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ABSTRACT In recent years, people have paid more and more attention to traditional manufacturing’s
environmental impact, especially in terms of energy consumption and related emissions of carbon dioxide.
Except for adopting new equipment, production scheduling could play an important role in reducing the
total energy consumption of a manufacturing plant. Machine tools waste a considerable amount of energy
because of their underutilization. Consequently, energy saving can be achieved by switching machines to
standby or off when they lay idle for a comparatively long period. Herein, we first introduce the objectives
of minimizing non-processing energy consumption, total weighted tardiness and earliness, and makespan
into a typical production scheduling model-the job shop scheduling problem, based on a machine status
switching framework. The multi-objective genetic algorithm U-NSGA-III combined with MME (a heuristic
algorithm combined with the MinMax (MM) and Nawaz–Enscore–Ham (NEH) algorithms) population
initialization method is used to solve the problem. The multi-objective optimization algorithm can generate a
Pareto set of solutions so that production managers can flexibly select a schedule from these non-dominated
schedules based on their priorities. Three sets of numerical experiments have been carried out on the extended
Taillard benchmark to verify this three-objective model’s effectiveness and the multi-objective optimization
algorithm. The results show that U-NSGA-III has obtained better Pareto solutions in most test problem
instances than NSGA-II and NSGA-III. Furthermore, the non-processing energy consumption is reduced by
46%-69%, which is 13-83% of the total energy consumption.

INDEX TERMS Job shop scheduling, energy efficiency, unified multi-objective genetic algorithm, machine
status switching.

I. INTRODUCTION
The problem of energy shortages and climate change has
become increasingly prominent in recent years. In order to
alleviate the pressure caused by energy shortages and cli-
mate deterioration, energy conservation and emission reduc-
tion campaigns have been launched in many countries. The
2018 Industrial Energy Data Book showed that the industrial

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiayong Li.

sector was the most significant energy user of all the end-user
sectors, accounting for 32.6%of the total energy consumption
[1]. Accordingly, energy saving has been an active campaign
in the manufacturing industry to reduce energy consump-
tion during the production process, such as shutting off idle
machines for cost-saving considerations and environmental
protection. Regarding the issue of energy conservation in the
manufacturing industry, the researchers studied the law of
energy consumption in the manufacturing process, including
processing [2], assembly [3], [4] and disassembly [5], [6].
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Our research focuses on a multi-objective scheduling
approach to job shop scheduling problems aiming to reduce
makespan, total energy consumption, and tardiness/earliness
costs. Most current energy and tardiness-related job shop
scheduling researches do not consider the earliness cost
[7], [8]. One of the commonly used objectives of job shop
scheduling is earliness and tardiness. In a given job schedule,
if any of the jobs are completed before their due date, it will
create undesirable effects such as insufficient warehouse
space, inventory carrying costs, storage and insurance costs,
and product deterioration [9]. In practical production, espe-
cially in the just-in-time (JIT) manufacturing environment,
earliness and tardiness are important criteria [10]. The sec-
ond commonly used optimization objective is makespan,
another very applicable criterion in the job shop environment
[11]–[13]. However, there is no report about optimizing the
three objectives (makespan, energy consumption, tardiness
& earliness) simultaneously so far for job shop schedul-
ing. Based on previous research [10], [14], [15], compared
to developing more energy-effective machines, there exists
a more significant energy reduction margin at the system-
level where shop floor scheduling optimization and machine
tools operation strategies can be applied as the energy-
saving approach. This is especially suitable for large-scale
production environments to improve efficiency and energy
utilization, thereby increasing manufacturing enterprises’
profitability [16]. In this paper, we propose a multi-objective
model for job shop scheduling problems to minimize the
non-processing energy consumption (NEC) with operational
status switching of machine tools, total weighted tardiness
& earliness (TWET), and makespan (Cmax). The Unified
Non-dominated Sorting Genetic Algorithm-III(U-NSGA-III)
[17] is adopted to achieve the tri-objective job scheduling
problem. The experiments show that U-NSGA-III effectively
deals with the multi-objective energy efficiency-oriented
job scheduling problem, reducing 46%-69% of the non-
processing energy consumption. The main novelties and con-
tributions of this paper include the following:

(1)This is the first time that three objectives, includ-
ing makespan, total weighted tardiness and earliness, and
non-processing energy consumption, have been optimized
simultaneously in a job shop scheduling problem. And we
demonstrate the necessity of optimizing these objectives
simultaneously through bi-objective experiments.

(2)We studied job shop’s energy-saving strategy and estab-
lished an energy consumption model based on the energy-
saving strategy.

(3)We applied a modern multi-objective genetic algorithm
U-NSGA-III to solving the energy-efficient job shop schedul-
ing problem. This is the first time that this algorithm is used in
a job shop scheduling problem. To improve algorithm’s per-
formance, we combined the operating-based coding, MME
[18] initial population generating, two-point crossover, and
random mutation method to improve the algorithm. Besides,
we applied the Taguchi method to select the optimal parame-
ter for U-NSGA-III.

In the remainder of this paper, a brief literature review
related to current research is presented in Section 2.
In Section 3, we describe the research problem and present
the tri-objective job shop schedulingmodel. TheU-NSGA-III
is then explained in detail in Section 4. And then, the instance
sets, comparison metrics, and computational results are dis-
cussed in Section 5. Finally, Section 6 provides conclusions.

II. LITERATURE REVIEW
Energy saving inmanufacturing has mainly focused on devel-
oping energy-efficient machines, optimizing process plan-
ning and cutting parameters, and job scheduling algorithms.
Flum et al. [19] developed a Twin-Control energy efficiency
module to support machine tool builders in choosing an
optimal machine configuration regarding both the investment
and the energy costs, to provide machine users with cus-
tomized machine tools with the lowest total cost. Kroll et
al. [20] discussed lightweight design approaches’ general
influence on energy efficiency in machine tools and restric-
tions on the maximum mass reduction for structural com-
ponents. And the results showed that structural lightweight
design could achieve mass reductions up to 30% of the
structural component, which could directly lead to 30%-
50% lower electrical power losses of a servo drive. Li et
al. [21] applied the HBMOA algorithm to solve the prob-
lem of minimizing energy consumption and makespan by
optimizing process routes and cutting parameters. Wang et
al. [22] established a dual-objective optimization model to
select milling parameters tominimize the power consumption
and process time. Zhang and Ge [23] proposed a new plan-
ning strategy from the perspective of reducing energy con-
sumption. Although energy-efficient machine development
and process route redesign can save energy consumption in
manufacturing shops, it needs mass capital investment and
cannot be implemented promptly.

Mouzon et al. [24] made an earlier attempt to improve the
production scheduling method for energy saving in manu-
facturing workshops. They found that the running of non-
bottleneck machines in the idle state consumed a large
amount of energy that could be reduced by turn-on and
turn-off scheduling framework. This framework has been
further extended in recent research. Bruzzone et al. [25]
presented an energy-aware scheduling algorithm to realize
energy savings for a given fixed original job assignment
and sequencing flexible flow shop. Dai et al. [26] applied
this turn-on/off strategy to a flexible flow shop scheduling
problem. A genetic simulated annealing algorithm was used
to minimizing the total energy consumption and makespan.
Aghelinejad et al. [27] introduced the turn-on/off framework
to single-machine scheduling problems. The meta-heuristic
method was used to minimizing the total energy consump-
tion cost under time varied electricity prices. An alternative
energy-saving framework based on machine speed scaling
was proposed by Bunde [28]. Fang et al. [29] applied this
framework in a flow shop scheduling problem with a con-
straint on peak power consumption and proposed two-mixed
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integer programming models for the problem. In this paper,
the turn-on/off framework is extended and applied to job
scheduling for energy-saving in workshops. A previous study
[30] has shown four states during machine operation: work-
ing, idle, standby, and off. When a machine tool is idle, it
can be switched to standby or off depending on the specific
situation, rather than only be turned off.

Tardiness and earliness are also critical manufacturing
scheduling criteria involving due dates. Studies that aim at
minimizing the tardiness and earliness criterion can be found
in mono- and bi-objective scheduling. Cheng and Huang
[31] developed a modified genetic algorithm (GA) with dis-
tributed release time control (GARTC) mechanism to min-
imize the total earliness and tardiness time in an unrelated
parallel machine scheduling problem for jobs with specific
due dates and dedicated machines. Fu et al. [32] addressed
a two-agent stochastic flow shop deteriorating scheduling
problem with the objectives of minimizing the makespan
and the total tardiness. Li et al. [33] proposed a mixed
integer programming model and an improved multi-objective
teaching learning-based optimization algorithm to minimize
the makespan and total earliness & tardiness in job shop
robotic cell scheduling problem. Yazdani et al. [10] applied
a new hybrid imperialist competitive algorithm(HICA) to
the job shop scheduling problem with a single objective of
minimizing the maximum earliness and tardiness. Liu et al.
[7] applied NSGA-II to solve the multi-objective model total
non-processing electricity consumption and total weighted
tardiness job shop scheduling problems. Piroozfard et al.
[8] presented a multi-objective flexible job shop scheduling
problem with objectives of minimizing total carbon footprint
and total late work criterion. Considering each job’s different
importance, the total weighted tardiness and earliness model
is employed in this research.

Concerning the optimization techniques on the multi-
objective job shop scheduling problem, many approaches
that imitate nature, social behaviors, etc., have been widely
applied in job shop scheduling, such as ant colony opti-
mization [34], particle swarm optimization [35], evolutionary
algorithm [36], tabu search [37], simulated annealing [38],
migrating birds optimization algorithm [39]. Although there
exist some researchers attempting to solve the multi-objective
job shop problem using machine learning methods, such as
Wang and Tang proposed a machine-learning-based multi-
objective memetic algorithm (ML-MOMA) for the discrete
permutation flow shop scheduling problem [40], Zhang et al.
introduced particle swarm optimization (PSO) and neural
network (NN) to solve the job-shop scheduling problem (JSP)
[34]. However, machine learning methods are more com-
monly used to solve image processing problems and fault
diagnosis [43]–[46]. The genetic algorithm has been suc-
cessfully applied to solve different kinds of multi-objective
optimization problems [47]. However, limited studies used
the genetic algorithm to tackle optimization problems with
multiple conflicting objectives in job shop scheduling prob-
lems [48].

FIGURE 1. The layout of job shop scheduling.

Table1 summarizes some studies on the job shop schedul-
ing problem from the number of objectives, scheduling crite-
rion, author, algorithm, etc. Based on the conducted literature
review, most researchers have not considered earliness-based
objectives. Besides, there is no research about optimizing
makespan, TWET, and NEC together in recent years in job
shop scheduling. Therefore, approaches are needed to address
environment-based objectives in more complex scheduling
problems.

III. PROBLEM DESCRIPTION AND MATHEMATICAL
MODEL
A. JOB SHOP MODEL DESCRIPTION
The n× m job shop scheduling problem can be described as
follows (Figure 1): There are n jobs with specific processing
routes, which need to be processed on m machines. The
machining process satisfies the following assumptions: (1)
All jobs and machines are available at time zero. (2) Each job
has m processing steps, and each step must be completed on
a specific machine. (3) Each job visits each machine exactly
once according to its own predefined sequence and preemp-
tion of the jobs is not allowed. (4) Each machine can only
process one job at a time, and each job can only be machined
by one machine at a time. (5) The machining process cannot
be interrupted until it is completed. (6) Job’s transport time is
ignored. As shown in Figure 1, there are 3 different machines
and 3 different jobs that need to be processed. The connecting
lines and arrows of different colors represent the machine
sequence of specific jobs on the production line. Each job
needs to be processed by all machine tools, but the processing
order of the jobs on the machine tools is different. Solving
the JSSP problem is to find a proper processing sequence to
determine the processing order of each job on each machine
under specific process requirements. The JSSP problem’s
optimization is to find the optimal sequence in all feasible
machining sequences for a specific production performance
index, such as makespan and energy consumption. Note that
symbols used in this paper and their meanings are shown
in Table 2.

B. ENERGY CONSUMPTION MODEL WITH
ENERGY-SAVING OPERATION STRATEGY
1) EVALUATING THE OPERATIONAL STATUS OF A MACHINE
TOOL
Machine tool energy consumption can be modeled in various
ways, such as the function, the composition system, compo-
nents, operation status, and energy consumption attributes.
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TABLE 1. The summary of studies on job shop scheduling.

In this research, the energy consumption model is built based
on the machine’s operating status, including off, standby, idle
and working. The description of machine tools’ operating
state is shown in Table 3.

Figure 2 displays the machine tool energy-consuming tran-
sition diagram with ramp-up and ramp-down. Colors of dif-
ferent states represent power levels. The power values rise
along with the order of off, standby, idle, and working. It is

VOLUME 9, 2021 54545



H. Wei et al.: Unified Multi-Objective GA for Energy Efficient Job Shop Scheduling

TABLE 2. The meaning of parameters used in this paper.

TABLE 3. The description of machine tool operating status.

FIGURE 2. Machine tool state switching diagram.

clearly shown that energy consumption from off to working
state is progressively increased in unit time.

2) ENERGY-SAVING OPERATION STRATEGY OF MACHINE
TOOLS
In a job shop environment, considering that the job’s pro-
cess phase is constrained by the previous process phase’s
completion time, the machine will keep idle waiting for the

FIGURE 3. Gantt chart of a job shop scheduling example.

FIGURE 4. Machine tool running track.

next job arrival after machining the current job. During this
period, the machines still require a certain amount of energy
consumption to keep running. Figure 3 shows a Gantt chart
of a 3× 3 job shop scheduling example. In the Figure, (J2,1)
means the first operation of job 2. It is displayed that there
exists a certain amount of non-processing time (the white box
in Figure3) consumed energy in the entire machining process
of most machine tools.

The average working, idle, and standby power of M1, M2,
and M3 are represented in Table 4 (data from [49]). From this
table, we can find that the three states’ power consumption
decrease progressively fromworking to standby. Based on the
example in Figure 3 and the data in Table 4, we can calculate
the proportion of non-processing energy consumption in the
total energy consumption of machines. After calculation,
the non-processing energy consumption of machine tools
accounts for 31.70% (= 2931× 6+ 2293× 9+ 861× 4/(
3207.5× 12+ 2931× 6+ 3034.6× 9
+2293× 91716.9× 14+ 861× 4

)
) in this schedule.

Figure 4 and Figure 5 show the machine tool running track
and schematic diagram of the power before and after using
the energy-saving operation strategy. As can be seen from
the two figures, if we switch a machine into standby or off
state by a particular strategy when it keeps in an idle state for
a long time, a large amount of energy can be saved. So, the
switching policy of machines should be studied.

According to the machining interval time and energy con-
sumption of the machine, we can decide to keep the machine
tool idle or switch to standby or off. Assuming that the only
form of energy consumed is electrical energy, we define the
energy strategy formula as follows:

(1) Machines should be kept idle, if:

PI ,j ·
(
Si,j − Ci−1,j

)
≤ Prampup,s tan dby,j · trampup,s tan dyby,j
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TABLE 4. Power information of machines.

+PS,j ·
(
Si,j − Ci−1,j − trampup,s tan dyby,j

)
(1)

&

PI ,j ·
(
Si,j − Ci−1,j

)
≤ Prampup,off ,j · trampup,off ,j (2)

(2) Machines should be switched to standby, if:

Prampup,s tan dby,j · trampup,s tan dyby,j
+PS,j ·

(
Si,j − Ci−1,j − trampup,s tan dyby,j

)
< PI ,j ·

(
Si,j − Ci−1,j

)
(3)

&

Prampup,s tan dby,j · trampup,s tan dyby,j
+PS,j ·

(
Si,j − Ci−1,j − trampup,s tan dyby,j

)
< Prampup,off ,j · trampup,off ,j (4)

(3) Machines should be switched to off and then on, if:

Prampup,off ,j · trampup,off ,j
< PI ,j ·

(
Si,j − Ci−1,j

)
(5)

Prampup,off ,j · trampup,off ,j
< Prampup,s tan dby,j · trampup,s tan dyby,j
+PS,j ·

(
Si,j − Ci−1,j − trampup,s tan dyby,j

)
(6)

The machine tool energy consumption in the job shop
environment can be calculated according to the machining’s
average power and time. Before adopting the energy-saving
strategy, the energy consumption model of the job shop is:

Etotal =
m∑
j=1

n∑
i=1

ni∑
k=1

xi,j,k · PW ,j · pti,j,k

+

m∑
j=1

(Cmax −

n∑
i=1

pti,j) · PI ,j (7)

After adopting the energy-saving strategy, the energy con-
sumption model is:

Etotal =
m∑
j=1

n∑
i=1

ni∑
k=1

xi,j,k · PW ,j · pti,j,k

+

m∑
j=1

(PI ,j · tI ,j + PS,j · tS,j + nrampup,s tan dby,j
·Prampup,s tan dyby,j · trampup,s tan dby,j
+nrampup,off ,jPrampup,off ,j · trampup,off ,j)

(8)

Comparing the formula (7) and (8), it is clear that the
difference between the energy consumption before and after
adopting the energy-saving strategy is the non-processing
consumption. So, in this paper, non-processing energy con-
sumption is one of three objectives.

C. FORMULAION OF ENERGY-EFFICIENT JOB
SCHEDULING OBJECTIVES
In the energy-efficient job shop scheduling problem of
this paper, there are three conflicting objectives, including
the non-processing energy consumption (NEC), makespan
(Cmax), total weighted earliness, and tardiness (TWET).
These three objectives are chosen because NEC is a neces-
sary metric to quantify the impact of energy efficiency on a
job shop scheduling problem. At the same time, Cmax and
TWET are classical performance metrics indicating the over-
all production time and total weighted tardiness and earliness
cost, respectively.

min Cmax = max(Ci,k ),∀i ∈ [1, n], k ∈ [1,m] (9)

min TWET =
n∑
i=1

(αiTi + βiEi) (10)

minNFC =
m∑
j=1

(PI ,j · tI ,j + PS,j · tS,j + nrampup,s tan dby,j
·Prampup,s tan dyby,j · trampup,s tan dby,j
+nrampup,off ,jPrampup,off ,j · trampup,off ,j)

(11)

S.T.

Ci,k ≤ Ci,k+1 − pti,j,k+1, ∀i, j, k (12)

Ci,k ≥ Cl,h + pti,j,k ∨ Cl,h ≥ Ci,k + ptl,j,h,

∀i, j, k, l, h (13)

Ci,k − Si,k = pti,j,k , ∀i, j, k (14)

Si,k ≥ 0, ∀i, k (15)

Ti = max{Cmax − di, 0} (16)

Ei = max{di − Cmax, 0} (17)

The objective function (9), (10), and (11) can calcu-
late the makespan, the total weighted tardiness, and earli-
ness (TWET), non-processing energy consumption (NEC).
We applied the same objective function and constraint condi-
tion with classical job shop scheduling researches. By opti-
mizing this objective, the completion time of a batch of
jobs can be reduced. The TWET model is to minimize total
weighted early and tardy costs. We refer to the tardiness and
earliness calculation methods in literature [50]–[52], and we
set different penalty coefficients αi and βi. To reduce the
tardiness of jobs as much as possible, we set a significant
tardiness penalty coefficient. For the NECmodel, we referred
to the method proposed by Mouzon [24] to turn off the non-
bottleneck period machine and save energy consumption.
And we extended this method by dividing four different oper-
ating states of machine tools. Formula (12) is a constraint that
indicates the precedence relations among the operations of a
job. Formula (13) is a machine constraint that indicates that
eachmachine can process atmost one job at a time. Constraint
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(14) indicates that once an operation is started, it cannot be
preempted until it is completed. Constraint (15) expresses the
fact that the start time of each operation is positive. Formula
(16) and (17) are the calculation methods for tardiness (Ti)
and earliness (Ei) of a job.

IV. U-NSGA-III ALGORITHM
A. OVERVIEW OF THE U-NSGA-III ALGORITHM
In this study, Unified Non-dominated Sorting Genetic
Algorithm-III (U-NSGA-III) proposed by Seada and Deb
[53] in 2014 is chosen and improved as the optimization
algorithm. U-NSGA-III is a unified evolutionary optimiza-
tion algorithm that allows a user to work with a single
code to achieve optimizations with different objective dimen-
sions (i.e., single, multiple, and many-objective). So we can
use the U-NSGA-III to illustrate the necessity of optimiz-
ing three objectives (makespan, TWET, and NEC) together.
The U-NSGA-III is based on the structure of NSGA-III,
which is a practical algorithm for many-objective problems.
It can provide a set of optimal solutions that collectively
represent the trade-offs between the conflicting objectives.
As a result, decision-makers can prioritize and select optimal
trade-offs from the global set of optimal solutions. In the
view of the problem that no explicit selection operator on
Pt in the process of creating Qt and too small population
size when NSGA-III is used to solving mono-objective and
multi-objective problems, U-NSGA-III alleviates these dif-
ficulties through using a population size N which is larger
than the number of reference points (H) and introducing a
niching-based tournament selection operator. The niching-
based tournament selection operator added in U-NSGA-III
is as follows. If two solutions to be compared are related
to the same reference direction, choose the solution from
the better non-dominated rank. In this case, if both solutions
belong to the same non-dominant front simultaneously, the
solution closer to the reference direction (i.e., the solution
with a smaller perpendicular distance) is selected. Otherwise,
if the two solutions to be compared come from two cross-
reference directions, one of them is randomly selected to
introduce multiple niches in the population. The flow chart
of U-NSGA-III is shown in Figure 6. The simple pseudocode
of U-NSGA-III is as follows [17]:

B. ENCODING OF JOB SCHEDULES
The job schedule encoding used in our algorithm is an
operation-based representation. A chromosome is a permu-
tation of a set of operations, representing an order to arrange
them in a certain schedule. The same ID represents processing
operations of the same job, and the frequency of the ID
indicates the number of processing operations of the job.
Figure 7 shows an example of a job shop problem with two
jobs, where both jobs have three processes. The first number
‘‘2’’ in the chromosome [2, 1, 2, 2, 1, 1] represents the first
process of job 2. This approach avoids the complicated repair
procedures to deal with the infeasibility of the chromosomes

FIGURE 5. Schematic diagram of the power.

FIGURE 6. Algorithm flow chart for U-NSGA-III.

[54]. In the 2×3 example, a random arrangement of numbers
1 and 2 can always generate a feasible solution.

C. POPULATION INITIALIZATION
The initial population quality has a significant impact on
the performance of an evolutionary algorithm. Reasonable
initial solutions can significantly improve the convergence
rate and solution quality of the algorithm [55]. In order to
ensure the quality and diversity of the initial population,
the MME algorithm [18] and the random generation method
are combined to generate the initial population in this paper.
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Algorithm 1 Algorithm U-NSGA-III Generation t of U-
NSGA-III Procedure
Input: H structured reference points Z s or supplied aspi-
ration points Za, parent population Pt
Output: Pt+1
1: St = ϕ, i = 1
2: P′t = NichingBasedSelection(Pt)
3: Qt = Crossover+Mutation(P′t )
4: Rt = Pt ∪ Qt
5: (F1, F2, . . .Fn) = Non-dominated-sort(Rt )
6: repeat
7: St = St ∪ Fi and i = i+ 1
8: until |St | ≥ N
9: Last front to be included: i = l
10: if |St | = N then
11: Pt+1 = St , break
12: else
13: Pt+1 =

l−1
∪
i=l

Fi
14: Number of individuals to be chosen from Fl : K = N −
|Pt+1|
15: Normalize objectives and create reference set Z r :
Normalize(f n,St , Zr , Zs, Za)
16: Associate each member in St with a reference point:
[π (s); d(s)] =Associate (St ,Z r )
π(s): closest reference point, d : distance between s and
π(s)
17: Compute niche count of reference point j ∈ Z r : Pj =∑

s∈St/Fl((π (s) = j) ? 1 : 0)
18: Choose K members one at a time from Fl to construct
Pt+1:
Niching (K , Pj, π , d , Z r , Fl , Pt+1)
19: end if

FIGURE 7. Chromosome coding in job shop scheduling.

D. CROSSOVER OPERATION BASED ON A CHROMOSOME
ENCODING
In the genetic algorithm, the crossover operation is one of the
main ways to create new populations. A crossover operation
can be applied to the parents who are randomly picked if
a uniformly distributed random number generated between
0 and 1 is less than crossover probability (Pc) [26]. In this
study, we select a two-point crossover operation. The opera-
tion steps are as follows:

(1) Choose two intersections randomly, exchange the genes
between the two intersections of two parents.

(2) Repair chromosomes by deleting excess genes and
adding under-quantity genes.

For example, the genetic codes of the two parents’ chro-
mosomes P1 and P2 are ‘‘213112323’’ and ‘‘131233122’’.
Randomly generate two cross positions 3 and 6, and
exchange the segments between the intersections for get-
ting ‘‘211233323’’ and ‘‘133112122’’. Two feasible gene
sequences ‘‘211233123’’ and ‘‘133112322’’ can be obtained
by repairing the gene position whose number of occurrences
is not equal to three.

E. MUTATION OPERATION BASED ON A CHROMOSOME
ENCODING
A set of matrices composed of uniformly distributed numbers
between 0 and 1 with the same dimension as the parent
population is generated. When a specific value in the random
number matrix is less than the mutation probability, then the
corresponding position in the parent population matrix needs
to be mutated.

The steps of mutation are as follows:
(1) Move the gene from this position to the last position in

this chromosome.
(2) Move all the genes which are behind this position

forward by one position.

V. EXPERIMENTS AND RESULTS
The algorithm of this paper was coded in Python lan-
guage. The experiments were on a Dell Precision workstation
with the following configuration: Intel Corei5, 2.19 GHz
CPU, and 8 GB RAM. There are three key parameters in
the U-NSGA-III, i.e., the crossover probability Pc, and the
mutation probability Pm, the population size N . In order to
investigate the effect of parameter setting, we refer to the
experimental design method in [56] and carry out the Taguchi
method of design-of-experiment in 15×15 instance. For each
parameter we set four levels, i.e.,N ∈ {40, 80,100, 120},Pc ∈
{0.4, 0.6, 0.8, 0.9} and Pm ∈ {0.05, 0.1, 0.2, 0.3}. According
to the orthogonal array L16(43), we test the performance of
the U-NSGA-III with 16 combinations. In order to compare
the advantages and disadvantages of each parameter combi-
nation, the RV and MID (Mean Ideal Distance) results are
shown in Table 5. RV is defined as below: we aggregate all
the non-dominated solutions obtained by 16 aggregated sets.
The percentage of solutions from each aggregated set can be
regarded as the score of each combination, denoted as RV.
The larger RV indicates the better parameter combination.
According to the parameter testing results, we set the algo-
rithm’s experimental parameters as follows: the population
size was 100, the crossover probability was 0.9, and the
mutation probability was 0.1.

A. TEST INSTANCES
In our paper, the standard benchmarked job shop scheduling
instances from Taillard [57] were extended in order to include
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TABLE 5. Investigation of parameter effect.

all the necessary information for the presented mathemati-
cal model, including the due date of each job, tardiness &
earliness penalty coefficient of each job, power consumption
in idle, standby & working states, and ramp-up power &
time of each machine. The instances from E. Taillard contain
the following information: the number of jobs, number of
operations for each job, processing time of each operation on
the corresponding machine, and processing sequence of oper-
ations of each job. The new data required for the tri-objective
model are generated and explained as follows. By studying
different papers [58]–[60], we found that pure numbers have
only relative importance with respect to the ratios among the
different kinds of power requirements. Therefore, referring
to the parameters in Literature [10], [61], [62] and the actual
parameters in Table 4, power consumption, switching time
& power for each machine, due date, and tardiness/earliness
penalty coefficient for each job are provided as follows:
PW ,j = 0.9∼1kw; PI ,j = 0.6∼0.7kw; PS,j = 0.3∼0.5kw;

Prampup,off ,j = Prampup,standby,j = 0.8kw

di = γ ·
n∑
i=1

ni∑
k=1

xijkptijk (18)

where γ is random number between 1.8 and 2.3.

βi = 1/αi (19)

where αi is randomly selected from 1, 5 and 10.

trampup,s,tan dby,j =
1
2
· trampup,off ,j =

1
2m
·

M∑
J=1

ni∑
k=1

xijkptijk

(20)

B. COMPARISON METRICS FOR ALGORITHM EVALUATION
To assess algorithms’ performance, three different compar-
ison metrics including Diversification Metric, Mean Ideal

TABLE 6. Best, median and worst value of U-NSGA-III with random and
mme initialization method.

Distance, and Mean Normalized Objective Function are con-
sidered, where these performance criteria are elucidated as
follows.

(1) Diversification Metric (DM): DM, which is computed
by formula (21), is used for evaluating the spread of the
solution sets for algorithms. A higher value of DM indicates
a better algorithm [63].

DM =

√√√√ m∑
j=1

(max(fj)−min(fj))2 (21)

where fj is the value of the jth objective function and m is the
number of objectives (m = 3 in this paper).

(2) Mean Ideal Distance (MID): MID is the metric to
evaluate the proximity between the Pareto solutions (f1,i, f2,i,
f3,i) and the ideal point (f1,best , f2,best , f3,best ). The formula of
MID is:

MID=

n∑
i=1

√
(f1,i−f1,bset )2+(f2,i−f2,bset )2+(f3,i − f3,bset )2

n
(22)

where f1,i, f2,i, and f3,i are the function values of ith Pareto
solution, f1,best , f2,best , and f3,best are the best fitness values
of three objectives, and n is the total number of obtained non-
dominated schedules. A lower value ofMID indicates a better
algorithm [63].

(3) Mean Normalized Objective Function (MNOF): The
MNOF value of the algorithm is calculated as: (23), as
shown at the bottom of the next page, where A is the set
of optimization algorithms, min

j∈A
f1,j, min

j∈A
f2,j,min

j∈A
f3,j are the

best fitness for three objectives obtained by all algorithms,
max
j∈A

f1,j, max
j∈A

f2,j,max
j∈A

f3,j find the worst fitness for three

objectives obtained by all algorithms. Lower values ofMNOF
are preferred [10].

C. ANALYSIS OF RESULTS
To verify the feasibility of the proposed model and algorithm,
the following four sets of numerical experiments are carried
out.

(1) Initialization method experiments:
This set of experiments is used to illustrate the effect of the

initialization method–MME.
(2) Bi-objective experiments:
This set of experiments is used to compare the quality

of the solutions produced by bi-objective and tri-objective
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TABLE 7. Four scenarios in multi-objective experiments.

optimization to prove the necessity of optimizing three objec-
tives simultaneously.

(3) Tri-objective experiments:
Compare the best, median and worst values of Pareto

solutions generated by NSGA-II, NSGA-III, and U-NSGA-
III testing in Taillard benchmark arranging from 20jobs-
15machines to 50jobs-20machines to provide the evidence
for evaluating the performance of algorithms.

(4) Comparative experiment of our multi-objective
scheduling based energy-saving strategy:

The comparative experiment is carried out by computing
the NEC before and after employing the machine status
switching approach to illustrate the energy-saving strategy’s
effect.

1) INITIALIZATION METHOD EXPERIMENTS
In order to illustrate the effect of MME initialization method,
we design the comparative experiments in 15×15 benchmark.
The best, median and worst values of Pareto solutions gen-
erated by U-NSGA-III with random and MME initialization
method are listed in Table 7. Form the table, we can find
that U-NSGA-III with MME method obtain all of the best
minimum values of three objectives in 15×15.1 and 15×15.2
instances. The results indicate that the U-NSGA-III with
MME method can provide good initial population and obtain
better Pareto solution.

2) BI-OBJECTIVE EXPERIMENTS
Through the literature research, we find that, researchers have
never considered the three optimal objectives (makespan,
earliness & tardiness, and energy efficiency) together in
job shop scheduling. They usually optimize any two objec-
tives of them to obtain results. But we think the makespan,
total weighted earliness & tardiness (TWET), non-processing
energy consumption (NEC) are all essential and should be
optimized together. Four scenarios of experiments arranged
from bi-objective and tri-objective in 15 × 15 benchmark
to demonstrate our idea,. The four Scenarios are listed
in Table 6.

We choose any two of the three objectives to compose
three scenarios (S1, S2, and S3) and obtain the best schedule
result used theU-NSGA-III algorithm. And then, we input the
schedule into an objective evaluation code for calculating the
values of the third objective. We test the results in 15× 15.1
and 15 × 15.2 instances by the U-NSGA-III algorithm. The
experiment results, which are obtained in the same iterations,
are shown in Table 8 (EI means evaluation index). Boldface
in Table 8 represents the minimal best value obtained by the
algorithm. From scenarios S1, S2, and S3 in Table 8, we find
that if we choose two objectives to optimize, the objective
value that is not controlled will be larger. The experimental
results in the three scenarios are consistent with this law. For
example, in 15 × 15.1 instance, if we choose makespan and
NEC as the optimal objectives in S2, the best value of TWET
is higher 108.57% and 118.56%, the median value is higher
51.28% and 74.86% than values in S1and S3, respectively.
In S4 of Table 8, the result of the tri-objective is listed.
Comparing S4 with S1, S2, and S3, we find that S4 gets
the minimum best value makespan and TWET. And the best
value of NEC in S4 is only 1.12% above the minimum value
2777.90 in S2. In addition, the U-NSGA-III algorithm is
a unified evolutionary optimization algorithm that allows a
user to work with a single code to achieve optimizations
with different objective dimensions (i.e., single, multiple, and
many-objective). So the result in table 8 illustrates that it is
necessary to simultaneously optimize the three objectives.

3) TRI-OBJECTIVE EXPERIMENTS
In order to analyze the performance of the U-NSGA-III
algorithm in the tri-objective job shop scheduling prob-
lem, it is compared with NSGA-II and NSGA-III which
are commonly used in multi-objective scheduling prob-
lems. Through literature research, we find that many
studies on multi-objective workshop scheduling problems
choose NSGA-III and NSGA-II as the comparison algo-
rithm [48], [64]. In addition, Yang et al. [65] proved that
NSGA-II could get better solutions than MOEA/D (multi-
objective evolutionary algorithm based on decomposition)

MNOF =
1
n
·

n∑
i=1

√√√√√(
f1,i −min

j∈A
f1,j

max
j∈A

f1,j −min
j∈A

f1,j
)2 + (

f2,i −min
j∈A

f2,j

max
j∈A

f2,j −min
j∈A

f2,j
)2 + (

f3,i −min
j∈A

f3,j

max
j∈A

f3,j −min
j∈A

f3,j
)2 (23)
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TABLE 8. Best, median and worst value of pareto solution in four scenarios.

TABLE 9. Best, median and worst value of pareto solution for NSGA-II, NSGA-III and U-NSGA-III.

in flexible job shop scheduling problems by comparative
experiments. Ahmadi et al. [66] applied two evolutionary
algorithms, NSGA-II and NRGA, to solve multi-objective
flexible job shop scheduling problems. The results indicated
NSGA-II performed better on most criteria. So in this paper,
we choose NSGA-II and NSGA-III as the comparison algo-
rithm. The U-NSGA-III algorithm is run ten independent
times for each instance. Table 9 shows the best, median,
and worst results of the three algorithms tested in different
Taillard benchmark scales. It can be seen from the table

that the algorithm U-NSGA-III obtained the best solutions
of 8 out of 10 examples, indicating the best results obtained
by U-NSGA-III are better than the other two algorithms,
and reflecting the better search quality of U-NSGA-III.
Decision-makers can find the exact optimum according to
their scheduling cases. And, 20 × 15.2 and 20 × 20.1
instance, the optimal best makespan values are obtained by
NSGA-II and NSGA-III respectively. The best makespan
obtained by U-NSGA-III is only 1.32% and 0.23 % above
1740 and 2190.
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TABLE 10. Experimental outcomes of NSGA-II, NSGA-III and U-NSGA-III based on comparison metrics.

FIGURE 8. Diversification metric for problem instances.

To further compare the advantages and disadvantages of
the proposed algorithm and the other two algorithms, three
metrics, i.e., DM, MID, and MNOF, are introduced to com-
pare each algorithm’s effects. The computational outcomes
for the ten instances are presented in Table 10, which consists
of the problem instances and values of the performance cri-
teria (DM, MID, and MNOF) for each of the multi-objective
algorithms. According to Table 10, the U-NSGA-III has gen-
erally obtained better non-dominated schedules as compared
to the other two algorithms. For example, the non-dominated
Pareto solutions generated by U-NSGA-III in the 50 × 20.2
instance show better results compared to solutions gener-
ated by NSGA-II and NSGA-III. Specifically, in the first
comparison metrics, U-NSGA-III obtained the best value of
DM=140487.0; however, other algorithms got lower results.
The higher value of DM shows a better extension and spread
of U-NSGA-III. The secondmetric results (MID= 86136.51)
also indicate U-NSGA-III is an excellent algorithm, while
other algorithms have higher values (a lower value of MID
is preferable). Besides, according to the third metric MNOF,
U-NSGA-III has got the best value of 0.8764. However,
NSGA-II and NSGA-III obtained 0.9060 and 1.0026, respec-
tively (a lower value of MNOF is better). In the same way,
results of other test instances can be explained and expounded
in detail.

FIGURE 9. Mean ideal distance for problem instances.

FIGURE 10. Mean normalized objective function for problem instances.

Figures 8-10, present the three comparison metrics for the
problem instances. As shown in Figure 8, the U-NSGA-III
has obtained better results in most problem instances except
20 × 15.1, 20 × 20.2, and 30 × 15.1 regarding the
first metric DM. Based the Figure 9, U-NSGA-III can
obtain better results in seven test problem instances for
the second comparison metric MID, while in the other
three instances, it performs worse than either NSGA-II or
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TABLE 11. The comparison of non-processing energy consumption.

NSGA-IIII. Whereas the average values of MID in Table 10
(MID = 32434.807, 26376.464, 21113.061 for NSGA-II,
NSGA-III, and U-NSGA-III, respectively) point out
U-NSGA-III is better than NSGA-II and NSGA-III. Accord-
ing to Figure 10, U-NSGA-III performs better in seven of ten
problem instances. However, the average values of MNOF
indicate that U-NSGA-III performs better. It is noted that
MID and MNOF are critical performance metrics of multi-
objective algorithms as they are directly related to the quality
of the obtained non-dominated schedules.

4) COMPARATIVE EXPERIMENT OF ENERGY-SAVING
STRATEGY
In order to illustrate the effect of energy-saving strategies,
comparative experimental results are listed in Table 11. In this
table, E1 represents the NEC without the energy-saving strat-
egy; E2 represents the best NEC with the energy-saving
strategy obtained by U-NSGA-III. And the energy-saving
ratio is computed by the formula f = (E1 − E2)/E1. From
Table 11, more than 46% of energy can be saved by using
energy-saving job scheduling strategies. As the instances’
scale increased, the non-processing energy consumption can
be saved more significantly, reaching over 65% in instance
30 × 20.1, 50 × 20.1, and 20 × 20.1. Considering that non-
processing energy consumption can consist of 13-83% of
total energy consumption [24], [67], the 65% reduction here
can significantly reduce the energy bill for manufacturing
enterprises.

VI. CONCLUSION
In modern manufacturing, more and more attention is paid
to reducing energy consumption as well as maintaining good
scheduling performance in terms of traditional scheduling
objectives. In this paper, we proposed a multi-objective
genetic algorithm for the energy-efficient job scheduling
problem, including three objectives: non-processing energy
consumption (NEC), makespan (Cmax), and total weighted
earliness & tardiness (TWET) by combining scheduling with
the status switching of machines. We use the multi-objective
genetic algorithm U-NSGA-III with high-quality population
initialization using the MME algorithm and random gener-
ating method. The performance of U-NSGA-III is tested in
an extended Taillard job shop benchmark comparing with
the other two algorithms, namely, NSGA-II and NSGA-III.

The results indicate that U-NSGA-III can obtain most of the
optimal values for the three objectives. Besides, the quality
of the Pareto solutions obtained by U-NSGA-III is respec-
tively evaluated from the aspect of the boundary exten-
sion in the generated non-dominated schedules (DM), the
closeness between the Pareto solutions and the ideal point
(MID), the reliability (MNOF). Furthermore, the initializa-
tion method experiments, bi-objective experiments, and com-
parative experiment of energy-saving strategy are performed
to illustrate the effect of the MME initialization method,
the necessity of optimizing three objectives simultaneously,
and the energy-saving strategy’s effect. To the best of our
knowledge, this is the first attempt to optimize the three
objectives simultaneously, including the energy efficiency
target. The results show that our energy-efficiency-oriented
multi-objective job scheduling algorithms can achieve signif-
icant energy saving with 46%-69% saving in non-processing
energy consumption. Our methods can be easily extended to
solve other kinds of manufacturing shop scheduling problems
for energy saving, such as classical flow shop scheduling
and flexible job shop scheduling. Although the effective-
ness of the proposed job shop energy-saving method has
been proven, further research is still needed. Some reason-
able assumptions simplify the model in this study, however,
the actual production scheduling problem is more compli-
cated because of some uncertain factors or unexpected condi-
tions, such as time uncertainty, random arrival or cancellation
of orders, changes in delivery dates, and machinery break-
down. So in the follow-up work, we will focus on the research
of production workshop scheduling models that can handle
more realistic production conditions to improve the appli-
cability of energy-saving scheduling theory and schemes.
In addition to that, future studies should also consider cost
control in workshop manufacturing and the environmental
impact of the manufacturing process.
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