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Abstract The use of Micro-Hydro Power Plants (MHPP) has established itself as
a fundamental tool to address the problem of energy poverty in rural isolated areas,
having become the most used renewable energy source not just in this field but also
in big scale power generation. Although the technology used has made important
advances in the last few decades, it has been generally applied to big scale hydro-
power systems. This fact has relegated the use of isolatedMHPPs to the background.
In this context, there is still a vast area of improvement in the development of opti-
mization strategies for these projects, which in practice remains limited to the use
of thumb rules. It results in a sub-optimal use of the available resources. This work
proposes the use of a Genetic Algorithm (GA) to assist the design of MHPP, finding
the most suitable location of the different elements of a MHPP to achieve the most
efficient use of the resources. For this, a detailed model of the plant is first developed,
followed by an optimization problem for the optimal design, which is formulated by
considering the real terrain topographic data. The problem is presented in both sin-
gle (to minimize the cost) and multi-objective (to minimize cost while maximizing
the generated power) mode, providing a deep analysis of the potentiality of using
GAs for designing MHPP in rural isolated areas. To validate the proposed approach,
it is applied to a set of topographic data from a real scenario in Honduras. The
achieved results are compared with a baseline integer-variable algorithm and other
meta-heuristic algorithms, demonstrating a noticeable improvement in the solution
in terms of cost.
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1 Introduction

The growth of the energy demand around the world constitutes a big challenge
that must be addressed in the coming years [1]. As population and industrialization
grow, global access to energy expands, playing a fundamental role. Nevertheless,
in 2017 there were still 1.06 billion people who lacked access to electricity and 2.6
billion who used biomass to meet their basic needs, in accordance with the World
Data Bank [2]. Although urban areas tend to be more electrified (4% lack access to
electricity), rural areas are the most affected by this problem (27% lack access to
electricity). Furthermore, these statistics are more critical in developing countries,
and thus the expansionof the electricity supply constitutes an area of special interest in
these countries [3], which tends to promote rural electrification programs to improve
life quality of the rural population.

Renewable Energy Sources (RES) play a fundamental role [4] in this context,
having demonstrated to constitute an effectiveway to guarantee the increasing need of
energy supply (someworks predict that by 2050REScould provide half of theworld’s
energy needs [5]) without compromising the natural resources, while mitigating
CO2 emissions. Although a wide range of options have been demonstrated to be
adequate to provide an effective reduction of greenhouse gas emissions, such as
nuclear energy or carbon capture and storage (CCS), the use of RES is praised as one
of the most suitable choices [6]. In contrast with the limitations of nuclear and fossil
fuel availability, RES do not deplete over time, and (with a few exceptions, such as
certain bio-energy production methods and bio-energy life-cycle) are carbon-free.
Nevertheless, the major disadvantages of these systems lie in the uncertainty implied
by the stochastic nature of the natural sources, which translates into a limitation
to high levels of electricity production [7]. Nevertheless, these limitations have no
noticeable effects on small generation systems, making RES ideal candidates to meet
the energy supply requirements for rural areas [8, 9], where due to geographical or
economic reasons, national grid supply are not accessible.

Although there are several alternatives among RES that have been demonstrated
to be suitable to supply electric power to remote isolated areas [10–12], hydro-power
has established itself as the most frequently used [13] since it is capable of reaching
the highest efficiency rates [14] with low investment costs [15]. Given its versatility
and stable projection [16], hydro-power plants represent a suitable and efficient
option to supply rural isolated areas [17].

Nevertheless, despite of the goodness of MHPPs, the precariousness of the con-
text of rural communities usually represents a challenge for the adequate use of
RES. The lack of qualified manpower, together with the limitations of the resources
constitute big barriers to the optimal development of these installations. Within this
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context, the study of robust and efficient design strategies is essential to guarantee that
the resources are used in the most efficient way, without compromising the limited
resources.

1.1 Micro-Hydro Power Plants

Micro-Hydro Power Plants (MHPPs) are hydro-power plants with generation capac-
ities inferior to 100kW [18]. These systems have small power source requirements
and their ease of installation makes them suitable to supply small communities by
means of an independent electrical grid [19].

Unlike big-hydro plants, where advance architectures, equipment and expensive
civil works are required, MHPPs have both minimal equipment and labour require-
ments. The water flow is directly extracted from its natural flow without the instal-
lation of a reservoir dam. Although a small dam is generally built, its purpose is to
guarantee a smooth and clean entrance of thewater into the piping. Thewater is driven
downhill through a long pipe (penstock) that ends in the powerhouse, a small building
where the generation equipment is installed (a typical scheme is shown in Fig. 1).
Inside the powerhouse, the water flow is driven into a turbine, being its kinetic energy

River

Powerhouse

Intake

Penstock

Village

Distribution line

Fig. 1 Basic scheme of a MHPP supplying an isolated village
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transformed into mechanical. This last is finally converted into electrical energy by
means of a generator, while the water flow is returned to its natural course. Although
non-traditional alternatives are frequently used as a turbine, such as locally made
systems or pumps working as turbines (PAT) [20], Pelton and Turgo wheels [21] are
the usual choices, given their suitability to low flow rates emplacements [22].

1.2 Motivation of the Research

Despite of the cited benefits of MHPP for rural electrification, the precariousness
context in which these solutions are developed causes that their true potential is not
generally achieved, due to the use of inefficient traditional design methodologies.
These methodologies can be generally divided in the following steps:

• Measurement of available flow rate (Q) and height (Hg).
• Estimation of power generation (P).
• Decision-making of dam and powerhouse location.
• Sizing of the equipment.

This traditional process begins with an evaluation of the emplacement, that con-
sists in measuring the available water flow rate and height difference. As flow rate
records are not usually available for small rivers and streams, in-situ measurements
are generally required (for example, using gauging weirs [23]). Regarding the gross
height, its estimation is done by means of traditional methods such as height maps or
Topographic Abney levels. With the measurement of flow and gross height, a gross
estimation of the obtainable power can be made, in terms of which the feasibility
of the plant is evaluated. If the estimations satisfy the requirements considered for
the project, the hydro-power professionals proceed to determine the precise location
of the water intake (where a small concrete dam is installed) and the powerhouse,
on the basis of an initial site visit and know-how. This decision is focused on mini-
mizing the pipe length, LP , as this variable will strongly condition the cost and the
final performance of the MHPP, as will be seen later. In terms of this, the generation
system (pipe, turbine and generator) is sized using thumb rules [24], and thus the
work labours are planned.

Although it is clear that this routine provides a reasonable approach to design
the system, it is clear that the final performance is far from the optimal one. The
feasible layout, considering the terrain height, is not evaluated, and the effects on the
performance is not considered in the determination of the location of the dam and
the powerhouse. For this reason, the estimation of the obtainable power represent
is far from the optimal. In sight of these issues, the need of developing practical
and efficient design methodologies to improve the use of the natural resources is
evidenced.
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1.3 Contributions

In order to improve the design of MHPPs to rural electrification projects, this work
proposed the application of evolutionary computational approach to address the prob-
lem of optimizing the design of a MHPP by finding the most suitable layout, consid-
ering the real terrain profile. Although the optimization of MHPP to supply remote
areas has been extensively approached in the literature [25–28], most of the stud-
ies generally aim at developing general guidelines, while the study of particular
design strategies to assist the implementation of MHPP considering the real scenario
remains a matter of study. In addition, the complex nonlinear nature of the MHPP
performance in a particular location constitutes a high complexity, that has generally
been addressed in the literature by simplifying either the domain (approximating
the river profile by a straight line [29]), or the problem formulation (fixing certain
parameters, such as the pipe diameter [30]). Although it is clear that the existing
approaches lead to a better usage of the resources, the cited simplifications imply
that the obtained solutions may differ from the optimal solutions of the real problem.
In this work, a Genetic Algorithm (GA) is developed to find the most suitable layout
of a MHPP, on the basis of the topographic characteristics of the emplacement. To
this end, the terrain profile is obtained through a topographic survey, in terms of
which the problem is formulated. The paper aims to find the optimal location of the
main elements, this is, the powerhouse, the dam and the distribution of pipe lengths
along the terrain, including the selection of the most adequate penstock diameter, in
accordance to a set of performance criteria. In addition, to obtain a deeper under-
standing of the potential of the emplacement, the multi-objective problem is also
studied, being three competitive objectives of the model optimized simultaneously.
With this, the influence of the different parameters in the performance of the MHPP
is studied. A real river profile scenario in Honduras is applied to verify the benefits
of the proposed approach.

This chapter is organized as follows: A general overview of the related work in the
literature is presented in Sect. 2, where the main advantages of the proposed within
the actual state of the art approach are presented. In Sect. 3, a detailed description of
the problem set-up and the main variables is made. For this, a model of the MHPP is
developed in terms of the decision variables, being the model used then to define the
problem of optimally designing the MHPP layout. In Sect. 4, a GA is developed to
address the optimization problem proposed. In Sect. 5, the proposed GA is applied to
a real scenario in Honduras, where the results are summarized and the performance
of the approach is validated. Finally, the conclusions of this work, together with the
concluding remarks, are summarized in Sect. 7.
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2 Related Work

During the last years, the optimization of MHPP has received a big attention in the
literature [31–34]. A deep analysis of the current state of the art in computational
optimization methods applied to RES can be found in [34]. In this relevant work,
the latest research advances, regarding he different optimization strategies applied
to the design of RES systems, are summarized. A similar more recent work is [33],
where the authors review the main optimization methods for the deployment and
operation of RES generation units. In general, the complexity of reliably modeling
RES systems, especially hydro-power plants [26, 35], has motivated the decompo-
sition of the problem on the basis of specific aspects, such as determining the most
suitable operation strategies [36, 37] or sizing the equipment [28]. The main reason
lies in the use of analytical approaches, whose performance is strongly conditioned
by the complexity of the problems addressed. For this reason, it is usual to sim-
plify the problems formulation as much as possible. For example, the authors in
[29]study the optimization of penstocks in MHPPs in order to minimize the energy
cost, simplifying the river by means of an average slope. This same approximation
is considered in [38], where the optimal flow discharge and penstock diameter are
determined by means of a dimensional analysis. In this approach the problem aims
to minimize the water usage, being also a set of dimensionless relationships between
the relevant design variables derived. It is important to note that the flow rate respond
to a stochastic nature, and thus a stochastic approach can be proposed to improve
the design of MHPPs. For example, the authors in [39] consider the Flow Duration
Curves (FDC) and the environmental requirements to develop an analytical frame-
work to determine the performance and profitability of a MHPP, being it validated in
a real case. Although the use of FDC has been relevant in the literature, its application
to small scale plants is not generally relevant, being its potential generally focused
in bigger scales. An example of this is [40], where the authors present a toolbox to
optimize the design of hydro-power plants by means of performance simulations in
terms of FDC.

Although traditional optimization approaches such as Linear Programming (LP)
[41], Integer Linear Programming (ILP) [30] or Mixed-Integer Non-Linear Pro-
gramming (MINLP) [41] have been proven useful to address these problems, meta-
heuristic algorithms are gaining relevance in several areas of engineering [42, 43],
and especially in the field of systems optimization [44–46]. An illustrative exam-
ple of this can be found in [45], where the authors develop a numerical sizing tool
on the basis of simulations of the plant performance (production and cost) during
the year. In terms of these simulations, a parametric study is developed to evaluate
the effects of the different factors, by means of a stochastic evolutionary algorithm
implemented. In [46], the authors propose three different to optimize reservoir opera-
tion and water supply operations. Similarly, a strategy for the optimal design, control
and operation of MHPPs is proposed in [27], where the authors present a Honey Bee
MatingOptimization (HBMO) algorithm. This algorithm determines the turbine type
and number, and the penstock diameter, in addition to scheduling the operation that
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maximizes the benefit for a given set of FDC. Nevertheless, this approach does not
consider particular characteristics of the plant location. Similar to the present work
but taking into account this last issue, the MHPP layout is optimized in [47], where
the authors develop a Genetic Algorithm (GA) to find the most adequate locations
for the different parts of the plant, including powerhouse, dam and penstock lay-
out, in order to reach a certain power rate with the minimal cost, satisfying a set
of constraints related to flow usage and feasibility of the layout for a certain terrain
profile.

This work proposes the use of a GA [48] to find the optimal layout of MHPP
in a certain location, which is considered as an input by means of a topographic
survey. The problem is formulated on the basis of the framework proposed in [30].
An improved cost function is proposed, and the generated power, flow usage and
physical feasibility constraints are considered. To verify the benefits of the proposed
approach, it is applied to optimize a real MHPP project in a rural community of
Honduras.

3 Problem Statement

The layout of a MHPP constitutes a strong conditioning to its performance, and
thus finding its optimal configuration represents a challenge itself, as requires a
compromise between different parameters, such as the gross height and the length
of the penstock. The higher the gross head is, the bigger the amount of obtainable
power is. Nevertheless, a long penstock implies negative effects due to the friction
losses, especially for small penstock diameters [49]. For this, a model of the plant is
required to be developed.

3.1 Model of the System

The objective of modeling the MHPP is based on finding the relation between the
variables that result from the plant layout (this is the gross head Hg and the penstock
length LP ) and the variables that determine the performance of the plant (this is the
generated power P , the water flow rate Q and the cost C).

3.1.1 Generated Power

The power obtained in a MHPP can be expressed as

P = Qhη, (1)
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Water jet

Pelton turbineGenerator

Fig. 2 Working scheme of a typical Pelton microturbine

being η the efficiency of the generation equipment (turbine and generator) and h the
water height at the entrance of the turbine. The difference between the gross height,
Hg , and this last relies in the heigh losses, hL , that appear due to the friction. This is

h = Hg − hL . (2)

As the turbines considered are action micro-turbines [26], the energy conversion
is made by means of an atmospheric jet (see Fig. 2), and thus the energy of the flow
at the entrance of the turbine is entirely kinetic. Following this, using v jet to denote
the water speed of the jet, it can be written that

h = 1

2g
v2jet . (3)

Given the incompressibility of water, the speed of the jet v jet , can be expressed
in terms of the flow Q, and the sectional area of the nozzle injector Snoz as

v jet = Q

cDSnoz
, (4)

where the coefficient of discharge cD models the formation of a jet contraction after
the water leaves the nozzle [24]. Using this last expression, the height at the entrance
of the turbine h can be written in terms of the flow as

h = 1

2gc2DS
2
noz

Q2. (5)

With respect to the friction loss hL , it can be modeled by using several approaches
proposed in the literature. In this work, the same expression used in [30] is used,
yielding that

hL ≈ k f ric
L P

D5
P

Q2, (6)
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where k f ric is a constant that depends on the material, DP is the pipe diameter.
Introducing expression (4) in (5), and the resultant expression, together with (6),
in (3), the following expression for the flow Q can be obtained:

Q =
⎡
⎣ Hg

1
2gc2DS

2
noz

+ k f ric

D5
P
L

⎤
⎦

1
2

. (7)

Finally, an expression for the obtainable power P , in terms of the height Hg and
length of the penstock LP can be obtained by substituting (7) and (5) in (1), resulting

P = ηρ

2S2noz

[
Hg

1
2gS2noz

+ k f ric
L
D5

P

] 3
2

. (8)

3.1.2 Cost of the Plant

Given the context of precariousness presented in Sect. 1, the cost of the installation
constitutes the main limitation for the success of the project of developing a MHPP
for rural electrification. It is relevant to note that the overall cost of the installation
includes not just the penstock, the dam, and the powerhouse, but also the distribution
line, the turbine, and the generator. Despite of this, the sizing of the turbine and
generator is usually conditioned by the order of the power estimation at each loca-
tion. The device selection is made for a wide margin of operation points, and thus
its dependency on the nominal point does not present a significant difference in the
manufacturing process, as the cost is approximately constant. For this, the location of
the dam and the powerhouse, together with the layout of the penstock and the power
line represent the main conditioning factors regarding the problem of optimizing the
use of the funding resources. As the cost of the generating equipment is considered
constant in this work, it is then not considered in the optimization problem.

The cost function considered is defined as the sum of the cost of the penstock, CP

and the cost of the distribution line CE . This is

C = CP + CE . (9)

The price of a piping installation typically varies in proportion to the total weight
of the pipes, which depends not only on the length but also on the diameter DP and
the wall width. Following [29], a simple expression for the cost of the pipe has the
form of

CP = kP L P, eq D
2
P ,

being KP a constant that must be defined in terms of the pipe material and its
geometry, and LP, eq is the equivalent length of the penstock, which is defined as
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the physical length plus a virtual length to consider the drawbacks of installing and
deploying the connections between the pipe lengths. Using λ to model the equivalent
cost of installing each elbow, it can be written

LP, eq = LP + λnc,

and thus the cost of the penstock is

CP = kP(LP + λnc)D
2
P . (10)

With respect to the cost of the distribution line, it can be modeled as

CE = kE LE , (11)

being kE the linear cost of the wiring. Introducing (10) and (11) in (12), the cost
function is

C = kP(LP + λnc)D
2
P + kE LE . (12)

The distribution line of the MHPP is assumed to consist of two intervals. The first
interval connects the village with the closest point of the river, named sc, while the
second connects this point to the powerhouse along the river. This scheme is followed
by the difficulties of access that the rough terrain imply, easing its installation and
maintenance. As the first interval is not conditioned by the layout of the plant, only
the second one is considered in the optimization problem. Note that the location of
this point sc must be determined in advance.

3.2 Model of the Layout

The possible feasible layouts are modeled by using the method proposed in [30],
where the domain of the problem is defined as a N−discretization of the topographic
profile of the river, in the form of

{si , zi } , i = 1 . . . N , (13)

Variables si and zi are the coordinates of the i-th point belonging to the profile of
the river, represented in the plane s − z that results from the 2D-development of the
real profile. This 2D development (schematically represented in Fig. 3) is made on
the basis of several assumptions. First, given the mountainous geography related to
the remote nature of the studied areas, the water sources are upper-course rivers,
typically formed in V-shaped valleys with very low or negligible curvature. This, in
addition with the short length of the required penstocks, implies that neglecting the
3D nature of the layout will have no noticeable implications on the formulation of
the problem.
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Fig. 3 Scheme of the 2D
simplification of the 3D real
river profile

z

zs ),(

s

i i

The solutions are modeled bymeans of a variable� is defined as a set of N binary
variables δi in the form of

� = [ δi ]1×N i = 1 . . . N , (14)

These variables δi are defined in such away that each combination of them (result-
ing in an array �) defines a layout of the MHPP as follows:

• A value δi = 1 represents the deployment of an elbow in point (si , zi ).
• The minimal index i satisfying δi = 1 represents the location of the powerhouse.
• The maximum index i satisfying δi = 1 represents the location of the dam.

For a better understanding of the proposed scheme, an illustrative example of this
scheme is represented in Fig. 4 for a discretization with N = 10 and an arbitrary �.
Note that the number of combinations for � is 2N . With this in mind, it must be
noted that even a low sampled set of data with a N ∼ 100 (this corresponds to a
1km river with a height measurement each 10m) represents an intractable problem
for brute-force algorithms, justifying the use of meta-heuristic approaches.

Using this scheme, the variables Hg , LP and LE can now be defined in terms of
the solution �. The gross head is defined as the height difference of the locations of
the dam and the powerhouse, and thus it can be determined as the height difference
between the maximum and minimum points (si , zi ) that satisfy i = 1. This is

Hg = zd − z p, (15)

where the sub-index d and p refers, respectively, to the maximum and minimum
index i such that δi = 1. Thus these index corresponds to the water dam and the
powerhouse location, respectively.

Regarding the length of the penstock, LP , it can be determined as the summation
of the successive pipe lengths of between consecutive elbows, this is

LP =
∑
∀(i, j)

[
(s j − si )

2 + (z j − zi )
2
] 1

2 ∀ (i, j)

∣∣∣∣
δi = δ j = 1,
δk = 0 ∀k ∈ {i, j} .

(16)
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Fig. 4 Illustrative example of the layout modeling, considering an arbitrary terrain (blue
dashed line) discretized by means of N = 10 points (squares). The arbitrary solution � =
[0 0 0 1 0 1 1 0 0 1] has been represented (penstock in red continuous line, distribution line in orange
dashed line). Note that the connection point to the village is located in ic = 2

A similar analysis can bemade to determine the length of the distribution line, LE ,
which can be calculated as the length of the river interval between the powerhouse
location and the nearest point to the village, sc. This is

LE =
max(ic,i p)∑
i=min(ic,i p)

[
(si+1 − si )

2 + (zi+1 − zi )
2
] 1

2 . (17)

Please note that this expression covers the possibilities of the village connection
point, sc, being lower than the powerhouse and the opposite.

3.3 Formulation of the Problem

In this work, the problem consists of finding the best location of the powerhouse, and
the water intake, together with the diameter and layout of the penstock. This problem
is formulated in single (SO) and multi-objective (MO) modes. The SO problem is
formulated as a cost minimization problem, while the MO additionally pursuits the
maximization of the generated power.
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The constraints applied to the problem cover the minimal energy supply required
for the village, the maximum amount of water which is allowed to be extracted,
and the feasibility of the penstock deployment on the terrain. These constraints are
detailed below.

3.3.1 Power Constraint

The fundamental requirement of theMHPP relies in the need of a certain power level
that satisfied the considered energy needs of the village. To this end, a value of the
necessary power supply, Pmin , is established on the basis of the initial evaluation
of the community supplied, and usually covers illumination and shared household
appliances. The constraint is then established as

P ≥ Pmin

This expression can be transformed by introducing Eqs. (15) and (16), resulting
in

ηρ

2C2
DS

2
noz

⎡
⎢⎣ zd − z p

1
2gc2D S

2
noz

+ k f ric

D5
p

∑
∀(i, j)

√
(s j − si )2 + (z j − zi )2

⎤
⎥⎦

3
2

≥ Pmin . (18)

3.3.2 Flow Constraint

The water flow available in the stream constitutes a strong limitation to the size of
the MHPP, and thus the turbine flow Q must be limited by an maximum extraction,
which is defined as a fraction κ of the natural flow rate Qriver . This constraint is
introduced in the form of

Q ≤ κQriver ,

This equation can be formulated in terms of the variables of the decision variables
by introducing (15) and (16), resulting in

⎡
⎢⎣ zd − z p

1
2gc2DS

2
noz

+ k f ric

D5
p

∑
∀(i, j)

√
(s j − si )2 + (z j − zi )2

⎤
⎥⎦

1
2

≤ κQriver . (19)
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3.3.3 Feasibility Constraints

In order to guarantee that the obtained solutions are feasible, a set of constraints
are proposed in such way that the height differences between the penstock and the
terrain are small enough to be covered by using supports (see point 5 in Fig. 4) or
excavations (see points 8 and 9 in Fig. 4), respectively. This is done by means of two
different constraints:

• The pipe can be disposed at a certain height from the terrain profile only if this
distance is smaller than the maximum available length of the supports, denoted by
εsup.

• The pipe can be disposed under a certain depth from the terrain profile only if this
distance is smaller than the maximum depth of excavations that is possible to be
made, denoted by εexc.

Note that the both εexc and εsup must be estimated on the basis of the properties
of the terrain. Using zP,i to denote the height of the penstock at coordinate si , the
feasibility constraints are written as

zP,i − zi ≤ εsup ∀i = 1 . . . N , (20a)

z j − zP, j ≤ εexc ∀ j = 1 . . . N . (20b)

4 Evolutionary Computational Approach

Evolutionary algorithms are meta-heuristic approaches capable of achieving signif-
icant results in complex optimization problems [48]. Although many evolutionary
algorithms have been proposed in the literature [50], Genetic Algorithms (GAs)
have been especially relevant in many engineering optimization problems [51–53].
GAs are population and nature-inspired approaches that are based on the process of
natural selection. The main idea of GAs lies in the encoding of the solutions in a
chromosome-like structure, in which each optimization variable is codified as a gen.

The working principle of a GA consists of creating a set of different individuals
(population), that represents different potential solutions of the problem. These indi-
viduals evolve through a certain number of iterations named generations (see Fig. 5),
successively creating new offspring that adapts better to the optimization landscape,
in accordance with the survival principle of the Darwinian theory. The adaptation of
an individual is measured through its quality or fitness, this is, the evaluation of the
solution as an input of the objective function of the problem.

A set of genetic operators, such as selection, crossover and mutation, are used to
create the offspring. The selection is an elitist operation that is based on selecting
the parents that participate in the crossover and mutation operations. Therefore, indi-
viduals with higher quality have more probability of being selected as parents. The
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Fig. 5 Working principle of a genetic algorithm
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crossover operation is based on combining the genetic information of two different
individuals, creating other two new individuals. With respect to the mutation oper-
ator, it consists in changing the genetic information of an individual to generate a
new one. Both crossover and mutation are probabilistic operations, and are capable
of developing a good exploration and exploitation capabilities with a proper tuning.

The application of a GA to address the proposed optimization problem is based
on codifying the possible layouts of theMHPP into individuals, containing the infor-
mation related to the location of powerhouse and dam, the layout of the penstock
and the diameter of the pipe. The fitness of the individuals is defined through the
objective functions of the optimization problem. As was previously mentioned, two
different configurations have been considered such as SO and MO approaches. In
the single-objective case, the fitness function is the cost of the plant, and thus it is
a minimization problem. On the contrary, in the MO case the GA simultaneously
minimize the cost and maximizes the power. In this second case, the multi-objective
case, the optimization is achieved by applying the Pareto dominance-based technique
NSGA-II [54].

4.1 Single-Objective Optimization Problem

Among the many possible implementations of SO GAs, a mupluslambda scheme
[55] (summarized in Algorithm 1) has been used in this work. This algorithm begins
with a random initial population Pi , which is evaluated. Then, the offspring μ is
created by means of crossover and mutation operations, whose probabilities are,
respectively, pcx and pmut . Next, the offspring is evaluated, and the new population
λ is selected from the offspring generated together with the previous population Pg .
The benefits of this approach lie in the strong elitism, as the offspring and parents
have to compete each other to be selected [55].

Algorithm 1: GA mupluslambda.

1 Create initial population Pi ;
2 Evaluate Pi ;
3 Pg = Pi ;
4 while stop == False do
5 Parents’ selection;
6 Create offspring μ (crossover pcx and mutation pmut );
7 Evaluate μ ;
8 Select new population λ (μ + Pg);
9 Pg = λ;

10 end
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The stop criteria of the GAs is generally based on a certain number of generations,
after which the algorithm finishes. The final population contains the best solutions
for the optimization problem.

4.1.1 Individual Representation

Each individual representing a possible design of the MHPP is a list containing the
ones or zeros (binary variables) that constitute the solution � (according to (14)).
Also, the diameter DP of the penstock is also embedded in the chromosome in the
form of a 5 bits codification, assuming that the penstock has the same diameter
along its layout. The length S of the chromosome is either N or N + 5 depending
on whether the diameter of the pipes is considered or not (see Sect. 5 for more
details). The first N bits correspond to the discrete data obtained from the profile
of the river (see the scheme in Fig. 6a). When the diameter DP is considered as an
optimization variable, it is embedded in the chromosome by the last five bits (see
Fig. 6a). Using this codification for DP , 32 decimal numbers can be represented. As
the diameter cannot be equal to 0, the decimal numbers represented are within the
interval {1 − 32}, determining the value in centimeters of the diameter Dp.

Although random generation is used to create the initial population of the GA, in
order to provide feasible solutions in the initial step and avoiding discarding invalid
ones, a tailored individual generator is proposed. This algorithm consists of selecting
two random points (p1 and p2) within the interval [1, S] (with p1 < p2), and filling
up with ones the variables δi within the interval [p1, p2] (see Fig. 6).

With this approach, the individuals of the initial population will not suffer from
the demanding feasibility constraints described in Sect. 3.3, favouring an efficient
exploration during the first generations of the GA.

(a)

(b)

Fig. 6 Individual representation considering the diameter of the penstock Dp (a) and individual
generation scheme (b)
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4.1.2 Fitness Function

The cost function defined in expression (12) determines the fitness of each individual,
in such way that the lower the cost, the better the solution is. In order to discard the
invalid solutions and avoid their participation in the following generations, death-
penalty is used. Following this, the fitness of each individual will be calculated as

{
i f solution valid F = (8),

else F = −∞,∞, according to (18), (19), (20).

4.1.3 Genetic Operators

Given the good results that the tournament selection mechanism has demonstrated in
the literature [56], it has been used in this work. This mechanism consists in selecting
a number of individuals that compete each other to be chosen as a parent, being the
best one selected as a parent to participate in the crossover and mutation operations
[56]. The size of the tournament has been defined as three, as it has been proven
suitable for a wide variety of problems.

Regarding the crossover operation, a two-points scheme is used. This consists of
swapping the genetic information of the parents by mean of two points that act as
indexes of the exchange.With respect to themutation algorithm, a tailoredmethodhas
been proposed. This consists in a modified flip-bit method, in which the probability
of flipping a one to a zero is considerable higher than a zero to a one. The aim of this
method is to reduce the cost of the layout by reducing the number of elbows of the
penstock and thus its length. It is relevant to note that, given the proposed scheme
for the initial generation, these individuals will have a high number of ones, and
thus, a high number of elbows which translates into a high cost. With this mutation
scheme, the cost is expected to be gradually reduced through the generations. For
this scheme, the probability of converting a one to a zero, phl , and a zero to a one,
plh , have to be established (see Sect. 5 for more details).

4.2 Multi-objective Optimization Problem

In this case, the objective is simultaneously the minimization of the cost (electri-
cal and penstock) and the maximization of the power generation of the MHPP, in
accordance with (10), (11), and (8), respectively. The MOGA used is the NSGA-
II [54], based on the Pareto dominance and that has demonstrated to be capable of
providing good results for a wide range of optimization problems in engineering
[57]. The Pareto dominance establishes that a solution dominates another iff it is
strictly superior in all considered objectives. Therefore, the aim of the NSGA-II is
to find all non-dominated solutions, which form the so-called Pareto front. For the
optimization problem addressed in this work, the Pareto front will consist of a curve
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in the 2D plane cost-power. The implementation of the MO-GA is summarized in
Algorithm 2.

The main differences with respect to the single-objective case are the following:

i The evaluation of the individuals for the two objectives is required to be calculated
ii The selection mechanism is based on the Pareto dominance. For this reason, the

Pareto front is updated after every generation, being this composed by all the
non-dominated solution when the algorithm finishes.

Algorithm 2: GA based on NSGA-II.
1 Create initial population Pi ;
2 Evaluate Pi ;
3 Pg = Pi ;
4 while stop == False do
5 Parents’ selection;
6 Create offspring μ (crossover pcx and mutation pmut );
7 Evaluate μ;
8 Calculate dominance;
9 Update Pareto front;

10 Select new population based on dominance λ (μ + Pg);
11 Pg = λ;
12 end

Using the MO approach provides the decision maker with a big picture of the
potential of the emplacement, allowing the consideration of different layouts if
required (changes in the budget, power requirements, etc).

4.2.1 Individual Representation

The individual representation is the same as that considered in the SO case.

4.2.2 Fitness Function

In this case, the fitness of each individual is a tuple of three components (one for
each objective). As was done in the SO mode, the death penalty is applied in order
to penalize the invalid solutions. Note that the death penalty must be employed in
each of the considered objectives, this is

{
if solution valid F = (8), (10), (11),

else F = ∞, according to (18), (19), (20).
(21)
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4.2.3 Genetic Operators

The crossover and mutation schemes used are the same of the single-objective case.

5 Simulation Results

In this section, the proposed evolutionary approach is applied to a real location.
The selected scenario consists of designing a MHPP to supply the small village of
San Miguelito, in the Department of Santa Bárbara (Honduras). This rural remote
community gathers ideal environmental characteristics, and given its location it lacks
access to the national electrification grid. A topographic survey of the terrain is used
in this Section. Also, a satellite image of the emplacement has been obtained, being
i shown in Fig. 7.

5.1 Scenario Settings

The topographic survey provided a discretization of N = 67 points (represented in
Fig. 8 for a better understanding), in the form of (13).

Fig. 7 Aerial view of the studied river profile (black) and a small tributary (white)
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Fig. 8 Topographic data points (squares)
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Table 1 Parameters of the case study

Parameter Symbol Value Units

Minimal power requirement Pmin 8 kW

Flow of the natural course Qriver 50 L/s

Maximum flow extraction allowance κ 0.5 –

Equivalent cost of elbows λc 50 m

Maximum depth of excavations εexc 1.5 m

Maximum height of supports εsup 1.5 m

Cost coefficient of the pipe kP 700 $/m3

Cost coefficient of the distribution line kE 22 $/m

The objective of this problem is designing a MHPP to supply the community
with a basic power need of 8kW. The flow of the river is 50 l/s, and a 50% fraction
is considered allowed to be extracted. The characteristics of the terrain permits the
installation of supports and excavations up to 1.5m. In addition, an equivalent cost
of λc = 50m is considered for the pipe elbows. The selected commercially available
pipe is 600kPa uPVC, which is suitable for pressures up to 87m [29]. For this pipe,
the coefficient has been estimated as KP = $700/m3. With respect to the distribution
line, a typical value of kE = $20/mhas beenused.Note that these parameters consider
the additional related costs (transport, deployment, etc). These parameters have been
summarized in Table1.

5.2 Genetic Algorithm Settings

The problem proposed is addressed by means of a GA, which employs the crossover
and mutation operators proposed in Sect. 4.1 Table2 contains the main configuration
parameters of the GA implementations.

5.3 Results

5.3.1 Single-Objective Mode

This case study represents the basic problem of optimizing a MHPP, regarding the
location of the powerhouse and the dam, the layout of the penstock and its elbows,
and the diameter of the pipe used. To determine the most suitable parameters of the
GA, the influence of the crossover and mutation probabilities, this is pcx and pmut ,

1The code is available in [58]. The simulator has been developed using Python and DEAP [59].
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Table 2 Parameters of the GA

Parameter Value

λ 2000

μ 2000

Individuals (MO) 2000

Generations 100

Selection Tournament size = 3 (SO) NSGA-II (MO)

Crossover Two-point scheme pcx = [0.6, 0.7, 0.8]
Mutation Modified bit-flip pm = [0.4, 0.3.0.2], phl = 0.8, plh = 0.2

Number of trials 30

Table 3 Results of the SO problem

GA parameters

pcx 0.5 0.6 0.7 0.8

pmut 0.5 0.4 0.3 0.2

Final population

Mean fitness 10572 11403 12714 13593

Std. dev. fitness 1665.4 2243.6 2800.2 2788.1

Best individuals

Gross height (m) 94.76 94.76 94.76 94.76

Flow rate (L/s) 13.716 13.716 13.716 13.716

Power (kW) 8.035 8.035 8.035 8.035

Penstock length (m) 753.15 753.15 753.15 753.15

Distribution line length (m) 21.39 21.39 21.39 21.39

Number of nodes 12 12 12 12

Pipe diameter (cm) 10 10 10 10

Penstock cost ($) 9471.9 9471.9 9471.9 9471.9

Distribution line cost ($) 470.58 470.58 470.58 470.58

Total cost (Fitness) ($) 9942.5 9942.5 9942.5 9942.5

has been evaluated by using the values listed in Table2. The results obtained are
summarized in Table3. In addition, the layout corresponding to the best individual
has been represented in Fig. 9.

In sight of the results listed in Table3, some comments can be made. First, it can
be seen that the four combinations of crossover and mutation probabilities led to the
same optimal solution. With respect to the optimal solution, the dominance of the
distribution line over the cost of the penstock in the overall cost is evidenced, as the
powerhouse is located next to the connection point. This can be understood bymeans
of the versatility of the penstock layoutwith respect to the distribution line.Displacing
the penstock layout along the domain result in small fluctuations of the penstock
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Fig. 9 Best solution obtained for SO problem. The penstock (black line), the elbows (black trian-
gles) and the distribution line (orange line) are represented. In addition, the raw data points are also
plotted (blue circles), together with a linear interpolation of these (blue dashed line)

cost (indeed two different penstocks that cover different areas of the terrain have the
same cost). This does not happens with the distribution grid, as its costs is strongly
conditioned by the location of the powerhouse. Nevertheless, the combination of
pcx = 0.5, pmut = 0.5 has demonstrated a better overall performance, with a mean
fitness of $10572.

5.3.2 Comparison with Other Algorithm

In this section, the optimization problem proposed is addressed by means of the ILP
proposed in [30], where the authors develop a linear formulation of the problem, to
be solver by a Branch and Bound Algorithm (BBA). Although the linear formulation
permits noticeably shorter solving times, the non-linear nature of the distribution
grid definition (see expression 17) and the effects of the penstock (see expression 6)
cannot be modeled, and thus, these are not able to be considered in the ILP problem.
Nevertheless, the optimal diameter, Dp = 10cm, obtained by the GA is proposed
for the ILP problem. The optimal layout obtained by this approach is represented
in Fig. 10. Observing this last, it can be seen as the consideration of the cost of the
distribution line, Ce, can constitute a conditioning for the problem. For the sake of
comparison, the main variables of this solution are compared with the best solution
obtained by the GA in Table4.

It can be seen that the ILP approach provides a better (cheaper) penstock. This
is due to the non consideration of the distribution grid, which strongly conditions

Fig. 10 Best solution obtained for SO problem obtained by using BBA [30]
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Table 4 Comparison of the results of the GA and the BBA

GA BBA

Gross height (m) 94.76 94.45

Flow rate (l/s) 13.716 13.974

Power (kW) 8.035 10.994

Penstock length (m) 753.15 653.01

Distribution line length (m) 21.39 282.34

Number of nodes 12 10

Pipe diameter (cm) 10 10

Penstock cost ($) 9471.9 8071

Distribution line cost($) 598.96 6211.5

Total cost ($) 9942.5 14282

the location of the powerhouse. As was expected, in spite of the more economic
penstock, the solution obtained by the ILP provides a much more expensive layout,
as the cost of the distribution grid is noticeably higher than in the GA solution.

In conclusion, the results demonstrate the capability of the proposedGA to address
the complex problem of finding the optimal layout of the MHPP with good results.

5.3.3 Multi-objective Mode

In this Section, the results of theMOproblemare presented. This approach constitutes
a deep analysis on the influence of the different parameters of the optimization
problem, and thus the potential of the proposed emplacement for the MHPP can be
evaluated. The results of the MO approach consist in the Pareto front [60], which is
formed by a set of non-dominated solutions, that correspond to optimal combinations
of the objective values. In this case, the economic objective of minimizing the cost of
the MHPP and the maximization of the power generated are combined. The Pareto
front is represented in Fig. 11.

Given the difficulty of interpreting its morphology, due to its three-dimensional
nature, an interpolation surface is proposed in Fig. 12, which is developed by means
of a tessellation for a better understanding.

In sight of the morphology of the Pareto front shown in Fig. 12, some comments
can be made. For this, a simple scheme of the Pareto front is drawn in Fig. 13. Using
this scheme, the result of fixing each of the three objectives (cost of the penstock,
cost of the distribution line, and power) can be evaluated.

First, fixing the cost of the distribution line, Ce, (see Fig. 14 top) implies a max-
imum reachable power, which can be increased if the cost of the distribution line is
also increased. This is reasonable, as fixing the cost of the distribution grid translates
into fixing the location of the dam. The higher this cost is, the further the dam is
placed from the community, and the larger range of domain is thus available.
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Fig. 11 Representation of the Pareto Front

Fig. 12 Interpolation of the Pareto Front
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Fig. 13 Qualitative
representation of the Pareto
front

Secondly, the competitive nature of minimizing both the cost of the penstock and
the cost of the distribution grid can be verified through the fixation of the generated
power P (see Fig. 14 middle). As was expected, higher values of the power imply
higher costs. A relevant aspect to note is the appearance of a minimum cost of
the distribution grid, Ce for power generation values above a certain limit. This is
understandable, as solutions with zero cost of the distribution grid can be obtained
for low values of power P , but not for high ones, as fixing the location of the dam
strongly conditions the range of possible combinations.

Finally, the fixation of the cost of the penstock, Cp, imply a extremely high
sensibility of the solutions with respect to the cost of the distribution grid (see Fig. 14
bottom), as only small variations in power can be reached by displacing the penstock
along the terrain, with the consequent high variances of the distribution grid due to
moving the location of the dam.

An interesting analysis can be made by combining the costs related to the distri-
bution grid and the penstock, being the Pareto front in Fig. 15 obtained as a result. In
sight of the morphology of this Pareto front, some comments can be made. First, it
can be seen that an improvement in one of the objectives necessarily implies wors-
ening the other (counterbalanced objectives), what evidences the competitive nature
of the cost of the plant and the power generation. Regarding the morphology, it is
relevant to note that, for low values of power, a linear tendency can be observed
(represented by a red dashed line in Fig. 15 for a better understanding).

This can be interpreted as a constant marginal cost of increasing the generated
power. Indeed, the slope of this tendency, r = $656/kW, represents the increment
marginal cost of increasing the generated power in 1kW. It can be easily understood
the capacity of the solutions of reaching higher power levels by covering a higher
range of the domain. For this reason, this slope is proposed as a reliable indicator of
potential of the emplacement.
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Fig. 14 Qualitative analysis of the morphology of the Pareto front

In addition, the abrupt change of this linear tendency which is observed for high
values of power can also be understood by considering that the solutions can saturate
the domain. For these solutions, the penstock covers the entire domain, and thus
only small improvements in power can be reached by either modifying the nodes
distribution and increasing the pipe diameter, which strongly affects the cost.
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Fig. 15 Pareto front Power-Cost, electrical and penstock costs are added (coloured points and
continuous blue line). The diameter of the pipe has been represented by color (see color bar). Note
that the linear tendency has been also represented (red dashed)

6 Limitations of the Approach and Further Work

Despite the good results obtained in the previous section, some comments can be
made regarding the limitations of the proposed approach.

First, it is relevant to note that the 2D simplification of the river profile constitutes
the main limitation for the application of this approach. Thus, the reliability of the
results is strongly conditioned by its application to low curvature river profiles.

Secondly, it has been assumed that the village and the river are near enough to
consider that the distribution line is desirable to be deployed along the river profile.
For this reason, this approach is not adequate if there is a substantial distance between
these two elements, as in these cases the distribution line is generally desired to be
deployed through rough terrain, for the sake of costs savings.

Considering these two issues related to the application of the proposed approach,
the extension of this study to a 3D domain is proposed as a further work, with the aim
of improving the modeling of the distribution line and providing a reliable model of
the deployment of the penstock for rivers with non-negligible curvature.

7 Conclusions

The main conclusions of the work presented in this chapter can be summarized as
follows:

• A model of a MHPP has been developed, allowing the study of the influence of
the different design parameters on the performance and the costs.
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• AGA has been developed to address the optimization problem of finding the most
suitable layout of the MHPP.

• The proposed approach has been successfully applied to a real case in a remote
village in Honduras, where a set of topographic data has been used as input.

• A single-objectivemode (total cost minimization) has been first used to address the
optimization problem. An optimal solution with cost $9942.5 has been obtained,
demonstrating the capability of the algorithm to address complex non-linear prob-
lem formulations with good convergence rates.

• The configuration pcx = 0.5, pmut = 0.5 has demonstrated the best performance,
providing the lowest mean fitness ($10572) and standard deviation ($1665.4) in
the final population.

• A multi-objective mode (power maximization, penstock cost minimization and
distribution line minimization) has additionally been applied to the optimization
problem, being the Pareto front determined. This has provided a deep study of
the potential of the emplacement. The marginal cost of increasing the generated
power of the MHPP has been determined in $656 per additional kWatt installed.
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