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Abstract:
This paper proposes a model-based control strategy for networked control systems subject to norm
bounded disturbances. The communication channel is supposed to be shared with several processes
and, therefore, the access to the network needs to be minimized to avoid collisions and packet losses.
We propose to use a variable sample rate scheme in which the controller operates in open-loop between
successive state measurements. The sampling time is decided on-line solving a sequence of quadratic
optimization problems in order to minimize the access to the common network while guaranteeing
closed-loop practical stability. Both discrete and continuous time schemes are considered.

1. INTRODUCTION

Networked control systems (NCSs) are those in which a shared
communication network links the sensors, controllers and actu-
ators of several control loops, Zampieri [2008]. In some cases
the use of networks is motivated by the very nature of the
problem, while in others, the network is introduced to exploit
the advantages that this architecture provides. In general, in-
troducing a communication network in the control loop may
reduce the costs, increase the flexibility and maintenance of
the system and facilitate system diagnosis. However, in many
practical applications the inclusion of a network to interchange
real time control information introduces a number of shortcom-
ings that must be addressed. When a certain number of devices
are sharing a communication channel, which in general is not
intended for processes with real time requirements, different
effects, such as data losses or time varying delays, may appear
degrading the control performance and even unstabilizing the
plant.

Therefore, NCS involves a number of challenging control prob-
lems that have been studied during the last decade. Some
works address the problem of controlling a plant subject to
these undesired network induced dynamics. For instance, the
effects of the quantization phenomenon and new advanced
quantization strategies have been investigated in Brockett and
Liberzon [2000], Canudas-de Wit et al. [2006] and Elia and
Mitter [2001]. Another important research direction deals with
NCS in which the network induced delays, that are in general
time-varying, becomes important in the control performance or
stability, see e.g. Yue et al. [2005], Jiang et al. [2008] or Millán
et al. [2009]. The problem of the network package dropouts
has also received great attention and has been addressed using
predictive control and buffering techniques in Muñoz de la Peña
and Christofides [2008] and Millán et al. [2008].

Another approach consists on controlling the plan while mini-
mizing the access to the network by using a variable sampling
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rate in which measurements are only sent when they are indeed
necessary. Minimizing the network load is critical in large scale
systems in which the amount of data transmitted may be very
large. In this way, instead of using a constant sampling period,
network access is scheduled and employed only when neces-
sary.

There can be found in the literature two different frameworks
for the problem of selecting the sampling times: event-based
and self-triggered control. Under the former framework (Arzén
[1999], Tabuada [2007], Hetel et al. [2008], Cogill [2009],
Lunze and Lehmann [2010]) the controller execution is trig-
gered according to the state or output of the plant, which re-
quires a continuous monitoring of the state of the plant. This
drawback does not appear in the latter approach (Anta and
Tabuada [2008], Cogill [2009], Anta and Tabuada [2010]). Self-
triggered systems try to emulate the event-based ideas, but
avoiding the continuous measuring of the state and, hence, the
implementation problems this incurs.

It is worth mentioning the difference existing between these
approaches and other control schemes in the context of robust
stability of NCS subject to time-varying sampling instants (Suh
[2008], Fujioka [2009], Fujioka et al. [2010]) in which, al-
though intervals between sampling time are also time-varying,
there is no freedom in the choice of the following sampling
instant.

Aiming at reducing communication rates, different control
strategies resort to the idea of using a plant model in the con-
troller side. This idea has proven its effectiveness not only for
periodic sampling (Montestruque and Antsaklis [2003, 2004],
Orihuela et al. [2009]), but also for event-based control of linear
stable systems (Lunze and Lehmann [2010]).

In this work the problem of reducing the use of a bandwidth-
limited channel is tackled in a different manner. A scenario with
a communication network in the sensor-to-controller path is
considered. The system is a linear time invariant plant, subject
to bounded additive disturbances. Starting from the knowledge
of a stabilizing feedback controller and an associated Lya-
punov function, a model-based controller is proposed in which
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x(k + 1) = Ax(k)+ Bu(k)+ ω(k)

u(k) = Kxc(k) xc(k) = Axc(k)+ Bu(k)
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Fig. 1. Networked control system

the controller operates in open-loop between two consecutive
samples. The following sampling time is decided by the con-
troller, in such a way that practical stability is guaranteed while
minimizing the number of access to the shared network, that
is, while maximizing the time between successive samples. In
order to decide the following sampling time the controller must
solve on-line several quadratic optimization problems (QP).
This Lyapunov-based sampling policy results in a self-triggered
sampling strategy as in Mazo et al. [2009]. The main difference
with that work is the use of a model to minimize the access
to the shared network. The problem is solved in discrete time,
but it is also included an extension for continuous systems with
sampled state measurements.

The following section presents a description of the system,
controller and network. Section 3 describes the Lyapunov-
based sampling policy. The extension for continuous plants is
given in Section 4. A simulation example is shown in Section
5. Conclusions and future research proposal are summarized in
Section 6.

2. PROBLEM FORMULATION

Consider the following discrete time linear system given by:

x(k + 1) = Ax(k)+ Bu(k)+ ω(k), (1)

where x(k)∈R
n, and u(k)∈R

m are the state vector and control
input vector respectively. The process disturbance is ω(k)∈R

n,
and satisfies ω(k) ⊆ W , where:

W = {ω ∈R
n : ‖ω(k)‖∞ ≤ γ, γ > 0}. (2)

It is assumed that a feedback local controller K, associated with
a discrete Lyapunov function V (x) = xT Px, has been designed
for system (1) so that the control law u(k) = Kx(k) ensures
practical stability of the closed-loop system.

Consider system (1) being controlled through a network. The
inclusion of such a network in the control loop induces colli-
sions and packet dropouts. This problem becomes more impor-
tant as the number of devices connected to the network and the
sampling frequency of such devices grow. In order to control
the system while minimizing the network traffic load, we resort
to a model-based controller given by the following equations:

xc(k + 1) = Axc(k)+ Bu(k), (3)

xc(ks) = x(ks), s = 0,1,2... (4)

u(k) = Kxc(k), (5)

where ks are the discrete time instants in which the sensors
measure the state of the plant and send it to the controller.

Figure 1 shows an scheme of the proposed control system. The
model state is updated whenever a new sample arrives. Then,
the model evolves in open-loop until another measure reaches
the controller. The main difference between this approach and
the one of Montestruque and Antsaklis [2003] is that, here, the
following sampling time is decided on-line by the controller. As
Figure 1 suggests, the controller is close to the plant, hence, the
same control signal is being applied to the system and is being
fed to the model.

A communication protocol between the sensors and the con-
troller is assumed to be operating, in such a way that it is
possible for the controller to decide the sampling instants. This
could be performed, for instance, if the controller sends a packet
to the sensors which contains the following sampling instant.
The arrival of this packet triggers a sensor event-based protocol
that samples and sends the state of the plant at the appropriate
time.

Under these considerations closed-loop equations of system (1)
and controller (3)-(5) while the latter is evolving in open-loop
are given by:

x(k + 1) = Ax(k)+ BKxc(k)+ ω(k), (6)

xc(k + 1) = (A+ BK)xc(k), ∀k ∈ [ks,ks+1), (7)

xc(ks) = x(ks), s = 1,2, . . . (8)

ks+1 = f (x(ks)), (9)

where time ks, with s = 1,2, ..., are the time instants in which
the controller receives the measurements form the sensor. The
sampling instants ks are calculated by the controller based on
the state measurements received.

In the next section, we present a method to decide the next
sampling instant ks+1 based on the system model, the controller
gain K, the Lyapunov function V and the latest state measure-
ment x(ks) in order to minimize the access to the network while
guaranteing closed-loop practical stability.

3. LYAPUNOV-BASED SAMPLING PROCEDURE

This section describes the proposed procedure to minimize the
access to the network while preserving closed-loop practical
stability.

In view of equation (1) and equations (3)-(5), the model error
δ (k) can be defined as:

δ (k) � x(k)− xc(k), (10)

where δ (ks) = 0, ∀ks. A possible evolution of the state of the
system x(k), the controller xc(k) and the error δ (k) is drawn in
Figure 2.

The dynamics of the controller state and the model error be-
tween two consecutive sampling times can be written as fol-
lows:

xc(ks+ j)=(A+ BK) jx(ks), ∀ j ∈N :{ks + j < ks+1} (11)

δ (ks+ j)=
j

∑
i=1

Ai−1ω(ks+ j− i), ∀ j ∈N : {ks + j < ks+1}(12)

Obviously, from equations (2) and (12), one can see that:
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Fig. 2. Possible evolution of the state and the model error

‖δ (ks + j)‖∞ < γ
j

∑
i=1

‖Ai−1‖∞, (13)

for all ω(ks + i), with i = 0, ..., j − 1. In what follows, the
Lyapunov-based sampling procedure is developed starting from
the available pair controller-Lyapunov function and taking into
account the closed-loop equations (6)-(9). The forward differ-
ence of the Lyapunov function for k ∈ [k s,ks+1) yields:

∆V (ks,ks + j) = V (x(ks + j))−V(x(ks)) = xT (ks + j)Px(ks + j)

− xT (ks)Px(ks), ∀ j ∈N : {ks + j < ks+1} (14)

Now, substituting x(k) from equation (10),

∆V (ks,ks + j) = δ T (ks + j)Pδ (ks + j)+ 2xT
c (ks + j)Pδ (ks + j)

+ xT
c (ks + j)Pxc(ks + j)− xT

c (ks)Pxc(ks). (15)

The controller’s goal is to maximize the next sampling instant
ks+1 while guaranteeing that the forward difference is negative
for all possible disturbances in order to ensure practical stabil-
ity. To this end, the controller solves the following optimization
problem.

max ks+1 (16)

subject to:

∆V (ks,ks + j) ≤ 0, ∀ j ∈N : {ks + j < ks+1}

∀ω(ks + i), i = 0, ..., j−1

Next, we present an algorithm which solves (16) to determine
the next sampling time in an iterative manner:

Algorithm 1.

(1) Set j = 1.
(2) Solve the problem

min
δ

−∆V(ks,ks + j) (17)

subject to:

‖δ‖∞ < γ
j

∑
i=1

‖Ai−1‖∞.

(3) If ∆V (ks,ks + j) ≤ 0, increase j = j + 1 and go to Step 2.
Otherwise, choose ks+1 = ks + j.

Algorithm 1 increases ks+1 iteratively while a worst case bound
on the difference between the value of the Lyapunov function
of the current state and the state corresponding to the next
sampling time is negative. Once this constraint does not hold,
the algorithm stops and decides the next sampling time. This

implies, that the V (x(ks)) is a decreasing sequence of values
with a lower bound (given by the size of the uncertainty), and
hence that the closed-loop system is practically stable.

Next, will prove that this optimization problem can be stated
as a QP problem. First of all, the standard QP problem is
introduced, see Nocedal and Wright [2006].

Quadratic programming problem. Assume ξ belongs to R
p

space. The p× p matrix H is symmetric, and f is any f × 1
vector. The QP problem is stated as

min
ξ

g(ξ ) =
1

2
ξ T Hξ + f T ξ + c, (18)

subject to

Dξ ≤ b (inequality constraint) (19)

We prove next that problem (17) can be stated as a QP.

Proposition 1. Problem (17) can be formulated as a QP if the
elements of equations (18)-(19) are chosen as

ξ = δ ,

H =−2P,

f T =−2
[

(A+ BK) jxc(ks)
]T

P,

c =−
[

(A+ BK) jxc(ks)
]T

P
[

(A+ BK) jxc(ks)
]

+ xT
c (ks)Pxc(ks), (20)

and for the inequality constraint

D =

[

In

−In

]

, b = γ
j

∑
i=1

‖Ai−1‖∞

[

1̄n

−1̄n

]

. (21)

where 1̄n is a column vector of dimension n whose components
are ones and In is the identity matrix with dimension n.

Proof. The proof is straightforward from equations (15) and
(18)-(19). �

In view of Proposition 1, the controller needs to solve several
QP problems in Algorithm 1 to find the next sampling time.

Remark. As one can see, in Algorithm 1 the minimum sam-
pling time is one. It is not possible to ensure that the Lyapunov
function decreases for all k because of the presence of bounded
disturbances ω(k), which can make ∆V (k,k + 1) strictly pos-
itive in a neighborhood of the origin. However, it is worth
reminding that, by assumption, the system practical stability is
guaranteed for the controller K with sampling time equal to one.

It is important to remark that the QP problem that needs to be
solved in order to solve (17) is a multi-parametric QP problem
(mpQP), for which the explicit solution can be obtained, see
Bemporad et al. [2002]. In particular, the parameter θ ∈ R n+1

of the mpQP problem is

θ (ks, j) =





xc(ks + j)
j

∑
i=1

‖Ai−1‖∞



 .

This allows implementing the proposed variable sample control
scheme efficiently.
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4. EXTENSION TO CONTINUOUS-TIME SYSTEMS

The control scheme presented in the previous section can be
readily extended to continuous-time systems under the follow-
ing assumptions. Consider the following continuous time linear
system subject to bounded disturbances.

ẋ(t) = Ax(t)+ Bu(t)+ ω(t), (22)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input vector and ω(t) ∈ W ⊂ R

n is the process disturbance
where:

W = {ω ∈R
n : ‖ω(t)‖∞ ≤ γ, γ > 0}. (23)

We assume that there exists a linear controller u(t) = Kx(t)
that asymptotically stabilizes the nominal system (system (22)
with ω(t) = 0) with a corresponding Lyapunov function V (x) =
xT Px.

System (22) is controlled through a network with the same
structure as that in Figure 1, which implements the following
model-based controller (which is the continuous time version
of (3)-(5)):

ẋc(t) = Axc(t)+ Bu(t), ∀t ∈ [tk,tk+1) (24)

u(t) = Kxc(t), (25)

xc(tk) = x(tk), k = 0,1,2... (26)

where tk is the sampling time (equivalent to ks) in which the
sensors send new information to the controller. A Lyapunov-
based control design procedure can now be followed similarly
to that in Section 3. We define the model error variable δ (t) as

δ (t) � x(t)− xc(t). (27)

The dynamic of the error equation now becomes

δ̇ (t) = ẋ(t)− ẋc(t)

= Ax(t)+ Bu(t)+ ω(t)−Axc(t)−Bu(t),

= Aδ (t)+ ω(t), ∀t ∈ [tk,tk+1). (28)

Thus, the dynamics of the controller state and the model error
between two consecutive sampling times evolves as:

xc(t) = e(A+BK)(t−tk)xc(tk), ∀t ∈ [tk,tk+1) (29)

δ (t) = eA(t−tk)δ (tk)+
∫ t

tk

eA(t−τ)ω(τ)dτ =

=

∫ t

tk

eA(t−τ)ω(τ)dτ, ∀t ∈ [tk, tk+1). (30)

The following proposition is needed for further developments.

Proposition 2. If the dynamics of the error variable is given by
(30), the error can be bounded as follows:

‖δ (t)‖∞ ≤ γφ(t, tk) (31)

where φ(t,tk) = 1
‖A‖∞

(e‖A‖∞(t−tk) − 1) and ‖A‖∞ is the infinite

norm of A.

Proof. Taking into account equation (30), the norm of the error
can be bounded as follows:

‖δ (t)‖∞ = ‖
∫ t

tk

eA(t−τ)ω(τ)dτ‖∞ ≤
∫ t

tk

‖eA(t−τ)‖∞‖ω(τ)‖∞dτ

≤ γ
∫ t

tk

e‖A‖∞(t−τ)dτ = γ
1

‖A‖∞
(e‖A‖∞(t−tk) −1).

�

In what follows, the Lyapunov-based sampling procedure is de-
veloped. The controller’s goal is to maximize the next sampling
instant tk+1, while guaranteeing that the derivative of the Lya-
punov function is negative for all possible disturbances. Taking
the time derivative of the Lyapunov function for t ∈ [t k,tk+1)
yields

d

dt
V (t) = xT (t)Pẋ(t)+ ẋT (t)Px(t) = 2xT (t)Pẋ(t). (32)

Now, substituting x(t) from equation (27),

V̇ (x(t)) = 2(δ T (t)+ xT
c (t))P(δ̇ (t)+ ẋc(t))

= 2(δ T (t)+ xT
c (t))P(Aδ (t)+ ω(t)+ Axc(t)+ Bu(t))

= δ T (t)(PA+ AT P)δ (t)+ 2δ T (t)Pω(t)+ 2xT
c (t)Pω(t)

+ 2δ T (t)(PA+ ATP+ PBK)xc(t)+

+xT
c (t)

(

P(A+ BK)+(A+ BK)TP
)

xc(t), ∀t ∈ [tk,tk+1).(33)

In the following algorithm we will ensure the negative definite-
ness of an upper bound on the time derivative of the Lyapunov
function (33) at time t for all possible uncertainty trajectories.

The objective of the controller is to maximize tk+1 while guar-
anteing that the time derivative of the Lyapunov function is
negative for all possible disturbances; that is,

max tk+1 (34)

subject to:

d

dt
V (x(t)) ≤ 0, ∀t ∈ [tk,tk+1)

(22) − (26).

This optimization problem is very difficult to solve. The param-
eter to be optimize, i.e. tk+1, is involved in a nonlinear equation
and there are an infinite number of constraints, because they
must be satisfied for all t ∈ [tk, tk+1). In order to obtain the next
sampling time, we propose to define tk+1 = Tmin + n∆ and find
the maximum n such that the time derivative of the Lyapunov
function is negative at those time instants for all possible dis-
turbances.

We present next an iterative algorithm that under mild assump-
tions provide an approximate solution to (34).

Algorithm 2.

(1) Set tk+1 = tk + Tmin.
(2) Solve the problem

min
δ (tk+1),ω(tk+1)

−
d

dt
V (x(tk+1)) (35)

subject to:

‖ω(tk+1)‖∞ ≤ γ

‖δ (tk+1)‖∞ ≤ γφ(tk+1,tk)

(3) If V̇ (x(tk+1)) ≤ 0, increase tk+1 = tk+1 + ∆ and go to Step
2. Otherwise, choose tk+1.
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where Tmin is lower bound for the following sampling time.

Next proposition shows that problem (35) can be stated as a QP.

Proposition 3. Problem (35) can be formulated as a QP if the
elements of equations (18)-(19) are chosen as

ξ =

[

δ (t)
ω(t)

]

,

H =−2

[

PA+ ATP P
P 0

]

,

f T =−2xT
c (tk+1)

[

PA+ ATP+ KT BT P P
]

,

c =−xT
c (tk+1)

(

P(A+ BK)+ (A+ BK)TP
)

xc(tk+1),

and for the inequality constraint

D =







In 0
−In 0

0 In

0 −In






, b =







γφ(tk+1,tk)1̄n

γφ(tk+1,tk)1̄n

γ 1̄n

γ 1̄n






. (36)

where 1̄n is a column vector of dimension n whose components
are ones and In is the identity matrix with dimension n.

Proof. The proof is straightforward from equations (33) and
(18)-(19). �

The value of ∆ must be chosen small enough in a way such that
the dynamics of the controller state, and hence of the Lyapunov
function, are smooth between two consecutive sampling, avoid-
ing unexpected sign changes of the derivative of the Lyapunov
function from tk to tk+1. In general Tmin is chosen according
with the minimum sampling time of the sensors.

As in the discrete time case, the resulting QP problem is a
mpQP, and hence, an explicit solution can be obtained. In this
case the parameter of the QP problem is:

θ (tk, j) =

[

xc(tk + j∆)
φ(tk + j∆, tk)

]

.

Assuming that the sign of the time derivative of the Lyapunov
function does not change between two consecutive times, Al-
gorithm 1 provides a suboptimal solution to problem (34). Note
that this assumption will be satisfied for a sufficiently small ∆.

The constraint on the upper bound of the time derivative of
the Lyapunov function is more restrictive than the constraint
on the difference of the Lyapunov function imposed in the
discrete time controller studied in the previous section. Note
that, in continuous time, a constraint on the difference of the
Lyapunov function does not yield a QP problem and hence is
more difficult to implement in real time.

5. NUMERICAL EXAMPLE

In this section, we are going to apply the previous result to an
unstable plant in order to show how the controller manages to
reduce the traffic load maintaining the practical stability of the
system.

Consider the following discrete time LTI system:

x(k + 1) =

[

2.72 2.70
0 2.69

]

x(k)+

[

1
1.7

]

u(k)+ ω(k), (37)
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The initial condition for the system and the controller is x(0)T =
[ 100 −20 ].

The following stabilizing controller has been designed for the
discrete system:

K = [−1.1868 −2.0415 ] .

The Lyapunov function is defined by

P = 106

[

1.67 0.67
0.67 0.60

]

.

Suppose that this system is controlled using a shared network
so it is interesting to reduce the number of access to the shared
medium.

Supposing that the disturbances are bounded ‖ω(k)‖∞ ≤ 1, the
evolution of the system is illustrated in Figure 3, where the
sampling instant are indicated with circles.

In Figure 4 the sampling instants obtained using the proposed
method are shown. One can see that when the system is far
of the equilibrium point it is possible to enlarge the sampling
period still assuring asymptotic stability.

Finally, the evolution of the Lyapunov function is drawn in
Figure 5.

6. CONCLUSIONS

We have presented a novel model-based controller for net-
worked systems, aimed at reducing the number of accesses to a
shared network. It has been shown that, using predictions based
on a nominal model of the system, adequate asynchronous sam-
pling times can be found by solving several QP problems which
take explicitly into account the disturbances of the model. We
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have considered both discrete and continuous time controllers.
The results have been demonstrated through simulation.
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