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Abstract— This paper proposes an optimal control solution
for the L2-gain disturbance rejection problem for networked
control systems. The problem, usually referred as mixed H2/H∞,
aims at designing a linear stabilizing controller minimizing
a given cost function subject to a L2-gain disturbance rejec-
tion constraint. The problem is formulated assuming network
induced time-varying delays and/or packet losses. An LMI-
based minimization problem is derived based on a Lyapunov-
Krasovskii approach, considering a polytopic covering of the
time-delay range. Simulation results are provided to verify the
performance of the methodology.

I. INTRODUCTION

This work addresses the design of an optimal L2-gain

disturbance rejection control for linear systems controlled

through a communication network. These control schemes,

usually termed as NCS (Networked Control Systems), have

captured the attention of many researches in last years. There

are a huge range of potential applications of these techno-

logies and, also, challenging control problems have arisen

from the presence of unreliable communication channels in

the control loops, see [1].

Many authors have studied the conditions which must

be verified to stabilize the whole system using different

controllers and under specific conditions of the network. To

name some of them, we can find works which study the

stability of NCSs with delays, [2]; packet losses, [3]; or with

limited bandwidth, [4].

In this framework, some remarkable results have been

obtained based on the Lyapunov-Krasovskii approach, [5].

Using an appropriate Lyapunov-Krasovskii functional, it is

possible to take into account delays and packet dropouts

which affect the communication. This technique has been

widely used to study the stability of time-delay systems,

see for instance [6], [7] and references therein. It is from

the work [8], and the input delay approach to sampled-data

system, when the contributions of time-delay systems were

widely applied to networked control system framework, see

[9].

Several works are available in the Literature in the context

of optimal control for NCS. In [10], some modifications of

Kalman filter are introduced to design an optimal controller

dealing with packet dropouts. However, few works resort to

the powerful Lyapunov-Krasovskii approach, see [11], [12].

Both works consider time delays in their formulations finding

a guaranteed cost control. The guaranteed cost is a function

P. Millán, L. Orihuela, C. Vivas and F.R. Rubio are with Dpto. de
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of the initial value of the functional (V (x0, t0)), so it depends

on the initial conditions. To remove this dependence, they

propose some conservative bounds of the guaranteed cost,

formulating an optimization problem to minimize the cost.

The method proposed in this work deals with linear

NCSs subject to L2 bounded disturbances, where signals are

affected by time-varying delays and packet dropouts. No a

priori knowledge of the statistical distribution of the delay

is assumed, though upper and lower bounds of the delay

interval are required. Additionally, it is assumed that the

maximum number of consecutive packet losses is bounded.

Thus, given a cost function J and a controlled output z(t),
the proposed problem can be informally stated as designing

a linear controller such that:

• Stabilizes the unperturbed system (ω(t)≡ 0), as the cost

function J is minimized.

• The controlled output satisfies ‖z(t)‖2 ≤ γ‖ω(t)‖2 for

any nonzero disturbance ω(t).

This problem is usually referred in the literature as the

mixed H2/H∞ control problem (see, for instance, [13] for

time-varying delay systems), as the H2 part accounts for

the optimization of a performance index with an L2-gain

disturbance rejection constraint in the H∞ component.

To find a suitable controller, the Lyapunov-Krasovskii

approach is used, yielding an optimization problem involving

Nonlinear Matrix Inequalities (NLMI). Then, a well-known

procedure is employed to reformulate the optimization pro-

blem in terms of Linear Matrix Inequalities (LMIs). In

order to reduce the conservatism of the stability criterion,

a polytopic covering of the time-delay range is employed.

This allows us to retain the maximum and minimum value

of the delay to very last formulation of the NLMI problem,

thus avoiding unnecessary sources of conservatism.

Finally, we present simulation results for a vehicle tracking

problem in which the above mentioned characteristics are

featured. We will show that the presented method offers a

satisfactory solution for the proposed problem.

The paper is organized as follows. Section II is devoted

to the description of the NCS model to be considered.

Section III is concerned with the main results. In Section

III-A the optimal L2-gain control problem is formulated. A

particular solution for this problem is proposed in Section

III-B. Finally, Section IV applies the previous result to an

scenario of vehicle tracking. Conclusions are summarized

in Section V.
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II. NCS MODEL AND PRELIMINARIES

Consider the following LTI system given by:

ẋ(t) = Ax(t)+Bu(t)+Bω ω(t), (1)

z(t) = Cx(t)+Du(t), (2)

x(t) = φ(t), t ∈ [t0 − τM , t0], (3)

where x(t) ∈ R
n, u(t) ∈ R

m and z(t) ∈ R
q are the state

vector, control input vector and controlled output, respec-

tively; ω(t) ∈ L2[t0,∞) denotes the external disturbances; A,

B, Bω , C and D are some constant matrices of appropriate

dimensions and φ(t) denotes the initial conditions.

Consider system (1)-(3) being controlled through a net-

work. The inclusion of such a network in the control loop

induces time-varying delays, and possibly packet dropouts.

Assume that the sensor samples measurements from the plant

in a clock-driven manner, at time instants t = jkh, with h

being the sampling time, and jk (k = 1,2,3, ..) integers such

that { j1, j2, j3, ...} ⊆ {1,2,3, ...} and jk < jk+1. With these

assumptions packet losses are contemplated, while out-of-

order packets are rejected by the controller or the actuator.

Let us define t ∈ [tk, tk+1) as the time intervals where the

control input applied to the system is constant, where tk are

the time instants when the control signal, corresponding to

the plant state at t = jkh, reaches the plant.
Therefore, the control input can be written as:

u(t) = Kx(tk − τsc(k)− τca(k)), t ∈ [tk, tk+1), (4)

where τsc(k) and τca(k) are the network induced delays of

the data corresponding to the measured plant state at t = jkh,

from sensor to controller and from controller to actuator,

respectively. The round-trip delay τsa(k) can also be defined

as τsa(k) = τsc(k)+ τca(k).
Thus the system (1)-(3) under the control law (4) can be

rewritten as:

ẋ(t) = Ax(t)+BKx(t − τ(t))+Bω ω(t), (5)

z(t) = Cx(t)+DKx(t − τ(t)), ∀t ∈ [tk, tk+1), (6)

x(t) = φ(t), t ∈ [t0 − τM , t0], (7)

where τ(t) = t − tk + τsc(k) + τca(k) and τM is the upper

bound of τ(t) (see Definition 1).

The following assumptions, which are fairly common in

the NCS framework, are also made in this paper.

Assumption 1. The sensor is clock-driven. The controller

and actuator are event-driven. The actuator is a zero-order

holder.

Assumption 2. Two constants τ sa,τsa ≥ 0, exist such that

the following inequality holds:

τsa ≤ τsa(k)≤ τsa,∀k ∈N. (8)

Assumption 3. The maximum number of consecutive data

dropouts from sensor to actuator is bounded by np ∈N.

Furthermore, this definition will be needed in the following

sections.
Definition 1. Regarding to Assumptions 2 and 3, it is

possible to define two constants τm ≥ 0 and τM > τm such
that:

τ(t) ≥ τsa = τm, (9)

τ(t) ≤ (1+np)h+ τ sa = τM . (10)

III. MAIN RESULT

A. Problem Formulation

In this section the optimal control problem with L2-gain

disturbance rejection for Networked Control System is

formulated. Next, a general solution is proposed. As we will

prove, the design of a suitable controller for the proposed

problem can be stated as an optimization problem.

Definition 2. The Optimal L2-gain Control Problem

Consider that the LTI system described by (5)-(7) is

controlled over a communication network, which satisfies

(9)-(10). Given:

• A desired level of disturbance attenuation γ .

• A quadratic cost function J =
∫ ∞

t0
[xT (t)Qx(t) +

uT (t)Ru(t)]dt, with Q,R > 0,

The Optimal L2-gain problem consists in finding an sta-

bilizing linear controller K such that:

1) The closed-loop system is asymptotically stable with

ω(t)≡ 0,

2) The controller minimizes the cost function J with

ω(t)≡ 0,

3) Under the assumption of zero initial condition, the

controlled output z(t) satisfies ‖z(t)‖2 ≤ γ‖ω(t)‖2 for

any nonzero ω(t) ∈ L2[0,∞).

The following assumptions will be additionally needed to

provide a solution to the problem.
Assumption 4. Given a continuous quadratic Lyapunov-

Krasovskii functional (LKF) V (t), it is assumed that the
derivative for t ∈ [tk, tk+1) can be written in the following
way:

V̇ (t)≤ ξ T (t)Ξ(K)ξ (t)− z(t)T z(t)+ γT ωT (t)ω(t), (11)

where ξ (t) ∈ R
nξ is an augmented state vector and

Ξ(K) ∈ R
nξ×nξ is a symmetric matrix which depends,

among others, on the controller matrix.

Assumption 5. The cost function J can be written as:

J =
∫ ∞

t0

[ξ T (t)Φ(K)ξ (t)]dt, (12)

where Φ(K) is a positive definite matrix of appropriate

dimensions which possibly depends on K.

The following lemma is required for further developments

in this work
Lemma 1. Suppose that Assumptions 4-5 hold. Then, the

Optimal L2-gain control problem can be solved by finding a
controller matrix K such that:

min
K

α, (13)

subject to αΞ(K) < −Φ(K) (14)

α > 0, α ∈R (15)

Proof. In the proof of this lemma, we will demonstrate that

a controller which solves the optimization problem (13)-(15)

also satisfies all the issues of Definition 2.
1) For ω(t) ≡ 0, considering (11) for t ∈ [tk, tk+1) the

following holds:

V̇ (t)≤ ξ T Ξ(K)ξ (t)− z(t)T z(t). (16)
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From (16) and regarding to the assumption 5 and the

equations (14)-(15), one can obtain that V (t) decrease for

t ∈ [tk, tk+1). Due to V (t) is continuous in [t0,∞), then

V̇ (xt)≤−ρ‖x(t)‖2 for a sufficient small ρ > 0, which ensure

asymptotic stability of system (5)-(7), see e.g. [14].
2) For ω(t)≡ 0 and the condition (15):

V̇ (t)≤ ξ T Ξ(K)ξ (t)<−ξ T (t)
1

α
Φ(K)ξ (t). (17)

Integrating both sides of (17) from tk to t ∈ [tk, tk+1), yields,

V (t)−V (tk)<−
1

α

∫ t

tk

[xT (s)Qx(s)+uT (s)Ru(s)]ds.

Obviously
⋃∞

k=1[tk, tk+1) = [t0,∞). Provided that V (t) is con-
tinuous in t, one can see that,

V (t)−V (t0)≤−
∫ t

t0

[xT (s)Qx(s)+uT (s)Ru(s)]ds.

When t → ∞, the asymptotic stability of the system implies
that V (t)→ 0, so that,

−V (t0)<−
1

α

∫ ∞

t0

[xT (s)Qx(s)+uT (s)Ru(s)]ds ⇒ J < αV (t0).

The value of V (t0) depends on the initial condition φ(t) and

it is a measure of its norm. Therefore, minimizing α the cost

function J is minimized regardless of the initial conditions.
3) For ω 6= 0 and under zero initial conditions:

V̇ (t)≤−z(t)T z(t)+ γT ωT (t)ω(t). (18)

Integrating both sides of (18) and using the same continuity
argument as before, one can see that,

V (t)−V (t0)≤−
∫ t

t0

zT (s)z(s)ds+
∫ t

t0

γ2ωT (s)ω(s)ds.

Then, letting t →∞, taking into account that under zero initial
condition V (t0) = 0 and the positive definitiveness of the
functional, it can be shown that,
∫ ∞

t0

zT (s)z(s)ds ≤

∫ ∞

t0

γ2ωT (s)ω(s)ds ⇒‖z(t)‖2 ≤ γ‖ω(t)‖2

�

Lemma 1 proposes a general solution to the proposed control

problem. It can be used for different LKFs and for different

network constraints.

B. A Solution to the optimal L2-gain control problem

In this section the previous result is applied to a particular
LKF and a solution to the optimal L2-gain control problem
is given. Particularly, we use the following LKF:

V (t) = xT (t)Px(t)+

∫ t

t−τm

xT (s)Q1x(s)ds+

∫ t

t−τM

xT (s)Q2x(s)ds

+

∫ 0

−τM

∫ t

t+θ
ẋT (s)Z1ẋ(s)dsdθ +

∫ −τm

−τM

∫ t

t+θ
ẋT (s)Z2ẋ(s)dsdθ .(19)

where all the involved matrices are required to be definite

positive.

The following theorem offers a particular solution for the

proposed problem.
Theorem 1. Given scalars τm,τM,γ,ε > 0 and the weigh-

ting matrices Q and R, if the matrices X , Q̃1, Q̃2, Z̃1, Z̃2 >
0 and any matrices Y, Ñi,M̃i, S̃i, (i = 1,2) of appropriate

dimensions solve the following optimization problem for the
two vertices of the polytope τ(t) defined by (9)-(10),

min α

subject to (20),

then, the optimal L2-gain controller for the system (5)-(7)

with a control network satisfying Assumptions 1-3 is given

by K = Y X−1.

Proof. To prove the previous theorem it suffices to show

that the derivative of the LKF (19) can be written in the

form (11) and that the aforementioned optimization problem

is equivalent to that in (13)-(15).

Taking the time derivative of V (t) along the trajectory of
(5) yields that, for t ∈ [tk, tk+1):

V̇ (t) = 2xT (t)Pẋ(t)+xT (t)(Q1 +Q2)x(t)−xT (t − τm)Q1x(t − τm)

− xT (t − τM)Q2x(t − τM)+ ẋT (t)(τMZ1 +∆τZ2)ẋ(t)

−

∫ t

t−τM

ẋT (s)Z1ẋ(s)ds−

∫ t−τm

t−τM

ẋT (s)Z2ẋ(s)ds. (21)

The augmented state vector is defined as: ξ T (t) =
[

xT (t), xT (t − τ(t)), xT (t − τm), xT (t − τM), ωT (t)
]

. Then,
the following null terms are added to the right-hand side
of (21):

0 = 2ξ T (t)N̄

[

x(t)−x(t − τ(t))−
∫ t

t−τ(t)
ẋ(s)ds

]

,

0 = 2ξ T (t)S̄

[

x(t − τ(t))−x(t − τM)−
∫ t−τ(t)

t−τM

ẋ(s)ds

]

,

0 = 2ξ T (t)M̄

[

x(t − τm)−x(t − τ(t))−
∫ t−τm

t−τ(t)
ẋ(s)ds

]

,

0 = γ2ωT (t)ω(t)− γ2ωT (t)ω(t),

0 = ξ T (t)C̄C̄T ξ (t)− zT (t)z(t).

where:

N̄T = [NT
1 NT

2 0 0 0] , M̄T = [MT
1 MT

2 0 0 0];

S̄T = [ST
1 ST

2 0 0 0] , C̄T = [C DK 0 0 0].

With these terms, equation (21) can be rewritten as:

V̇ (t) = ξ T (t)(Γ+C̄C̄T )ξ (t)+ ẋT (t)(τMZ1 +∆τZ2)ẋ(t)

−
∫ t

t−τ(t)
ẋT (s)Z1ẋ(s)ds−2ξ T (t)N̄

∫ t

t−τ(t)
ẋ(s)ds

−
∫ t−τm

t−τ(t)
ẋT (s)Z2ẋ(s)ds−2ξ T (t)M̄

∫ t−τm

t−τ(t)
ẋ(s)ds

−
∫ t−τ(t)

t−τM

ẋT (s)(Z1 +Z2)ẋ(s)ds−2ξ T (t)S̄
∫ t−τ(t)

t−τM

ẋ(s)ds

+ γ2ωT (t)ω(t)− zT (t)z(t). (22)

Now, using the well-known upper bound for the inner
product of two vectors:

−aT Xa−2bT a ≤ bT X−1b, X > 0,

the following upper bounds for the integral terms in (22) can
be found:

−

∫ t

t−τ(t)
ẋT (s)Z1ẋ(s)ds−2ξ T (t)N̄

∫ t

t−τ(t)
ẋ(s)ds

≤ (τ(t)+ ε)ξ T (t)N̄Z−1
1 N̄T ξ (t),
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

























Γ̃ (τ(t)+ ε)Ñ (τ(t)+ ε − τm)M̃ (τM + ε − τ(t))S̃ τMÃ ∆τÃ C̃ Q̃ R̃

∗ −(τ(t)+ ε)Z̃1 0 0 0 0 0 0 0
∗ ∗ −(τ(t)+ ε − τm)Z2 0 0 0 0 0 0

∗ ∗ ∗ −(τM + ε − τ(t))(Z̃1 + Z̃2) 0 0 0 0 0

∗ ∗ ∗ ∗ −τMXZ̃−1
1 X 0 0 0 0

∗ ∗ ∗ ∗ ∗ −∆τXZ̃−1
2 X 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −αQ−1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −αR−1



























< 0, (20)

where
ÑT = [ÑT

1 ÑT
2 0 0 0];

M̃T = [M̃T
1 M̃T

2 0 0 0];

S̃T = [S̃T
1 S̃T

2 0 0 0];

C̃T = [CXT DY 0 0 0];

ÃT = [AX BY 0 0 Bω ];

Γ̃ =













θ11 θ12 M̃1 −S̃1 Bω

∗ θ22 M̃2 −S̃2 0

∗ ∗ −Q̃1 0 0

∗ ∗ ∗ −Q̃2 0

∗ ∗ ∗ ∗ −γ2I













,

Q̃T = [X 0 0 0 0];

R̃T = [0 Y 0 0 0];

θ11 = AX +XAT + Q̃1 + Q̃2 + Ñ1 + ÑT
1 ;

θ12 = BY − Ñ1 + S̃1 − M̃1 + ÑT
2 ;

θ22 = −Ñ2 − ÑT
2 + S̃2 + S̃T

2 − M̃2 − M̃T
2 ;

−
∫ t−τm

t−τ(t)
ẋT (s)Z2ẋ(s)ds−2ξ T (t)M̄

∫ t−τm

t−τ(t)
ẋ(s)ds

≤ (τ(t)− τm + ε)ξ T (t)M̄Z−1
2 M̄T ξ (t),

−
∫ t−τ(t)

t−τM

ẋT (s)(Z1 +Z2)ẋ(s)ds−2ξ T (t)S̄
∫ t−τ(t)

t−τM

ẋ(s)ds

≤ (τM − τ(t)+ ε)ξ T (t)S̄(Z1 +Z2)
−1S̄T ξ (t). (23)

where the constant ε ∈ R
+ have been introduced in the

bounding terms for design convenience. Then, combining
(22) with (23), it can be shown that, for t ∈ [tk, tk+1),

V̇ (t) ≤ ξ T (t)
(

Γ+(τ(t)+ ε)N̄Z−1
1 N̄T +(τ(t)− τm + ε)M̄Z−1

2 M̄T

+ (τM − τ(t)+ ε)S̄(Z1 +Z2)
−1S̄T +C̄C̄T + ĀτMZ1ĀT

+ Ā∆τZ2ĀT
)

ξ (t)+ γ2ωT (t)ω(t)− zT (t)z(t). (24)

where ĀT = [A BK 0 0 Bω ]. So that, if we define Ξ(K)
as:

Ξ(K), Γ+(τ(t)+ ε)N̄Z−1
1 N̄T +(τ(t)− τm + ε)M̄Z−1

2 M̄T + (25)

(τM − τ(t)+ ε)S̄(Z1+Z2)
−1S̄T+C̄C̄T+ ĀτMZ1ĀT+ Ā∆τZ2ĀT ,

it yields that the derivative of the LKF (19) can be written
as in (11). It remains to prove that the optimization problem
given in Lemma 1 is analogous to that in Theorem 1. Con-
sidering the equation (15) in Lemma 1 and the Assumption
5, yields,

αΞ(K)<−Φ(K)⇔ Ξ(K)− K̄T −R

α
K̄ − ĪT −Q

α
Ī < 0 (26)

where K̄T = [0 K 0 0 0]T and ĪT =
[I 0 0 0 0]T . From equation (25) and (26), applying

Schur complements leads to a matrix inequality with

the same structure as (20). To obtain (20) is sufficient

to introduce the definitions X = P−1, Q̃i = XQiX ,

M̃i = XMiX , Ñi = XNiX , S̃i = XSiX , Z̃i = XZiX , i = 1,2
and pre- and post-multiply the matrix inequality by

diag = [X ,X ,X ,X , I,X ,X ,X , I, I, I, I, I].

�

Remark. The scalar parameter ε > 0 needs to be in-

troduced in order to make feasible the LMIs appearing in

the next section. Otherwise, some null matrices appears

in the diagonal of the LMIs. It is worth to mention that

this modification does not introduce any conservatism, since

ε > 0 can be chosen as small as necessary, i.e., ε → 0+.

C. Algorithm for Controller Design

Notice that (20) is not an LMI. There is procedure (see
[15]) which let us to address the nonlinear matrix inequality
(20) by introducing some new matrix variables. First, define
two variables T1,T2 such that,

XZ̃−1
1 X ≥ T1 > 0, XZ̃−1

2 X ≥ T2 > 0, (27)

which is equivalent to:
[

−T−1
1 X−1

X−1 −Z̃−1
1

]

≤ 0,

[

−T−1
2 X−1

X−1 −Z̃−1
2

]

≤ 0. (28)

Now, introducing some new variables,

X̄ = X−1, T̄i = T−1
i , Z̄i = Z̃−1

i i = 1,2, (29)

equation (28) can be rewritten as,
[

−T̄1 X̄

X̄ −Z̄1

]

≤ 0,

[

−T̄2 X̄

X̄ −Z̄2

]

≤ 0. (30)

This way, instead of using the original condition (20), the
following nonlinear minimization problem involving LMI
conditions, can be stated as:

Minimize Tr
(

X̄X + T̄1T1 + T̄2T2 + Z̄1Z̃1 + Z̄2Z̃2

)

subject to














Λ̃ < 0,

[

−T̄1 X̄

X̄ −Z̄1

]

≤ 0,

[

−T̄2 X̄

X̄ −Z̄2

]

≤ 0.
[

X I

I X̄

]

≥ 0,

[

T1 I

I T̄1

]

≥ 0,

[

T2 I

I T̄2

]

≥ 0,
(31)

where Λ̃ is the matrix required to be definite negative in

(20), but substituting the elements XZ̃−1
i X by Ti, i = 1,2.

Regarding to the equations (27), it is immediate that, if Λ̃< 0,

then (20) holds. The minimization problem is introduced

to force (29). When the LMIs in the second row of the

restrictions (31) saturate, the optimum is reached and (31)

holds.
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In order to solve the aforementioned minimization

problem (31) the algorithm introduced in [15] can be

implemented. Theorem 2.1 in [15] proved the convergence

of this algorithm.

IV. APPLICATION OF THE OPTIMAL L2-GAIN

CONTROLLER

This section describes simulations on a particular problem

to show the performance of the optimal L2-gain controller.

Consider a vehicle tracking system intended to keep a

constant distance between two moving objects. More preci-

sely, assume a master vehicle that moves at unknown time-

varying speed, which is followed by a slave vehicle trying

to keep a constant distance from the first.
The equations of the dynamical system can be written as

follows:

e(t) = p1(t)− p2(t)− lr ,

ė(t) = v1(t)−v2(t) = y(t),

ẏ(t) = a1(t)−a2(t).

where p(t), v(t) and a(t) denote positions, velocities and

accelerations; and e(t) and y(t) denote the errors in posi-

tion and velocity, respectively. Moreover, forces equilibrium

yields:

Fi(t)−Fa,i(t)−Fr,i(t) = miai(t), i = 1,2.

Where Fi is the motor force, Fa,i is the aerodynamical drag
and Fr,i is the rolling friction, given by:

Fa(t) =
1

2
caAT ρairev2(t), Fr(t) = crmgcos(α(t)).

where,

• ca, cr: aerodynamic and tire-road drag coefficients,

respectively.

• AT : vehicle’s aerodynamic cross-section.

• ρair: air density.

• m: vehicle mass.

• g: gravity constant.

• α(t): road slope angle.

For the sake of simplicity, both vehicles will be assu-
med with identical characteristics. The linearization of the
aerodynamical force using a Taylor serie expansion yields
the following dynamic equations for the system:

d

dt





∫

e(t)
e(t)
y(t)



=





0 1 0
0 0 1
0 0 −c3c0









∫

e(t)
e(t)
y(t)





+





0
0

−c3



F2(t)+





0
0
c3



F1(t) (32)

with c0 = ρAT cd and c3 = 1/m.

Assume that the slave vehicle receives position and speed

from the master vehicle at a sampling rate h. The objective

is computing a control action F2(t), such that the distance

between both vehicles remains as close as possible to a

constant set point lr. The controller is implemented on the

slave vehicle, though dynamic variables from the master

vehicle are required (position, speed). This data is nonet-

heless subject to delays and losses due to unreliable data

links, or hardware limitations (bus access policy).
Thus, the control signal F2(t) can be obtained as

F2(t) = K





∫

e(t − τ(t))
e(t − τ(t))
y(t − τ(t))





where transmission delays are implicit through the term τ(t).
Simulations are performed assuming system parameters

as m = 1200 Kg, AT = 1.5 m2, ca = 0.15, cr = 0.015 and a

nominal speed vn = 120 Km/h.

Network induced delays are assumed to lay in the range

from 0ms to 200ms, and a sample period h = 500ms.

The following simulations consider an inter-vehicle set-

point distance of 20 meters, with a master vehicle moving

at constant speed of 120Km/h, except around t = 45s where

the vehicle slows down temporarily before recovering the

nominal speed.

In Figure 1 the behavior of the proposed L2-gain control

is compared for different disturbance attenuation levels when

network-induced delays are considered. It appears as expec-

ted that deviations from the setpoint are reduced as parameter

γ is decreased. This is achieved at the cost of more aggressive

control actions that must be properly weighted to not exceed

actuator limits. The trade-off between the L2-gain of the

system and the optimality can be also checked in the Figure

1. The controller with free γ results in a cost J1 = 659.1, the

controller with γ < 1.8 achieves a cost J2 = 670.9 and the

controller with γ < 0.8 has a cost J3 = 2478.

Similarly, the performance of the system can be modu-

lated acting on the weighting policy in matrices Q and

R. Figure 2 shows the effect of this trade-off. In both

cases an attenuation factor γ < 1.8, and a weighting matrix

Q = diag(100,100,0.01) are chosen. Matrix R is set in

one case R = 10−5 prioritizing tracking performance, and

R= 10−2 assuming more stringent control action constraints.

As expected, tracking error is reduced in the first case, since

control effort is limited in the latest case using the weighting

matrix R.

These simulations show how the method can be used to

adjust different performance requirements and disturbance

rejection capabilities for network control systems, where

parameter γ together with matrices Q and R can be tuned

for such purpose.

V. CONCLUSIONS

This paper deals with the problem of designing optimal

control laws for network control systems with L2-gain dis-

turbance rejection constraints.

Linear time invariant systems are considered to be contro-

lled through a communication network that imposes delays

and data losses in the communications.

The problem, also referred as mixed H2/H∞, is derived

based on a Lyapunov-Krasovskii approach, considering a

polytopic covering of the time-delay range. Solution for the

problem is provided in terms of a set of LMIs together with

an optimization procedure.
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Fig. 1. System response with network effects for various disturbance attenuation levels
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Fig. 2. Trading off performance vs. control effort. Effect of the weighting
policy on R and Q

Simulation results show the effectiveness of the method

to trade-off with a unified design methodology, performance,

control effort and disturbance rejection capabilities.
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