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Abstract—This work proposes a hybrid methodology for the
detection and prediction of Extreme Significant Wave Height
(ESWH) periods in oceans. In a first step, wave height time
series is approximated by a labeled sequence of segments, which
is obtained using a genetic algorithm in combination with
a likelihood-based segmentation (GA+LS). Then, an artificial
neural network classifier with hybrid basis functions is trained
with a multiobjetive evolutionary algorithm (MOEA) in order
to predict the occurrence of future ESWH segments based on
past values. The methodology is applied to a buoy in the Gulf of
Alaska and another one in Puerto Rico. The results show that
the GA+LS is able to segment and group the ESWH values, and
the neural network models, obtained by the MOEA, make good
predictions maintaining a balance between global accuracy and
minimum sensitivity for the detection of ESWH events. Moreover,
hybrid neural networks are shown to lead to better results than
pure models.

I. INTRODUCTION

Prediction of Significant Wave Height (SWH) values is
an important issue for the design of coastal and offshore
structures [1], for oil and gas extraction, for estimation of
renewable energy production and for other activities. In recent
years, Machine Learning (ML) techniques have been used in
order to improve the prediction of SWH treated as a regression
problem [2].

Specifically, artificial neural network (ANN) models have
been successfully used in reconstruction and prediction of
waves, improving the accuracy of numerical models [3], [4].
When applying ANNs, there are many different options in the
literature, such as sigmoidal unit neural networks (SUNN) [5],
radial basis function (RBF) neural networks [5], product unit
neural networks (PUNN) [6], or some related methods, such
as projection pursuit learning [7], generalized additive models
[8], or hybridization of multivariate adaptive splines (MARS)
[9]. All of them can be seen as different basis functions
models. The main problem of these approaches is to adjust
the optimal number and the typology of the corresponding
basis functions.

Hybrid models of ANNs can be found in the literature,
where different activation/transfer functions are used for the
nodes in the hidden layer. The hybridization of different basis
functions has been made using either one single hybrid hidden
layer or several connected pure layers. According to Duch and
Jankowski [10], mixed transfer functions within one network

may be introduced in two ways. In the first way, a constructive
method selects the most promising functions from a pool
of candidates in RBF-like architecture, and it is added to
the network [11]. In the second approach, starting from a
network that already contains several types of functions (such
as Gaussian and sigmoidal functions), pruning or regulariza-
tion techniques are used to reduce the number of functions
[10]. Iulian proposed a methodology including three distinct
modules implementing a hybrid feed-forward ANN, namely a
Gaussian type RBF network, a principal component analysis
(PCA) process, and a multi-layer perceptron ANN [12]. In
this context, it is worth emphasizing the paper by Cohen and
Intrator [13], which is based on the duality and complementary
properties of projection-based functions (SU and PU) and
kernel typology (RBF). This hybridization of models has
been justified theoretically in [14], who demonstrated that any
continuous function can be decomposed into two mutually
exclusive functions, such as radial (kernel functions) and
crest ones (based on the projection). Although theoretically
this decomposition is justified, in practice, it is difficult to
apply gradient methods to separate the different locations of a
function (in order to adjust them by means of a combination of
RBF) and then to estimate the residual functions by means of
a functional approach based on projections, all without getting
trapped in local optima in the procedure of error minimizations
[9]. In order to avoid these problems, evolutionary algorithms
(EAs) can be used for automatically designing and adjusting
the structure and weights of hybrid ANNs [15], and this is
methodology applied in this paper.

Coming back to SWH prediction, the interest of developing
novel methodologies for tackling the prediction of Extreme
SWHs (ESWH) has increased during last years [16], [17].
In general, these methodologies use probabilistic distributions
of extreme values [18], where the main assumption is that
a global change in time causes the occurrence of greater
and longer SWHs, affecting ports, beaches, and fishing and
navigation activities.

ESWH prediction models also assume that yearly samples
of weather are i.i.d. However, large inter-year variability is fre-
quently observed, and this hypothesis should not be assumed
to be true [19]. Several evidences suggest that storm intensity
over the ocean is changing due to climate change, and, because



of this reason, the parameters of the probabilistic distribution
of extreme values should change too [20].

In this paper, we propose a novel methodology where the
i.i.d. assumption is not made. As a first step, a time series
segmentation genetic algorithm is combined with a likelihood-
based segmentation (GA+LS) and applied to discover four
types of SWH segments, where one of them is related to
extreme waves (ESWHs). Then, from this segmentation, pre-
diction is tackled by using a binary classifier with the aim of
deciding if, at a given moment, the next segment is going to be
a ESWH segment or not, using the characteristics of previous
ones. The classifier is trained by a multi-objective evolutionary
algorithm (MOEA), especially adapted to imbalanced datasets,
given that the number of ESWH segments is much lower
than the number of non ESWH segments. The population of
individuals in the MOEA is formed by feed-forward hybrid
ANNs with a hidden layer of SUs or PUs in combination
with RBFs. The ANNs are fitted to perform a balanced
classification, optimizing both their typology, structure and
weights.

This paper is organized as follows: Section II includes the
proposed methodology, Section III presents the description of
the time series, the performed experiments and the discussion
of the results. Finally, Section IV concludes with some tips.

II. METHODOLOGY

The proposed methodology can be divided into two stages
(detection and prediction). Firstly, to obtain the segments of
the SWH time series, a GA is used. In this stage, the algorithm
tries to divide the time series into a set segments and a
clustering of these segments is done to group them. Once the
segmentation is finished, the cluster grouping ESWH segments
is decided, and the time series is converted into a sequence
of labels (corresponding to the clusters assigned to each
segment). Finally, this sequence is used for prediction (second
stage), where, based on the characteristics of past segments,
we try to predict whether the next segment corresponds to
ESWH or not. The summary of this methodology can be see
in Fig. 1.

A. Stage 1: Detection of ESWH segments

The formal definition of the segmentation stage is the
following: given a time series Y = {yn}Nn=1, our goal
is to find a set of m segments defined by t = {ti}m−1i=1

cut points. So, the segments s = {s1, s2, . . . , sm} are de-
fined as s1 = {y1, . . . , yt1}, s2 = {yt1 , . . . , yt2}, . . . , sm =
{ytm−1 , . . . , yN}. After this step, it is necessary the clustering
of these segments in k groups, where (k << m) and one of
them is related to ESWH. A label l ∈ {1, . . . , k} is assigned
to each segment. The segmentation is finally improved with
a likelihood-based method (assuming a beta probabilistic dis-
tribution of extreme values for all the segments), where some
new cut points are discovered.

The segmentation GA is similar to the one the proposed
in [21]. However, in this paper, two main changes have been
made:
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Fig. 1. Summary of the proposed methodology.

1) The first one corresponds to the fitness function. The
clustering index used in [21] (COP index) has been
substituted by the Caliński and Harabasz index (CH),
which allows us to determine well separated and com-
pact clusters. In addition, CH leads to very good results
in the experimental study presented in [22]. CH is
defined by:

CH =
(
∑k

i=1 ni||c̄i − s̄||2) · (m− k)

(
∑k

i=1

∑
s∈ci ||s− c̄i||2) · (k − 1)

, (1)

where m is the number of patterns (mapped segments
in our case), ni is the number of segments of cluster i,
c̄i is the centroid of cluster i, s̄ is the overall mean of
all mapped segments, and ||c̄i − s̄||2 is the Euclidean
distance between two vectors. According to [21], a
mapped segment si is a 5-dimensional array, including
the variance (S2

i ), the kurtosis (γ1i), the skewness (γ2i),
the slope of a linear regression (ai), and the autocorre-
lation (ACi), of the values of the i-th segment. In this
way, si = (S2

i , γ1i, γ2i, ai, ACi).
2) The second one is that the likelihood-based segmen-

tation procedure assumes a beta distribution instead a
normal distribution. The beta distribution is specifically
designed for correctly representing extreme values.

Further details of the hybrid segmentation GA can be checked
in [21].

B. Stage 2: Prediction of ESWH segments

Once the segmentation is finished, the best time series
segmentation given by the GA+LS algorithm is used, and the
ESWH cluster is identified. The database for the prediction
stage is constructed as follows. The three mapped segments



previous to the segment to be predicted are used as indepen-
dent variables and the dependent variable is a binary label
indicating whether the next segment corresponds to extreme
waves (i.e. if it is a ESWH segment or not). Some other details
about the database creation are given in Section III.

The main inconvenient of the derived dataset is that it is
extremely imbalanced with respect to the ESWH class, highly
outnumbered by non extreme segments. For this reason, the
MOEA described in [23] has been considered, which tackles
this kind of problems by using two non-cooperative metrics
or fitness functions: the Correctly Classified Rate, CCR,
and the sensitivity of the worst classified class, named as
Minimum Sensitivity, MS. These metrics obtain good results
in the maximization of the overall precision, maintaining the
accuracy per class as balanced as possible, as shown in [23].

The proposed MOEA is based on the original NSGA2
algorithm [24], and it has been modified and adapted for the
evolution of hybrid ANN models with one feed forward hidden
layer, given their ability as classification methods [25], [26].
The algorithm, named NSGA2 − ANN in this work and
whose scheme is shown in Figure 2, estimates the coefficients
and the structure of each ANN in the evolutionary population.
The following subsections include further details about the
algorithm.

1) Hybrid basis functions: Given that the algorithm in [23]
evolved pure ANNs, some specific features have to be included
to consider hybrid ANNs. From a statistical point of view, feed
forward ANN models with one hidden-layer are generalized
linear regression models, considering a linear combination of
non-linear projections of the input variables, fj(x,wj) in the
following way:

f(x,θ) = β0 +

M∑
j=1

βjfj(x,wj), (2)

where M is the number of non-linear combinations, θ =
{β,w1, . . . ,wM} are the parameters of the model, fj(x,wj)
are each of the basis functions, wj are the set of parameters
associated to each basis functions, and x = {x1, . . . , xk} are
the input variables associated to the problem. This kind of
models, which include ANN, are called linear models of basis
functions [27].

In this paper, non-parametric adaptive methods are used to
estimate the binary label, ESWH segment or not (nESWH).
We try to determine the f function so that the true relationship
between the response variable y ∈ {ESWH, nESWH} and the
dependent variables x can be uncovered, where ŷ = f(x). To
do so, the training dataset, D, consists of n observed responses
at some known predictor locations, so D = {xl, yl} for l =
1, 2, . . . , n.

More concretely, let f : A ⊂ Rk → {ESWH, nESWH} and
the dataset D = {(xl, f(xl)) : xl ∈ A}. Supposing ε > 0, we
define two functions g1 = fRBF + fPU and g2 = fRBF + fSU,
such that |f(x)−g1(x)| < ε and |f(x)−g2(x)| < ε, ∀x ∈ A.

The functions are given by:

fRBF(x) =

m1∑
j=1

αj exp

(
||x− cj ||
rj2

)
, (3)

fPU(x) =

m2∑
j=1

βj

k∏
i=1

x
wji

i , (4)

fSU(x) =

m3∑
j=1

γj
1

1 + e−
∑k

i=1 wjixi
, (5)

where cj and rj are the centroid and the radius of the j-th
RBF unit, respectively; αj , βj and γj are the weights of the
output neuron with respect to the j-th hidden neuron; and wji

are the weights of the j-th hidden neuron with respect to the
i-th input neuron.

Given a combination of basis functions, the algorithm has
to find the number of neurons of each type (m1, m2 and m3)
and the parameters of the ANN (cj , rj , αj , βj , γj , wji) trying
to minimize the classification error of the training dataset.

For evaluating the error, the output layer is interpreted from
the point of view of probability through the use of the Softmax
activation function [27]. Therefore, a function g(x,θ) is used
to predict the membership degree of an input pattern with
respect to one of the two classes. Taking this consideration
into account, it can be seen that the class predicted by the
ANN corresponds to the neuron on the output layer whose g
value is the greatest:

gl(x,θ) =
exp fl(x,θ)∑2
j=1 exp fj(x,θ)

, l = 1, 2. (6)

2) NSGA2-ANN: Following the scheme shown in Figure
2, NSGA2− ANN begins with the random generation of a
population of ANNs. Once the individuals have been evaluated
using the CCR and MS objective functions1, the population
is sorted depending on the Pareto dominance concept [28].
After that, new individuals (for the offspring) are generated
by binary tournament techniques. Five mutation operators
are applied to the individuals created by the selection, four
structural mutations (add neurons, delete neurons, add links
and delete links) and one parametric mutation, which consists
in adding a Gaussian noise to the weights of the links of
ANNs throughout the evolution. This Gaussian noise is a
random value of a normal distribution with zero mean and
1 − A(c) variance, where A(c) is the fitness value of the
mutated individual c (Note that the variance is a decreasing
value along the generations, for more details see [29]). Once
the mutation process is carried out, the mutated population
(offspring) is evaluated for both objective functions, and it is
combined with the parent population, the size of the population
being 2N . The resulting population is sorted according to the
Pareto dominance concept, and the N best individuals are
selected as parents for the next generation. The process starts
again if the maximum number of generations have not been
reached.

1The definition of these functions can be found in [23]
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Fig. 2. General scheme for NSGA2−ANN .

Once the Pareto front is built into the last generation of
training, two strategies are used to choose the best individuals
for the addressed problem. The first strategy selects the best
model in CCR, which is the upper individual of the Pareto
front, named NSGA2−ANN −CCR. The second strategy
selects the best model in MS, which is the bottom individual
from the Pareto front, named NSGA2 − ANN −MS. The
MS individual is very important to predict when ESWH occur,
which, in this problem, corresponds with the minority class.

The basis functions used in the population of NSGA2 −
ANN can be one of these five options: 1) pure sigmoidal
units (SU) [30], 2) pure product units (PU) [31], 3) pure RBF
units (RBF) [5], 4) hybrid units combination of SU+RBF, and
5) hybrid units combination of PU+RBF [15]. The models
with the highest values in CCR and MS metrics, which
are also interpretable (i.e. with a lower number of neurons
and weights) will be used to decided which combination is
better (SU, PU, RBF, SU+RBF or PU+RBF). Therefore,
the resulting methodologies for the experimental section are
named NSGA2−ANN−CCR−XX or NSGA2−ANN−
MS −XX , being XX one of the five combinations of basis
functions.

III. EXPERIMENTS AND RESULTS

The time series for the first detection stage are built from
the SWH of two buoys belonging to the National Data Buoy
Center of the USA [32] and are located in different places
to check the robustness of the proposed methodology: 1) a
buoy in the Gulf of Alaska, with identification number 46001,
and 2) a buoy at northeast Puerto Rico, with identification
number 41043. Data from 1st January 2008 to 31st December
2013 are considered for the buoy 46001, and data from 1st
January 2011 to 31st December 2015 are considered for the
buoy 41043, using a 6-hour time horizon approximation, with
a total of 8767 and 7303 observations, respectively. In TABLE
I, the main characteristics of these buoys are shown: minimum,
maximum, mean and standard deviation of SWH, Kurtosis
coefficient, skewness of SWH, water depth and location. The
complete time series used in the experiments can be seen in
Fig. 3.

For the second prediction stage, a database is built by using
the associated labels of the detection phase. The results of the
detection stage are a sequence of segments, summarized by the
5 characteristics discussed in Section II-A together with a label

TABLE I
INFORMATION OF THE CONSIDERED BUOYS, 46001 AND 41043.

Buoy Id Min(m) Max(m) Mean(m) SD(m)
46001 0.46 10.17 2.653 1.404
41043 0.03 6.12 1.763 0.591

Buoy Id Kurtosis Skewness(m) Depth(m) Location
46001 4.714 1.162 4206 56.304 N 147.920 W
41043 5.451 1.06 5289 21.132 N 64.856 W

Buoy Id #Patterns #Inputs #Classes #Patterns per class
46001 379 15 2 347-32
41043 298 15 2 264-34

indicating the assigned cluster. The dataset used to determine if
a future segment will be considered as ESWH event considers
the characteristics of the three previous segments (with a total
of 15 inputs). Each pattern of the dataset is formed by the
input variables si−3, si−2, si−1 and the binary output at the
time i.

The total number of patterns obtained for the prediction
phase (see TABLE I) for the buoy 46001 is 379 (corresponding
to the number of segments obtained in the detection stage
minus three). For the buoy 41043, the total number of patterns
is 298. Note that the number of nESWH patterns in each buoy
(347 and 264) is very with respect to the prediction of ESWH
(32 and 34). This proportion clearly leads to an unbalanced
classification problem.

A. Experimental design

In the detection stage, the following parameters has to
be adjusted: population size (P ), crossover and mutation
probabilities (pc and pm), percentage of mutated cut point
(%mpoints), number of generations (g), initial minimum and
maximum segment size (smin and smax), number of iterations
of k-means (#k-mean) and number of clusters (k). TABLE
II shows the values of the parameters obtained by a trial and
error procedure.

On the prediction stage, and for each buoy, a stratified
holdout cross-validation procedure is applied for training and
test the ANN models. Approximately, 75% of the patterns
were randomly selected for the training set and the remaining
25% for the test set. Given that the NSGA2−ANN algorithm
is stochastic, it was run 30 times, using the parameter values
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Fig. 3. Time series of the buoy id 46001 in the Gulf of Alaska and the buoy id 41043 in Puerto Rico.

TABLE II
PARAMETERS USED IN THE DETECTION STAGE.

P pc pm %mpoints g
100 0.8 0.2 20% 100
smin smax #k-means k*

20 120 20 4 - 5
* k = 5 for buoy id 46001, and k = 4 for buoy id 41043

established and discussed in [23]. The only difference is that,
in this work, local search (or lifetime learning) is not applied.
The five different options concerning the transfer functions of
the models are tested. The algorithm obtains a Pareto front
where the best model in CCR and the best model in MS
are selected. The support vector machine classifier, SVM , a
decision tree algorithm, C4.5, and their cost sensitive versions
(SVM−CS and C4.5 − CS, respectively) have also been
run using the Weka machine learning framework [33]. These
algorithms are used for comparison, because they can be
considered some of the most representative methods in the
literature for classification tasks, and also because their results
show how the MS metric in NSGA2−ANN is essential to
obtain a good classification for both classes. To evaluate the
performance of all methods, the most common metrics for
binary classification have been selected [34]: CCR, MS and
AUC or Area under Roc Curve.

B. Discussion

Fig. 4 shows the best segmentations produced by the GA in
combination with the likelihood-based segmentation, in terms
of the fitness function. As we can see, in buoy id 46001, the
results show that the red cluster groups segments with extreme
wave height. In the case of buoy id 41043, the cluster which
groups ESWH segments is the dark blue one. In addition, the
mean results of the 30 runs of our algorithm allow us observe
that applying the likelihood-based segmentation (assuming a
beta distribution) to the final solution of the GA improved
fitness function from 4629.27 to 6804.93 in the case of buoy
46001, and from 4494.99 to 4775.17 in the case of buoy
id 41043. For this reason, the application of this type of
distribution to the segmentation/detection of ESWHs can be
confirmed to be suitable.

After selecting considering the best fitness segmentation,
we tackle the prediction stage. For this stage, Table III shows
the mean and standard deviation (SD) of the results extracted
from 30 runs for each configuration and for each buoy.

As can be observed, SVM and C4.5 methodologies lead
to the best results in CCR. The problem of these algorithms
is that they do not classify patterns of the minority class, that
is, they do not predict correctly ESWH segments, obtaining
values of MS in the range 0− 5% for both buoys (not being
useful for these problems). These results are far worse than
those obtained in MS by the NSGA2−ANN methodologies.
With respect to AUC, the results of SVM and C4.5 are worse
than the values provided by the other methods for buoy id
46001, and very similar for buoy id 41043 (in this buoy, the
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Fig. 4. Segmentations of Buoy id 46001 and Buoy id 41043 time series.

prediction is more difficult for all methodologies). The cost
sensitive versions of these algorithms get better results in terms
of MS and AUC than the same versions without costs, but
NSGA2−ANN methodologies continue to be the best ones.

After observing that SVM , C4.5, SVM−CS and C4.5−
CS methodologies do not achieve good results in terms
of MS and AUC compared to the proposed methodology,
the following results obtained with the NSGA2 − ANN
methodologies can be discussed:
• Buoy id 46001: The NSGA2−ANN −CCR−SU +
RBF and NSGA2 − ANN − CCR − PU + RBF
hybrid ANNs obtain the best results in CCR, 0.905
± 0.012 and 0.900±0.016, respectively, and low val-
ues (although better than SVM and C4.5) in MS.
NSGA2−ANN −MS − SU +RBF and NSGA2−
ANN−MS−PU+RBF obtain the best results in MS,
0.605±0.089 and 0.634±0.078 respectively. The results
in CCR for these methodologies are not as high as those
obtained for the methodologies that use the CCR extreme
of the Pareto front, but they are acceptable, 0.743 ± 0.039
and 0.748± 0.039, respectively. Therefore, for this buoy,
hybrid ANN models are found to be more useful than
pure ANN models, because the combinations SU+RBF
and PU +RBF get good results in CCR and MS.

• Buoy id 41043: The NSGA2−ANN −CCR−PU +
RBF methodology obtains the best results in CCR,
0.864±0.022, and a low value (although better than
SVM and C4.5) in MS. The hybrid NSGA2−ANN−
MS − PU + RBF method obtains the best result in

MS, 0.341±0.140, while the CCR result, 0.586±0.069,
is not so good. NSGA2 − ANN −MS − RBF leads
to a good compromise between CCR and MS, with
values of 0.703±0.052 and 0.326±0.170, respectively.
Therefore, the methodology recommended for this buoy
is NSGA2 − ANN − MS − RBF , providing very
acceptable values for the three metrics.

IV. CONCLUSIONS

This paper presents a two-stage methodology to detect and
predict segments where there are one or more extreme height
waves. In the first stage, a detection of ESWH events with
the combination of a genetic algorithm and a likelihood-
based segmentation is carried out. The second stage uses the
segmentation obtained to perform binary predictions, deciding
if ESWH segments will occur or not.

On the one hand, in the detection stage, results agree that
the application of the likelihood-based segmentation assuming
a beta distribution is suitable for this type of time series with
extreme values. On the other hand, for the prediction stage,
the use of a MOEA for designing ANN models improves the
prediction of ESWH events, because traditional methods tends
to ignore the minority class.

Among the ANN architectures proposed, those using hy-
bridization of the basis functions should be considered, be-
cause these hybrid methodologies lead to better results than
pure models.



TABLE III
PREDICTION RESULTS: CCR, MS AND AUC RESULTS FOR THE TEST SETS. MEAN AND STANDARD DEVIATION (SD) ARE EXTRACTED FROM 30 RUNS

AND ARE EXPRESSED IN THE RANGE [0, 1].

Buoy 46001

Method CCR MS AUC
Mean±SD Mean±SD Mean±SD

NSGA2-ANN-CCR-SU 0.880 ± 0.025 0.075 ± 0.117 0.660±0.094
NSGA2-ANN-MS-SU 0.780 ± 0.040 0.584 ± 0.089 0.731±0.062

NSGA2-ANN-CCR-PU 0.898 ± 0.021 0.038 ± 0.058 0.591±0.100
NSGA2-ANN-MS-PU 0.755 ± 0.034 0.598 ± 0.092 0.697±0.040

NSGA2-ANN-CCR-RBF 0.879 ± 0.020 0.133 ± 0.143 0.663±0.109
NSGA2-ANN-MS-RBF 0.814 ± 0.033 0.525 ± 0.133 0.711±0.077

NSGA2-ANN-CCR-SU+RBF 0.905 ± 0.012 0.046 ± 0.116 0.700±0.077
NSGA2-ANN-MS-SU+RBF 0.743 ± 0.039 0.605 ± 0.089 0.714±0.064

NSGA2-ANN-CCR-PU+RBF 0.900 ± 0.016 0.042 ± 0.068 0.680±0.078
NSGA2-ANN-MS-PU+RBF 0.748 ± 0.039 0.634 ± 0.078 0.709±0.049

SVM 0.916±0.000 0.000±0.000 0.500±0.000
C4.5 0.906±0.017 0.017±0.043 0.502±0.016

SVM-CS 0.737±0.048 0.473±0.137 0.620±0.068
C4.5-CS 0.819 ± 0.037 0.188 ± 0.138 0.532±0.063

Buoy 41043

Method CCR MS AUC
Mean±SD Mean±SD Mean±SD

NSGA2-ANN-CCR-SU 0.842 ± 0.027 0.041 ± 0.074 0.453±0.1154
NSGA2-ANN-MS-SU 0.674 ± 0.058 0.270 ± 0.162 0.480±0.118

NSGA2-ANN-CCR-PU 0.856 ± 0.017 0.041 ± 0.062 0.467±0.121
NSGA2-ANN-MS-PU 0.641 ± 0.050 0.219 ± 0.138 0.454±0.121

NSGA2-ANN-CCR-RBF 0.848 ± 0.024 0.048 ± 0.070 0.546±0.079
NSGA2-ANN-MS-RBF 0.703 ± 0.052 0.326 ± 0.170 0.562±0.104

NSGA2-ANN-CCR-SU+RBF 0.834 ± 0.026 0.037 ± 0.053 0.410±0.114
NSGA2-ANN-MS-SU+RBF 0.665 ± 0.055 0.244 ± 0.122 0.449±0.113

NSGA2-ANN-CCR-PU+RBF 0.864 ± 0.022 0.037 ± 0.061 0.494±0.098
NSGA2-ANN-MS-PU+RBF 0.586 ± 0.069 0.341 ± 0.140 0.452±0.119

SVM 0.880±0.000 0.000±0.000 0.500±0.000
C4.5 0.875±0.019 0.000±0.000 0.497±0.011

SVM-CS 0.625±0.086 0.290±0.172 0.486±0.083
C4.5-CS 0.726 ± 0.077 0.300 ± 0.160 0.542±0.070

The best result for each metric are in boldface and the second best result in italics.
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