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MultiLogistic Regression using Initial and Radial Basis Function
covariates

Pedro Antonio Gutierrez, Cesar Hervas-Martinez, Francisco J. Martinez-Estudillo and Juan Carlos Fernandez

Abstract-This paper proposes a hybrid multilogistic model,
named MultiLogistic Regression using Initial and Radial Basis
Function covariates (MLRIRBF). The process for obtaining
the coefficients is carried out in several steps. First, an Evo
lutionary Programming (EP) algorithm is applied, aimed to
produce a RBF Neural Network (RBFNN) with a reduced
number of RBF transformations and the simplest structure
possible. Then, the input space is transformed by adding the
nonlinear transformations of the input variables given by the
RBFs of the best individual in the last generation. Finally,
a maximum likelihood optimization method determines the
coefficients associated with a multilogistic regression model
built on this transformed input space. In this final step, two
different multilogistic regression algorithms are applied, one
that considers all initial and RBF covariates (MLRIRBF)
and another one that incrementally constructs the model and
applies cross-validation, resulting in an automatic covariate
selection (MLRIRBF*). The methodology proposed is tested
using six benchmark classification problems from well-known
machine learning problems. The results are compared with the
corresponding multilogistic regression methodologies applied
over the initial input space, to the RBFNNs obtained by the EP
algorithm (RBFEP) and to other competitive machine learning
techniques. The MLRIRBF* models are found to be better
than the corresponding multilogistic regression methodologies
and the RBFEP method for almost all datasets, and obtain
the highest mean accuracy rank when compared to the rest of
methods in all datasets.

I. INTRODUCTION

Multi-class pattern recognition is a problem of building
a system that accurately maps an input feature space to an
output space of more than two pattern classes. Whereas a
two-class classification problem is well understood, multi
class classification is relatively less-investigated. In general,
the extension from the two-class to the multi-class pattern
classification problem is not trivial, and often leads to un
expected complexity or weaker performances. This paper
presents a competitive study in multi-class neural learning
which combines different statistical and soft computing ele-
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ments such as multilogistic regression, Radial Basis Function
Neural Networks (RBFNNs) and Evolutionary Algorithms
(EAs).

In spite of the great number of techniques developed to
solve classification problems, there is no optimum method
ology or technique to solve specific problems. This point
has encouraged the comparison and combination of different
types of classification techniques [1]. Many of the works
related to the hybridization of classifiers combine linear (or
nonlinear) classifiers using the same functional typology, the
combination of different functional structures being more
unusual. A recently proposed combination ofneural networks
and logistic regression [2], [3] is based on the hybridization
of a linear multilogistic regression model and a nonlinear
Product-Unit Neural Network model for binary and multi
class classification problems. This methodology allows the
generation of nonlinear classification surfaces and the identi
fication ofpossible strong interactions that may exist between
the covariates which define the classification problem.

In this paper, a new aspect of this methodology is pre
sented, since we combine a linear model with a RBFNN
nonlinear model and then we estimate the coefficients using
logistic regression. RBFNNs, as an alternative to multi
layer perceptrons, have been found to be very helpful to
many engineering problems since: (1) they are universal
approximators [4]; (2) they have more compact topology
than other neural networks [5]; and (3) their learning speed
is fast because of their locally tuned neurons [6]. The
approach, named MultiLogistic Regression using Initial and
Radial Basis Function covariates (MLRIRBF), consists of a
multilogistic regression model built on the combination of
the linear covariates and the RBFs of a RBFNN.

Although logistic regression is a simple and useful pro
cedure, it poses problems when applied to real classification
problems, where we cannot frequently make the stringent
assumption of additive and purely linear effects of the
covariates [7]. In this way, our technique overcomes these
difficulties by augmenting the input vector with new RBF
variables. From the opposite point of view, adding linear
terms to a RBFNN yields simpler and easier to interpret mod
els. Specifically, if a covariate only appears linearly in the
final model, then the model is a traditional parametric model
with respect to this covariate. Moreover, the linear terms
reduce the variance associated with the overall modeling
procedure and the likelihood of ending up with unnecessary
RBFs in the final model.

Logistic regression models are usually fit by maximum
likelihood, where the Newton-Raphson algorithm is the tradi-
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(1)

tional way to estimate the maximum a posteriori parameters.
Usually, the algorithm converges since the log-likelihood is
concave. However, in our approach, the nonlinearity of the
RBFs with respect to the centres and radii implies that the
corresponding Hessian matrix is generally indefinite and the
likelihood could have local maxima. These reasons justify,
in our opinion, the use of an alternative heuristic procedure
as an EA to estimate the parameters of the model.

The estimation of the coefficients is carried out in several
steps. In a first step, an Evolutionary Programming (EP)
algorithm determines the number of RBFs in the model
and their corresponding centres and radii. The algorithm is
aimed to produce a reduced number of RBF transformations
with the simplest structure possible, i.e. trying to select the
most important input covariates for the construction of these
transformations. This step can be seen as a global search
in the coefficients' model space. Once the basis functions
have been determined by the EP algorithm, we consider a
transformation of the input space by adding the nonlinear
transformations of the input variables given by the RBFs of
the best individual in the last generation. The final model is
linear in the set of variables formed by the RBFs and the ini
tial covariates. Now, the Hessian matrix is definite and fitting
proceeds with a maximum likelihood optimization method.
In this final step, two different multilogistic regression al
gorithms are applied, one that considers all initial and RBF
covariates (MLRIRBF) and another one that incrementally
constructs the model and applies cross-validation, resulting
in an automatic covariate selection (MLRIRBF*).

We evaluate the performance of our methodology on six
datasets taken from the UCI repository [8]. The results are
compared with the corresponding multilogistic regression
methodologies applied over the initial input space, to the
RBFNNs obtained by the EP algorithm (RBFEP) and to other
competitive machine learning techniques. The MLRIRBF*
models are found to be better than the corresponding mul
tilogistic regression methodologies and the RBFEP method
for almost all datasets, and obtain the highest mean accuracy
rank when compared to the rest of methods in all datasets.

This paper is organized as follows: Section II is devoted
to a description of the MultiLogistic Regression using Initial
and Radial Basis Function covariates (MLRIRBF) model;
Section III describes the MLRIRBF learning algorithm;
Section IV explains the experiments carried out; and finally,
Section V summarizes the conclusions of our work.

II. MLRIRBF MODEL

In the classification problem, measurements Xi, i
1,2, ... , k, are taken on a single individual (or object), and the
individuals are to be classified into one of J classes on the
basis of these measurements. It is assumed that J is finite,
and the measurements Xi are random observations from these
classes. A training sample D == {(xn,Yn);n == 1,2, ... ,N}
is available, where x., == (Xln, ... , Xkn) is the vector of
measurements taking values in n c JRk, and Yn is the
class level of the n-th individual. The common technique of

representing the class levels using a "l-of-1" encoding vector
is adopted, Y == (y(I), y(2), ... , y(J)), such as y(l) == 1 if x
corresponds to an example belonging to class land y(l) == 0
otherwise. Based on the training sample, we wish to find
a decision function F : n ---t {I, 2, ... , J} for classifying
the individuals. In other words, F provides a partition, say
D 1 , D 2 , , D J, of n, where Dl corresponds to the l-th class,
l == 1,2, , J, and measurements belonging to Dl will be
classified as coming from the l-th class. A misclassification
occurs when the decision rule F assigns an individual (based
on the measurement vector) to a class j when it is actually
coming from a class l i- j.

To evaluate the performance of the classifiers the corrected
classified rate (CCR or C) is defined by

1 N
C = N L I(F(xn ) = Yn),

n=1

where I (.) is the zero-one loss function. A good classifier
tries to achieve the highest possible C in a given problem.
It is usually assumed that the training data are independent
and identically distributed samples from an unknown proba
bility distribution. Suppose that the conditional probability
that x belongs to class l verifies: p (y(l) == 11 x) > 0,
l == 1,2, ... , J, x E n, and sets the function:

p (y(l) == 1\ x)
fL(x, el) = log p (y(J) = 11 x) ,

where 0 l is the weight vector corresponding to class l, and
I J(x, 0 J) == O. Under a multinomial logistic regression, the
probability that x belongs to class l is then given by:

(
(l) _ I ) - exp Il (x, Ol) _

p y - 1 x, a - J ' l - 1,2, ... , J,
Lj=1 exp Ij (x, aj)

where a == (aI, a2, ... ,OJ-I). For binary problems (J == 2),
this is known as logistic regression (or soft-max in neural
network literature).

The classification rule coincides with the optimal Bayes'
rule. In other words, an individual should be assigned to
the class which has the maximum probability, given the
measurement vector x:

F(x) == i,where i == arg max j{x, 8l), for l == 1, ... , J.
l

On the other hand, due to the normalization condition we
have:

J

LP(y(l) = ll x,e) = 1,
l=1

and the probability for one of the classes (the last one, in
our case) does not need be estimated. Observe that we have
considered IJ(x, aJ) == O.

Our logistic regression model proposal is based on the
combination of the standard linear model and a nonlinear
term constructed with RBFs, which captures possible loca
tions in the covariate space. The general expression of the
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model is given by:

ft(X,el) =ab+t,a~Xi+~;3;exp(_IIX~t"2) (2)

where l == 1,2, ... , J - 1, el == (exl, f3l, W) is the vec
tor of parameters for each discriminant function, exl ==
(ab,ai, ..., a~) and f3l == Cai, .... ,f3~) are the coeffi
cients of the multilogistic regression model and W ==
(WI, W2, ... , W m ) are the parameters of the RBF nonlinear
transformations, where Wj == (Cj, rj), Cj == (Cj1' Cj2, ... , Cjk)

is the centre or average of the j-th Gaussian RBF transforma
tion, Cji E lR. and r j is the corresponding radius or standard
deviation.

III. MLRIRBF LEARNING ALGORITHM

In the supervised learning context, the components of the
weight vectors e == (e1,e2, ..., eJ -1) are estimated from
the training dataset D. To perform the maximum likelihood
estimation of e, one can minimize the negative log-likelihood
function:

L( e) == --k I::=l log p (YnIx.,, e) ==
1 ",N [",J (l) ( )== N L....-n=l - L....-l=l Yn Il X n , el +

+logI:(=l eXP!I(Xn,e1) ] ,

where Il (x, eI) corresponds to the MLRIRBF model defined
in (2).

The error surface associated with the model is very con
voluted with numerous local optima. The nonlinearity of the
model with respect to the parameters Cj and rj, and the
indefinite character of the associated Hessian matrix of L (e)
do not recommend the use of gradient-based methods to
maximize the log-likelihood function. Moreover, the optimal
number of basis functions of the model (i.e. the number
of hidden nodes in the RBFNN) is unknown. Thus, the
estimation of the vector parameter eis carried out by means
of a hybrid procedure described below.

The methodology proposed is based on the combination
of an Evolutionary Programming algorithm (EP) (global
explorer) and a local optimization procedure (local exploiter)
carried out by the standard maximum likelihood optimiza
tion method. In a first step, the EP algorithm is applied
to design the structure and training of the weights of a
RBFNN. The evolutionary process determines the number
m of RBFs in the model, and the corresponding vector
W == (WI, W2, ... , W m). Once the basis functions have
been determined by the EP algorithm, we consider a trans
formation of the input space by adding these nonlinear
transformations given by the RBFs of the best individual
in the final generation of the EP algorithm.

The model is now linear in these new variables and the
initial covariates. The remaining coefficient vector ex and
f3 are calculated by the maximum likelihood optimization
method: choose the parameters that maximize the probability
of the observed data points. For the multilogistic regression

model, there are no closed-form solutions for these estimates.
Instead, numeric optimization algorithms that approach the
maximum likelihood solution iteratively and reach it in the
limit have to be used. In the next subsection, the algo
rithms for obtaining this maximum likelihood solution are
described. Then, the different steps of the MLRIRBF learning
algorithm are described and, in the last subsection, the details
of the EP algorithm are given.

A. Algorithms for Multilogistic Regression Maximum Likeli
hood Optimization

In this paper, two different algorithms have been consid
ered for obtaining the maximum likelihood solution for the
multilogistic regression model, both available in the WEKA
machine learning workbench [9]:

1) MultiLogistic: MultiLogistic is an algorithm for build
ing a multinomial logistic regression model with a ridge
estimator to guard against overfitting by penalizing large co
efficients, based on work of Le Cessie and Van Houwelingen
[10].

In order to find the coefficient matrix e for which L (e)
is minimized, a Quasi-Newton Method is used. Specifically,
the method used is the active-sets' method with Broyden
Fletcher-Goldfarb-Shanno (BFGS) update [11].

2) SimpleLogistic: This algorithm builds multinomial lo
gistic regression models fitting them using the LogitBoost
algorithm [12], which was proposed by Friedman et al.
for fitting additive logistic regression models by maximum
likelihood. These models are a generalization of the (linear)
logistic regression models described above.

SimpleLogistic algorithm is based on applying LogitBoost
with simple regression functions and determining the opti
mum number of iterations by a five fold cross-validation:
the data is equally splitted five times into training and test,
LogitBoost is run on every training set up to a maximum
number of iterations (500) and the classification error on the
respective test set is logged. Afterwards, LogitBoost is run
again on all data using the number of iterations that gave the
smallest error on the test set averaged over the five folds.
Further details about the algorithm can be found in [13].

B. Estimation of the model coefficients

In this subsection we describe the steps of MLRIRBF
learning algorithm in detail. The process is structured in three
steps.

Step 1. We apply an EP algorithm to find the basis
functions:

corresponding to the nonlinear part of I (x, e). We have to
determine the number of basis functions m and the weight
vector W == (WI, W2, ... , w m ) . To apply evolutionary neural
network techniques, we consider a RBFNN with softmax
outputs and the standard structure: an input layer with a node
for every input variable; a hidden layer with several nodes;
and an output layer with one node for each class minus one.
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Fig. 2. Different steps of the proposed methodologies
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Fig. 1. Structure of Radial Basis Function Neural Networks: an input layer
with k input variables, a hidden layer with m RBFs and an output layer
with J nodes

There are no connections between the nodes of a layer and
none between the input and output layers either. A scheme
of these models is given in Fig. 1.

The activation function of the j -th node in the hidden layer
is given by:

Bj(x,wj) =exp (_"X~JCjI12),

where Cj == (Cjl, ... , Cjk) and Cji is the weight of the
connection between the i-th input node and the j-th hidden
node. The activation function of the l-th output node is given
by:

m

gl(X, f3l, W) == f36 +L f3;Bj (x ,Wj),
j=l

where f3; is the weight of the connection between the j-th
hidden node and the l-th output node and f3b is the bias of l
th the output node. The transfer function of all output nodes
is the identity function.

The weight vector W == (WI, W2, ... , w m ) is estimated by
means of an evolutionary neural network algorithm (detailed
in Section III-C) that optimizes the error function given by
the negative log-likelihood for N observations associated
with the RBFNN model:

L *((3, W) = -k 2::=1 [- 2:(=1 y~) gl (x., , (31, W)+

+ log 2:(=1 exp gl (xn, (31, W)] .

Although in this step the evolutionary process obtains
a concrete value for the f3 vector, we only consider the
estimated weight vector W == (WI, W2, ...,wm ) , which
builds the basis functions. The values for the f3 vector will be
determined in step 3 together with those of the a coefficient
vector.

Step 2. We consider the following transformation of
the input space by including the nonlinear basis functions

obtained by the EP algorithm in step 1:

H : JRk ---* JRk+m,

(Xl, X2, ... , Xk) ---* (Xl, X2, ... , Xk, Zl, ... , Zm),

where Zl == B l (x, WI), ..., Zm == Bm(x, Wm ) .

Step 3. In the third step, we minimize the negative log
likelihood function for N observations:

L(a, (3) = -k 2::=1 [- 2:(=1 y~)(alXn + (31Zn)+

+ log 2:(=1 exp(a1xn + (31Zn)],

where X n == (1,Xln, ... , Xkn) and Zn == (Zln, ... , Zkn). Now,
the Hessian matrix of the negative log-likelihood in the new
variables Xl, X2, ... , Xk, Zl, ... , Zm is semi-definite positive.
The estimated coefficient vector e== (a, ~,W) determines
the model:

( A ) -t ~ -i ~ Al ("x-CjI12)
11 x, al = 0:0 + £:;t O:iXi + f;;. fJj exp fJ '

where l == 1, 2, ... , J - 1. In this final step, both algorithms
presented in subsection III-A have been used for obtaining
the parameter matrix e. This results in two different models,
one with all Xl, X2, ... , Xk, Zl, ... , Zm covariates present in
the model (MultiLogistic algorithm) and the other with only
those variables selected by the SimpleLogistic algorithm
(see subsection III-A). These two approaches will be called
"MLRIRBF" and "MLRIRBF*", respectively.

Finally, in Fig. 2, a schematic view of the steps of the
methodology and the different variants is presented. The
variants are represented in a double squared box. The best
individual obtained in the step 1 by the EP algorithm is also
evaluated and called "RBFEP" variant.

C. Evolutionary acquisition of the REF nonlinear transfor
mations

In this section, the evolutionary algorithm used for ob
taining the RBF nonlinear transformations is presented. The
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algorithm is aimed to produce a reduced number of RBF
transformations with the simplest structure possible, i.e.
trying to select the most important input covariates for the
construction of these transformations.

Among the different paradigms of Evolutionary Compu
tation, we have chosen Evolutionary Programming (EP) due
to the fact that we are evolving artificial neural networks.
The population-based evolutionary algorithm for architec
tural design and the estimation of the real coefficients have
points in common with other evolutionary algorithms in the
bibliography [14], [15], [16]. The search begins with an
initial population, and, in each iteration, the population is
updated using a population-update algorithm. The population
is subject to the operations of replication and mutation.
Crossover is not used due to its potential disadvantages in
evolving artificial networks [14]. The main characteristics of
the algorithm are the following:

1) Representation of the Individuals: The algorithm
evolves architectures and connection weights simultaneously,
each individual being a fully specified RBFNN. The neural
networks are represented using an object-oriented approach
and the algorithm deals directly with the ANN phenotype.
Each connection is specified by a binary value indicating if
the connection exists, and a real value representing its weight.
As the crossover is not considered, this object-oriented
representation does not assumes a fixed order between the
different hidden nodes.

In order to define the topology of the neural networks,
two parameters are considered: Mmin and Mmax. They
correspond, respectively, to the minimum and maximum
number of hidden nodes in the whole evolutionary process.

2) Error and Fitness Functions: We consider L * ((3, W)
as the error function of an individual 9 (., (3, W) of the
population. Observe that 9 is a RBFNN and can be seen
as a multi-valuated function:

g(x, 13, W) = (91(X, 131, W), ooo,gJ-l(X, 13 J-1, W)) .

The fitness measure, needed for evaluating the individuals,
is a strictly decreasing transformation of the error function
L*((3,W) given by A(g) == l+L*({3,W)' where 0 < A(g) :S
1.

3) Initialization of the population: The initial population
is generated trying to obtain RBFNNs with the maximum
possible fitness. First, 5.000 random RBFNNs are generated,
where the number ofhidden nodes m is a random value in the
interval [Mmin, Mmax]' The number of connections between
all RBFs of an individual and the input layer is a random
value in the interval [1, k] and all of them are connected
with the same randomly chosen input variables. In this way,
all the RBFs of each individual are initialized in the same
random subspace of the input variables. A random value in
the [- I, I] interval is assigned for the weights between the
input layer and the hidden layer and in the [-0, 0] interval
for those between the hidden layer and the output layer.

The obtained individuals are evaluated using the fitness
function. The initial population is finally obtained by se-

lecting the best 500 RBFNNs and then improving them by
applying the standard k-means clustering algorithm [17],
using the randomly generated centres as the initial centroids
and a maximum number of iterations of 100.

4) Parametric Mutation: Parametric mutation is accom
plished for each coefficient wEe of the model with Gaus
sian noise, w(t + 1) == w(t) +e(t), where e(t) E N(O, a(t))
represents a one-dimensional normally distributed random
variable with mean 0 and variance a(t). The weights are
sequentially mutated, hidden node after hidden node, and
a standard simulated annealing process [18] is applied to
accept or reject the modifications in each node. Thus, if ~A
is the difference in the fitness function before and after the
random step, the criterion is: if ~A 2: 0, the step is accepted,
and if ~A < 0, the step is accepted with a probability
exp(~A/T(g)), where the temperature T(g) of an individual
9 is given by T(g) == 1 - A(g), O:S T(g) < 1.

The variance a( t) is updated throughout the evolution.
There are different methods to update the variance. We
use one of the simplest methods: the 1/5 success rule of
Rechenberg [19]. The adaptation tries to avoid being trapped
in local minima and to speed up the evolutionary process
when the searching conditions are suitable.

5) Structural Mutation: Structural mutation implies a
modification in the structure of the RBFNNs and allows the
exploration of different regions in the search space, helping to
keep the diversity of the population. There are five different
structural mutations: node addition, node deletion, connec
tion addition, connection deletion, and node fusion. These
five mutations are applied sequentially to each network. The
node mutations are performed as follows:

• Node addition. One or more nodes are added to the
hidden layer. The connections with the output nodes
are chosen randomly and have a random value in the
interval [- I, I]. The connections from the input layer
are chosen randomly and its values are also random
values in the interval [-0,0].

• Node deletion. One or more nodes, together with their
connections, are randomly selected and deleted.

• Node fusion. Two randomly selected nodes, a and b,
are replaced by a new node c, which is a combination
of the two. The connections common to both nodes are
kept, with a weight given by:

c " - ~c "+ _Tb_ Cb " j3i == ({3~+{3~)
C1, - Ta+Tb aa Ta+Tb 1" C 2'

_ (Ta+Tb)
r c - --2-'

Those connections not shared by the nodes are inherited
by C with probability 0.5 and their weight is unchanged.

The number of hidden nodes added or deleted in node
addition, node deletion and node fusion mutations is calcu
lated as ~min + uT(g)[~max - ~min], U being a random
uniform variable in the interval [0, 1], T(g) == 1 - A(g)
the temperature of the neural net, and ~min and ~max a
minimum and maximum number of hidden nodes specified
as parameters.
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The connection structural mutations are performed as
follows:

• Connection addition. Connection addition mutations are
first performed in the hidden layer and then in the output
layer. When adding a connection from the input layer
to the hidden layer, a neuron from each layer is selected
randomly, and then the connection is added with a
random weight. A similar procedure is performed from
the hidden to the output layer.

• Connection deletion. In the same way, connection dele
tion mutation is first performed in the hidden layer and
then in the output layer, choosing randomly the origin
neuron from the previous layer and the target neuron
from the mutated layer.

We apply connection mutations sequentially for each mu
tated neural net, first, adding (or deleting) 1 + u [~ono]
connections from the hidden layer to the output layer and
then, adding (or deleting) 1 +u[~hnh] connections from the
input layer to the hidden layer, u being a random uniform
variable in the interval [0,1], ~o and ~h previously defined
ratios of number of connections in the hidden and the output
layer, and no and nh the current number of connections in
the output and the hidden layer.

Parsimony is also encouraged in evolved networks by
attempting the five structural mutations sequentially, where
node or connection deletion and node fusion is always
attempted before addition. Moreover, the deletion and fusion
operations are made with higher probability (T(g) for dele
tion and fusion mutations and T 2 (g) for addition ones). If a
deletion or fusion mutation is successful, no other mutation
will be made. If the probability does not select any mutation,
one of the mutations is chosen at random and applied.

6) Parameters of the Algorithm: All the parameters used
in the evolutionary algorithm except Mm in and Mm a x have
the same values in all the problems analyzed below. We
have done a simple linear rescaling of the input variables
in the interval [-2,2], X] being the transformed variables.
The centres eji are initialized in this interval (i.e. [- I, I] ==

[-2,2]), and the coefficients f3; are initialized in the [-5,5]
interval (i.e. [-0,0] == [-5,5]). The initial value of the radii
r j is obtained as a random value in the interval (0, dm ax ] ,

where dm ax is the maximum distance between two training
input examples.

The size of the population is N == 500. We have consid
ered a(O) == 0.5. The number of nodes that can be added or
removed in a structural mutation is within the [1, 2] interval.
The ratio of the number of connections to add or delete in
the hidden and the output layer during structural mutations
is ~o == 0.05 and ~h == 0.3.

The stop criterion is reached whenever one of the follow
ing two conditions is fulfilled: a number of generations is
reached or the variance of the fitness of the best ten percent
of the population is less than 10- 4 .

IV. EXPERIMENTS

The proposed methodologies (MLRIRBF and ML
RIRBF*) are applied to six datasets taken from the VCI
repository [8], to test its overall performance when compared
to other methods. The selected methods include:

• Multi-logistic regression methodologies, including the
SimpleLogistic (SLogistic) and MultiLogistic (MLo
gistic) algorithms applied over the initial input space,
which are explained in subsection III-A. As our mod
els are logistic regression models, it is necessary to
compare its performance to standard logistic regression
algorithms.

• The RBFEP method. As our models are built from the
RBFs of the best RBFNN obtained by the EP algorithm,
it is necessary to compare its performance to the original
RBFEP method.

• High performance machine learning methodologies:
Logistic Model Trees (LMT), the C4.5 classification
tree inducer, the Naive Bayes Tree learning algorithm
(NBTree) and the Support Vector Machines (SVM)
method. These are the best performing methods from
those presented in [13], since a wide variety of algo
rithms with very competitive performance are gathered
in this work. We have also included the C - SVM
algorithm with RBF kernels. The description and some
previous results of these methods can be found in [13]
and [20].

The selected datasets present different numbers of in
stances, features and classes (see Table I). The minimum
and maximum number of hidden nodes have been obtained
as the best result of a preliminary experimental design, con
sidering a small, medium and high value: [Mm in , Mm a x ] E

{[1, 3], [3,6], [10, 12]}. This value is also included in Table
I.

For the RBFEP, MLRIRBF and MLRIRBF* methods, the
experimental design was conducted using a 10-fold cross
validation procedure, with 10 repetitions per each fold. For
the other methods, the results have been obtained performing
10 times a 10-fold cross validation, because all are determin
istic methods, i.e. they are not based in random values and
return the same result for each execution. The results for
all datasets have been taken from the paper of Landwehr et
al. [13], except for the SVM method and the Post-Gpo and
Newthyroid datasets not included in Landwehr's work.

The RBFEP algorithm was implemented in JAVA using
the Evolutionary Computation framework JCLEC [21] (http:
//jclec.sourceforge.net). For the MLRIRBF and MLRIRBF*
methods, we slightly modified the RBFEP algorithm, apply
ing the SLogistic and MLogistic algorithms from WEKA [9].
We also used "libsvm" [22] for obtaining the results of the
SVM method and WEKA for obtaining the results of the
Post-Gpo and Newthyroid datasets.

The performance of each method has been evaluated using
the correct classification rate or C in the generalization set
[CG , see (1)]. In Table II, the mean and the standard deviation
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TABLE I
CHARACTERISTICS OF THE SIX DATASETS USED FOR THE EXPERIMENTS: NUMBER OF INSTANCES (Size), NUMBER OF REAL (R), BINARY (B) AND

NOMINAL (N) INPUT VARIABLES, TOTALNUMBER OF INPUTS (#In.), NUMBER OF CLASSES (#Out.), PER-CLASS DISTRIBUTION OF THE INSTANCES
(Distribution) AND MINIMUM AND MAXIMUMNUMBER OF HIDDEN NODES USED FOR EACH DATASET ([Mmin, M max])

Dataset Size R B N #In. #Out. Distribution [Mmin, M max]

Heart-c 302 6 3 4 26 2 (164, 138) [1,3]

Ionosphere 351 33 1 34 2 (126,225) [10,12]

Post-Op. 90 0 1 6 20 3 (2,24,64) [1,3]

Newthyroid 215 5 5 3 (150,35,30) [3,6]

Balance 625 4 4 3 (288,49,288) [3,6]

Lymph. 148 3 9 6 38 4 (2,81,61,4) [3,6]

All nominal variables are transformed to binary variables.

Lymph.: Lymphography; Post-Op.: Post-Operative.

TABLE II
MEAN AND STANDARDDEVIATIONO~HE ACCURACYRESULTS(9G) FROM 100 EXECUTIONS OF A 10-FOLD CROSS VALIDATION, MEAN ACCURACY

(GG) AND MEAN RANKING (R) USING THE DIFFERENT METHODS PROPOSED

GG(%)

Heart-c lonoshere Post-Op. Newthyroid Balance Lymph.

Method Mean ± SD Mean ± SD Mean ± SD Mean±SD Mean ± SD Mean ± SD GG(%) R
SLogistic 83.30 ± 6.35 87.78 ± 4.99 70.44 ± 6.74 96.74 ± 3.85 88.74 ± 2.91 84.37± 9.97 85.23 4.50

MLogistic 83.70 ± 6.64 87.72 ± 5.57 59.67 ± 10.55 96.20 ± 4.86 89.44 ± 3.29 77.58 ± 10.59 82.38 6.33

LMT 83.51 ± 6.67 92.99 ± 4.13 70.11 ± 7.01 96.74 ± 3.85 89.71 ± 2.68 84.10 ± 10.00 86.19 3.92

C4.5 76.94 ± 6.59 89.74 ± 4.38 69.67 ± 7.04 92.62 ± 5.60 77.82 ± 3.42 75.84 ± 11.05 80.44 7.00

NBTree 80.60 ± 6.29 89.49 ± 5.12 66.67 ± 10.36 92.60 ± 5.57 75.83 ± 5.32 80.89 ± 8.77 81.01 7.00

SVM 56.75 ± 3.71 93.00 ± 4.28 70.44 ± 5.74 75.43 ± 4.57 89.98 ± 1.90 80.31 ± 8.44 77.65 5.75

RBFEP 84·14 ± 4· 79 93.83±4·43 70.67± 5.81 95.48 ± 3.13 91.15 ± 1.31 81.27 ± 10.52 86.09 3.08

MLRIRBF 82.81 ± 5.03 89.28 ± 4.92 62.44 ± 13.29 95.90 ± 2.96 94.83 ± 2.69 75.82 ± 12.07 83.52 6.00

MLRIRBF* 84.77± 5.09 94.06 ± 4.18 70.67± 6.42 96.92 ± 2.57 94.34 ± 2.69 84.30 ± 10.23 87.51 1.42

The best result for each column is in bold face and the second best result in italic.

of this Ce is shown for each dataset and a total of 100
executions. The ranking of each method and each dataset
(R == 1 for the best performing method and R == 9 for the
worst one) is obtained and the mean accuracy (Ge) and mean
ranking (R) are also included in Table II.

From the analysis of the results, it can be concluded,
from a purely descriptive point of view, that the MLRIRBF*
method obtains the best result in four out of the six datasets
analyzed, and the second best result in the other two
remaining datasets. Furthermore, the MLRIRBF* method
obtains the best mean ranking (R == 1.42) followed by the
RBFEP method (R == 3.08) and reports the highest mean
accuracy (Ge == 87.51 %) followed by the LMT method
(Ge == 86.19%). The results obtained by the MLRIRBF* are
higher than those obtained by MLRIRBF, which confirms the
necessity of selecting the most important covariates (initial
covariates or RBFs) in the final model in order to avoid
overfitting (see Heart-c, Ionosphere, Post-Ope and Lymph.
datasets).

To determine the statistical significance of the rank differ
ences observed for each method in the different datasets, we
have carried out a non-parametric Friedman test [23] with the
ranking of Ge of the best models as the test variable (since
a previous evaluation of the Ge values results in rejecting
the normality and the equality of variances' hypothesis).

The test shows that the effect of the methodology used for
classification is statistically significant at a significance level
of 5%, as the confidence interval is Go == (0, Fo.05 == 2.18)
and the F-distribution statistical value is F* == 4.76 ~ Co.
Consequently, we reject the null-hypothesis stating that all
algorithms perform equally in mean ranking. On the basis
of this rejection, a post-hoc non-parametric Bonferroni
Dunn test is applied [24], [25] with MLRIRBF* as the
control algorithm. The results of the Bonferroni-Dunn test
for a == 0.1 and a == 0.05 can be seen in Table III using the
corresponding critical values for the two-tailed Bonferroni
Dunn test.

The methodology MLRIRBF* obtains a significant higher
ranking of Ge when compared to MLogistic, C4.5, NBTree,
SVM and MLRIRBF methodologies, although the differ
ences in rank are not significant when compared to the other
three methodologies.

V. CONCLUSIONS

This paper combines a linear model with a nonlinear
model (the RBFNNs), the final coefficients being estimated
using multilogistic regression. Specifically, this new approach
consists of a multilogistic regression model built on the
combination of linear covariates and Gaussian RBFs. The
process for obtaining the coefficients is carried out in several
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TABLE III
CRITICAL DIFFERENCE(CD) VALUES, MEAN RANKING AND

DIFFERENCES OF RANKINGS OF THE BONFERRONI-DuNN TEST, USING
MLRIRBF* AS THE CONTROL METHOD

be adapted to on-line and incremental learning by using more
complex models and algorithms similar to DENFIS [26].
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