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Synopsis

We study the dynamics of elongated axisymmetric particles undergoing shear flow between two
parallel planar walls, under creeping-flow conditions. Particles are modeled as linear chains of
touching spheres and it is assumed that walls are separated by a distance comparable to particle
length. The hydrodynamic interactions of the chains with the walls are evaluated using our
Cartesian-representation algorithm [Bhattacharya et al., Physica A 356, 294-340 (2005b)]. We
find that when particles are far from both walls in a weakly confined system, their trajectories are
qualitatively similar to Jeffery orbits in unbounded space. In particular, the periods of the orbits
and the evolution of the azimuthal angle in the flow-gradient plane are nearly independent of the
initial orientation of the particle. For stronger confinements, however, (i.e., when the particle is
close to one or both walls) a significant dependence of the angular evolution on the initial particle
configuration is observed. The phases of particle trajectories in a confined dilute suspension subject
to a sudden onset of shear flow are thus slowly randomized due to unequal trajectory periods, even
in the absence of interparticle hydrodynamic interactions. Therefore, stress oscillations associated
with initially coherent particle motions decay with time. The effect of near contact particle-wall
interactions on the suspension behavior is also discussed. © 2007 The Society of Rheology.

[DOL: 10.1122/1.2399084]

I. INTRODUCTION

The effect of confining walls on the hydrodynamic behavior of particles suspended in
a viscous fluid is relevant for a wide range of problems: for instance, blood microcircu-
lation [Das e al. (1997); Goldsmith and Spain (1984); Perktold (1987); Pries ef al.
(1989)], propagation of colloids in the natural environment [Loveland et al. (2003)],
development of new methods for particle separations [Giddings (1993); Huang er al.
(2004); Regazzetti et al. (2004)], and manipulation of particles in microfluidic devices
[Whitesides and Stroock (2001)]. Hydrodynamic confinement effects in particulate sys-
tems are studied to explain the collective motion of suspended particles [Cohen et al.
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(2004); Herndndez-Ortiz et al. (2005); Lin et al. (2000); Mucha et al. (2004); Nguyen
and Ladd (2005)], as well as to characterize the wall effects on the motion of single
particles which are spherical [Dufresne et al. (2001); Langon et al. (2001)] or nonspheri-
cal [Gavze and Shapiro (1997, 1998); Hsu and Ganatos (1994); Mody and King (2005);
Pozrikidis (2005); Staben et al. (2006)]. Such problems have also been analyzed in a
series of our recent publications [Bhattacharya et al. (2005a,2005b; 2006); Btawzd-
ziewicz and Bhattacharya (2003)].

Our present study is focused on the effect of confinement on the motion of individual
particles and the corresponding rheological response in a dilute suspension of elongated,
axisymmetric, non-Brownian particles in creeping flow between two parallel walls. The
suspension is subject to a constant shear flow that results from the relative motion of the
walls. These conditions occur in various engineering systems and the problem can be
experimentally studied in a constant-shear-flow rheometer [Bird et al. (1977)].

The size of the particles (modeled here as rigid linear arrays of spheres) is assumed to
be comparable to the wall separation. We consider the low-concentration regime where
the particles are hydrodynamically coupled to the walls but not to each other. Thus,
interparticle interactions are entirely neglected (the effect of binary particle collisions on
the suspension evolution will be described elsewhere).

The dynamics of elongated particles undergoing shear flow in unbounded space was
first described by Jeffery (1922) in his early work on ellipsoids. Jeffery’s result was later
generalized for arbitrary axisymmetric particles by Bretherton (1962). Their research has
demonstrated that isolated axisymmetric particles in shear flow undergo a periodic tum-
bling motion with a period that is independent of the initial orientation of the particle.

Hence, in a dilute suspension under shear, not only do individual noninteracting par-
ticles exhibit periodic motions, but also the entire particle distribution evolves periodi-
cally. The associated ensemble-averaged quantities (such as the particle contribution to
the effective stress) are periodic as well. In particular, an initially isotropic particle dis-
tribution is time dependent, because elongated particles in shear flow spend most of the
time near the flow-vorticity plane (according to Jeffery’s result).

At small but finite concentrations, the oscillations of the particle distribution slowly
decrease because hydrodynamic interactions between particles perturb individual particle
trajectories. The cumulative effect of such perturbations can be described using, e.g., a
Fokker—Planck approach [Brenner (1974), Kim and Karrila (1991); Petrie (1999)]. The
oscillations also decay in the presence of angular Brownian motion.

In contrast, in a wall-bounded system the oscillations of the particle distribution decay
even for non-Brownian particles at infinitesimal suspension concentrations, because pe-
riods of particle trajectories depend on the particle orientation and position with respect
to the walls. A quantitative analysis of wall effects on individual particle trajectories and
the resulting time-dependent rheological response is the focus of our study.

Our model system, its hydrodynamic description, and our simulation method are de-
scribed in Sec. II. In Sec. III we characterize the effect of confinement on the particle
velocities and effective stress in a dilute suspension of spheres. Section IV presents our
analysis of the behavior of individual chains of spheres in a confined shear flow. The
consequences of this behavior for suspension rheology are discussed in Sec. V, where
response of the system to a sudden onset of shear flow is investigated. The concluding
remarks are given in Sec. VL
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FIG. 1. Coordinate systems used to describe the position (x,y,z) and orientation p of a linear chain of
equal-size touching spheres of diameter d. The chain orientation is characterized by the spherical coordinates
(6, ¢), where 6 is the angle between p and the vorticity axis z, and ¢ is the angle between the projection of p
onto the velocity-gradient plane y-x and the gradient direction x.

Il. MODEL SYSTEM: CONFINED SUSPENSION OF NON-INTERACTING
LINEAR CHAINS OF SPHERES

A. Hydrodynamic description

We consider motion of elongated, axisymmetric rigid particles undergoing stationary
shear flow in a space bounded by two parallel planar walls. We focus on configurations
where the wall separation H is comparable to particle length. The suspending fluid has
viscosity # and creeping-flow conditions are assumed. Our one-particle results are ap-
plied to determine the effect of confinement on rheological response of a dilute suspen-
sion of elongated, rod-like particles.

We use here a coordinate system where the walls are parallel to the y-z plane. The
unperturbed fluid velocity

v¥(r) = yx€, (1)

(where y denotes the shear rate) points in the lateral direction y, and varies in the normal
direction x. The flow occurs due to the motion of one of the walls with the velocity

U, = yHe, (2)

(as in a parallel-wall rtheometer). Particles are torque and force free. No-slip boundary
conditions are imposed at both walls and at the particle surfaces. The geometry of the
system is depicted in Fig. 1.

The present study focuses on the behavior of axisymmetric particles modeled as linear
chains of N equal-size touching spheres of diameter d. We note that particle doublets
[Johnson et al. (2005)] and multiparticle conglomerates of spheres (including long linear
chains) can be synthesized in a controlled way, for example using a template-assisted
self-assembly process [Xia et al. (2003)]. Our quantitative results thus directly apply to
such particles, whereas our general qualitative conclusions are also valid for rod-like
particles of other shapes.

Given the linearity of Stokes equations, the translational and angular particle velocities
U; and Q;, as well as the stresslet S; induced on the surface of particle i, are linearly
related to the external flow (1). This linear relation can be represented in the form
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U; ”Es
Q; |= VES Vs (3)
S. s

where v, ¥}, and v}* denote appropriate hydrodynamic mobility functions. Our present

study is focused on suspensions in infinite-dilution limit, and therefore we assume that
there are no hydrodynamic interactions between individual particles. Accordingly, the
mobility coefficients

v =v*(r,p,), a=tr,s, (4)

depend only on the orientation p; and position r; of the center of symmetry of particle i,
but not on the configuration of other particles in the system. Note, however, that the
hydrodynamic interactions between the spheres within each chain are included in our
analysis.

Hydrodynamic mobility functions (4) are calculated using our recently developed
Cartesian-representation method [Bhattacharya et al. (2005a, 2005b, 2006)] for evaluat-
ing hydrodynamic interactions between many spheres in the parallel-wall geometry. Our
method relies on expanding the flow field in the system both in Cartesian and spherical
basis of Stokes flow. The Cartesian basis is used to evaluate the flow field scattered from
the walls and the spherical basis to describe the interaction of the fluid with the spheres.
The two basis sets of flow fields are related to each other by an appropriate set of
transformations. In practical calculations, the spherical basis is truncated at a relatively
low spherical-harmonics order L. To assure good convergence of the method for small
particle-wall gaps, the particle-wall lubrication corrections are included in a pair super-
position approximation [Cichocki er al. (2000); Durlofsky ef al. (1987)]. We note that for
rigid arrays of spheres, the sphere-sphere lubrication corrections are not needed.

Appropriate hydrodynamic functions evaluated using Cartesian-representation tech-
nique are combined into the chain mobility coefficients (4) by requiring that the whole
chain move as a rigid body and that the net force and torque acting on the chain vanish.
The stresslet S; of the whole chain is calculated as the sum of the hydrodynamic stresslets
S® centered on individual spheres and the stresslets associated with hydrodynamic
forces resulting from the rigid-body constraints

N N
S,=> 80+ X [FOrW],. (5)
k=1 k=1

Here F® denotes the force acting on a sphere k, r® is the position of the center of this
sphere, and [...]; denotes the deviatoric part of a tensor. Note that for force-free chains,
relation (5) is independent of the choice of the reference point with respect to which the
positions of the spheres are evaluated.

In our simulations, the translational and angular velocities U; and ; are numerically
integrated to determine particle trajectories by the procedure outlined in Sec. II B. The
stresslets S; are then used to evaluate the rheological response of a dilute suspension of
particles [Kim and Karrila (1991)]

oT=—p+27E + o, (6)

where o1 is the effective stress in the suspension, p°f denotes the effective pressure, I is

the identity tensor, and E=%5/(éxéy+éyéx) is the strain-rate tensor associated with the flow
(1). In the above relation, the quantity
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N
1 )4
o' =n,S)= ‘_/21 S, (7)

represents the particle contribution to the deviatoric stress, where V is the volume of the
system, N, denotes the number of particles, n,=N,/V is the particle number density, and
the bracket denotes the ensemble average. In general, the sum on the right side of Eq. (7)
involves averaging over statistical realizations of the system, in addition to summation
over the particles but for infinitely diluted suspensions, considered herein, this distinction
is irrelevant, and the average (7) is computed from N, independent realizations of single-
particle trajectories (cf. discussion in Sec. II C).

We note that Eq. (7) yields the value of the effective stress averaged over the volume
of the system. Using the continuity of the momentum flux and the lateral translational
symmetry, it can be shown that the shear component o, and the normal component o,
of the stress tensor are position independent. However, in general, the local values of the
lateral components o, and o, may depend on the vertical coordinate x. Typical rheo-
logical measurements of the normal-stress differences [e.g., using the method proposed
by Kotaka, Kurata, and Tamura (1959)] yield the values averaged across the gap, because
the lateral components of the stress are evaluated using momentum continuity equations
in a quasi-two-dimensional approximation. Thus, the average quantity defined by Egs. (6)
and (7) corresponds to the stress measured in rheological experiments.

B. Integration of the equation of motion

Particle trajectories are described by the equations of motion

F=U, (8a)

p=QXp, (8b)

for the particle position, r and orientation, p. The equations are numerically integrated
after evaluating at each time step the translational and angular velocities U and € via Eq.
(3), as outlined above. (The dot denotes here the derivative with respect to time, and the
index i has been dropped for simplicity.)

The evolution equation for particle orientation (8b) is integrated in the spherical co-
ordinate system (6, ¢) where 6 is the angle between the particle orientation vector p and
the vorticity axis z, and ¢ is the angle between the projection of p onto the velocity-
gradient plane y-x and the gradient direction x. This coordinate system (see also the
definition Fig. 1) is convenient for the description of particle angular trajectories because
in free space the evolution of the azimuthal angle ¢ is independent of the polar angle 6
[Kim and Karrila (1991)]. In wall-bounded systems, the evolution of the azimuthal angle
¢ is thus expected to be relatively insensitive to the orientation of the particle with
respect to the vorticity axis. As shown in Sec. IV A this is indeed the case, provided that
the separation between the walls, H, is greater than particle length Nd.

Equation (8b) rewritten in the spherical coordinate system yields

@ =1, —cot 6(€), cos ¢ + (), sin @),
| ©)
0=, cos ¢ -, sin ¢.
The evolution equations (8a) and (9) have been integrated numerically using the fourth

order Runge-Kutta method with adaptive step size [Press ef al. (1992)]. We note that for
large wall separations, the magnitude of the component y of the translational particle
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velocity is much larger than other velocity components because the particle is convected
with the flow in the y direction. To avoid difficulties in the adaptive time stepping that are
associated with large differences in velocity magnitudes, the convective velocity ve*'(r) is
subtracted from the particle velocity U before each integration step, and the correspond-
ing displacement is added back after the size of the next time step has been computed.
Also, the angular equations of motion (9) become singular for =0 so an alternative
reference frame where the angle 6 is measured from the gradient direction is used for the
numerical evaluation of trajectories of particles that are nearly aligned with the vorticity
direction.

C. Evolution of the statistical ensemble

To determine the rheological response of the suspension, the evolution of an appro-
priately defined statistical ensemble representing the system has to be evaluated. For
dilute suspensions, considered herein, it suffices to represent the system in terms of a set
of independent one-particle trajectories with an assumed probability distribution of the
initial conditions.

In this paper we focus on the following startup problem: a suspension, initially in
thermodynamic equilibrium at rest, is subject to a sudden onset of shear flow. The initial
equilibrium distribution can be attained, for example, as a result of weak Brownian
motion acting in a quiescent suspension for a sufficiently long time. We assume, however,
that after the flow has started, its magnitude is sufficiently large for the Brownian motion
to be neglected during the subsequent evolution process. Thus, equations of motion (8) do
not have any Brownian corrections.

We note that in the regime of weak Brownian motion the suspension is not always
given enough time to equilibrate. The equilibrium distribution can also be distorted due to
gravity or other long-range forces. However, if the deviation from equilibrium is not too
large, the results presented in Sec. V for suspension rheology should still give a qualita-
tive picture of the system behavior.

A set of independent initial single-particle configurations satisfying the one-particle
equilibrium probability distribution p®l=p°(x, 6, ) is constructed using a standard
Monte Carlo technique [Frenkel and Smit (2002)]. Accordingly, the positions of particle
centers are chosen randomly in the space between the walls, and the particle orientations
are sampled from the uniform solid angle distribution. Configurations for which the
particle overlaps with a wall are rejected. We note that due to this excluded volume the
number density of particle centers is smaller near the walls than at the center of the
channel, and the particles are predominantly oriented parallel to the walls in the near-wall
regions.

In order to evaluate the long-time response of the system, the evolution of the particle
ensemble has to be followed for long times. To accelerate the calculations, we utilize the
periodicity of particle trajectories (cf. the discussion in Sec. IV A). Accordingly, for each
initial condition, the trajectory is numerically integrated only over a single period. The
particle configuration and the stresslet calculated at discrete times are then interpolated
using cubic splines. Once the trajectory period has been accurately determined, the cubic-
spline interpolation function is used to extrapolate stresslets to arbitrarily long times (as
required for reaching steady-state conditions for ensemble-averaged quantities).
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FIG. 2. Normalized linear (left panel) and angular (right panel) velocities of a spherical particle in shear flow
between two planar walls, versus particle-wall gap x—d/2 scaled by the available space H-d, for different wall
separations H. The linear velocity U’=U-yx corresponds to particle motion relative to the fluid at particle
position.

lll. EFFECTS OF CONFINEMENT IN A SUSPENSION OF NONINTERACTING
SPHERES

A. Particle velocities

As in the unbounded space, a single sphere in shear flow between two planar walls
does not change its vertical position, owing to the symmetry of the system. The particle
thus moves with constant linear and angular velocities U= U&, and =()¢,. The depen-
dence of these velocities on the particle position for several values of wall separations H
is shown in Fig. 2. The results are plotted versus the particle-wall gap x—d/2 scaled by
the available space H-d.

The results indicate that for weak confinements (e.g., H/d=10), particle motion in the
middle part of the channel is nearly unaffected by the walls. As expected, particles in this
region are convected with the local fluid velocity (1), and rotate with angular velocity
QO=vy/2. Wall effects are strong when particle-wall separation is of the order of particle
size d. In the near-wall regions the particle velocity approaches the wall velocity and
particle rotation decreases. However, a complete arrest of the relative particle-wall mo-
tion occurs only in very thin logarithmic lubrication layers for the tangential translation
and for rotation about an axis parallel to the wall [Kim and Karrila (1991)].

In strongly confined configurations (H/d <3) wall effects on particle translation and
rotation are significant for all vertical particle positions. The angular velocity () decays
with decreasing wall separation H, and the translational velocity U is strongly affected by
the walls everywhere except for the center position x=H/2. For H/d— 1, the angular
velocity in the center of the channel tends to the limiting value (= 7/4, which follows
from the ratio between the magnitudes of the translational and rotational lubrication
resistance coefficients in the logarithmic lubrication regime [Cichocki and Jones (1998)].

B. Stress response

Due to the flow-reversal symmetry of Stokes equations and the reflection symmetries
of the problem, the only nonzero component of the stresslet induced on the surface of a
spherical particle is the shear component S,,. In what follows, this component will be
denoted by Sghere. Our numerical results for Sﬁ;here, normalized by its value in an un-
bounded domain
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FIG. 3. Particle contribution to the shear stress in a dilute suspension of noninteracting spheres undergoing
shear flow between two planar walls. Left panel shows the stresslet Sg)hm induced on an individual sphere,
versus scaled particle-wall gap, for different wall separations H. Right panel shows the average stress contri-
bution (Sg)hm) for uniform sphere distribution, versus scaled wall separation H/d~1. The results are normalized

by the free space value (10).

S:;Jhere = % W'j/”d3 > (10)

are plotted in Fig. 3 and listed in Table I. Note that expression (10) is equivalent to the
well known Einstein (1906, 1911) result

o=y, (11)

where a')’; is the particle contribution to the effective stress (6) in free space, and ¢
=é7rnpd3 is the particle volume fraction.

In the left panel of Fig. 3, the stresslet component S;here is plotted versus particle
vertical position x for the same values of the nondimensional wall separation H/d as

those in Fig. 2. In the right panel, we show the average value (S:]’)here) as a function of

H/d (where the average is evaluated with respect to the uniform distribution of spheres in
the space between the walls). We recall that the quantity (S ) is equivalent to the

sphere
particle contribution to the effective stress, according to Eq. (7).

TABLE I. Normalized particle contribution to the shear stress (Sg,here)/ Sqphere i @ dilute uniform suspension of

noninteracting spheres undergoing shear flow between two planar walls, for different values of scaled channel
width H/d. Convergence of the numerical results with the multipolar truncation order L is also shown.

Multipolar truncation order L

Hld 2 3 4 5 6 8 10
1.01 7.224 6.556 6.996 6.602 6.887 6.828 6.785
1.05 4.595 4.060 4.362 4.115 4.265 4.221 4.200
1.2 2717 2.456 2.543 2.492 2510 2.505 2.504
1.6 1.718 1.657 1.661 1.658 1.659

2.4 1.322 1.308 1.306

35 1.182 1.175 1.174

7 1.076 1.074 1.073

10 1.051 1.049
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As expected, the stresslet S;ﬁhm in weakly confined systems deviates from the free-

space value only in the near-wall regions (this behavior is similar to the one observed in
Fig. 2 for the particle velocities). For H/d=<1.5, the deviation of Sghere from S is
significant for all particle positions, and Sg)here diverges logarithmically with H/d—-1 in
the limit H— d. This logarithmic divergence, which follows from the stresses that arise in
two lubrication layers between the sphere and the walls [Cichocki and Jones (1998)], is
also seen in the right panel for the average stress <S$here).

Accuracy tests of our method for calculating hydrodynamic mobility and resistance
functions for systems of spherical particles in wall-bounded creeping flows were pre-
sented in our previous publications [Bhattacharya et al. (2005a, 2005b, 2006)]. Here we
give some additional tests that are relevant for our present study. We recall that the key
parameter that controls the accuracy is the maximal order L of the Stokes-flow multipoles
included in the calculation. We also recall that the algorithm includes additive particle-
wall lubrication corrections.

Table I shows the convergence of the average shear-stress contribution (Sg,here) with
the truncation order L. The results indicate that the convergence is rapid for large wall
separations, but it is much slower in the region of small values of H/d. The rapid
convergence of (Sghere> for H/d =2 results not only from a smaller fraction of particles
in near-contact configurations but also from a good convergence of the individual stress-
let values even if the sphere is very close to a wall. For example, detailed tests indicate
that for H/d=10, truncation at L=2 yields the relative error below 1% for all particle
positions in the channel. Therefore, the slower convergence for highly confined systems
is due to the interaction between two strongly excited lubrication regions.

In our simulations of linear chains of spheres, discussed below, we only consider
configurations with H/d=2. We thus use the multipolar truncation level L=2, which

yields sufficiently accurate results, with the numerical error typically below 5%.

IV. MOTION OF LINEAR CHAINS

Before we go on to describe, in Sec. V, the effect of confinement on the rheology of a
suspension of nonspherical particles, we first discuss some important features of indi-
vidual particle trajectories. This will help us to gain a better insight into the system
behavior and determine the conditions under which the rheological response of the sus-
pension does not depend on short-range nonhydrodynamic interactions between the par-
ticles and the walls. In Sec. IV A, we first focus on the evolution of particle orientation
and the periodicity of particle motion. The evolution of the minimum distance of the
particle to one of the walls and the role of near-contact particle-wall interactions are
discussed in Secs. IV B and IV C.

A. Angular evolution

Figure 4 depicts the time dependence of the particle orientation vector p for a short
chain with N=2 spheres. The orientation is described by the polar and azimuthal angles
6 and ¢ in the spherical coordinate system defined in Sec. I B. We recall that 6 is
measured with respect to the axis z oriented in the vorticity direction, and ¢ is the angle
in the x-y plane, measured anticlockwise from the gradient direction x. Accordingly, ¢
=1r/2 corresponds to the particle in a plane parallel to the walls (flow-vorticity plane),
and #=0 to the particle oriented along the vorticity direction. The particles are initially in
the plane ¢=m/2. The results are shown for a set of different initial orientations 6, with
respect to the vorticity axis.
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FIG. 4. Evolution of the orientation angles ¢ and 6 for dumbbells undergoing periodic motion in shear flow
between two parallel walls. The dumbbells are initially in the flow-vorticity plane ¢=7/2. The wall separation
H and initial position of particle center x; are indicated in the left panels. Different lines correspond to different
initial particle orientations 6 with respect to the vorticity axis (as specified in the right panels).

The results in the top two panels of Fig. 4 illustrate particle behavior under moderate-
confinement conditions: the center of mass of the particle is in the midplane x=H/2 in a
channel of moderate width H/d=4. The results indicate that particle trajectories are
qualitatively similar to Jeffery orbits in free space [Kim and Karrila (1991)]. In particular,
all trajectories have approximately the same period 7. Moreover, the evolution of the
azimuthal angle ¢ is nearly independent of the initial orientation 6. When the particle is



ROD-LIKE PARTICLE BETWEEN PARALLEL WALLS 81

5 -
2 . -7
7 7
! i
l, !
i !
i !
/! 7
S
S — N=2 ]
Lo -~ -N=3 |
L N=4
7’ ! 4
s - - N=
7T /_/»_,’/
15 : - L
05 1 1.5 2 2.5 3 20 5 10 15 20 25 30 35 40
z/d At

FIG. 5. Normalized period of motion T (left panel) and evolution of azimuthal angle ¢ (right panel) for chains
of different length NV, undergoing tumbling motion in shear flow in a channel with wall separation H/d=6. The
chains are initially aligned with the flow and move in the plane #=7/2. The results in the left panel are plotted
versus normalized initial position of the chain center x;/d; the selected trajectories shown in the right panel
correspond to x;=H/2.

close to one of the walls (middle panels), or for a smaller wall separation (bottom panels
of Fig. 4), the periods of particle motion become longer, and depend (although weakly)
on the initial particle orientation."

The dependence of the period 7 on particle position with respect to the walls for
different chain lengths N is depicted in the left panel of Fig. 5 for a fixed channel width
H/d=6. The results are plotted versus the position of the center of mass x; of a chain
when it passes the horizontal plane ¢=7/2 during the tumbling motion. The results show
that the period increases approximately linearly with the chain length, primarily due to
the longer residence time in near-horizontal orientations (as depicted in the plot of the
azimuthal angle ¢ versus time in the right panel of Fig. 5). This behavior is characteristic
of Jeffery orbits in free space as well. Similar plots for different distances of the particle
from the walls indicate that the increase of the period at small particle-wall separations
(as seen in the left panel of Fig. 5) is also associated with the longer time that the particle
spends oriented parallel to the walls.

For an axisymmetric particle in an unbounded shear flow, all particle trajectories can
be parameterized by a single angle 6, that describes particle orientation with respect to
the vorticity axis z when the particle crosses the flow-vorticity plane. However, in a
wall-bounded system one needs to specify the corresponding position of the particle
center of mass x; as well. In addition to the configurational parameters 6, and x;, we also
have two geometrical parameters: the chain length N and wall separation H. Since the
number of parameters is large, we will not provide a complete characterization of the
trajectories. Instead, in Fig. 6 we summarize our results by presenting the probability
density for particle periods in a suspension of initially randomly distributed particles.2

The results in the left panel of Fig. 6 show the period distributions for dumbbells in
channels with different values of the wall separation H/d. The results in the right panel

'"We note that for an elipsoidal particle in shear flow bounded by a single wall similar results have been found
by Pozrikidis (2005).

Note that the vorticity component of the angular velocity {)_ is positive for all particle configurations, accord-
ing to our numerical results. Using the symmetries of the system one can thus show that all particle trajectories
are periodic.
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FIG. 6. Probability distribution p(T) of particle periods T for chains with initial random distribution p®4. Results
correspond to dumbbells in systems with different wall separations H/d (left panel) and to chains of different
length at a similar degree of confinement H/(Nd) (right panel). Distribution p is normalized by its maximal
value p,... In the left panel, p(T) is shown versus logarithm of the period 7T shifted by the free-space value 7~.

are for chains with different lengths in channels with a similar width-to-particle-lengths
ratios H/(Nd). In all cases, the period distributions are sharply peaked around the values
corresponding to the particle in the center position, x=H/2. The distributions quickly
ramp up, but they are not discontinuous. The results in the left panel (note the logarithmic
scale) show that the distribution is broader for stronger confinements, i.e., for smaller
values of H/(Nd). This behavior is characteristic not only of dumbbells but it also holds
for longer particles.

B. Evolution of the particle-wall gap

The center of mass of an axisymmetric particle moving in an unbounded shear flow
translates with a constant velocity that is equal to the local value of the applied flow (1).
In the wall-bounded shear flow, however, there is a significant coupling between the
rotational and translational motion of the particle. This coupling is especially relevant for
particles that are close to a wall because for such configurations the gap between the wall
and particle surface may become extremely small at some portions of the particle trajec-
tory.

This behavior is illustrated in Fig. 7, where the time evolution of the center of mass,
orientation, and the dimensionless gap between the particle surface and the wall is de-
picted for a chain of N=4 spheres in a channel of width H/d=6. The particle-wall gap
e=x/d —% (where X is the vertical position of the sphere in the chain that is closest to the
lower boundary) is normalized by the particle diameter d. The particle is initially in the
horizontal plane y-z, at a distance x;/d=1.2 from the lower wall. The results indicate that
the minimal gap value €.;, along the trajectory strongly depends on the initial particle
orientation 6 (cf. the last panel in the figure). For particles approximately aligned with
the vorticity direction (i.e., for §;=0) the minimal gap is of the same order as the initial
gap. In contrast, €., is very small for particles rotating near the flow-gradient plane (i.e.,
for 6= m/2). This behavior is also evident in Fig. 8, where the minimal gap €, is
plotted versus 6, for different initial particle distances from the wall, x; (left panel) and
different particle lengths, N (right panel).

According to the results in Fig. 7, the gap decreases rapidly when the orientation
vector p approaches the vertical plane perpendicular to the flow direction during the
tumbling motion of the particle (i.e., when the azimuthal angle ¢ approaches ). At the
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particle position measured in the coordinate system moving with the mean particle velocity. The results are
shown over half-period 0<t<T/2.
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FIG. 8. Minimal value €, (along the particle trajectory) of the dimensionless gap between the particle surface
and the lower wall, for chains initially oriented in the flow-vorticity plane ¢=/2 in a channel with wall
separation H/d=6. The results are plotted versus initial particle orientation 6, with respect to the vorticity axis,

for N=4 and several initial particle positions (left panel), and for x;/d=1.2 and several chain lengths (right
panel).
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FIG. 9. Minimal value €, of the dimensionless gap between the particle surface and the lower wall along the
particle trajectory, for chains initially oriented in the flow-vorticity plane ¢=/2 in a channel with wall
separation H/d=100. The results are plotted versus chain length squared, N2, for the initial particle positions,
from top to bottom, x;/d=5,4,3,2, 1. Particle initially aligned with the flow (left panel); particle initial orien-
tation §j—/2=15° (right panel).

same time, the vertical coordinate of the particle center increases rapidly. A similar “pole
vault” particle motion was observed by Mody and King (2005) in their study of an oblate
particle in shear flow close to a single wall. Such motion was also seen in recent experi-
ments [Moses et al. (2001), and references therein].

For some particle configurations, especially for long chains initially aligned with the
flow at a small distance from the wall, the minimal particle-wall gap may become orders
of magnitude smaller than the particle diameter d. These unphysically small gaps are
associated with the exponential drainage of the lubrication layer that separates the nearly
touching chain end from the wall. The rapid drainage is produced by the slowly varying
hydrodynamic pushing force that acts on the outer portions of the particle. Since the
spheres in the chain cannot freely move due to the rigid-body constraints, a typical sphere
translates with a velocity ~N+yd with respect to the fluid. This relative motion produces
a hydrodynamic resistance force proportional to the chain length N. The resistance force
acts on all N spheres in the chain. Thus, the total force pushing the chain towards the wall
before the particle crosses the vertical plane is approximately proportional to N?. We note
that there is a finite normal force component, because the spheres move away from the
wall due to the rotation of the chain with respect to the near-contact point.

Assuming a nearly constant drainage time 7~ 7!, which corresponds to the time the
particle spends rotating towards the vertical plain ©=0,” we find that the minimal gap
decays as

€min ~ €xp(— aN?) (12)

with the chain length N for N>> 1. To obtain this result, we have used the linear depen-
dence of the lubrication mobility on the particle-wall gap € [Cichocki and Jones (1998);
Kim and Karrila (1991)].

The result (12) is confirmed by the data presented in Fig. 9. Our detailed calculations

*Indeed, the drainage time may increase logarithmically with the minimal gap, because particle rotation around

the contact point is hindered by the logarithmic lubrication resistance. However, such hindrance of particle
rotation has a significant effect only at extremely small gaps. Moreover, the effect of increased drainage time
should be compensated by the weaker pushing force due to slower rotation of the chain (and thus smaller
normal velocities of the individual spheres).
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show that the coefficient a (corresponding to the slope of the curves in Fig. 9 for large N)
has a sharp maximum at 6,=m/2. However, when the particle is misaligned with the
flow-gradient plane 6,=/2 even by as little as 15°, « is significantly smaller, as seen in
the right panel of Fig. 9. Some important consequences of this observation are discussed
in the following section.

C. Significance of particle-wall collisions

The unphysically small particle-wall gaps that are predicted for some initial particle
configurations indicate that a suspension of nonspherical particles undergoing shear flow
in a wall-bounded system cannot be fully characterized by hydrodynamic considerations
alone. An appropriate description of the near-contact particle-wall interactions is also
necessary. Under some conditions, for example, particles with trajectories resulting in
very small gaps may get into mechanical contact with the walls due to roughness. In other
systems, a sufficiently strong repulsive interparticle potential (e.g., screened Coulombic
repulsion) may prevent further drainage of the particle-wall gap. The development of
unphysically small gaps could also be hindered by Brownian motion even if the Peclet
number based on particle size is quite large.4

It is thus important to determine if the near-contact interactions affect the quantities of
interest for a specific problem. For some processes, such as particle deposition and
resuspension, the near-contact interactions cannot be ignored because they significantly
affect the particle behavior. However, as shown below, particle-wall collisions have only
a small effect on the rheological response of the suspension, provided that H> Nd and the
chains are not too long.

To demonstrate the validity of this statement, we first examine the evolution of the
stresslet induced on the particles whose trajectories were shown in Fig. 7. The behavior
of the shear component of the stresslet S, is displayed in the top panel of Fig. 10, and the
behavior of the normal-stress componenfs

S] :Syy_Sxx’ SZ:Sxx_Szz’ (13)

is shown in the bottom panels. These components contribute to the effective shear stress
and the normal-stress differences in suspension flow, according to the discussion in Sec.
V. The stresslet of the chain is normalized by the shear component (10) of the stresslet
induced on a sphere subject to shear flow with the same strength ¥ in free space.

According to the results in Fig. 10, all three stresslet components exhibit large peaks
for those particle configurations for which very small gaps develop (i.e., for particles that
are rotating near the flow-gradient plane). For the shear component of the stresslet we
also show, in the inset (top right), the peak, average, and minimal values of S, along the
trajectory versus the initial orientation 6. For the normal-stress components (13) the
insets present only peak values because the time average vanishes, due to symmetry.
Since each of the N spheres in the chain is subject to O(N) hydrodynamic stresses, we
expect that peak values scale as N> with the chain length.

To determine how strongly the trajectories with very small particle-wall gaps may
affect the shear-stress response of a bounded suspension, we note that the time average of
S, for such trajectories differs by a relatively small factor from typical values for orbits

4By comparing the magnitudes of thermal and hydrodynamic forces one can estimate that Brownian motion is
important in the near-contact boundary layer of thickness €~ NPe~!, where Pe=1*7y/(kT) is the Peclet number
based on the chain length /=Nd, and kT is the thermal energy. We note that weak Brownian motion may also
affect the period of motion for long chains by moving the chains out of alignment with the flow-vorticity plane
where they would otherwise spend a much longer time [Leal and Hinch (1971)].
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FIG. 10. Evolution over half-period of the shear component S, and normal-stress components S; and S, [as
defined by Eq. (13)] for the stresslet induced on a chain of length N=4, initially located at x)/d=1.2 in a channel
of width H/d=6. Different lines correspond to different angles 6, as defined by the line type used in Fig. 7.
Insets show the minimal, maximal, and average values for the shear component S,,, and the maximal values for
the normal-stress components S; and S,. »

that do not lead to particle-wall collisions. For example, the time average of the normal-
ized stresslet on the trajectories illustrated in Fig. 10 does not exceed S,/ S:;here% 10.
This value should be compared with the average value (S,,)/ S:;here~6 for the whole
ensemble of the trajectories in this system (cf. Fig. 18 in Sec. V C below). For normal-
stress components we obtain a similar conclusion, except that the amplitude of oscilla-
tions should now be considered instead of the time averages (which vanish).

As we have already observed in Sec. IV B, the near-contact trajectories require that the
particle be both close to the wall and rotate close to the flow-gradient plane. The
configuration-space volume corresponding to such trajectories is thus small, and, there-
fore, they occur infrequently (the frequency < 3% for H/d=N and N=<35, according to
the results shown in Fig. 11). The corresponding contribution to the effective stress (7)
can thus be neglected without introducing significant inaccuracies, provided that the
chain length N is moderate and the wall separation H larger than the particle length Nd.

In this paper we focus on systems where the effects of near-contact nonhydrodynamic
interactions are negligible, and, therefore, the moderate-confinement condition H/d>N
is assumed. It is thus important to determine how crucial this condition is. To this end, in
Fig. 12, we show the evolution of the particle orientation, particle-wall gap, and three
stresslet components S,,, S, and §,, for a system with N=4 and H/d=3. The particle
center is in the midplane x=H/2, so that the two gaps between the walls and the particle
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FIG. 11. Fraction (in percent) of trajectories with minimal gap €,,;, <1073 for a system of chains with initial
random distribution p® versus degree of confinement H/(Nd) for several values of chain length N.

surface are the same. The results of our simulations indicate that for particles oriented
near the flow-gradient plane #=m/2 the gaps € decay very rapidly. They achieve values
below 1078 before the vertical particle position with ¢=0 is reached. (We stop our
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FIG. 12. Evolution over half-period of the orientation angles ¢ and 6, gap €, and normalized stresslet compo-
nents S, Sy, and S, of a chain with length N=4 and the center of mass in the midplane of a channel with wall
separation H/d=3. Different lines correspond to different initial angles 6, as defined in the top middle panel.
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simulation for e=1071".) The rapid decrease of the gaps is accompanied by a sharp
increase of the shear and normal components of the stresslet. For a particle rotating in the
plane #=m/2 all components diverge, and for |#— /2| < 1, the stresslets achieve peak
values that are much higher than the ones observed for H/d> N (as illustrated in Fig. 10).

The marked difference in the particle behavior for H/d<<N and H/d> N stems from
the interaction between two particle-wall lubrication layers in the strongly confined case
H/d<N. By analyzing the effects of the normal and tangential forces in two lubrication
regions coupled via the rigid-body constraint, we find that the particle-wall gaps decrease
as e~ exp[—exp(ar)] for trajectories with 6=~ /2. This explains why the gaps decrease
so rapidly. The corresponding increase of the stresslet components is exponential due to
the logarithmic behavior of the tangential lubrication force. The sharp decrease of the
gaps and the corresponding large values of the stress contributions indicate that for
strongly confined systems with H/d <N the effect of direct particle-wall interactions on
the rheological response of the suspension cannot be ignored.

We conclude this section with a comment that the near-contact particle behavior is not
merely an algorithmic problem. The near contact particle-wall interactions do physically
occur in real systems. It is thus crucial to determine under what conditions such interac-
tions significantly affect the behavior of the system (in which case a specific near-contact-
interaction model needs to be specified), and under what circumstances the effect of such
interactions can be neglected. This remark applies not only to our present problem, but
also to flowing suspensions in general.

V. RHEOLOGY OF DILUTE SUSPENSION OF LINEAR CHAINS

We now investigate the rheological response of a dilute suspension of noninteracting
linear chains of spheres to a sudden onset of shear flow in a wall bounded system. As
discussed in Sec. II C, we assume that the initial state of the suspension is characterized
by the equilibrium particle distribution. The flow distorts the initial distribution, which
leads to nontrivial rheological behavior.

We focus on configurations with H/d> N and moderately long chains N=5. Under
these conditions the near-contact particle trajectories do not affect the suspension rheo-
logical response (cf. the discussion in Sec. IV C). In our numerical simulations we thus
neglect trajectories with €,,;, =10 without introducing any significant inaccuracies. As
illustrated in Fig. 18 (see Sec. V C below), our results are insensitive to the gap-
truncation value.

A. Shear stress and normal-stress differences

In the absence of Brownian motion and other nonhydrodynamic relaxation mecha-
nisms, the effective stress (6) in a sheared suspension is proportional to the shear rate 7.
As in unbounded space, the rheological response of the system is characterized by the

effective shear stress oﬁ;f and the normal stress differences

_ o eff _ eff _eff  eff
Ny=o,, -0 Ny=0, -0, . (14)

Xx? Z

According to Egs. (6) and (7), the shear stress consists of a background-fluid contribution
and a particle contribution,

o =2mE + o), (15)

where
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FIG. 13. Evolution of the normalized stresslet components S, and S, for three randomly chosen trajectories of
chains with lengths N=5 in a channel with wall separation H/d=7 (broken lines). The average values (S ) and
(S,,) for a system of chains with initial random distribution p*¢ vanish, as indicated by the solid lines. Due to
symmetry, the time averages of individual contributions S, and S, also vanish.

0y = 1p{Syy)- (16)
The normal stress differences have only the particle contributions
Ni=n\ Sy, i=12, (17)

where the stresslet components S; are defined by Eq. (13). The remaining components of
the effective stress tensor o-jif and o-f,gf vanish owing to the flow geometry and the statis-
tical symmetry of the particle ensemble with respect to the reflection of the vorticity axis
z. We note, however, that the unaveraged stresslet components S, and S, are nonzero on
typical trajectories, as illustrated in Fig. 13.

In what follows, particle contributions to the shear stress and normal stress differences
in a suspension of chains are shown normalized by the particle contribution to the shear-
stress in an unbounded suspension of spheres with the same number density 7, (and thus
volume fraction smaller by the factor of N), undergoing shear flow of the same strength
y. Accordingly, we show the quantities

ol Sy s)
npS :;)here S ;Jhere
and
N. S.
N B, (19)
npS sphere Ssphere
where S:;hm is given by Eq. (10). The results of our simulations, presented in Figs.

14-19 were obtained from ensemble averages over up to 10* trajectories.

B. Time-dependent rheological response to a sudden onset of shear flow

We begin our analysis by discussing the evolution of the shear stress for a system of
noninteracting linear chains of spheres undergoing shear flow in unbounded space. We
recall that the motion of axisymmetric particles in unbounded shear flow is periodic, with
a period which is independent of the initial orientation of the particle [Bretherton (1962),
Jeffery (1922)]. Thus, the ensemble-averaged stress response of a dilute, monodisperse
suspension to such a flow is also periodic.
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FIG. 14. Evolution of the normalized particle contribution to shear stress (18) in an unbounded, dilute suspen-
sion of linear chains of spheres with initial random distribution p®, after the onset of steady shear flow.
Different lines correspond to different chain lengths N.

This behavior is illustrated in Fig. 14, where the time evolution of the normalized
particle contribution to the shear stress (18) is plotted for several chain lengths N. The
results show that the stress response undergoes pronounced oscillations, especially for
large values of N. Time-average values of the normalized shear-stress contribution
S/ Sihere and the period of the oscillations 7 also increase with N. This behavior is
consistent with our discussion of individual particle trajectories in Sec. IV. The charac-
teristic “dimpled” shape of the stress-response curves results primarily from the contri-
butions of the chains moving near the flow-gradient plane. Due to the symmetry of the
problem, these shear-stress contributions achieve maximal values at azimuthal angles ¢
=m/4 and 37/4, and have a deep minimum for ¢=a/2. This behavior is seen, for
example, in the top panel of Fig. 10 for a particle whose trajectory is represented in
Fig. 7.
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FIG. 15. Evolution of the normalized particle contribution to shear stress (18) in a dilute suspension of
dumbbells with random initial distribution p®, after onset of steady shear flow in a channel with wall separation
H/d=2.5 (left panel) and H/d="7 (right panel). Insets show details of the shear-stress behavior at the onset of
the flow and after long times. Weaker confinement (greater H/d) results in a much slower approach to steady
state.
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FIG. 16. Same as Fig. 15, except that results are for chains with different lengths N in channels with similar
values of wall separation normalized by particle lengths H/(Nd). Inset shows details of the initial behavior of

the ensemble-averaged shear stress (18) at the onset of the flow (solid line) and three randomly chosen indi-
vidual particle contributions (broken lines) for N=5 and H/d=7.

In the absence of Brownian motion or other relaxation mechanisms (such as interpar-
ticle hydrodynamic interactions at finite suspension concentrations) the stress oscillations
in an unbounded suspension do not relax. In the presence of walls, however, we observe
decaying oscillations, as illustrated in Figs. 15 and 16 for the shear stress and Fig. 17 for
the normal stress differences. The decay of the oscillations is associated with the phase
shifts resulting from the continuous distribution of the periods of particle orbits, as
discussed in Sec. IV and shown in Fig. 6.

Figure 15 represents the shear-stress evolution in a suspension of noninteracting
dumbbells (N=2) for two values of the wall separation H/d=2.5 and H/d=7. In both
cases, the oscillations first decay relatively rapidly. At longer times, however, a much
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FIG. 17. Evolution of the normalized particle contributions to the first (left panel) and second (right panel)
normal stress differences (19) in a dilute suspension of chains of length N=5 after the onset of a steady shear
flow in a channel with wall separation H/d="7. Inset shows details of the initial behavior of the ensemble-
averaged normal stress differences (19) (solid line) and three randomly chosen individual particle contributions
(broken lines).
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FIG. 18. Short-time (dashed lines) and long time (solid lines) values of the normalized particle contribution to
the shear stress (20) in a dilute suspension of chains of length N with random initial distribution p®I, after the
onset of a steady shear flow between parallel walls, versus the degree of confinement H/(Nd). The dotted line,
nearly overlapping with the solid line for N=35, represents the corresponding approximate long time results
obtained by neglecting trajectories for which the minimal particle-wall gap €,,;, < 107> (other long-time results
include contributions from all trajectories with €,;,>>107). The inset shows the low-confinement limits
H/(Nd)— o of the shear stress versus the chain length N.

slower relaxation is seen. This slow decay is associated with the sharp peak of the period
distribution shown in the left panel of Fig. 6. The peak is much narrower for the larger
wall separation, so the oscillations decay much more slowly for H/d="7 than for H/d
=2.5. For the larger value of H/d the oscillations are still present even for =~ 10°. In
contrast, for the smaller value only statistical noise is observed at such a long time.
Figure 16 shows that the same qualitative behavior applies not only to dumbbells, but
also to longer chains. In this figure, the particle contribution to the shear stress is plotted
versus time for chains of lengths N=2,...,5, in systems with a similar degree of con-
finement H/d. The corresponding period distributions are presented in the right panel of
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FIG. 19. Initial oscillation amplitudes of the normalized first and second normal-stress differences (21) in a
dilute suspension of chains of length N with random initial distribution p®4, after the onset of a steady shear flow
between parallel walls, versus the degree of confinement H/(Nd). Error bars in the plot of the second normal-
stress difference represent statistical uncertainty defined as one standard deviation. Statistical inaccuracies of the
first normal-stress difference are much smaller.
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Fig. 6. In all the cases considered, the oscillations of the shear stress decrease in time, and
the system finally reaches a steady state. The relaxation time is longer for longer chains,
because a typical period of a particle trajectory is longer for greater N according to the
results shown in the right panel of Fig. 6. (We note, however, that the width of the period
distributions is similar for all systems represented in the plot.)

The evolution of the normal-stress differences (19), depicted in Fig. 17 for N=5 and
H/d="7, has many features similar to the evolution of the shear stress, discussed above.
Both (S;) and (S,) exhibit slowly decaying oscillations. However, in contrast to (S,,),
normal stress differences oscillate around zero mean values because the time averages of
(§,) and (S,) vanish at each trajectory due to the flow-reflection symmetry. Moreover,
(8;)=(8,)=0 at r=0 because of the flow-reflection symmetry of Stokes flow and the
reflection symmetry of the initial random distributions of chains.

We note that for a smooth distribution of periods of individual trajectories, the oscil-
lations of the shear stress and normal stress differences would decay as ¢! (this can be
shown by estimating the fraction of trajectories for which a sufficient phase shift occurred
at a given time to randomize their contribution to the ensemble-averaged stress). The
oscillations seen in Figs. 14—17, however, decay more slowly because of the sharp peak
of the period distribution depicted in Fig. 6.

C. Results for different chain lengths and degrees of confinement

We conclude our analysis by summarizing, in Figs. 18 and 19, the results of a series of
numerical simulations for systems with different channel widths and for chains of differ-
ent lengths. Figure 18 shows instantaneous short-time values (1=0) and long time values
(t— ) of the shear stress (Sxy>. Since the relaxation of the ensemble-averaged stress
occurs only through the phase shifts associated with different periods of particle trajec-
tories, the long-time value of (S,,) is equivalent to the time average of this quantity.
Accordingly, the long-time values shown in Fig. 18 have been evaluated by time-
averaging our numerical results.

Symmetry considerations presented in Sec. V B lead to the conclusion that normal
stress differences (S,) and (S,) vanish for both =0 and t—o°. In Fig. 19 we thus present
the initial oscillation amplitudes for these stress components. (The amplitudes are evalu-
ated as the difference between the maximal and minimal value.) The results in Figs. 18
and 19 are plotted for several chain lengths N versus the wall separation normalized by
the length of the particles H/(Nd).

To emphasize the dependence of the rheological response of the system on chain
length, the stress components shown in Figs. 18 and 19 are normalized differently than
the stresses represented in previous figures. Instead of dimensionless quantities (18) and
(19) we plot

U),cy <va>

— = (20)
npS Z)here N <S g)here>
and
Ni Si
— = <H> , i=1,2, (21)
npS sphere N <S sphere>

where
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i, =Nn, (22)
is the number density of spheres in the system (rather than the number density of chains
of spheres). The normalization factor (Sg)herg in Egs. (20) and (21) corresponds to the
ensemble-averaged particle contribution to the shear stress in a suspension of spheres
undergoing shear flow in a channel with the same width H as the suspension of chains.
Our results for (Sg,here) are given in the right panel of Fig. 3 and in Table 1. According to
the above definitions, the deviations of the quantities (20) and (21) from unity are asso-
ciated with the rigid-body constraints that restrict the relative motion of spheres forming
a chain.

The results in Figs. 18 and 19 indicate that the rescaled quantities (20) and (21)
strongly depend on the chain length N. This dependence is nearly linear for the short-time
value of the shear stress and for the first normal-stress difference N,. For the long time
value of the shear stress and for the second normal-stress difference N, a somewhat
weaker dependence is observed. The nearly linear dependence of the stresses on the chain
length N can be qualitatively explained using arguments similar to those leading to Eq.
(12).

For longer chains, the long-time value of the shear stress is significantly smaller than
the short time value because highly elongated particles are predominantly orientated in
the flow-vorticity plane during their periodic motion (as illustrated in the right panel of
Fig. 5). For a suspension of short chains, the nonisotropy associated with this dynamic
orientation mechanism is relatively weak. Thus, for dumbbells the short- and long-time
values are nearly the same. For similar reasons, the magnitude of the oscillations of the
scaled normal stress differences (21) significantly increases with N. We note that the
magnitude of (S;) is much larger than the magnitude of (S,), which is a frequently
observed pattern.5

It is interesting to note that confinement only moderately affects the magnitudes of the
shear stress and the normal-stress differences in our system. According to the results
shown in Fig. 18, the initial shear-stress response increases with the decreasing channel
width H. In contrast, the magnitude of the long-time response increases for dumbbells,
but decreases for longer chains. Once again, this behavior is associated with the longer
time the chains spend near the flow-vorticity plane—in narrow channels the chain rota-
tion is hindered by the hydrodynamic interactions with the walls (cf. the discussion in
Sec. IV A). Chains oriented in the flow-vorticity plane contribute to the stress less than
chains with other orientations. A similar reduction of the magnitude of the stress when the
channel width is decreased can be observed for the normal-stress differences shown in
Fig. 19.

VI. CONCLUSIONS

We have presented a detailed analysis of the effects of confining walls on the dynam-
ics of a dilute suspension of noninteracting, elongated axisymmetric particles undergoing
a steady shear flow in a parallel-wall rheometer. We have investigated the effects of the
walls on the trajectories of individual particles, the evolution of the stresslets induced on

>Since the second normal stress difference N, involves cancellation of many order-one contributions, the
statistical uncertainties for this quantity (in Fig. 19 indicated by the error bars corresponding to one standard
deviation) are quite large. The statistical uncertainties of the shear stress and the first normal stress difference,
however, are much smaller.
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the particles, and the resulting stress response of the system. Our numerical results have
been obtained for particles modeled as linear chains of spheres, but the qualitative con-
clusions of our study also apply to other axisymmetric particles.

We have found that particle motion in the two-wall system qualitatively resembles the
Jeffery’s orbits in the unbounded space, provided that the wall separation is greater than
the particle length. There are, however, important differences between the unbounded and
confined systems. While in both geometries all particle trajectories are periodic (apart
from the systematic translational motion in the flow direction), in wall-bounded systems
the period of motion and the evolution of the azimuthal angle ¢ depend on the initial
position and orientation of the particle. Especially, particles that are close to a wall
remain oriented near the flow-vorticity plane (i.e., a plane parallel to the walls) signifi-
cantly longer than the particles that are far from the walls. In contrast, in free space the
period of motion and the evolution of the azimuthal angle are independent of the initial
conditions.

Particles that are initially nearly aligned with the flow direction at a sufficiently small
distance from a wall (less than half of the particle length) undergo a pole-vault motion
during which the gap € between the wall and one of the particle ends may become
extremely small. {A similar motion has been earlier described for single-wall systems
[Mody and King (2005), Moses et al. (2001)].} We have shown that for a given initial
particle position the minimal gap € decreases exponentially with the square of the particle
length. Due to this exponential behavior, particle-wall gaps become unphysically small
for some initial configurations, especially for strongly elongated particles. However, we
have also shown that even a small misalignment of the particle with the flow-gradient
plane significantly reduces this effect.

To determine the effect of “collisional” particle trajectories (i.e., trajectories resulting
in very small gaps) on the rheological response of the system, we have performed com-
puter simulations for an ensemble of particles with random initial configurations. We
have found that unphysically small gaps occur only for a small fraction of particles,
provided that the wall separation H is larger than the particle length /. Moreover, the
contributions of collisional trajectories to the effective stress are negligible. Therefore,
the rheological response of moderately confined suspensions with H>>1 is insensitive to
the system-dependent, short-range non-hydrodynamic force exerted by a wall on a par-
ticle when the gap € becomes very small.

The near-contact particle-wall interactions are much more important at stronger con-
finements H <<[. First, the fraction of the near-contact trajectories is significantly larger in
such systems than in moderately confined suspensions. Moreover, the stresslet induced on
a particle becomes very large when both ends of the particle are nearly touching the
opposing walls. Thus, the effective-stress response strongly depends on the form of
nonhydrodynamic near-contact forces. Under some conditions, for example, the fast de-
cay of the particle-wall gaps may result in particle jamming (a phenomenon which by
itself warrants a separate study). Since we are concerned here with purely hydrodynamic
effects, our computational studies of the rheological response of the system have been
limited to moderately confined geometries with H>1.

Our numerical simulations of the initially random ensemble of particles indicate that
the distribution of particle periods is sharply peaked around the values corresponding to
chains in the midplane of the channel. This form of the period distribution has important
consequences for the rheological response of a suspension. In free space, the stress
response of a dilute suspension of non-interacting axisymmetric particles to a sudden
onset of steady shear flow is periodic, with a period that is the same as the period of
particle trajectories. In contrast, the stress oscillations in a bounded suspension slowly
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decay due to the phase shifts associated with the different lengths of the particle periods-
such phase shifts randomize the initially coherent particle motion. Since the period dis-
tribution is sharply peaked, the decay of the oscillations of the stress response is slow,
especially for weakly confined systems.

A dilute suspension of axisymmetric particles discussed here is a reference system for
further investigations of the effect of Brownian motion, interparticle hydrodynamic in-
teractions, and nonhydrodynamic forces on the dynamics of confined suspensions. We are
studying the effects of binary particle collisions on the evolution of the particle distribu-
tion in a confined suspension under shear using a Boltzmann—Monte Carlo approach. Our
preliminary results reveal an interesting behavior of the system, such as particle align-
ment with the vorticity direction, and the formation of layered particle ordering due to
binary particle collisions. Similar ideas can also be applied to analyze suspensions un-
dergoing Poiseuille flow in a parallel-wall channel.
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