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a b s t r a c t

Randomized-based Feedforward Neural Networks approach regression and classification (binary and
multi-class) problems by minimizing the same optimization problem. Specifically, the model param-
eters are determined through the ridge regression estimator of the patterns projected in the hidden
layer space (randomly generated in its neural network version) for models without direct links and
the patterns projected in the hidden layer space along with the original input data for models with
direct links. The targets are encoded for the multi-class classification problem according to the 1-
of-J encoding (J the number of classes), which implies that the model parameters are estimated to
project all the patterns belonging to its corresponding class to one and the remaining to zero. This
approach has several drawbacks, which motivated us to propose an alternative optimization model
for the framework. In the proposed optimization model, model parameters are estimated for each
class so that their patterns are projected to a reference point (also optimized during the process),
whereas the remaining patterns (not belonging to that class) are projected as far away as possible from
the reference point. The final problem is finally presented as a generalized eigenvalue problem. Four
models are then presented: the neural network version of the algorithm and its corresponding kernel
version for the neural networks models with and without direct links. In addition, the optimization
model has also been implemented in randomization-based multi-layer or deep neural networks. The
empirical results obtained by the proposed models were compared to those reported by state-of-
the-art models in the correct classification rate and a separability index (which measures the degree
of separability in projection terms per class of the patterns belonging to the class of the others).
The proposed methods show very competitive performance in the separability index and prediction
accuracy compared to the neural networks version of the comparison methods (with and without
direct links). Remarkably, the model provides significantly superior performance in deep models with
direct links compared to its deep model counterpart.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In statistics, the Root Mean Square Error (RMSE) is a standard
easure of goodness-of-fit in regression models [1]. In those
odels, the goal is to find a function f (belonging to family of

unctions F), from a training set D = {(xn, yn), n = 1, . . . ,N},
eing xn = (xn1, . . . , xnK ) ∈ RK the nth training pattern, K the
umber of attributes of the problem and yn ∈ R the desired
utput associated to the nth pattern, which is the solution of the

∗ Corresponding author.
E-mail address: fafernandez@uma.es (F. Fernández-Navarro).
ttps://doi.org/10.1016/j.asoc.2022.109914
568-4946/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
following optimization problem:

min
f∈F

(
N∑

n=1

(f (xn) − yn)2
)

.

Several promising machine learning models estimate their
parameters by minimizing the RMSE of their predictions (estima-
tions) and the desired outputs. For example, Randomized-based
Feedforward Neural Networks (RFNNs) generally uses randomly
selected fixed weights and biases in the hidden layer(s), and the
estimation step, which is only employed in the output layer, is
based on the RMSE metric. As pointed out in the literature, this
random configuration of weights and bias of the nodes in the
hidden layer can lead to a poor exploration of the transformed
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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space if the number of nodes in the hidden layer is not high
enough [2,3], thus giving rise to poor generalization performance.
In this context, several authors have proposed hybridizing global
optimization techniques (such as Genetic Algorithms or Particle
Swarm Optimization) with RFNNs giving rise to Evolutionary
RFNNs [4–7]. In those approaches, the parameters associated with
the hidden layers are determined through the global optimization
technique, and the parameters of the output layer are analytically
computed [4,7]. The main disadvantage of those approaches is
their increase in computational burden, and their advantages are
the gains in performance and the obtaining of simpler models
(with fewer hidden neurons) [7].

In recent years, RFNNs have become competitive models for
oth multi-classification and regression problems [8–12]. They
ave been extensively used not only on traditional supervised
achine learning problems but also on time series prediction [13,
4], image classification [15,16], and speech recognition [17]. In
he field of RFNNs, there exist different approaches which mainly
iffer in the architecture of their underlying models. In this study,
e will focus on two alternative approaches within the umbrella
f RFNNs, which vary in existence or not of direct links from
he input to the output: the Extreme Learning Machine (ELM)
ramework (without direct links) [18,19] and the Random Vector
unctional Link (RVFL) networks (with direct links) [20–22].
Consequently, the mapping function f in RFNNs is chosen from

he following family of functions for networks models with direct
inks:

= {v′(.)β, β ∈ RD+K
},

here v : RK
→ RD+K includes in the first D components the

ransformation made by the basis functions and in the last K
lements the original input data, the chosen transformation of
he input space (the first D components of v) will be denoted as
: RK

→ RD with D the number of basis functions. Hence, in the
ase of models without direct links, the transformation function
ncludes only the outputs of the basis functions, and accordingly,
is obtained from the following family:

= {h′(.)β, β ∈ RD
}.

The advantages of RFNNs concerning backpropagation (BP)
etworks are twofold [18]: on the one hand, RFNN-based models
an provide better generalization results than BP-based networks.
n the other hand, RFNN-based models have a much faster learn-
ng speed than BP-based networks. Those advantages are partially
btained thanks to the parameter tuning of those models [11,22].
n the neural version of the model, the parameters associated
ith the basis functions are randomly determined, and therefore,
he estimation of the f function is reduced to the estimation
f the β parameters, which are computed from the following
inimization function:

in
β

(
N∑

n=1

(
v′(xn)β − yn

)2
= ∥Vβ − Y∥

2

)
, (1)

here Y = (y1, y2 . . . , yN ) ∈ RN is the vector of desired outputs,
(xn) = h(xn) ∈ RD in models without direct links, v(xn) =

h(xn), xn) ∈ RD+K in models with direct links, V = (H) ∈ RN×D

n models without direct links, V = (H X) ∈ RN×(D+K ) in models
ith direct links, H ∈ RN×D the matrix of the hidden layer
utputs, H = (h′(x1),h′(x2), . . . ,h′(xN )) and X ∈ RN×K the matrix
ith the input data, X = (x′

1, x
′

2, . . . , x
′

N ). The solution to that
ptimization problem is:

=
(
V′V

)−1 V′Y,

here an additional term I
C is traditionally included within the

inverse of the matrix for numerical stability reasons (representing
2

the regularization component), being C a user-defined parameter
that weights the importance of the model fitting with respect
to the regularization [23,24]. The incorporation of the term I

C to
he inversion of the matrix implies the inclusion of the compo-
ent ∥β∥

2 to the error function of the problem [11] (with the
orresponding C parameter to weight the importance of the two
omponents of the equation).
In this context, several works have been proposed using differ-

nt forms of regularization in RFNNs. Two types of regularization
ave been the most common and widely used. On the one hand,
2-norm regularization adds the squared magnitude of the co-
fficients as a penalty term to the loss function [19,25]. On the
ther hand, L1-norm, also known as LASSO regularization, adds
he absolute value of the coefficients as a penalty term to the
oss function, shrinking the coefficients of the less important
haracteristic to zero, thus, leading to models with less com-
lex structure [26,27]. Furthermore, it is possible to combine the
rouping effect of the L2 penalty and the sparsity in the solutions
f the L1-norm in the so-called ElasticNet, to control the com-
lexity of the network and prevent overfitting [28,29]. Several
uthors have recently proposed new algorithmic procedures for
stimating the parameters of RFNNs with different typologies
f regularization terms. For example, Yan et al. [30] presented
n incremental laplacian for the regularization of ELM in semi-
upervised online learning problems. In [31], a Lanczos algorithm
as proposed to perform a fast regularization to generate a
obust outcome without overfitting. In the field of RVFL, a novel
ixed iterative algorithm for incorporating the two typologies of
egularization terms within the optimization problem of RVFL
etworks has been recently proposed in [32].
RFNNs-based models address both regression and classifica-

ion problems through the same optimization problem (Eq. (1))
19]. The main difference between the two problems lies in the
ncoding adopted for the targets in classification problems. Thus,
he vector with the targets Y is represented in matrix form in

lassification problems as Y = (Y1 Y2 . . . YJ ) =

⎛⎜⎝ y′

1
...

y′

N

⎞⎟⎠ ∈ RN×J ,

here J is the number of classes, yn ∈ {0, 1}J is the class label
ssuming the ‘‘1-of-J ’’ encoding (ynj = 1 if xn is a pattern of the
th class, ynj = 0 otherwise) and Yj ∈ RN is the jth column
f the Y matrix. Additionally, the output matrix of coefficients
or classification problems has the form β = (β1 β2 . . . βJ ) ∈
D×J being βj ∈ RD the weights of the jth output node in ELM-
ased models and the form β = (β1 β2 . . . βJ ) ∈ R(D+K )×J with
j ∈ RD+K in RVFL-based models. In this way, RFNN-based models
inimizes the following optimization problem in classification
roblems [19]:

min
β∈RD×J

(
∥β∥

2
+ C∥Vβ − Y∥

2
)

. (2)

Although the classification problem is traditionally presented
n its matrix form, the final optimization problem is the sum of J
eparable vector problems, one per class. In fact, if we disaggre-
ate the error function by columns, it can be verified that:

β∥
2
+ C∥Vβ − Y∥

2
=

J∑
j=1

(
∥βj∥

2
+ C∥Vβj − Yj∥

2) .
The error function for each class can be reformulated as:

βj∥
2
+ C∥Vβj − Yj∥

2
= β′

jβj + C(β′

jV
′
− Y′

j)(Vβj − Yj)
= β′

jβj + Cβ′

jV
′Vβj − 2CY′

jVβj + CY′

jYj.
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Hence, the optimization problem can be rewritten for each
lass as:

in
βj

(
β′

j(I + CV′V)βj − 2CY′

jVβj
)
,

where CY′

jYj is constant. In addition, the component ∥Vβj − Yj∥
2

ssociated with the jth class could be also rewritten as:

Vβj − Yj∥
2

=

N∑
n=1

(
v′(xn)βj − ynj

)2
=

∑
x∈Cj

(
v′(x)βj − 1

)2
+

∑
x/∈Cj

(
v′(x)βj

)2
,

here x ∈ Cj represents that the training pattern x belongs to the
th class, Cj. The above expression indicates that the vector βj is
estimated aiming to project the patterns of its class to 1 and the
others to 0.

As can be seen, the current formulation of the classification
problem for RFNN-based models has the following drawbacks:

• It forces training patterns that do not belong to the jth class
to be projected to the same point (zero), regardless of their
belonging class.

• The selection of the projections points is entirely arbitrary.
Furthermore, the distance of the projection between differ-
ent classes is also arbitrary (and fixed to one).

Motivated by the previously described drawbacks of the error
unction formulation of the RFNN problem for classification, a
ovel RFNN classification model is proposed in this manuscript.
n the proposed method, the training patterns of the jth class
re projected to a projection point that is also estimated during
he training stage, β0j, while the remaining ones are projected as
ar away to this point as possible. It is important to stress that
raditional RFNN-based approaches do not consider the bias in
he output layer in their implementations, which prompts the
eparating hyperplane to pass through the origin in random basis
unctions space [19]. In the proposed method, the bias of the
utput layer is the corresponding projection point which is also
ptimized during the optimization stage. In this way, the different
yperplanes per class should all pass through their corresponding
rojection points instead of the origin.
The problem is formulated as a quadratic fractional program-

ing problem and solved as a generalized eigenvalue problem.
he generalized problem has appeared as the solution of an
mbrella of SVM-based models that aims to estimate non-parallel
ptimal hyperplanes to overcome the well-documented limita-
ion of SVM models based on parallel hyperplanes when ad-
ressing cross data [33–40]. In this manuscript, those ideas have
een explored from the RFNN perspective, aiming to improve
he performance of RFNN-based models, including accuracy or
raining time, with the final goal of proposing a novel model
hat addresses the multiclass classification problem without im-
lementing the 1-versus-one and 1-versus-all approaches and
here the targets per class are estimated during the optimization
rocedure. The manuscript presents three versions of the model
or each architecture (with and without direct links): the stan-
ard formulation, a formulation including regularization, and a
ernelized version of the model.
The manuscript is organized as follows: an explanation of our

roposal is discussed in Section 2. The experimental framework
s presented in Section 3, and the empirical comparisons are in
ection 4. Conclusions and discussion are in the final segment of
he article, Section 5.
 i

3

2. The proposed method

This section aims to mathematically describe the architecture
of the proposed model, the formulation of its error function
formulation, the matrix formulation of the problem, and how its
parameters are obtained. As previously detailed, the models could
be implemented in RFNNs without and with direct links. For the
sake of simplicity, we have decided to explain the procedure in
networks without direct links fully, and after that, we have de-
tailed the mathematical modifications needed to implement the
idea in networks with direct links. Additionally, the algorithmic
steps required to estimate the parameters of the six models (three
per architecture) included are also fully described, along with the
definition of the classification rule of the models.

2.1. Networks without direct links

This section aims to provide all the required details to im-
plement the proposal in RFNNs without direct links. The most
important example of RFNNs without direct links is most likely
ELM, and for that reason, in some parts of the text, we refer
directly to it.

2.1.1. Error function formulation
The goal of the error function proposed is two-fold: firstly,

to project as close as possible to the patterns belonging to the
jth class to their reference projection point, β0j, and secondly,
to project as far away as possible to the reference point β0j
associated with the jth class to the patterns that do not belong
to the jth class. Thus, the model proposed has to estimate two
types of parameters per class: the projection vector βj, and the
reference projection point, β0j, j = 1, . . . , J .

The optimization problem of dimension J is solved by inde-
pendently estimating the projection vectors βj, and the reference
projection points, β0j, per class j = 1, . . . , J . The first objective
could mathematically be formulated as the minimization of the
following expression:∑
x∈Cj

(
h′(x)βj − β0j

)2
. (3)

The second objective is that the rest of the patterns are pro-
jected as far as possible from the reference point. That is, to
maximize the following expression:∑
x/∈Cj

(
h′(x)βj − β0j

)2
. (4)

The two objectives can be satisfied jointly if the following
expression is minimized:

min
βj∈RD,β0j∈R

⎛⎝∑x∈Cj

(
h′(x)βj − β0j

)2∑
x/∈Cj

(
h′(x)βj − β0j

)2
⎞⎠ . (5)

.1.2. Matrix formulation
This section aims to rewrite the objective function of the

odel proposed (defined in Eq. (5)) in matrix form. Let us denote

he vector of parameters of the jth class Bj as Bj =

(
β0j
βj

)
∈

D+1, the matrix Mj as Mj =
∑

x∈Cj

(
−1
h(x)

) (
−1 h′(x)

)
∈

(D+1)×(D+1) and M =
∑J

j=1 Mj. The matrix Mj includes informa-
ion about the variance of the outputs of the basis functions, the
nteraction between basis functions, and the number of training
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atterns per class. In fact, the matrix Mj can be alternatively be
xpressed as:

j =

(
Nj −

∑
x∈Cj

h′(x)
−
∑

x∈Cj
h(x) H′

jHj

)
,

where Nj is the number of patterns of the jth class and

Hj =
(
h′ (x) , x ∈ Cj

)
∈ RNj×D,

the matrix with the outputs of the basis function for the jth class
(including only the training patterns belonging to the jth class).

Consequently, the matrix H can be written as H =

( H1
. . .

HJ

)
∈

RN×D, with N =
∑J

j=1 Nj.
So, the first objective can be rewritten in matrix form as:∑

x∈Cj

(
h′(x)βj − β0j

)2
=

∑
x∈Cj

(
(
−1 h′(x)

)
Bj)2

=

∑
x∈Cj

B′

j

(
−1
h(x)

) (
−1 h′(x)

)
Bj

= B′

jMjBj.

The second objective can be rewritten as follows:∑
x/∈Cj

(
h′(x)βj − β0j

)2
=

∑
x/∈Cj

(
(
−1 h′(x)

)
Bj)2

=

∑
x/∈Cj

B′

j

(
−1
h(x)

) (
−1 h′(x)

)
Bj

= B′

j(M − Mj)Bj.

Hence, the optimization problem is defined as:

min
Bj∈RD+1

(
B′

jMjBj

B′

j(M − Mj)Bj

)
, (6)

which is equivalent to:

max
Bj∈RD+1

(
B′

j(M − Mj)Bj

B′

jMjBj
=

B′

jMBj

B′

jMjBj
− 1

)
. (7)

2.1.3. Analytical solution
The final optimization problem can be rewritten, according to

the Rayleigh–Ritz quotient method [41], as:

max
Bj∈RD+1

(
B′

jMBj
)

′

(8)

s.t. BjMjBj = T,

4

and can be solved using Lagrange multipliers. The Lagrangian [42]
is:

L = B′

jMBj − λ1(B′

jMjBj − T), (9)

where λ1 is the Lagrange multiplier associated with the first
constraint. Equating the derivative of L to zero gives:
∂L
∂Bj

= 2MBj − 2λ1MjBj = 0, (10)

o:

Bj = λ1MjBj, (11)

hich is a generalized eigenvalue problem (M,Mj) that can
olved using any eigenvalue routine.
A straightforward way to resolve the problem is by left-

ultiplying the expressions by M−1
j (if Mj is not singular):

M−1
j M)Bj = λ1Bj, (12)

hich is a simple eigenvalue problem for the matrix (M−1
j M).

inally, it is important to stress that as Eq. (7) is a maximization
roblem, the eigenvector associated with the optimal Bj vector is
he one having the largest eigenvalue.

The algorithmic flow of the first version of the model, named
arametrized Targets ELM (PTELM), is shown in Fig. 1, being eig(·)
he function that solves the generalized eigenvalue problem.

.1.4. Regularization
The first version of the algorithm has two implicit drawbacks:

i) the norm of Bj, ∥Bj∥
2, depends on the value of the first

igenvalue of the matrix Mj, and therefore, there is no a proper
ontrol on it, and (ii) the solution of the system depends on that
he matrix Bj is not singular. Both problems can be addressed by
ncluding an additional constraint on the norm of the parameters
ector in the optimization problem as follows:

max
j∈RD+1

(
B′

jMBj
)

.t. B′

jMjBj = T
B′

jBj = 1.

(13)

The Lagrangian of the optimization problem is now defined
s:

= B′

jMBj − λ1(B′

jMjBj − T) − λ2(B′

jBj − 1), (14)

nd equating the derivative of L to zero:
∂L

= 2MBj − 2λ1MjBj − 2λ2Bj = 0. (15)

∂Bj
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Therefore the solution satisfies that:

(M − λ1Mj − λ2I)Bj = 0, (16)

or

(M − λ1(Mj + δI))Bj = 0, (17)

with δ =
λ2
λ1
. Again, this is a generalized eigenvalue problem

ith matrices (M,Mj + δI), and the solution of the system is the
igenvector of largest eigenvalue of (Mj +δI)−1M. As can be seen,

the regularization strengthens the main diagonal of the matrix Mj
in order to make it full rank.

The algorithmic flow of model with regularization (Fig. 2),
named Parametrized Targets with Regularization ELM (PTRELM),
presents the following modifications with respect to its base
model, the PTELM model (Fig. 1): (i) it includes two hyper-
parameters (the number of basis functions, D, and the importance
of the regularization in the model, δ) and (ii) the eigenvalue
function routine is called with the matrices (M,Mj + δI).

.1.5. Kernel version
In the kernel implementation of the model, the h(x) function

s an unknown feature mapping. Explicitly computing the map-
ings h(x) can be computationally expensive and, in many cases,
ntractable. For example, the unknown feature mapping may be
nfinitely dimensional. Fortunately, there are certain functions
(xi, xj) that compute the dot product in another space, k(xi, xj) =

h(xi),h(xj)
⟩
(for all xi and xj in the input space). For the sake of

implicity, the kernel function implemented in this study is the
aussian one:

(u, v) = exp(−σ∥u − v∥2), (18)

here σ ∈ R is the kernel parameter. Thus, we will reformulate
he solution to group the h(x) terms in dot products and apply the
ernel trick to them (substituting those elements by their kernel
unctions), rather than explicitly mapping the training patterns to
he feature mapping.

PTRELM can be reformulated in terms of dot products by
irst noting that βj, j = 1, . . . , J , will have an expansion of the
orm [43]:

j =

N∑
αjnh(xn), (19)
n=1

5

where αj = (αj1, . . . , αjN ) ∈ RN is the vector of parameters to be
stimated associated to the jth class. Thus, the first objective of
he optimization problem could be rewritten as:

x∈Cj

(
h′(x)βj − β0j

)2
=

∑
x∈Cj

(
h′(x)

N∑
n=1

αjnh(xn) − β0j

)2

=

∑
x∈Cj

(
N∑

n=1

k(x, xn)αjn − β0j

)2

.

Let us denote the vector of parameters of the jth class Aj as

j =

(
β0j
αj

)
∈ RN+1 and K(x) as K(x) = (k(x, x1), . . . , k(x, xN ))

RN . Additionally, the matrix Pj is, in this case, defined as:

j =

∑
x∈Cj

(
−1
K(x)

) (
−1 K′(x)

)
∈ R(N+1)×(N+1),

ith P =
∑J

j=1 Pj. In fact, the matrix Pj can be alternatively be
xpressed as:

j =

(
Nj −

∑
x∈Cj

K′(x)
−
∑

x∈Cj
K(x) K′

jKj

)
∈ R(N+1)×(N+1),

here

j =
(
K′ (x) , xn ∈ Cj

)
∈ RNj×N .

aking this into account, the first objective could be rewritten in
atrix form as follows:

x∈Cj

(
N∑

n=1

k(x, xn)αjn − β0j

)2

=

∑
x∈Cj

(
(
−1 K′(x)

)
Aj)2

=

∑
x∈Cj

A′

j

(
−1
K(x)

) (
−1 K′(x)

)
Aj

= A′

jPjAj.

Analogously, the second objective could be reformulated in its
ernel version as:

′(P − P )A , (20)
j j j
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Fig. 3. KPTRELM training algorithm framework.
nd the optimization function in the kernel version of the model
s:

max
j∈RN+1

(
A′

j(P − Pj)Aj

A′

jPjAj
=

A′

jPAj

A′

jPjAj
− 1

)
. (21)

Again, the solution of the optimization problem (including also
regularization) is the eigenvector of the largest eigenvalue of the
generalized eigenvalue problem with matrices (P, Pj + δI).

Hence, the kernelized version of the model with regulariza-
tion, named Kernel PTRELM (KPTRELM), includes two hyper-
parameters: the kernel and regularization parameters, σ and δ,
and solves the generalized eigenvalue problem associated with
matrices (P, Pj + δI). Finally, Fig. 3 shows the algorithmic flow of
the KPTRELM model.

Given the solution for αj for the jth class, the projection of a
new data (test) point, x, is given by:

h′(x)βj = h′(x)
N∑

n=1

h(xn)αjn

=

N∑
n=1

k(x, xn)αjn

= K′(x)αj

2.2. Networks with direct links

For the adaptation of the proposal to RFNNs with direct links,
it is essential to consider that the input of the output layer of
the network includes both the basis functions’ outputs and the
original input data (as there are direct links from the input to
the output layer). For this reason, the parameters to be estimated
per class has the dimensions, βj ∈ RD+K and β0j ∈ R and
onsequently, the objective function is defined as:

min
j∈RD+K ,β0j∈R

⎛⎝∑x∈Cj

(
(h′(x) x′)βj − β0j

)2∑
x/∈Cj

(
(h′(x) x′)βj − β0j

)2
⎞⎠ . (22)

ccordingly, the vector with the parameters to be estimated is

efined as Bj =

(
β0j
βj

)
∈ RD+K+1, the design matrix Mj has the

imension (D+K + 1)× (D+K + 1) and it is defined in this case
s:

j =

⎛⎝ Nj −
∑

x∈Cj
h′(x) −

∑
x∈Cj

x′

−
∑

x∈Cj
h(x) H′

jHj H′

jXj

−
∑

x X′H X′X

⎞⎠ ,
x∈Cj j j j j
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with Xj =
(
x′, x ∈ Cj

)
∈ RNj×K . As can be seen, the main

difference in the design matrix is that the one proposed for
models with direct links includes the variances and interactions
among the basis functions and the variances and interactions
among the original input variables, along with the interactions
between input variables and basis functions. In this sense, the
design matrix associated with the model for RVFL architectures
includes more information about the data of the machine learning
problem.

In algorithmic terms, it is vital to clarify that the PTRVFL and
the PTRRVFL are the same as their PTELM and PTRELM coun-
terparts with the unique modification of the design matrix Mj,
which in the RVFL versions of the model also includes interac-
tions among input patterns and input data with basis functions’
outputs.

In the kernel version of the algorithm, named KPTRRVFL, the
model includes two types of kernels in its formulation: the gaus-
sian kernel denoted as k(u, v), and the linear kernel, denoted as
l(u, v). The linear kernel is mathematically defined as:

l(u, v) = u′v, (23)

which is the simplest kernel function and generally yields models
equivalent to their non-kernelized counterparts. Additionally, it
is also important to define a function associated with the linear
kernel which is represented as L(x) = (l(x, x1), . . . , l(x, xN )) ∈

RN .
Similarly to what occurs in the RVFL neural versions of the

model, the main difference in the kernel version for RVFL lies in
the design matrix, Pj, which in this case is defined as:

Pj =

(
Nj −

∑
x∈Cj

K′(x) + L′(x)
−
∑

x∈Cj
K(x) + L(x) K′

jKj + L′

jLj

)
∈ R(N+1)×(N+1),

with Lj =
(
L′ (x) , xn ∈ Cj

)
∈ RNj×N . As seen in the design matrix

of the KPTRRVFL model, the outputs of the gaussian kernel are
summed to those of the linear kernel, keeping the dimension
of the problem constant. Again, in algorithmic terms, the only
difference to its ELM version lies in the design matrix, Pj.

2.3. Classification rule

Once the projection vectors per class and the corresponding
reference points have been estimated, it is necessary to determine

a criterion for classifying a given test pattern. In this manuscript,
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the classification criterion will be to assign the pattern to the class
that minimizes the following expression:

|v′(x)βj − β0j|

∥βj∥
2 , (24)

or j = 1, . . . , J . In this way, the predicted class label for a test
attern x is stored in a vector ŷ (x) ∈ {0, 1}J , in which all values
re equal to 0 except for the element in the position with the
inimum output value for Eq. (24) that is equal to 1. In addition,

he term ∥βj∥
2 in the kernel version of the model without direct

inks is defined as:

βj∥
2

= ∥ (h(x1) . . . h(xN )) α∥
2

= α′

j(ΩG)αj, (25)

where ΩG =

⎛⎜⎝ h(x1)
...

h(xN )

⎞⎟⎠ (h(x1) . . . h(xN )) =
(
ΩGi,j

)
i,j=1,...,N

∈

RN×N is the gaussian kernel matrix, which is defined as:

ΩGi,j = k(xi, xj). (26)

Accordingly, the term ∥βj∥
2 in the kernel version of the model

with direct links is defined as:

∥βj∥
2

= α′

j(ΩG + ΩL)αj, (27)

where ΩL =

⎛⎜⎝ x1
...

xN

⎞⎟⎠ (x1 . . . xN) =
(
ΩLi,j

)
i,j=1,...,N

∈ RN×N is

the linear kernel matrix, which is defined as:

ΩLi,j = l(xi, xj). (28)

2.4. Analysis of the computational burden

In this section, the computational complexity of the PTRELM
method is firstly analyzed and primarily compared with the base
ELM neural network model. The comparison of the kernel meth-
ods is trivial as they compute a similar formulation to their
neural networks comparison but scaling in N (number of training
patterns) instead of in D (number of hidden nodes). The com-
putational complexity of the ELM model (in its neural network
version) is conditioned by the number of hidden nodes, D, and the
size of the training set, N , as it must invert a matrix of dimension
D × D and multiply the result with a matrix of dimension D ×

N . The computational complexity of the multiplication of two
matrices D × N and D × D is O(D2

· N), and the complexity
of inverting the matrix of dimension D is O(D3) [44]. Therefore,
the computational complexity of the ELM method (in its neural
network version) is O(D3

+ (D2
· N)).

The analysis for RVFL models is the same but taking into
account that the complexity of the RVFL model (in its neural
network version) depends on the number of hidden nodes, D, the
number of attributes, K , and the size of the training set, N , as it
must invert a matrix of dimension (D+K )× (D+K ) and multiply
the result with a matrix of dimension (D + K ) × N .

In the case of the PTRELM model, it has to multiply J times two
matrices of dimensions Nj×D for the computation of the different
Mj matrices, O(J ·D2

·Nj), to invert J times matrices of dimensions
(D+ 1× D+ 1), O(J · (D+ 1)3), to multiply again two matrices of
dimensions (D + 1 × D + 1), O(J · (D + 1)3) and finally to solve J
times an eigenvalue problem with matrices of dimensions again
(D + 1 × D + 1), O(J · (D + 1)3). In this way, the computational
complexity of the proposed method is O((J ·D2

·Nj)+3·(J ·(D+1)3)).
Finally, it is important to remind that the PTRRVFL has a similar
computational complexity but taking into account that the design
matrices, M , have, in this case, dimensions (D + K ) × (D + K )
j

7

and consequently, the computations increase with the factor K if
compared to the PTRELM version of the model.

3. Experimental settings

This section summarizes the experimental study conducted
to show the competitive performance of the proposed optimiza-
tion model for RFNNs with and without direct links. Section 3.1
presents a description of the datasets used in the experimental
validation. The measures employed for the performance eval-
uation are detailed in Section 3.2, whereas the experimental
configuration of our proposal is given in Section 3.3. Finally, the
implemented statistical tests to validate the results are included
in Section 3.4.

3.1. Datasets

The experimental design has been set up to validate our pro-
posal on classification problems. For this purpose, 22 datasets
have been selected to test the robustness of the method when ap-
plied to very different problems. Thus, the datasets used include
differences in the number of patterns, attributes, classes, and the
number of patterns per class.

Table 1 summarizes the properties of the selected datasets,
which have been extracted from the UCI repository [45]. It shows
for each dataset, its name (Dataset), the number of patterns
and attributes (Size), the number of classes (#Classes) and the
distribution of instances within classes (Class distribution). It can
be seen that both binary and multiclass problems have been
chosen, varying the number of classes from 2 to 11. The balloons
datasets have the minimum number of patterns (20), whereas
mushroom has 8124 as the maximum of our datasets. The number
of attributes ranges from 2 to 111. Furthermore, while several
databases are balanced, others reach an imbalance ratio (the
number of patterns of the majority class divided by the number
of patterns of the minority class) of 7.33.

As the format of the UCI datasets is not always consistent, each
one has been downloaded and processed in a standard format.
It involves (1) removal of missing values by rows or by columns
depending on which retains more information, (2) binarization of
categorical input attributes, (3) scaling of input attributes in the
interval [0, 1] due to their importance for distance-based classi-
fiers such as ELM, and (4) labels have been binarized following a
1-to-J encoding.

Given the stochasticity of the algorithms, a ten-fold cross-
validation procedure (3 repetitions per fold) has been carried out.
Therefore, 30 results are obtained for all compared algorithms,
ensuring an adequate statistical significance of the results. The
partitions are the same for all compared methods.

3.2. Measures

Two performance measures are used to evaluate the efficacy of
the proposed method: correct classification rate and separability.

• Correct Classification Rate (CCR): is the proportion of suc-
cessful hits (correct classifications) from all predictions
made. It has been by far one of the most widely used metrics
for assessing classifier performance for years. It is defined
as:

CCR =
1
N

N∑
i=1

I (̂y(xn) = yn), (29)

where yn ∈ {0, 1}J and ŷ(xn) ∈ {0, 1}J are the real and esti-
mated target of pattern xn according to the 1-of-J encoding,
and I(·) is the zero–one loss function.
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Table 1
Characteristics of alphabetically sorted datasets.
Dataset Size #Classes Class distribution

Balance-scale (625, 4) 3 (288, 288, 49)
Balloons-a (20, 4) 2 (12, 8)
Balloons-b (20, 4) 2 (12, 8)
Balloons-c (20, 4) 2 (12, 8)
Breast-cancer (286, 39) 2 (218, 68)
Breast-cancer-wisconsin (683, 9) 2 (444, 239)
Breast-cancer-wisconsin-diagnostic (569, 30) 2 (357, 212)
Congressional-voting-records (435, 48) 2 (267, 168)
Connectionist-bench (990, 10) 11 (90, . . . , 90)
Dermatology (358, 34) 6 (111, 71, 60, 48, 48, 20)
Fertility (100, 9) 2 (88, 12)
Hill-valley (606, 100) 2 (305, 301)
Iris (150, 4) 3 (50, 50, 50)
Lung-cancer (32, 146) 3 (9, 13, 10)
Monks-problems-1 (124, 6) 2 (62, 62)
Monks-problems-2 (432, 6) 2 (290, 142)
Mushroom (8124, 111) 2 (4208, 3916)
Spect-heart (80, 22) 2 (40, 40)
Thoracic-surgery (470, 27) 2 (400, 70)
Thyroid-disease-new-thyroid (215, 5) 3 (150, 35, 30)
Tic-tac-toe-endgame (958, 27) 2 (626, 332)
Wall-following-robot-navigation (5456, 2) 4 (2205, 2097, 826, 328)
s
C
c
p
t
r
(
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o

3

s
c
d

• Separability (SEP): in this work, the separability between
the predicted classes is also tested. SEP tests, for each class,
how close the projections of the patterns of that class are
to their reference point and how far away the patterns that
do not belong to that class are with respect to this point.
Mathematically:

SEP =

J∑
j=1

(∑
x∈Cj (h

′(x)βj − β0j)∑
x/∈Cj

(h′(x)βj − β0j)

)
, (30)

where h′(x)βj is the numerical output of the model for
the jth class, and β0j is the reference point of the j-class
(which in the state-of-the-art ELM-based models is equal to
one). As previously described, the output for the RVFL-base
models for the jth class and the test pattern x is defined as
(h′(x) x′)βj.

.3. Algorithms and configuration

The first three stages compare the RFNN models with and
ithout direct links. For this purpose, pairwise comparisons of
he algorithms are made using parametrized target outputs pro-
osed in this work with respect to their standard counterparts
odels of the literature. Thus, the first phase consists of testing

he performance of the new optimization on the neural versions
f RFNNs (ELM and RVFL). The second stage works with their
ernel versions (KRR and KRVFL). Furthermore, the third stage
ompares the implemented deep models (DeepELM and Deep-
VFL). Finally, in the fourth phase, a qualitative analysis is carried
ut, showing graphically the projections made by each method to
ee the separability between classes intuitively.
The experimental configuration of our proposals, as well as

hat of the state-of-the-art algorithms, is described below:

• ELM: Extreme Learning Machine (described in Section 1).
• PTRELM: Parametrized Target outputs Regularized ELM (de-

scribed in Section 2.1.4).
• RVFL: Random Vector Functional Link neural networks (de-

scribed in Section 1).
• PTRRVFL: Parametrized Target outputs RVFL (described in

Section 2.2).
• KRR: An implementation of the Kernel Ridge Regression

model [46], which solves the least squares optimization with
8

the L2-norm regularization (ridge regression) for classifica-
tion problems using the 1-of-J encoding and applying the
kernel trick in its non-linear version. It is identical to the
KELM [19], but the former will be used due to its original
development.

• KPTRELM: Kernel version of PTRELM (described in Sec-
tion 2.1.5).

• KRVFL: Kernel version of RVFL [47].
• KPTRRVLF: Kernel version of PTRRVFL (described in Sec-

tion 2.2).
• DeepELM: An implementation of a deep model based on

autoencoders for ELM [48].
• DeepPTRELM: Deep model in which the hidden layers are

determined through autoencoders (as suggested in [48]),
whereas the parameters of the output layer are estimated
according to the proposed optimization described in Sec-
tion 2.1.4.

• DeepRVFL: Adaptation of the deep model proposed in [48]
to RVFL.

• DeepPTRRVFL: The deep version of PTRRVFL, where the
parameters of the different hidden layers are computed
through autoencoders [48] and the parameters of the output
layer are determined with the proposed objective function
and including direct links from the input to the output layer.

All non-kernel variants used a sigmoid activation function for a
ingle layer of D = 1000 neurons. The regularization parameter,
, has been determined by a grid search through 5-fold nested
ross-validation for all the models considered for comparison
urposes (C ∈ {10−3, . . . , 103

}). In the case of kernel methods,
he kernel function employed was the Gaussian one, and its cor-
esponding parameter, σ , was also determined by a grid search
σ ∈ {10−3, . . . , 103

}). For deep models, the number of hidden
ayers was set to 4, as in [48]. Aiming to give each layer the
ame competitive advantage as the no-deep models, the number
f neurons in each hidden layer was set to 1000.

.4. Statistical tests

In order to select the best method based on its performance,
tatistical analysis of the results is necessary. As mentioned above,
omparisons will be on a pairwise basis. Since the nature of the
atasets used does not ensure normality, we will proceed with
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Table 2
Comparison of ELM against PTRELM in terms of CCR and SEP . The results are expressed as their mean and standard deviation: MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

ELM PTRELM ELM PTRELM

Balance-scale 0.91110.0065 0.94520.0173 0.25520.0247 0.02630.0157
Balloons-a 1.00000.0000 1.00000.0000 0.67250.2499 0.38610.3651
Balloons-b 1.00000.0000 1.00000.0000 0.76600.3646 0.21170.1845
Balloons-c 0.91670.1800 1.00000.0000 0.86030.6405 0.32120.2706
Breast-cancer 0.75160.0290 0.75790.0172 1.84250.2773 0.49610.3278
Breast-cancer-wisconsin 0.96520.0145 0.96830.0131 0.07700.0245 0.77761.0914
Breast-cancer-wisconsin-diagnostic 0.96560.0203 0.96880.0135 0.12830.0343 0.02620.0090
Congressional-voting-records 0.94280.0264 0.94760.0131 0.13110.0559 0.04430.0152
Connectionist-bench 0.90030.0133 0.85910.0330 0.19610.0090 0.01890.0036
Dermatology 0.97650.0118 0.96720.0151 0.09660.0367 0.68220.5628
Fertility 0.87880.0000 0.89760.0351 6.84670.3684 4.82651.8609
Hill-valley 0.74360.0444 0.74850.0425 0.85790.1226 0.55760.4312
Iris 0.96400.0227 0.96800.0193 0.08050.0268 0.01130.0043
Lung-cancer 0.45000.0527 0.54000.1174 1.39200.1012 0.84370.4367
Monks-problems-1 0.85280.0334 0.93820.0246 0.37790.0366 0.13030.0346
Monks-problems-2 0.69580.0453 0.82850.0379 1.56760.5674 0.69500.6195
Mushroom 0.99890.0009 1.00000.0000 0.00630.0049 0.00040.0002
Spect-heart 0.73080.0811 0.70770.1121 1.36950.6478 1.79281.3433
Thoracic-surgery 0.83850.0291 0.79490.0707 4.70010.6293 4.50501.4304
Thyroid-disease-new-thyroid 0.91270.0374 0.95920.0315 0.14160.0859 0.04210.0314
Tic-tac-toe-endgame 0.98060.0087 0.98560.0066 0.07040.0271 0.01610.0046
Wall-following-robot-navigation-2 0.74010.0093 0.78840.0141 0.40550.0097 0.04990.0017

Mean values 0.8689 0.8896 1.0383 0.7483
Mean rankings (R̄) 1.7727 1.2273 1.8636 1.1364

The best result is shown in bold.
v
a

non-parametric tests, as the assumptions for parametric tests are
not met [49].

For comparisons between each pair of models, the Wilcoxon
signed-rank test will be used [50]. It is a non-parametric statisti-
cal hypothesis test used to test the location of a population from
a sample of data or to compare the locations of two populations
using two paired samples.

Specifically, one-sided tests will be used, where the null hy-
pothesis is H0 : Me1 = Me2, and the alternative hypothesis is
H1 : Me1 > Me2 in the case of CCR, or H1 : Me1 < Me2 in the
case of SEP, being MeX the median of the model X .

4. Results

This section discusses the results obtained by the different
methods when applied to the commented datasets. Therefore, the
performance of the different methods, together with their statisti-
cal analysis of them, are included in the following subsections. As
aforementioned, the experimental validation is divided into four
phases.

4.1. Comparison in neural versions of RFNNs

All results tables show the comparison of the models two
by two, i.e. the standard version versus the one proposed in
the manuscript. The mean result and the standard deviation of
the 30 runs are shown for each dataset and method. Note that
standard deviation is indicated as a subscript. Furthermore, the
mean values obtained by each method in each measure CCR and
SEP , as well as the mean rank R̄, are also included at the end of
he table. The best result for each dataset is highlighted in bold.

Table 2 shows the performance of the PTRELM model along
ith the baseline ELM model. As can be seen, PTRELM improves
he standard ELM in 18 out of 22 datasets in terms of CCR,
hich is reflected in the mean ranking obtained by them: R̄ =

.2273 and R̄ = 1.7727, in favor of PTRELM. In addition, PTRELM
chieves a CCR of 0.8896, whereas ELM gets 0.8689, showing a

performance improvement. The results of the standard deviations
are relatively low and similar between both algorithms, which
9

means that the algorithms do not depend to a large extent on
the initialization.

When analyzing the results in SEP , PTRELM achieves the best
alues (lowest errors) in 19 datasets, which translates into an
verage ranking of R̄ = 1.1364 compared to R̄ = 1.8636 obtained

by the ELM algorithm. Besides, the differences in SEP obtained for
all datasets are more noticeable: 0.7483 and 1.0383, respectively.

The Wilcoxon test reports a p-value of 0.0159 in the case of
CCR and 0.0074 in the case of SEP. This means that in both situ-
ations, the null hypothesis is rejected since there are significant
differences in favor of the proposed methodology under a level of
significance α = 0.05 (p-value < α).

Table 3 shows the comparative information when using RFNNs
with direct links, i.e. RVFL. In this case, the results are quite
similar to the ELM case. On the one hand, the CCR of the proposed
PTRRVFL methodology is better in 18 out of 22 databases, which
means a value of 0.8882 compared to 0.8751 for RVFL. This can
also be seen in the average ranking obtained by each model, being
1.25 versus 1.75.

In the same vein, the SEP is improved by this paper’s proposal
on 19 databases, with an average ranking of 1.1364 versus 1.8636.
In addition, the differences in SEP are also more noticeable, being
0.7406 obtained by the PTRRVFL with respect to 1.0265 of the
RVFL.

The Wilcoxon test rejects the null hypothesis that both algo-
rithms perform equally. In this sense, for both CCR and SEP , our
methodology is statistically better at the 0.05 significance level.
The p-value in the case of CCR is equal to 0.0436, and in the case
of SEP, it is 0.0106.

Finally, we have also implemented in a MATLAB code frame-
work the ELM-GA, RVFL-GA, ELM-PSO, and RVFL-PSO (ELM and
RVFL models in which the parameters associated with the hidden
layer are not randomly determined but computed through a
Genetic Algorithm, GA and Particle Swarm Optimization, PSO)
and compared their results with their corresponding counterparts
proposed in the manuscripts. The results are statistically in line
with the reported in the randomized baseline models, so tables
for those comparisons are not included in the manuscript (aiming
not to overwhelm the readers with uninformative Tables).
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Table 3
Comparison of RVFL against PTRRVFL in terms of CCR and SEP. The results are expressed as their mean and standard deviation:
MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

RVFL PTRRVFL RVFL PTRRVFL

Balance-scale 0.91110.0065 0.94710.0174 0.25430.0248 0.02050.0041
Balloons-a 1.00000.0000 1.00000.0000 0.69960.2408 0.38490.3627
Balloons-b 1.00000.0000 1.00000.0000 0.74510.3511 0.21270.1851
Balloons-c 0.95000.1581 1.00000.0000 0.71830.4104 0.32210.2701
Breast-cancer 0.75470.0290 0.76000.0184 1.80580.2713 0.52950.3145
Breast-cancer-wisconsin 0.96520.0145 0.96740.0136 0.07710.0247 1.02751.1337
Breast-cancer-wisconsin-diagnostic 0.96560.0194 0.97090.0125 0.13730.0334 0.03220.0256
Congressional-voting-records 0.93660.0249 0.94620.0141 0.13970.0531 0.04470.0151
Connectionist-bench 0.90360.0132 0.85910.0313 0.19390.0088 0.01890.0036
Dermatology 0.97730.0119 0.96470.0147 0.09460.0353 0.77940.5569
Fertility 0.87880.0000 0.88060.0356 6.81970.3957 4.15801.2756
Hill-valley 0.74260.0438 0.75590.0407 0.86870.1203 0.46450.2061
Iris 0.96000.0249 0.96800.0193 0.08420.0274 0.01140.0044
Lung-cancer 0.52000.0789 0.52000.1033 1.40920.0374 0.81370.4649
Monks-problems-1 0.85560.0308 0.94380.0213 0.37760.0370 0.11600.0325
Monks-problems-2 0.69930.0455 0.84170.0446 1.47590.4667 0.69220.6179
Mushroom 0.99890.0008 1.00000.0000 0.00640.0049 0.00030.0002
Spect-heart 0.74230.0603 0.70770.0910 1.21550.3508 1.82291.3500
Thoracic-surgery 0.85130.0041 0.78720.0731 4.86020.4618 4.74211.9906
Thyroid-disease-new-thyroid 0.91270.0374 0.95070.0347 0.13800.0848 0.03490.0268
Tic-tac-toe-endgame 0.98340.0061 0.98560.0066 0.05960.0207 0.01450.0043
Wall-following-robot-navigation-2 0.74290.0095 0.78470.0127 0.40120.0087 0.04980.0017

Mean values 0.8751 0.8882 1.0265 0.7406
Mean rankings (R̄) 1.7500 1.2500 1.8636 1.1364

The best result is shown in bold.
s
i

4.2. Comparison in kernel versions of RFNNs

Table 4 includes the results of the kernel version comparison
in the case of the ELM. In this case, the CCR results indicate that
both algorithms have a similar ranking performance (both have
an R = 1.5 due to both being the best ones in 12 datasets).
till, the proposed methodology is slightly lower on average, with
alues of 0.8623 and 0.8821, respectively.
Nonetheless, the proposed methodology has a much more

onsiderable outperformance in the case of the SEP metric. This
ranslates to an improvement on SEP from 1.4055 to 1.0957. In
addition, the average ranking of the KPTRELM algorithm is much
more significant than in the case of the CCR, with a value of
1.2273 versus 1.7727 obtained by the KRR.

In the case of CCR, the Wilcoxon test returns a p-value of
0.18019 accepting the null hypothesis which states that both
algorithms performs equally for a level of significance α = 0.05
nd α = 0.10 (note that p > α in both cases). However, when
he test is applied to results in SEP , the p-value is 0.0321, which
means that the differences are statistically significant with α =

0.05. In conclusion, it can be said that considering both metrics,
our proposal improves statistically on the standard model.

Table 5 presents the results when comparing KPTRRVFL agai-
nst KRVFL. Here the results are pretty striking. On the one hand,
the CCR indicates that the best algorithm is the standard KRVFL
version, with an average value CCR of 0.8729 versus 0.8623. In
ddition, the mean ranking is 1.3182 versus 1.6818.
On the other hand, in the SEP metric, the ranking results

re opposite since KPTRRVFL obtains an average ranking R of
.3182 versus 1.6818 obtained by KRVFL. Furthermore, in SEP ,
he proposal slightly improves the standard version (0.9794 and
.9925, respectively).
In the case of CCR, the Wilcoxon test returns a p value of

.1148 accepting the null hypothesis which states that both mod-
ls performs equally for a level of significance α = 0.05 and
= 0.10 (note that p > α in both cases). Similarly, when the

est is applied to results in SEP , the p value is 0.2687, which
10
means that the differences are not statistically significant. It can
be concluded that there is a tie between the two methodologies.

4.3. Comparison in deep models of RFNNs

The comparison results between DeepELM and DeepPTRELM
are shown in Table 6. Generally, the results obtained for this
methodology are worse than the rest. It is because the architec-
ture of the deep model has not been trained since the purpose of
the comparative is to know whether the proposed optimization
positively influences the final results with the same architecture.
Having said that, we must say that it is the only case where our
model is worse in terms of CCR and SEP .

Thus, CCR of DeepELM outperforms the CCR of DeepPTRELM
with values of 0.7376 and 0.6867, respectively. The mean rank-
ings R are not very different (1.4318 and 1.5682). In SEP , the
differences are larger in favor of DeepELM, with R equal to 1.1818
and 1.8182. The Wilcoxon tests corroborate those results. CCR and
SEP p-values are 0.0238 and 0.0012, respectively. The tests state
that there are statistical differences with α = 0.05 in favor of
DeepELM.

Finally, results of DeepRVFL and DeepPTRRVFL are compared
in Table 7. In this case, it is remarkable how the version with
direct links achieves outstanding results without the need to
optimize the architecture, as in the case of DeepELM.

Regarding CCR, the DeepPTRRVFL proposal improves the deep
tandard model in 15 databases. In addition, the average ranking
s 1.3636 versus 1.6364. The results in CCR also affirm that the
proposal improves with a value of 0.8453 versus 0.8244. In SEP,
the results are also better in 14 of the 22 databases. This can be
seen summarized in the values of R (1.3182 and 1.6818), and in
the values of SEP (0.8670 versus 1.2469).

Wilcoxon tests determine the existence of significant differ-
ences in favor of our DeepPTRRVFL proposal in both metrics with
a significance value of α = 0.10. Here, the p-values are 0.0925
and 0.0635 (p-values < α in both cases).
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i

Table 4
Comparison of KRR against KPTRELM in terms of CCR and SEP. The results are expressed as their mean and standard deviation:
MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

KRR KPTRELM KRR KPTRELM

Balance-scale 0.89900.0128 0.94760.0256 0.20190.0185 0.13620.4185
Balloons-a 0.96670.1054 0.96670.1054 2.05000.1581 1.21180.5222
Balloons-b 1.00000.0000 0.91670.1416 1.56350.8349 0.92350.9110
Balloons-c 0.96670.0703 0.93330.1405 1.87090.6042 0.95300.7333
Breast-cancer 0.72840.0396 0.75890.0213 2.37720.7173 2.95060.9640
Breast-cancer-wisconsin 0.96480.0145 0.96700.0130 0.78050.8631 0.07010.0932
Breast-cancer-wisconsin-diagnostic 0.97040.0128 0.96080.0142 0.82060.7383 0.01850.0145
Congressional-voting-records 0.95240.0214 0.92070.0176 0.13530.0922 0.04580.0212
Connectionist-bench 0.97820.0123 0.93060.0296 0.60630.5239 0.24240.0335
Dermatology 0.96470.0213 0.90250.0542 0.44930.5655 0.04590.0177
Fertility 0.86970.0379 0.87580.0096 4.98662.5573 5.71584.9468
Hill-valley 0.67430.0348 0.49750.0249 1.13550.1070 3.18702.1648
Iris 0.94000.0411 0.94200.0290 1.10230.5525 0.00840.0073
Lung-cancer 0.38000.1317 0.53000.0949 1.44330.1146 0.99340.2940
Monks-problems-1 0.87920.0376 0.93470.0286 0.35170.0585 0.11120.0389
Monks-problems-2 0.75760.0421 0.81180.0226 1.95820.7578 0.18670.1031
Mushroom 0.99980.0004 0.94120.0043 2.00520.0000 0.00300.0009
Spect-heart 0.73460.0665 0.73460.0757 1.24110.3311 0.94650.5933
Thoracic-surgery 0.84290.0172 0.85260.0000 4.22900.5041 5.94170.0173
Thyroid-disease-new-thyroid 0.96900.0197 0.97040.0261 1.40851.3602 0.01900.0188
Tic-tac-toe-endgame 0.98560.0066 0.74040.0197 0.10780.0110 0.39460.0502
Wall-following-robot-navigation-2 0.98270.0025 0.93440.0082 0.09610.2223 0.00040.0005

Mean values 0.8821 0.8623 1.4055 1.0957
Mean rankings (R̄) 1.5000 1.5000 1.7727 1.2273

The best result is shown in bold.
Table 5
Comparison of KRVFL against KPTRRVFL in terms of CCR and SEP. The results are expressed as their mean and standard deviation:
MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

KRVFL KPTRRVFL KRVFL KPTRRVFL

Balance-scale 0.90100.0151 0.90290.0326 0.21970.0298 0.44210.4780
Balloons-a 0.90000.1165 1.00000.0000 0.76670.5905 0.21750.4344
Balloons-b 0.95000.0805 1.00000.0000 0.74010.4724 0.98221.1941
Balloons-c 0.78330.1581 1.00000.0000 0.68370.4775 1.05842.5696
Breast-cancer 0.75580.0301 0.68840.1480 1.78140.3846 1.12180.5720
Breast-cancer-wisconsin 0.97090.0130 0.96650.0174 0.41480.7458 0.08700.0380
Breast-cancer-wisconsin-diagnostic 0.97040.0100 0.94870.0146 0.07810.0180 0.02100.0127
Congressional-voting-records 0.95100.0182 0.93450.0196 0.11040.0406 0.10580.0335
Connectionist-bench 0.98180.0091 0.92700.0256 0.06610.0138 0.01310.0022
Dermatology 0.97230.0164 0.83870.0467 0.08470.0365 0.00260.0011
Fertility 0.87270.0128 0.83640.2330 7.56444.2977 6.70232.2154
Hill-valley 0.67990.0287 0.71780.0692 1.30820.2767 1.92760.7541
Iris 0.96000.0211 0.90000.0573 0.08150.0393 0.01010.0131
Lung-cancer 0.44000.1075 0.48000.1549 1.34910.0899 0.72790.5343
Monks-problems-1 0.89440.0301 0.77220.0424 0.32920.0451 0.55880.1983
Monks-problems-2 0.81110.0224 0.72080.1550 0.66950.0765 0.60730.9348
Mushroom 0.99880.0010 0.99660.0057 0.00260.0015 0.00020.0002
Spect-heart 0.64230.0832 0.80380.1203 1.38260.4180 1.03294.8332
Thoracic-surgery 0.83590.0222 0.75960.1360 4.03640.7385 4.99501.8659
Thyroid-disease-new-thyroid 0.96620.0201 0.94930.0313 0.10390.0445 0.04920.0304
Tic-tac-toe-endgame 0.98400.0067 0.89970.0378 0.04010.0083 0.88460.1883
Wall-following-robot-navigation-2 0.98280.0021 0.92680.0156 0.02200.0033 0.00010.0001

Mean values 0.8729 0.8623 0.9925 0.9794
Mean rankings (R̄) 1.3182 1.6818 1.6818 1.3182

The best result is shown in bold.
4.4. Qualitative analysis of the projections

This Section visually shows the numerical output of the model
and the reference point for all classes obtained for the different
algorithms. Thus, Figs. 4 and 5 illustrate the projections obtained
for each pattern in the dataset iris. The y-axis of ordinates repre-
sents the classes, whereas the x-axis represents, for each jth class,
ts reference point (β0j) and the value of the model (fj = v′(x)βj)
for each test pattern (x). The patterns belonging to each class are
11
shown with a blue circle, while the patterns from other classes
are marked with a cross.

Figs. 4 and 5 show that almost all methods accurately separate
the first-class patterns. Nevertheless, classes two and three are
more complicated, as seen in the overlapping of the blue and
black dots. Despite this, with the exception of DeepPTRELM (see
Fig. 5(d)), as discussed before, our optimization methodology
manages to make this overlapping practically non-existent. A
priori, although it may seem to exist, we are actually on a much
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Table 6
Comparison of DeepELM against DeepPTRELM in terms of CCR and SEP. The results are expressed as their mean and standard
deviation: MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

DeepELM DeepPTRELM DeepELM DeepPTRELM

Balance-scale 0.71150.0560 0.71540.1204 0.74080.2253 1.79610.0026
Balloons-a 0.70000.1054 0.73330.2108 2.12870.7730 2.49990.0002
Balloons-b 0.64000.1995 0.65000.2284 5.678710.8415 2.50000.0001
Balloons-c 0.68330.0946 0.56670.1405 2.53640.4103 2.50000.0000
Breast-cancer 0.75470.0361 0.63370.0539 1.90520.8808 3.50080.0819
Breast-cancer-wisconsin 0.95680.0208 0.87490.0886 0.12950.0675 2.40720.0002
Breast-cancer-wisconsin-diagnostic 0.95930.0100 0.83490.0493 0.19590.0375 2.28820.0001
Congressional-voting-records 0.93860.0309 0.84620.0423 0.15020.0423 1.98900.4834
Connectionist-bench 0.50150.0370 0.53760.0258 0.66240.0240 1.10000.0001
Dermatology 0.94290.0259 0.73780.0994 0.13800.0226 1.26840.0024
Fertility 0.87880.0000 0.88880.3487 7.38790.0001 7.38790.0001
Hill-valley 0.49410.0153 0.50300.0138 2.00480.0098 2.00010.0003
Iris 0.67200.0215 0.63600.1045 0.44970.1021 1.50070.0002
Lung-cancer 0.47000.1160 0.40000.1155 1.29010.2447 1.52040.0032
Monks-problems-1 0.57220.0602 0.54380.0714 1.63810.3089 2.00000.0001
Monks-problems-2 0.66880.0034 0.66880.0034 2.51450.0234 2.51450.0234
Mushroom 0.98420.0044 0.86280.0455 0.06110.0052 1.47850.7823
Spect-heart 0.70770.0413 0.76150.1022 1.21100.5523 1.99970.0002
Thoracic-surgery 0.85060.0043 0.63970.3002 5.56320.8416 5.95560.0000
Thyroid-disease-new-thyroid 0.82390.0489 0.91690.1842 0.84470.6303 2.72830.0001
Tic-tac-toe-endgame 0.69180.0284 0.77020.1368 1.35080.1795 2.42070.0091
Wall-following-robot-navigation-2 0.62450.1217 0.38450.1497 0.79920.4043 1.54430.0010

Mean values 0.7376 0.6867 1.7900 2.4955
Mean rankings (R̄) 1.4318 1.5682 1.1818 1.8182

The best result is shown in bold.
Table 7
Comparison of DeepRVFL against DeepPTRRVFL in terms of CCR and SEP. The results are expressed as their mean and standard
deviation: MeanSD .
Datasets–algorithms CCR(↑) SEP(↓)

DeepRVFL DeepPTRRVFL DeepRVFL DeepPTRRVFL

Balance-scale 0.88850.0119 0.88930.0031 0.42470.4169 0.00030.0005
Balloons-a 0.95000.0805 0.91670.1405 0.66200.3374 0.66760.6783
Balloons-b 0.93330.1405 1.00000.0000 0.91060.4604 1.50790.7601
Balloons-c 0.86670.1892 0.83330.0972 0.76000.6551 0.69250.4358
Breast-cancer 0.75370.0273 0.74790.0627 2.05520.6448 0.49240.4474
Breast-cancer-wisconsin 0.96520.0179 0.96870.0155 0.09010.0375 0.06760.0989
Breast-cancer-wisconsin-diagnostic 0.95560.0160 0.96980.0067 0.14770.0177 0.02650.0089
Congressional-voting-records 0.94620.0266 0.94690.1751 0.12650.0483 0.39670.4325
Connectionist-bench 0.50150.0370 0.53760.0132 0.66240.0240 1.43271.0145
Dermatology 0.97390.0156 0.96050.0218 0.11780.0321 0.11980.2714
Fertility 0.87880.0202 0.87880.0192 7.34440.0511 6.85380.0235
Hill-valley 0.68270.0344 0.66530.0220 1.34150.1920 0.01830.0042
Iris 0.91600.0858 0.96200.0596 0.22990.3322 1.27690.5481
Lung-cancer 0.44000.1075 0.55000.0154 1.36060.1212 0.69680.5981
Monks-problems-1 0.66110.0411 0.80140.0915 1.16990.4409 0.85382.6128
Monks-problems-2 0.66390.0082 0.67460.0126 2.51740.0580 1.43630.2098
Mushroom 0.99830.0014 1.00000.0000 0.00430.0046 0.72750.3417
Spect-heart 0.73850.0698 0.72310.0846 1.29930.5414 1.02700.5548
Thoracic-surgery 0.84420.0176 0.79810.2079 5.37890.9026 0.58880.2510
Thyroid-disease-new-thyroid 0.89010.0454 0.95770.0248 0.25510.0932 0.06430.0275
Tic-tac-toe-endgame 0.98400.0067 0.98400.0087 0.04000.0083 0.08160.0184
Wall-following-robot-navigation-2 0.70470.0611 0.83090.0182 0.53380.1669 0.05110.0013

Mean values 0.8244 0.8453 1.2469 0.8670
Mean rankings (R̄) 1.6364 1.3636 1.6818 1.3182

The best result is shown in bold.
larger scale of values than the other methods, so the separability
is much better. In this way, if we zoom in on these areas, the
distance between the points of one class and another would be
larger than those achieved by the other methods.

These results can be corroborated by what was stated an-
alytically: our method correctly classifies the patterns of each
class and separates the patterns of one class from the rest,
12
which leads to better results in generalization in almost all
models.

5. Conclusions and future research

This paper proposes an alternative classification model for
Randomized-based Feedforward Neural Networks using direct
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Fig. 4. Projections of test patterns for the iris dataset obtained by ELM, PTRELM, RVFL, PTRRVFL, KRR and KPTRELM. Patterns belonging to the class are shown by a
blue circle, while patterns from other classes are denoted by a cross. In addition, the reference point of each class is included as a red filled circle.
links (RVFL) and without using it (ELM). In the proposed clas-
sification framework, the patterns per class are projected to a
reference point (also tuned during the optimization procedure),
and the remaining patterns are projected as far away as possi-
ble from that reference point. The optimization framework has
been instantiated in two different versions: the neural network
implementation and the kernelized version of the algorithm. The
two algorithms are proposed in order to overcome the traditional
drawback of the classification solution of the ELM framework of
projecting the patterns of each class arbitrarily to one and the
13
others to zero (being arbitrary not only the reference points but
also the distance between the patterns belonging to the class and
the remaining ones). Deep models have also been adapted to test
the methodology’s performance on them.

The performance of the methodology has been compared by
making 2-to −2 pairwise comparisons. Each model has been
compared without and using the new way of optimizing the
models. In this way, the proposal’s effect on different alternatives
can be observed. In this comparison, 22 classification databases
have been used regarding two classification metrics: the correct
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Fig. 5. Projections of test patterns for the iris dataset obtained by KRVFL, KPTRRVFL, DeepELM, DeepPTRELM, DeepRVFL and DeepPTRRVFL. Patterns belonging to the
class are shown by a blue circle, while patterns from other classes are denoted by a cross. In addition, the reference point of each class is included as a red filled
circle.
b
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classification rate (CCR) and an index measuring the separa-
bility degree between the patterns belonging to the class and
the remaining ones (SEP). The proposed methodology achieved
competitive performance results in both CCR and SEP. Specifically,
the proposal has improved four of the six configurations tested
in this work, tied in one and worsened in another. Thus, we
can humbly claim that the estimation of the reference point, and
the way the optimization problem is presented, lead us to such
desirable results. Additionally, the competitive performance of
the model has also been shown qualitatively by plotting different
14
projections of patterns for different classification problems (with
different characteristics).

In future work, the L2-norm of the optimization problem could
e replaced with other choices to promote sparsity in the algo-
ithm. The main problem of this approach is the increment of the
omputational burden of the proposal (as the algorithm cannot be
nalytically determined but iteratively). Furthermore, the authors
lan to study deep architectures in more detail. Additionally, the
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authors also plan to incorporate the error function of the algo-
rithm to adapt the optimization framework to ordinal regression
problems and multi-label learning.
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