1 µmol/L; p = 0.001) and did not significantly
change in the moderate-dose group, but it significantly decreased in the overall sample
(∆ = −1.5 ± 3.6 µmol/L; p = 0.002). LDL-P size increased by 0.4 ± 3.9 nm (p = 0.007) in
the moderate-dose group only. Small VLDL-P concentration decreased in the total sam-
ple (∆ = −4.2 ± 16.4 nmol/L; p = 0.041) but did not reach statistical significance in either
group alone.

Additionally, among the measures calculated by NMR, TG concentration had a
different change in the moderate-dose versus the low-dose group (p for group x time
interaction = 0.020). TG concentration significantly decreased in the low-dose group
(∆ = −2.2 ± 34.6 mg/dL; p = 0.02) but did not change in the moderate-dose group or in the
overall sample (p ≥ 0.09 for both).

No other significant changes were observed for any other lipoprotein subclass variables
or NMR calculated lipids in any group alone or in the overall sample. Adjusting for baseline
age, BMI, and

.
VO2peak did not change these results.

4.3. Baseline BMI,
.

VO2peak, and Age as Predictors of Changes in Lipoprotein Subclasses

We further sought to elucidate potential baseline predictors of changes in lipoprotein
subclasses after intervention. Table 3 presents slopes from regression models using BMI,
.

VO2peak, and age as continuous and categorical predictors. BMI was stratified according
to standard cutoff: normal weight:18.5–24.9 kg/m2, and overweight: 25.0–29.9 kg/m2,
while

.
VO2peak and age were stratified using their respective median of the total sample

(median
.

VO2peak = 20.2 mL/kg/min and median age = 64.5 years).
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Table 3. Association between baseline body mass index, cardiorespiratory fitness (
.

VO2peak), and
age, analyzed as continuous and categorical variables, with changes in lipoprotein subclasses from
baseline to post-intervention.

Body Mass Index
.

VO2peak Age
Continuous Categorical Continuous Categorical Continuous Categorical

VLDL and Chylomicron Particle Concentration (nmol/L)
Total −0.10 (0.68) −3.70 (4.91) −0.24 (0.67) −4.41 (4.83) 0.88 (0.57) 9.99 (4.71) a

Large VLDL and Chylomicron-P 0.07 (0.10) 0.36 (0.70) 0.02 (0.09) −0.70 (0.68) 0.00 (0.08) −0.10 (0.69)
Medium VLDL-P −0.82 (0.31) b −6.18 (2.25) b 0.14 (0.32) −0.16 (2.34) 0.21 (0.28) 2.56 (2.33)
Small VLDL-P 0.65 (0.57) 2.12 (4.15) −0.40 (0.56) −3.53 (4.07) 0.67 (0.48) 7.54 (4.00)
IDL and LDL Particle, nmol/L
Total LDL-P 5.80 (7.31) 25.72 (53.28) −1.25 (7.22) −14.60 (52.59) 6.95 (6.22) 4.52 (52.77)
IDL Particles −7.05 (5.33) −51.99 (38.68) 1.92 (5.30) −20.46 (38.59) 5.12 (4.57) 6.50 (38.78)
Large LDL Particles 2.22 (7.06) 13.05 (51.28) 3.18 (6.93) 6.00 (50.57) −2.62 (6.03) −12.77 (50.70)
Small LDL Particles 10.61 (7.75) 64.64 (56.58) −6.36 (7.69) −0.18 (56.35) 4.46 (6.71) 11.12 (56.49)
HDL Particle, µmol/L
Total HDL Particles −0.02 (0.13) 0.45 (0.92) −0.04 (0.12) −1.56 (0.89) 0.08 (0.11) 0.21 (0.91)
Large HDL Particles −0.10 (0.06) −0.43 (0.43) 0.12 (0.06) b 0.91 (0.41) a 0.07 (0.05) 0.14 (0.42)
Medium HDL Particles −0.03 (0.22) −0.96 (1.59) 0.12 (0.22) −1.30 (1.56) −0.15 (0.19) −1.06 (1.57)
Small HDL Particles 0.10 (0.23) 1.82 (1.67) −0.27 (0.22) −1.17 (1.65) 0.17 (0.20) 1.13 (1.66)
Particle Size, nm
VLDL Size 0.30 (0.25) 2.28 (1.83) 0.11 (0.25) −1.80 (1.81) −0.18 (0.22) −2.55 (1.80)
LDL Size −0.01 (0.02) −0.13 (0.17) 0.02 (0.02) −0.01 (0.17) −0.01 (0.02) −0.03 (0.17)
HDL Size −0.02 (0.01) −0.12 (0.06) 0.01 (0.01) 0.11 (0.06) 0.00 (0.01) 0.02 (0.06)
NMR Calculated Lipids, mg/dL
TG 0.20 (1.21) −3.85 (8.18) 0.28 (1.19) −7.69 (8.60) 0.80 (1.03) 7.83 (8.62)
VLDL and Chylomicron TG −0.12 (0.86) −3.50 (6.22) 0.48 (0.84) −6.21 (6.09) 0.71 (0.73) 6.70 (6.10)
HDL-C −0.41 (0.25) −1.11 (1.82) 0.43 (0.24) 1.14 (1.79) 0.31 (0.21) 0.90 (1.80)

Data are presented as estimate (standard error) from unadjusted regression models. Changes in lipoprotein
subclass were calculated by subtracting baseline from post-intervention value, and they were used as dependent
variables in the models. When body mass index,

.
VO2peak, and age were analyzed as categorical variables, the

reference is normal weight (<25 kg/m2), low
.

VO2peak (< 20.2 mL/kg/min), and age < 64.5 years, respectively.
a, p < 0.05; b, p < 0.01.

BMI at baseline was associated with changes in medium VLDL-P concentration,
with each unit of higher BMI at baseline associated with a 0.82 nmol/L less change in
medium VLDL particle concentration (p = 0.01). Compared to those at a normal weight at
baseline, women overweight at baseline had a smaller increase in medium VLDL-P con-
centration (difference in mean change: overweight versus normal weight: −6.18 nmol/L,
p = 0.01). Similarly, each 1 mL/kg/min higher

.
VO2peak at baseline was associated with a

0.12 µmol/L greater change in large HDL-P concentration. Women with a higher
.

VO2peak
at baseline had a greater increase in large HDL-P concentration than women with a low
.

VO2peak (difference in mean change: high versus low
.

VO2peak: 0.91 µmol/L, p = 0.03).
Additionally, compared to women <64.5 years at baseline, women ≥64.5 years had greater
mean change (difference versus <64.5 years: 9.99 nmol/L, p = 0.04) in total VLDL and
chylomicron-P concentration. This association, however, was not significant when exam-
ining age as a continuous variable (p = 0.13). No other significant associations of baseline
BMI,

.
VO2peak, and age with changes in lipoprotein subclasses were found.

5. Discussion

We investigated lipoprotein subclass changes in response to two moderate-intensity
exercise interventions in inactive older women. The moderate-dose intervention was
equivalent to the minimum exercise dose recommended for the general population [27].
The low dose, however, was lower than the recommended level. A few lipoprotein subclass
variables significantly changed within each exercise group, indicating that older women
participating in exercise, even at a lower amount, with minimal weight change, may
experience changes in lipoprotein profile.

In our study, no between-group differences were observed for any blood lipoprotein
subclass. These findings are inconsistent with the findings of Kraus et al., who found that
moderate-dose exercise elicited a greater change in some blood lipoprotein subfractions
(large VLDL-P, IDL-P, total and small LDL-P, and large HDL-P concentration; mean LDL-P
and HDL-P size) compared to low-dose exercise [21]. Several study design differences
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between their study and our study could contribute to the inconsistent findings and smaller
magnitude of change in lipoprotein subclasses in our study. First, their participants had
mild-to-moderate dyslipidemia, while participants in our study were generally without
dyslipidemia. Second, the weekly exercise doses in their study were higher than those
in our study. Their exercise groups included a low amount at a moderate intensity of an
average of 176 min/week, a low amount at a high intensity of 117 min/week, and a high
amount at a high intensity of 176 min/week. In contrast, our study included a low-dose
group exercising for an average of 109 min/week and a moderate-dose group exercising
for 164 min/week, both at moderate intensity. Thus, our moderate-dose exercise was even
slightly lower than the low-amount exercise of Kraus et al. Third, the exercise training
lasted 16 weeks in our study and 6 months in their study, resulting in a difference in the
total amount of exercise over the entire study. Furthermore, our study was comprised of
non-obese women, 60–75 years of age, while Kraus et al. included overweight and obese
men and women, 40–65 years of age. Age, sex, and BMI status could also influence the
results, as supported by our analyses of associations of baseline characteristics with changes
in blood lipoprotein subclasses.

Though our study found no significant differences between groups after the exercise
intervention, multiple variables did significantly change within each exercise group and
in the overall sample, indicating that exercise did influence blood lipoprotein subclasses.
The decrease in total HDL-P concentration in the low-dose group and overall sample
could be viewed as a less favorable outcome because HDL-P is inversely associated with
CVD risk [31]. However, one must consider the entire HDL-P profile. While total HDL-P
concentration decreased, mean HDL-P size increased in both training groups and when
grouped together. This increase in HDL-P size has been noted in other studies and is
viewed as favorable, as this change is indicative of a greater cholesterol-carrying capacity
of the circulating HDL particles [16,32–34] and may, in part, explain the decreased HDL-P
concentrations. The same rationale can also apply to the increase in LDL-P size observed in
the moderate-dose exercise group [35]. However, we cannot explain why TG concentration
decreased in the low-dose group but did not change in the moderate-dose group. It should
be noted that the TG concentration was calculated based on algorithms by NMR. Our
previous analyses showed that the two groups were similar in measures of non-exercise
activity thermogenesis, daily physical activity counts (determined by accelerometer), and
time spent sedentary and in physical activity of light or moderate-to-vigorous intensities
at baseline and during the last two weeks of intervention [28,36]. A meta-analysis found
negligible-to-small changes in appetite control and food preference measures from pre-
to post-exercise training [37]. However, we could not rule out potential changes in diet
and physical activity other than the exercise sessions throughout the intervention, which
could influence our outcome measures. Since the increase in LDL-P size was only observed
in the moderate-dose group, which also did not have a decrease in HDL-P concentration,
these data provide preliminary evidence that a higher dose of aerobic exercise training
potentially provides greater benefit to the blood lipoprotein profile compared to lower-dose
aerobic exercise training.

BMI, cardiorespiratory fitness, and age are crucial determinants of health when ex-
amining health span in adults and are shown to be predictors of adherence to previous
behavioral interventions [38,39]. Present evidence supports that a higher BMI is positively
associated with less desirable blood lipoprotein and lipid levels (e.g., lower HDL-C, and
higher LDL-C and TC) [40], while higher cardiorespiratory fitness is associated with more
favorable traditional blood lipoprotein profiles (e.g., higher HDL-C, and lower LDL-C and
TC) [41]. However, whether baseline BMI, cardiorespiratory fitness, and age are associated
with changes in blood lipoprotein subclasses with exercise intervention has yet to be elu-
cidated. Our study findings, although preliminary, suggest that BMI, cardiorespiratory
fitness, and age at baseline may influence changes in lipoprotein subclasses. Further re-
search is needed to elucidate the implications of the baseline characteristics in predicting
responses to treatments, which will contribute to more personalized interventions.
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The strengths of this study include the use of NMR spectroscopy to analyze lipoprotein
particle concentrations and sizes, and the exercise intervention sessions were supervised in
a clinical exercise setting to assure protocol compliance. The generalizability of this study is
limited to generally healthy, older women. The absence of a control group for comparison
is a limitation of the study. Additionally, we did not monitor diet or non-exercise physical
activity throughout the study.

In conclusion, the exercise intervention induced changes in lipoprotein subclasses.
Although the intervention-induced changes are less than those in previous studies, our
results indicate that inactive older women participating in exercise at the recommended
dose for the general population, or even lower than that, could still experience changes
in blood lipoprotein subclasses that are in line with reduced CVD risk. However, it is
important to note that in order to receive greater health benefits, higher doses of physical
activity/exercise are encouraged.
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