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ABSTRACT 
 

Brandon David Le: GENETIC EFFECTS IN CONTEXT: CELLULAR AND MOLECULAR 
QUANTITATIVE TRAIT LOCI IN STIMULATED HUMAN NEURAL PROGENITOR CELLS 

(Under the direction of Jason L Stein) 

Genome-wide association studies have identified numerous genetic variants, often in 

non-coding sequences, that tune the expression of complex traits including brain structure, 

brain function, and clinical responses to psychiatric medications. However, genetic association 

studies do not directly nominate regulatory elements, genes, or cellular contexts in which 

genetic variants function to affect the expression of phenotypes. Chromatin accessibility or gene 

expression associated quantitative trait loci (caQTls or eQTLs, respectively) measured in bulk 

post-mortem tissue have explained mechanisms for a subset of brain-trait associated loci, yet 

these studies still do not show detectable gene regulatory function for many brain-trait 

associated variants. Ostensibly, GWAS variants additively affect gene regulatory mechanisms, 

and in turn, cellular processes that go on to influence complex traits, but these functions may 

only occur in particular cellular contexts. Here, I utilized a primary human neural progenitor 

cell-culture model to characterize the function of genetic variation on molecular and cellular 

phenotypes following stimulation of the canonical Wnt signaling pathway or exposure to mood 

stabilizing drugs, identifying novel context-specific mechanisms that may explain GWAS loci 

and variance in clinical responses to treatment.  

Genome-wide effects of Wnt, lithium, and valproic acid stimulation on chromatin 

accessibility, gene expression, and cellular proliferation were measured, and the genetic 

diversity across hNPC-lines was used to map QTLs describing common genetic effects on these 

molecular and cellular phenotypes. Stimulus-specific molecular QTLs colocalized with brain-

related GWAS signals, including those for neuropsychiatric disorders and brain structures, 
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providing novel mechanistic hypotheses explaining associated loci that were undetected at 

baseline unstimulated conditions or in other QTL studies, underscoring the context-specific 

nature of functional genetic variation. Genome-wide association to hNPC proliferation following 

stimulation by Wnt, lithium, or VPA, identified a genome-wide significant association to 

lithium-sensitive proliferation that colocalized with risk for bipolar disorder, schizophrenia, and 

intelligence. Functional experiments at this locus led to the identification of GNL3 as a lithium-

responsive proliferation gene whose expression is influenced by genetic variation. Ongoing work 

seeks to better understand the genetic basis for variation in clinical response to lithium or VPA 

by integrating context-specific genetic effects with pharmacogenomic data. 
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CHAPTER 1: INTRODUCTION 

1.1 Mapping Causal Pathways from genetics to neuropsychiatric disorders 

The human genome is composed of approximately three billion base pairs. Between any 

two humans, the sequence of the genome is different at approximately four million locations 

(1000 Genomes Project Consortium et al. 2015). Those genetic variations, in aggregate, have a 

strong impact on inter-individual variability for almost all well measured traits, including brain 

structure, personality, and risk for neuropsychiatric disorders (Polderman et al. 2015). Most 

individual variants have an infinitesimally small effect on any of these traits. Based on recent 

technological advancements reducing the cost of microarray technology and DNA sequencing 

(Hayden 2014), as well as the collaborative efforts of multiple large consortia (Thompson et al. 

2014; Sullivan et al. 2018), genome-wide association studies (GWAS), whole exome sequencing, 

and whole genome sequencing studies have identified many loci in the genome where genetic 

variation impacts measurable changes in brain or behavioral traits (Hibar et al. 2017; Adams et 

al. 2016; Hibar et al. 2015; Purcell et al. 2014; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). Neuropsychiatric genetics have reached the point where the wheat 

(risk alleles) can be separated from the chaff (alleles without a detectable association).  

The identification of these genetic loci offers considerable promise because it represents 

the first knowledge of the causal basis of behaviorally defined neuropsychiatric disorders for 

which we do not understand pathophysiology (Geschwind and Flint 2015). Because 

environmental insults like medication or stressful life events do not modify the sequence of the 

genome at specific loci, and genetic variation is identical in every cell in the body from 

conception (though small exceptions exist (Lodato et al. 2015)), we make the claim that these 

loci are causally involved in disorder risk. Risk-associated alleles have a unidirectional, although 

https://paperpile.com/c/uEyN9q/7N0kw
https://paperpile.com/c/uEyN9q/laEjK
https://paperpile.com/c/uEyN9q/xoQSY
https://paperpile.com/c/uEyN9q/dXY2Q+A9Xp1
https://paperpile.com/c/uEyN9q/dXY2Q+A9Xp1
https://paperpile.com/c/uEyN9q/WX7oS+X45qb+D7Lhl+MXGtU+yoE5U
https://paperpile.com/c/uEyN9q/WX7oS+X45qb+D7Lhl+MXGtU+yoE5U
https://paperpile.com/c/uEyN9q/WX7oS+X45qb+D7Lhl+MXGtU+yoE5U
https://paperpile.com/c/uEyN9q/S33uy
https://paperpile.com/c/uEyN9q/nt8Op
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not a direct, effect on risk for these disorders. The causal basis of these genetic findings is in 

stark contrast to years of case-control studies in neuropsychiatry measuring differences across 

almost every measurable trait(Theo G. M. van Erp et al. 2018; van Rooij et al. 2018; Parikshak et 

al. 2018; Fromer et al. 2016) that could be either causal or reactive (Harrison 2011).  

While exciting, such genetic associations are only a launching pad to reveal biological 

mechanisms underlying complex disorders. After all, genetic variation itself does not directly 

cause the altered behavior observed in patients with neuropsychiatric disorders. Instead, genetic 

variation impacts multiple levels of biology, at certain time points during development, within 

certain cell-types in the brain, changing development and structure, affecting brain function, 

and resulting in the behavioral manifestations of the disorder. Thorough characterization of 

these causal chains is a critical step for developing rational therapeutics. Already, genetics-

inspired therapeutic design is underway for many disorders (Visscher et al. 2017; Black and 

Clark 2016; M. R. Nelson et al. 2015), and beginning for neuropsychiatric disorders (Breen et al. 

2016). 

Maps of genetic variation impacting multiple levels of biology, termed “quantitative trait 

loci” or QTLs, allow inference of causal chains leading to risk for neuropsychiatric disorders. The 

specific phenotypes that are impacted along a causal mechanistic pathway bridging genetic 

variation to behavioral outcomes are often referred to in psychiatric literature as 

endophenotypes, and in genetics literature as links in a causal chain, or pathways (Kendler and 

Neale 8/2010). At the beginning of a causal pathway, genetic risk loci may affect the regulation 

of gene expression within a given cell type at a given developmental time period. A single 

nucleotide polymorphism (SNP) may lead to a new transcription factor (TF) binding site and 

allelic differences in chromatin accessibility, called chromatin accessibility QTLs (caQTLs) 

(Kumasaka, Knights, and Gaffney 2019). When genetic variation impacts gene expression, 

sometimes through alterations in chromatin accessibility, these loci are referred to as expression 

QTLs (eQTLs) (Albert and Kruglyak 2015). Large scale maps of genetic variation impacting 

https://paperpile.com/c/uEyN9q/fZxHc+jidUs+6433A+W6eV2
https://paperpile.com/c/uEyN9q/fZxHc+jidUs+6433A+W6eV2
https://paperpile.com/c/uEyN9q/b1nsu
https://paperpile.com/c/uEyN9q/DQHES+IEmdc+eKBF2
https://paperpile.com/c/uEyN9q/DQHES+IEmdc+eKBF2
https://paperpile.com/c/uEyN9q/xzTWd
https://paperpile.com/c/uEyN9q/xzTWd
https://paperpile.com/c/uEyN9q/wrdAo
https://paperpile.com/c/uEyN9q/wrdAo
https://paperpile.com/c/uEyN9q/Wovph
https://paperpile.com/c/uEyN9q/O2xC5
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molecular measures, like caQTLs and eQTLs, have been and are continuing to be developed to 

allow the identification of regulatory elements or genes impacted by genetic variants associated 

with neuropsychiatric disorders (Schwartzentruber et al. 2018; GTEx Consortium et al. 2017; Ng 

et al. 2017; Dobbyn et al. 2018) (Figure 1.1). Similarly, maps of loci associated with gross brain 

structure and function derived from magnetic resonance imaging (MRI) have been used for 

almost two decades to suggest brain regions or functions within the causal chains leading to a 

variety of neuropsychiatric disorders (Bigos and Weinberger 2010). 

 

 

Figure 1.1: From genetic association to mechanism  

Studies seeking to define causal pathways between genetic risk and the manifestation of 

neuropsychiatric disorders may employ a generalized three-step approach. In step 1, 

high-powered genetic association studies are used to identify variants associated with 

risk for a disorder. In step 2, genetic association with endophenotypes (chromatin 

accessibility, gene expression, and brain structure) are used to infer causal pathways 

leading to risk for a disorder. In step 3, experimental manipulations in human or animal 

model systems are used to validate mechanistic hypotheses. 

 

The use of gross brain structure and function as links in the mechanistic chain is fueled 

by two main assumptions - that genetic variation has a stronger impact on brain traits than on 

https://paperpile.com/c/uEyN9q/JoiKF+YojpH+cm8jY+XsRSe
https://paperpile.com/c/uEyN9q/JoiKF+YojpH+cm8jY+XsRSe
https://paperpile.com/c/uEyN9q/S3DgR
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heterogeneous and behaviorally defined disease categories, and that genetic variation associated 

with brain changes will allow a greater understanding of the mechanism leading to risk for 

behaviorally defined disorders (Glahn, Thompson, and Blangero 2007). How well are these 

assumptions met by MRI measures of brain structure and function? How have genetic 

associations to brain structure and function informed our understanding of the causal chain 

leading to risk for neuropsychiatric disorders? How can we leverage new imaging methods for a 

deeper understanding of genetic risk factors for neuropsychiatric disorders? 

In this review, we seek to 1) unify the concepts of endophenotypes from psychiatric 

literature and causal chains/pathways from genetics literature to understand causal mechanistic 

pathways leading from genetic variation to risk for neuropsychiatric disorders, 2) present 

detailed molecular pathways impacting risk for disorders discovered from association studies 

largely outside the realm of neuropsychiatry to inform the study of neuropsychiatric disorders 

and identify where imaging associations can be leveraged, 3) discuss for which disorders there is 

evidence that gross brain structure, measured through MRI, lies along a causal genetic pathway, 

and 4) discuss the application of higher resolution imaging of post-mortem brain tissue to reveal 

cellular and synaptic phenotypes and refine causal hypotheses derived from genetic associations 

to MRI measures. 

The history and use of endophenotypes in psychiatric literature 

Gottesman and Shields adapted the term “endophenotype” to describe internal 

phenotypes for schizophrenia that were detectable through biochemical tests or microscopy and 

were ostensibly caused by genetic variation (Irving I. Gottesman and Shields 1972; I. I. 

Gottesman and Shields 1973). They hoped that studying schizophrenia endophenotypes would 

side-step the challenging phenotypic heterogeneity found at the clinical level to instead focus on 

molecular pathways that mediated aspects of the disorder. Brain structure and function as 

measured through MRI were particularly thought of as excellent endophenotypes (Bigos and 

https://paperpile.com/c/uEyN9q/IBTw0
https://paperpile.com/c/uEyN9q/9siKe+SqiVh
https://paperpile.com/c/uEyN9q/9siKe+SqiVh
https://paperpile.com/c/uEyN9q/S3DgR
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Weinberger 2010). Following this prescient idea, there are currently two predominant uses of 

endophenotypes in neuropsychiatric literature: 

(1) To identify genetic variation associated with the endophenotype, rather than a 

heterogeneous, clinically defined disorder, because the endophenotype is “closer to the 

underlying biology”, increasing the power of genetic search while still being informative 

about disorder risk. 

(2) To provide mechanistic connections linking genetic variation to behavioral 

manifestations of neuropsychiatric disorders. 

To achieve these goals, there are several assumptions that must be satisfied. First, to 

achieve higher powered search, genetic variants must have a stronger effect (a higher effect size 

of the association) on the endophenotype than the disorder. Phenotypes that follow this 

assumption are often referred to as “closer to the underlying biology” or “closer to genetics” and 

are detectable within smaller sample sizes (Almasy and Blangero 2001; Meyer-Lindenberg and 

Weinberger 2006; Kendler and Neale 8/2010; Flint and Munafò 2007). Second, to provide 

mechanistic insight, genetic variants impacting the endophenotype must lead to risk for the 

disorder by way of a causal chain (Kendler and Neale 8/2010). Such causation is captured by a 

mediational model (Kendler and Neale 8/2010), whereby neuropsychiatric disorder risk alleles 

impact brain structure and function and in turn drive the development of the disorder. In 

contrast, a liability index model does not provide a mechanistic understanding because a risk 

allele independently impacts both brain structure and risk for a neuropsychiatric disorder via 

pleiotropic effects (Kendler and Neale 8/2010) (Figure 1.2). We note that “endophenotype” and 

“intermediate phenotype” terms are often used without precise definition (Lenzenweger 2013), 

often failing to differentiate mediational models from liability index models of genetic risk or 

incorrectly implying that there is only one link on a causal chain between genetic variant and 

disorder (Kendler and Neale 8/2010; Flint and Munafò 2007; Irving I. Gottesman and Gould 

2003). The genetics community instead uses the term “causal pathway” to describe the impact 

https://paperpile.com/c/uEyN9q/S3DgR
https://paperpile.com/c/uEyN9q/zExc6+LCtIb+wrdAo+oMBxC
https://paperpile.com/c/uEyN9q/zExc6+LCtIb+wrdAo+oMBxC
https://paperpile.com/c/uEyN9q/wrdAo
https://paperpile.com/c/uEyN9q/wrdAo
https://paperpile.com/c/uEyN9q/wrdAo
https://paperpile.com/c/uEyN9q/eI1N8
https://paperpile.com/c/uEyN9q/wrdAo+oMBxC+sb47R
https://paperpile.com/c/uEyN9q/wrdAo+oMBxC+sb47R
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of genetic variation along multiple phenotypes leading to disease risk. We prefer the specificity 

of this language and continue to use it here. 

 

 

Figure 1.2: Different models that could explain an observed genetic correlation  

In the mediational model, genetic variation causes a change in brain structure which 

then leads to risk for a disorder. If this model is true, experimental manipulation of brain 

structure will alter risk for the disorder. (Imagine wiggling brain structure and observing 

that disorder is also wiggling). In the pleiotropy, or liability-index model, genetic 

variation causes changes in both brain structure and neuropsychiatric disorders, but they 

are not causally linked. If this model is true, experimental manipulation of a brain 

structure phenotype does not impact risk for a disorder. (Imagine wiggling brain 

structure and observing that disorder is staying still). Note that we have simplified this 

graph to only include one phenotype between genetic variation and a disorder, although 

we expect that many phenotypes will be found in the true causal pathway. 

 

Despite the behavioral definitions of neuropsychiatric disorders and their phenotypic 

heterogeneity, genetic search has already identified many risk loci by compiling data from tens 
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of thousands of individuals (Wray et al. 2018; Pardiñas et al. 2018; Grove et al. 2017). This 

somewhat obviates the proposed use of endophenotypes as a tool for identifying genetic risk loci 

for neuropsychiatric illness with higher power (use 1, above). Rather, the most pressing need is 

to unravel the complex etiology of neuropsychiatric disorders by mapping the underlying 

mechanisms of risk alleles (use 2 above). Below, we discuss the current evidence about how well 

gross brain structure satisfies both of these criteria. 

How genetic variation has led to identification of causal pathways impacting risk for complex 

disorders 

To illustrate the promise of elucidating causal mechanistic pathways that underlie 

complex disorders using loci identified from GWASs, we present three examples where 

considerable causal mechanistic understanding has been achieved in order to motivate similar 

studies in the context of neuropsychiatric disorders. While two of these examples come from 

outside the field of psychiatry, their general framework could be readily applied to understand 

disorders impacting neural tissues. Generally, these studies begin with a common genetic 

variant of small effect, generally in non-coding and poorly annotated regions of the genome, 

which is used to identify  phenotypes at the molecular, cellular, and systems levels that mediate 

risk for complex disorders including obesity, type 2 diabetes, and schizophrenia.  

A causal pathway by which genetic variation impacts risk for obesity 

One of the first large GWASs for body-mass index identified a locus within an intron of 

the FTO gene impacting risk for obesity (Frayling et al. 2007). This locus overlapped a non-

coding region so it is unlikely to directly affect protein structure, as is true for most GWAS-

identified loci (Hindorff et al. 2009). Instead, given additional functional information describing 

the activity of the locus in different tissue types (Roadmap Epigenomics Consortium et al. 2015), 

the locus likely functions as a regulatory element, serving to alter the expression of a proximal 

gene (Claussnitzer et al. 2015). But what gene(s) does this regulatory element alter? The non-

coding variant of interest was mapped to a gene that it regulates using an eQTL approach, where 

https://paperpile.com/c/uEyN9q/yWCUW+9w7lf+N0IpC
https://paperpile.com/c/uEyN9q/j1A3F
https://paperpile.com/c/uEyN9q/KjjMI
https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/2OE19
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genotypes in a resource of genetically diverse samples were related to gene expression derived 

from the tissue of interest. Risk alleles at this locus were associated with increased expression of 

two genes, IRX3 and IRX5, relatively far (~0.5 and 1.1 Mb, respectively) from the BMI-

associated locus in human adipose progenitors (Claussnitzer et al. 2015). Notably, proximity on 

the genome was insufficient to determine the gene of action, as is often the case (Won et al. 

2016). Does the risk allele impact the morphology of adipocytes or fat cells? Again, using a 

genetically diverse sample derived from multiple individuals with human adipocytes it was 

found that individuals carrying the risk allele had larger adipocytes than those with the non-risk 

allele (Claussnitzer et al. 2015). Finally, does modification of IRX3 or IRX5 expression lead to 

changes in metabolism and body weight? Modification of expression levels of these two genes in 

both human adipose cells and genetically manipulated mice was found to impact metabolism 

and body weight (Claussnitzer et al. 2015). These findings demonstrate validation of a largely 

complete causal chain that mapped a non-coding obesity-associated locus to specific biological 

pathways influencing human obesity. 

A causal pathway by which genetic variation impacts risk for type 2 diabetes 

In another example, large GWASs have identified many loci associated with risk for type 

2 diabetes (Voight et al. 2010). One locus of interest again overlapped a non-coding region near 

KLF14 with evidence of regulatory potential in adipose cells(Roadmap Epigenomics Consortium 

et al. 2015). Which gene(s) might this regulatory element regulate? Again, when genotypes, 

methylation of the DNA, and gene expression were acquired from a large sample of genetically 

diverse human tissue samples, the risk allele for type 2 diabetes was associated with increased 

methylation at the enhancer region and decreased expression of the closest gene, KLF14, 

specifically in adipose tissue (Small et al. 2018). Do carriers of the risk allele exhibit altered 

morphology of adipocytes? Microscopy of these cells in a genetically diverse sample showed that 

carriers of risk alleles at this variant have an increased adipocyte volume and area, again 

demonstrating a morphological consequence to genetic variation. Do carriers of the risk allele 

https://paperpile.com/c/uEyN9q/2OE19
https://paperpile.com/c/uEyN9q/qFCm9
https://paperpile.com/c/uEyN9q/qFCm9
https://paperpile.com/c/uEyN9q/2OE19
https://paperpile.com/c/uEyN9q/2OE19
https://paperpile.com/c/uEyN9q/IRAsw
https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/uSAZ9
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also have increased risk of other phenotypes associated with type 2 diabetes? Through 

integration with other GWASs, risk alleles at this locus were also found to be associated with 

increased fasting insulin, decreased high-density lipoprotein cholesterol, and increased 

triglycerides (Small et al. 2018). Finally, does modulation of the expression of KLF14 impact risk 

for type 2 diabetes? Mice harboring a conditional knockout of Klf14 in adipose tissue 

recapitulated insulin resistance, decreased high-density lipoprotein cholesterol, and increased 

triglyceride phenotypes, experimentally validating the observed genetic associations (Small et al. 

2018). This again demonstrates a causal chain describing the mechanism for a common variant 

locus impacting risk for type 2 diabetes. 

A causal pathway by which genetic variation impacts risk for schizophrenia 

Within the realm of neuropsychiatric disorders, there has been great success in 

identifying common variants impacting risk for multiple disorders (Sullivan et al. 2018; Gratten 

et al. 2014), yet very few examples explicitly connect genetic loci to causal pathways. This 

process is significantly more difficult in brain tissues where the specific cell-types, 

developmental time periods, or brain regions leading to risk for altered behavior are often not 

known (Kahn et al. 2015). Despite this, progress has been made in several disorders, and 

notably, over 100 loci have been detected that are associated with risk for schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014; Pardiñas et al. 

2018). Genome-wide association for schizophrenia risk detected the locus of strongest 

association in a large, multigenic region comprising the major histocompatibility complex 

(MHC) locus (Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). 

Fine-mapping of the MHC locus revealed that the schizophrenia-associated single base pair risk 

alleles were tagging (or correlated with) a structural variant that increased the copy number of 

genes C4A and C4B (Sekar et al. 2016). Do these extra copies of C4A and C4B present in the 

genome influence how much that gene is expressed? An eQTL study in post-mortem human 

brain tissue demonstrated that increasing copy number of C4A and C4B was associated with 

https://paperpile.com/c/uEyN9q/uSAZ9
https://paperpile.com/c/uEyN9q/uSAZ9
https://paperpile.com/c/uEyN9q/uSAZ9
https://paperpile.com/c/uEyN9q/A9Xp1+maRPd
https://paperpile.com/c/uEyN9q/A9Xp1+maRPd
https://paperpile.com/c/uEyN9q/nyKKF
https://paperpile.com/c/uEyN9q/yoE5U+9w7lf
https://paperpile.com/c/uEyN9q/yoE5U+9w7lf
https://paperpile.com/c/uEyN9q/yoE5U
https://paperpile.com/c/uEyN9q/38qXZ
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increased expression of each of these genes (Sekar et al. 2016). Interestingly, C4 acts within the 

complement cascade involved in synaptic pruning, a process thought to be aberrant in 

schizophrenia (M. B. Johnson and Stevens 2018; Glausier and Lewis 2013). Such synaptic 

pruning deficits may explain neuroimaging findings showing an accelerated loss of frontal grey 

matter in schizophrenia patients (T. D. Cannon et al. 2015). Does modulation of C4 expression 

impact synaptic pruning? Mice lacking copies of C4 showed fewer synaptic inputs in a visual 

circuit that normally undergoes synaptic pruning (Sekar et al. 2016), experimentally validating 

the functional impact of these associations. Adding further causal evidence, a recent study 

replicated this pruning effect in human cells using patient-derived human neural cultures, and 

even showed that this mechanism of pathology can be targeted therapeutically (Sellgren et al. 

2019). These studies (Sekar et al. 2016; Sellgren et al. 2019) explain a small, yet important part 

of the causal pathophysiology, including cell-types and biological processes that lead to risk for 

schizophrenia (Dhindsa and Goldstein 2016), and are particularly exciting as until this point 

there had been no causal pathophysiology identified for this complex disorder.  

The role human neuroimaging of gross brain structure can play in explaining causal pathways 

The studies outlined above, and other similar studies not discussed (Musunuru et al. 

2010; Thomsen et al. 2018; Roussos et al. 2014), describe how genetic loci have led to a new 

understanding of the etiology of complex traits and share commonalities in design (Figure 1). 

First, genetic variation has served as an important causal anchor to begin understanding the 

mechanism leading to complex phenotypes like obesity, type 2 diabetes, or schizophrenia. 

Second, maps of how genetic variation relates to multiple phenotypes, in multiple tissues, and at 

multiple developmental time periods allow an inference of the causal chain leading to risk for a 

disorder. And third, experimental manipulation of genes within model systems, via gene editing 

in both human cell culture and mice, test the causal predictions generated from the integration 

of genetic association maps.  

https://paperpile.com/c/uEyN9q/38qXZ
https://paperpile.com/c/uEyN9q/sa2K8+HEJ2Q
https://paperpile.com/c/uEyN9q/A9eid
https://paperpile.com/c/uEyN9q/38qXZ
https://paperpile.com/c/uEyN9q/QiT7I
https://paperpile.com/c/uEyN9q/QiT7I
https://paperpile.com/c/uEyN9q/38qXZ+QiT7I
https://paperpile.com/c/uEyN9q/cMWfk
https://paperpile.com/c/uEyN9q/J1A4Y+SGfLi+RikjR
https://paperpile.com/c/uEyN9q/J1A4Y+SGfLi+RikjR
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An effective starting point for conducting these investigations is measuring the impacts 

of genetic variation associated with a neuropsychiatric disorder on gene regulation. While 

caQTLs and eQTLs provide valuable mechanistic evidence proximal to the source of genetic risk, 

a list of genes impacted by a risk locus is insufficient to describe a complete causal chain that 

results in behavioral abnormalities. Colocalizing genetic risk loci with QTLs at higher biological 

levels, like cell morphology and brain structure, allows description of more complete causal 

pathways. In the example described above concerning a genetic risk locus for obesity, 

identification of eQTLs was supplemented with observations that the risk locus induced 

aberrant adipocyte size (Claussnitzer et al. 2015). Together, these lines of evidence explained a 

mechanism for developing obesity where changes in gene expression shifted a key cell 

differentiation pathway to fundamentally alter lipid metabolism. We envision that genetic risk 

loci associated with brain traits can be similarly leveraged to characterize causal pathways in 

neuropsychiatric disorders at higher biological levels, and that causal hypotheses can be 

strengthened when this information is integrated with maps of gene regulation QTLs. 

Identification of genetic risk loci for neuropsychiatric disorders is accelerating based in 

large part on the collaborative efforts of psychiatric genetics consortia (Sullivan et al. 2018; 

SPARK Consortium. Electronic address: pfeliciano@simonsfoundation.org and SPARK 

Consortium 2018). Mapping how genetic variation impacts multiple levels of biology requires 

measuring multiple relevant phenotypes (cell or tissue specific chromatin accessibility, cell or 

tissue specific gene expression, and brain structure) in large, genetically diverse populations. 

Such maps are being created for chromatin accessibility and gene expression in large samples of 

post-mortem and stem-cell derived brain cells (Schwartzentruber et al. 2018; GTEx Consortium 

et al. 2017; Ng et al. 2017). Similar maps of genetic influences on neuroimaging measures serve 

as another crucial tool for identifying and characterizing links on causal pathways. They allow 

interpretation of whether genetic variants associated with neuropsychiatric illness are also 

associated with the structure or function of the human brain within specific regions. Finally, 

https://paperpile.com/c/uEyN9q/2OE19
https://paperpile.com/c/uEyN9q/A9Xp1+n4JBz
https://paperpile.com/c/uEyN9q/A9Xp1+n4JBz
https://paperpile.com/c/uEyN9q/A9Xp1+n4JBz
https://paperpile.com/c/uEyN9q/JoiKF+YojpH+cm8jY
https://paperpile.com/c/uEyN9q/JoiKF+YojpH+cm8jY
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directed stem cell differentiation protocols producing specific cell types from multiple brain 

regions and modern genetic engineering techniques allow the experimental validation of 

predicted causal pathways in a controlled human system (Hoffman and Brennand 2018; 

Shalem, Sanjana, and Zhang 2015; Di Lullo and Kriegstein 2017; D. V. Hansen, Rubenstein, and 

Kriegstein 2011; Stein et al. 2014). This review seeks to place maps of genetic variation 

associated with gross brain structure into context and explain their utility for describing causal 

pathways impacting risk for neuropsychiatric disorders. 

Genetic associations to neuroimaging traits 

We note that in our description of the literature going forward, we avoid discussing 

“candidate gene” studies, despite the fact that they represent the majority of the neuroimaging 

genetics literature. In a candidate gene study, a researcher selects a limited number of genes of 

interest and variants near or within these genes, then measures genetic association with 

phenotypes of interest (brain structure or function measured via MRI) collected in generally 

small sample sizes (<1000 subjects) without performing strict multiple comparisons correction 

across all independent variants present in the genome. The premise of these studies is that using 

our knowledge of genes involved in brain structure, function, and development, we are able to 

identify individual variants that are likely to impact the brain or risk for neuropsychiatric 

disorders. To summarize over ten years of work in this field, only an exceedingly small number 

of those “candidate gene” associations are replicated in much larger sample sizes (Sullivan 2017; 

E. C. Johnson et al. 2017; Farrell et al. 2015). For example, of 32 candidate gene associations to 

brain structure or function, zero survived genome-wide significant association levels (P<5x10-8) 

to any subcortical structure or intracranial volume in sample sizes often 100 times larger than 

the candidate gene association sample size (Hibar et al. 2015). We, as scientists, are remarkably 

poor at guessing which genetic variants impact any trait, including brain structure. In response, 

consortia have assembled in order to accumulate large numbers of research participants to gain 

enough statistical power to identify genetic variants impacting many well measurable traits 

https://paperpile.com/c/uEyN9q/ujy42+cQn22+fUsIb+ZK5vH+IJddq
https://paperpile.com/c/uEyN9q/ujy42+cQn22+fUsIb+ZK5vH+IJddq
https://paperpile.com/c/uEyN9q/ujy42+cQn22+fUsIb+ZK5vH+IJddq
https://paperpile.com/c/uEyN9q/foCiL+qC1sY+ckD1Z
https://paperpile.com/c/uEyN9q/foCiL+qC1sY+ckD1Z
https://paperpile.com/c/uEyN9q/D7Lhl
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without pre-selection and with strict statistical thresholds (Sullivan et al. 2018; Savage et al. 

2018; Wood et al. 2014). The Enhancing Neuroimaging Genetics through Meta-Analysis 

(ENIGMA) consortium (Thompson et al. 2014), the Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) consortium (Bis et al. 2012), and the UK Biobank (Elliott et 

al. 2018) represent the largest published association studies for neuroimaging traits to date. 

Strict genome-wide significance thresholds and large sample sizes have led to highly replicable 

associations not just in brain traits but across many phenotypes (Panagiotou, Ioannidis, and 

Genome-Wide Significance Project 2012) (see Table 1 for good practices). In imaging genetics, 

pushback to the ideas of meta-analysis, universally applied strict statistical thresholds, and 

requirement for replication persists (Bogdan et al. 2017). This resistance stems from an 

assumption that heterogeneity induced from meta-analysis can dilute or alter effects. Arguing 

against this point, a recent genetic correlation study measured whether genetic effects are 

shared between two genome-wide association analyses: the meta-analytic combination of many 

sites via the ENIGMA consortium and one UK Biobank site for global surface area and thickness 

(Grasby et al. 2018).  The genetic correlations approach one, indicating an almost complete 

shared genetic basis between meta-analysis and one-site analysis (Grasby et al. 2018). A lack of 

strict statistical thresholds or requirements for replication have led to many publications 

without reproducible associations (Mitchell 2018; Flint, Timpson, and Munafò 2014; Flint and 

Munafò 2013). We make the assertion that brain imaging traits are not special; hence, genetic 

associations to brain imaging traits are subject to the same statistical thresholds and replication 

criteria as all other traits. With this in mind, here we focus on imaging genetic findings from 

large sample sizes reported by consortia. With high confidence consortium-based associations, 

we discuss how well neuroimaging traits satisfy the previously described criteria of 

endophenotypes. 

 

https://paperpile.com/c/uEyN9q/A9Xp1+bk1RW+JKtzj
https://paperpile.com/c/uEyN9q/A9Xp1+bk1RW+JKtzj
https://paperpile.com/c/uEyN9q/dXY2Q
https://paperpile.com/c/uEyN9q/C5UpM
https://paperpile.com/c/uEyN9q/dzlyR
https://paperpile.com/c/uEyN9q/dzlyR
https://paperpile.com/c/uEyN9q/cv22j
https://paperpile.com/c/uEyN9q/cv22j
https://paperpile.com/c/uEyN9q/9839a
https://paperpile.com/c/uEyN9q/wEWq
https://paperpile.com/c/uEyN9q/wEWq
https://paperpile.com/c/uEyN9q/W3zPo+xIXR4+auZYL
https://paperpile.com/c/uEyN9q/W3zPo+xIXR4+auZYL
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Good practices for imaging genetics studies of gross brain structure: 

Assess reliability of phenotype measurements prior to conducting association studies to 

understand noise levels 

Conduct unbiased genome-wide association rather than biased selection of candidate genes 

Appropriately power an association test based on effect sizes from similar phenotypes (current 

gross brain structure GWAS suggests ~10,000 samples are needed to detect significant 

common variant associations) 

Apply rigorous statistical thresholds for association across the whole genome (P<5x10-8 for 

common variant associations with more stringent thresholds if multiple phenotypes are 

tested) 

When conducting a genome-wide association meta-analysis to achieve sufficient sample sizes, 

extensive quality checking of individual site level data is necessary prior to meta-analysis 

Attempt replication of significant associations in independent datasets 

 

Table 1.1: Good practices for imaging genetics studies of gross brain structure. 

Effect sizes of genetic variants on brain structure 

Rare variants can have very large effects on the structure of the human brain. Early 

genetic associations identified rare, mostly genic, alleles of strong effect that lead to disorders 

that strongly change the structure of the brain including microcephaly, macrocephaly, 

polymicrogyria, and cobblestone lissencephaly (Gilmore and Walsh 2013; Mochida and Walsh 

2004; Seltzer and Paciorkowski 2014). While rare variants can have large effects, they do not 

explain the majority of variability in brain structure within a population. To address this, 

consortia have recently identified hundreds of genome-wide significant common variant loci, 

https://paperpile.com/c/uEyN9q/zgRYK+CCOi2+HUdUK
https://paperpile.com/c/uEyN9q/zgRYK+CCOi2+HUdUK
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each generally composed of multiple correlated SNPs, that impact human brain structure 

including intracranial volume (7 loci) (Stein et al. 2012; Adams et al. 2016; Taal et al. 2012; 

Ikram et al. 2012; Hibar et al. 2015), subcortical volumes (38 loci) (Stein et al. 2012; Bis et al. 

2012; Hibar et al. 2015, 2017; Satizabal et al. 2017; van der Meer et al. 2018), ventricular 

volumes (7 loci) (Vojinovic et al. 2018), cortical surface area and thickness (150 loci) (Grasby et 

al. 2018; Hofer et al. 2018), and even white matter anatomy (225 loci) (Elliott et al. 2018). No 

variants have yet been identified impacting brain function as measured through fMRI (Elliott et 

al. 2018), though a handful of variants reach genome-wide significance for oscillatory brain 

activity as measured with electroencephalograms (2 loci) (Smit et al. 2018).  

Before these large consortia identified replicable genetic associations, it was 

hypothesized that structural and functional neuroimaging traits were “closer to the underlying 

biology”. Therefore, genetic associations would have a much stronger effect (higher effect size) 

on quantitative measures of brain structure or function than on heterogeneous and clinically 

defined disorders (Almasy and Blangero 2001; Meyer-Lindenberg and Weinberger 2006; 

Kendler and Neale 8/2010; Flint and Munafò 2007). This assumption fueled the low sample size 

of “candidate gene” association tests, described above. Given recent replicated genetic 

associations to many different traits, we can now empirically test the higher effect size 

assumption. SNPs can indeed have a higher effect on some traits as compared to others. For 

example, individual SNPs can explain well over 50% of the variability of the expression of a gene 

(Stranger et al. 2007) and therefore are detectable in sample sizes of ~100. No individual SNP 

has been detected with that level of effect on brain structure or function. However, individual 

SNPs with slightly higher impact on brain structure (maximum of ~0.8% of phenotypic variance 

explained for a SNP associated with putamen volume) than for schizophrenia risk (maximum of 

~0.2% of phenotypic variance explained for a SNP associated with schizophrenia; see Figure 1.3) 

have been detected (Franke et al. 2016). So, there are instances where common genetic variation 

shows a stronger impact on brain structure than on risk for neuropsychiatric disorders. This 

https://paperpile.com/c/uEyN9q/eV8ZF+X45qb+n3cBR+6tVP6+D7Lhl
https://paperpile.com/c/uEyN9q/eV8ZF+X45qb+n3cBR+6tVP6+D7Lhl
https://paperpile.com/c/uEyN9q/eV8ZF+C5UpM+D7Lhl+WX7oS+8eYuK+tYjtk
https://paperpile.com/c/uEyN9q/eV8ZF+C5UpM+D7Lhl+WX7oS+8eYuK+tYjtk
https://paperpile.com/c/uEyN9q/QdCT5
https://paperpile.com/c/uEyN9q/wEWq+2Em8e
https://paperpile.com/c/uEyN9q/wEWq+2Em8e
https://paperpile.com/c/uEyN9q/dzlyR
https://paperpile.com/c/uEyN9q/dzlyR
https://paperpile.com/c/uEyN9q/dzlyR
https://paperpile.com/c/uEyN9q/sxavD
https://paperpile.com/c/uEyN9q/zExc6+LCtIb+wrdAo+oMBxC
https://paperpile.com/c/uEyN9q/zExc6+LCtIb+wrdAo+oMBxC
https://paperpile.com/c/uEyN9q/JUHig
https://paperpile.com/c/uEyN9q/rNWQB
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gives support to the hypothesis that structural neuroimaging traits are indeed closer to the 

underlying biology, just not to the degree previously hypothesized in the candidate gene studies. 

We note that winner’s curse, an upward bias in effect sizes in association studies that first 

discover significant relationships (R. Xiao and Boehnke 2011), could inflate effect sizes 

discovered in these imaging genetics studies, so the true differences will require further 

replication samples. Nevertheless, comparing effect sizes in replication samples alone also 

demonstrates examples of higher effect sizes for brain structure as compared to disease (Franke 

et al. 2016). Replicable influences of common genetic variation on brain function have been 

more difficult to detect, indicating that either effect sizes are lower for genetic associations to 

functional brain traits or that higher noise limits power (Bennett and Miller 2010).  

https://paperpile.com/c/uEyN9q/qKT96
https://paperpile.com/c/uEyN9q/rNWQB
https://paperpile.com/c/uEyN9q/rNWQB
https://paperpile.com/c/uEyN9q/6OcZW
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Figure 1.3: Effect size relationships across traits  

Each bar corresponds to a common genetic variant, a single-nucleotide polymorphism 

(SNP), with an association to cortical structure (Grasby et al. 2018), subcortical structure 

or intracranial volume (ICV) (Hibar et al. 2015), height (Wood et al. 2014), 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium 

2014), and educational attainment (Rietveld et al. 2013). The highest effect size SNPs for 

each trait are shown. Effect sizes were measured in percent variance explained, the 

fraction of total trait variance that is accounted for by the genetic variant, (for 

quantitative traits) or percent variance explained on the liability scale (for disease 

https://paperpile.com/c/uEyN9q/wEWq
https://paperpile.com/c/uEyN9q/D7Lhl
https://paperpile.com/c/uEyN9q/JKtzj
https://paperpile.com/c/uEyN9q/yoE5U
https://paperpile.com/c/uEyN9q/yoE5U
https://paperpile.com/c/uEyN9q/fvhhe
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categories). Error bars depict 95% confidence intervals. Statistical significance was 

calculated between the highest effect size SNPs associated with brain structure and the 

highest effect size SNP associated with schizophrenia. Significance was calculated by 

transforming effect size to Fisher’s Z and calculating the significance of the difference in 

Z-values. SNPs associated with brain structure traits can account for a greater portion of 

the total phenotypic variance compared to SNPs correlated with risk for schizophrenia 

disorder. This figure is extended from previous work (Franke et al. 2016). 

 

Measuring the effect size differences at an individual locus for two different traits 

determines whether the maximum effect of a variant is higher in one trait than another. Recent 

studies (Y. Zhang et al. 2018; Holland et al. 2017, 2016) have asked a broader question: if effect 

size distributions of common variants across the genome are in general stronger for 

neuroimaging traits than they are for neuropsychiatric disorders. Effect size distributions can be 

estimated by clustering the effect sizes of LD-independent SNPs across the genomes into one of 

two general categories: (1) susceptibility SNPs which show some level of non-zero effect sizes 

(although do not necessarily survive genome-wide significance), and (2) SNPs which have 

signals so low they cannot be distinguished from no effect. The clustering is applied through a 

mixture model approach. Effect size distributions are inversely related to polygenicity: the 

greater the number of susceptibility SNPs, the smaller the effect of each of those SNPs on the 

trait. Genetic variants impacting psychiatric disorders are amongst the most polygenic studied 

with an estimated 10,000-50,000 susceptibility SNPs (Y. Zhang et al. 2018), indicating that 

many genetic variants each of exceedingly small effect size impact risk for these disorders (Y. 

Zhang et al. 2018; Holland et al. 2017). In comparison, ulcerative colitis or asthma are estimated 

to have only 1,000-2,000 susceptibility SNPs (Y. Zhang et al. 2018). Within the realm of 

imaging genetics, the degree of polygenicity of the putamen is over 30 fold less than that of 

schizophrenia, again indicating a higher effect size distribution of a brain structure trait as 

https://paperpile.com/c/uEyN9q/rNWQB
https://paperpile.com/c/uEyN9q/uNsIx+rRxMi+k23iF
https://paperpile.com/c/uEyN9q/uNsIx
https://paperpile.com/c/uEyN9q/uNsIx+rRxMi
https://paperpile.com/c/uEyN9q/uNsIx+rRxMi
https://paperpile.com/c/uEyN9q/uNsIx
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compared to a disorder (Holland et al. 2016). Effect size distributions have not been 

comprehensively evaluated for all associations to neuroimaging traits and then compared with 

those from neuropsychiatric disorder risk, although this is an interesting research direction. 

While the effect size of genetic variants on brain imaging traits is still modest and 

generally requires sample sizes close to or over 10,000 subjects to reliably detect any genome-

wide significant association (Stein et al. 2012; Bis et al. 2012), current evidence suggests that 

common variants do have a slightly larger effect on at least some brain structure traits than on 

risk for neuropsychiatric disorders. Such variants imply that at least some brain structure traits 

(like putamen volume) are affected by relatively less polygenicity by residing closer to 

underlying biological processes, thus satisfying the first criteria of an “endophenotype”. 

Associations with these variants are promising starting points for experimental manipulations 

because they are both detectable with slightly smaller sample sizes and can highlight brain 

regions and circuitry shouldering the consequences of genetic risk.  

Assessing the global shared genetic basis between gross brain structure and risk for 

neuropsychiatric disorders 

How well have neuroimaging traits fulfilled the second usage of ‘endophenotype’, 

thereby promoting mechanistic understanding of the effects of genetic risk loci? An initial 

approach to addressing this question is to ask whether the same genetic variants impact both 

disorder risk and the gross structure or function of the brain. Using modern statistical genetics 

techniques, termed genetic correlations, to analyze summary statistics from GWASs (Pasaniuc 

and Price 2017), it is possible to determine if common risk alleles across the genome are shared 

between ancestries for the same disorder or between disorders. Strongly positive genetic 

correlations are observed between schizophrenia in individuals of European descent and of 

African descent (rg=0.61), indicating a largely shared common genetic architecture across 

ancestries (Gratten et al. 2014; Z. Li et al. 2017; de Candia et al. 2013). Perhaps unsurprisingly, 

risk alleles are shared between schizophrenia, major depressive disorder and ADHD with 

https://paperpile.com/c/uEyN9q/k23iF
https://paperpile.com/c/uEyN9q/eV8ZF+C5UpM
https://paperpile.com/c/uEyN9q/aFxry
https://paperpile.com/c/uEyN9q/aFxry
https://paperpile.com/c/uEyN9q/maRPd+yjw4U+C6cnF
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positive genetic correlations (rg>0.2), indicating a shared genetic basis and blurring etiological 

distinctions between them (Brainstorm Consortium et al. 2018).  No significant sharing of risk 

alleles was detected, however, between Alzheimer’s disease and any psychiatric disorder, 

indicating that they are affected by largely independent genetic variants and have distinct 

etiologies (Brainstorm Consortium et al. 2018).  

Significant genetic correlations observed between alleles influencing brain structure in 

the population and alleles impacting risk for a neuropsychiatric disorder could help localize 

brain regions critical for disease pathology. In this spirit, genetic correlations have been 

performed between hippocampal volume and Alzheimer’s disease risk. These demonstrated a 

significant negative genetic correlation (rg=-0.15), indicating that alleles associated with 

decreased hippocampal volume in the general population are also, in part, associated with 

increased risk for Alzheimer’s (Hibar et al. 2017). Giving further credence to this finding, 

structural deficits in the hippocampus are well known to be associated with Alzheimer’s disease 

(Thompson et al. 2004). 

For psychiatric disorders where causally implicated brain regions are not known, genetic 

correlations may help to identify critical regions involved in the pathology. For example, 

negative genetic correlations have been observed between the volume of the caudate and 

nucleus accumbens and bipolar disorder (rg=-0.17 and rg=-0.28, respectively) (Satizabal et al. 

2017). Other negative genetic correlations have been observed between global cortical surface 

area and both major depressive disorder (rg=-0.13) and ADHD (rg=-0.17) (Grasby et al. 2018).  

Further supporting the negative genetic correlation between cortical surface area and ADHD, 

intracranial volume, highly correlated with cortical surface area, is also negatively genetically 

correlated with ADHD risk (rg=-0.23) (M. Klein et al. 2017). Positive genetic correlations have 

been observed between global cortical surface area and both Parkinson’s disease (rg=0.22) and 

intelligence (rg=0.22) (Grasby et al. 2018).  These studies are notable because they implicate 
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both the brain regions and the direction of phenotypic effects associated with neuropsychiatric 

pathologies, thus linking genetics to both disorder and brain structure. 

There are some important limitations to the genetic correlation method. It cannot 

distinguish between causal mediation and a liability index model (Figure 1.2). As described 

above, in a mediational model, the neuropsychiatric disorder risk alleles impact brain structure 

which then impacts risk for a neuropsychiatric disorder through a causal pathway. In a liability 

index model, a risk allele independently impacts both brain structure and risk for a 

neuropsychiatric disorder (Kendler and Neale 8/2010), indicating pleiotropy instead of 

causality. To determine which model best fits the data, one needs to experimentally alter brain 

structure in certain randomly chosen individuals and determine if risk for schizophrenia is 

altered compared to individuals without alteration in brain structure. If so, this supports the 

causal mediation model. If not, this supports the liability index model. Of course, experimental 

manipulation of brain structures is not ethically possible in humans, but our innate genetic 

differences provide a useful approximation. Assuming that alleles at brain structure associated 

variants are like treatments randomly assigned in a randomized clinical trial, we can make some 

causal inferences (given several assumptions detailed in the following references (Pingault et al. 

2018; Pickrell et al. 2016)). Using natural genetic diversity in human populations, we can select 

alleles that are associated with brain structure as a proxy for perturbing brain structure in 

humans and determine if they also impact risk for neuropsychiatric disorders through a 

regression framework. If so, this provides support for a mediational model that describes the 

causal influence of brain structure on risk for neuropsychiatric disorders using a so-called 

Mendelian randomization (MR) approach. To our knowledge, this method has not yet been 

applied to neuropsychiatric disorders and brain structure, but has shown that alleles associated 

with increases in intracranial volume also associated with increased intelligence, putatively 

showing not just a genetic correlation but also a causal relationship (Savage et al. 2018). 

Applying this method will be increasingly effective as more loci that impact brain structure are 
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identified, since the power of MR inferences increases with the number of associated SNPs for 

the phenotype.  

Assessing the local shared genetic basis between gross brain structure and risk for 

neuropsychiatric disorders 

The above methods assess globally, across the genome, whether common variants are 

associated with both changes in brain structure and risk for neuropsychiatric disorders. In order 

to determine if the same causal SNP(s) impact both traits at an individual locus, we search for 

SNPs significantly associated with both phenotypes. However, due to linkage disequilibrium 

(LD), the correlation between genetic variants, an individual SNP significantly associated with 

two traits could be the result of two separate causal variants in close proximity on the genome, 

each independently influencing just one of these two different traits. In this case, the observed 

significance of a SNP in both traits would be an artifact from decaying significance with LD and 

could be misinterpreted as the same causal SNP jointly contributing to both traits. To infer if the 

same causal variant(s) influences two traits, one can determine whether the association 

statistics follow expected LD patterns driven by a single causal SNP or set of causal SNPs (Z. Zhu 

et al. 2016; Hormozdiari et al. 2016; Nica et al. 2010; He et al. 2013; Giambartolomei et al. 

2014). Colocalization tools have been recently applied to genome-wide association data from 

schizophrenia and eQTL data from post-mortem brain to identify genes impacting risk for this 

disorder (Dobbyn et al. 2018). These analyses have identified 40 colocalized signals which 

provide strong evidence for specific genes whose altered expression is associated with 

schizophrenia. Although colocalization tools have not yet been formally applied to identify 

individual loci that impact brain structure and risk for neuropsychiatric disorder, this analysis 

could identify shared causal variants impacting both brain structure and risk for 

neuropsychiatric disorders. As such, colocalization analyses will be essential for understanding 

the causal chains leading to risk for neuropsychiatric disorders. 
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Importantly, colocalization of signals does not guarantee a causal relationship. For 

example, if a colocalized SNP affects both brain structure and risk for ADHD, it is not known 

whether the SNP creates risk for ADHD through changes in brain structure or if the SNP 

influences ADHD independent of brain structure. This ambiguity makes mechanistic 

interpretation and subsequent experimental design difficult, as it is not clear whether 

modification of brain structure will have an effect on ADHD risk. If all data are acquired in the 

same subjects, it is possible to infer causality at the single locus level using mediation analysis 

(Schadt et al. 2005; Ng et al. 2017; Y. I. Li et al. 2016). To our knowledge, however, no tools yet 

exist to prioritize causality on the individual SNP level using summary statistics alone.  

The puzzling lack of shared genetic basis between some neuropsychiatric disorders and brain 

structure 

Several well-powered genetic studies of neuropsychiatric disorders, most notably for 

schizophrenia (Pardiñas et al. 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium 2014), have so far not demonstrated a significant genetic correlation with any 

structural or functional brain imaging trait (Franke et al. 2016; Grasby et al. 2018). This 

indicates that the same common genetic variants associated with many different brain traits are 

not demonstrably associated with risk for schizophrenia. (Note that we cannot accept the null 

hypothesis of no genetic correlation, but we do not observe a genetic correlation significantly 

different than zero in current sample sizes.) Given the observed brain structural differences 

between individuals with schizophrenia and neurotypical controls (Theo G. M. van Erp et al. 

2018; T. G. M. van Erp et al. 2016), as well as the close relationship between structure and 

function at multiple levels of the brain (Bullmore and Sporns 2009; Holtmaat and Svoboda 

2009), why do common genetic variants impacting risk for schizophrenia leave the gross 

structure of the human brain undetectably changed? 

There could be many reasons to explain this puzzling finding. (1) We are underpowered 

to detect genetic correlations. However, current efforts would set an upper bound on which 
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genetic correlations would be detected so genetic correlations identified in larger samples must 

be smaller than those currently observed. (2) Primary causal environmental influences in the 

absence of genetic effects, for example infection, are driving the observed brain structural 

differences. However, though environmental influences have been shown to have effects on 

brain structure and function (Lederbogen et al. 2011; Jha et al. 2019), a primary causal role for 

these influences in schizophrenia is still difficult to establish (Sutterland et al. 2015; van Os, 

Kenis, and Rutten 2010). (3) Environmental influences, for example medication, taken in 

response to schizophrenia diagnosis causes could be driving the observed brain structural 

differences between cases and controls (Tost et al. 2010). In this case, the observed structural 

differences are not causing the disorder but are a result of the disorder. (4) Rare variation 

contributing to schizophrenia risk that is unmeasured in these common variant association 

studies could be driving the observed brain structural differences. This is unlikely given that 

common variation, when considered in aggregate, is the greatest contributor to risk for 

schizophrenia in the population and even individuals harboring a rare mutation also have a 

polygenic common variant burden (Gratten et al. 2014; Brainstorm Consortium et al. 2018; 

Tansey et al. 2016). (5) We are measuring genetic influences on brain structure within 

developmental time periods not critical to disease pathology. Developmental fetal and infant 

imaging perhaps would detect genetic correlations unobserved in adults (Hazlett et al. 2017; Im 

and Grant 2018). (6) Brain function, manifesting as the altered behaviors of individuals, could 

be changed in the absence of structural changes. Given the intimate relationship between brain 

structure and function (Honey, Thivierge, and Sporns 2010), this seems unlikely. Or, (7) brain 

changes that predispose to schizophrenia risk happen at the cellular or subcellular level and do 

not manifest at the gross level at which brain images are taken with MRI. Though many of the 

above are possibilities, we find the last most compelling and detail further ways in which we can 

study genetic effects on cellular or subcellular level brain traits. 
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3D Brain Imaging beyond MRI 

Genetic association studies continue to identify both common and rare variants that 

impact brain structures at the gross anatomical level (H. Stefansson et al. 2014; D. Sun et al. 

2018; Martin-Brevet et al. 2018). MRI is suited to measure gross structural traits of intracranial 

volume and regional phenotypes like hippocampal volume or cortical surface area and thickness 

(Stein et al. 2012; Adams et al. 2016; Taal et al. 2012; Ikram et al. 2012; Hibar et al. 2015; 

Grasby et al. 2018; Hibar et al. 2017). These phenotypes can be measured in large numbers of 

living humans at a relatively affordable cost. While such macroscale imaging is valuable for 

identifying some affected brain regions and subregions, a typical MRI voxel comprises a brain 

volume of roughly 1 cubic millimeter: a space that may contain tens of thousands of neurons and 

millions of synapses (B. Pakkenberg and Gundersen 1997; Bente Pakkenberg et al. 2003; 

Swanson 1995). So, genetic associations to gross brain structure lack the resolution to explain 

the cellular or subcellular basis of observed allelic differences. Understanding the cellular and 

molecular impact of genetic variation demands imaging on microscopic and ultrascopic scales.  

For example, if an allele at a particular variant is strongly associated with reduced 

cortical thickness as measured by MRI in an adult, there are many cellular and circuit changes 

that could lead to this macroscale alteration. Is the total number of cortical cells reduced, or are 

they more densely packed? Do neurons in this region have fewer dendritic arborizations? Are 

relative contributions of specific cell-types altered? Is synaptic density or structure disrupted? Is 

the spatial architecture and pattern of connectivity within the structure impacted? None of these 

questions can be adequately addressed with MRI. Measurements of cell numbers, cell types, 

synapses, circuit connectivity and arrangements of all of these components in 3D space will 

require both access to post-mortem tissue and image resolution sufficient to capture cellular and 

molecular features. 

We expect that data illuminating these features will be critical to further map causal 

pathways from genetic risk loci to neuropsychiatric dysfunction, and also may explain why 

https://paperpile.com/c/uEyN9q/8ZJKg+ddnpG+rg7Iv
https://paperpile.com/c/uEyN9q/8ZJKg+ddnpG+rg7Iv
https://paperpile.com/c/uEyN9q/eV8ZF+X45qb+n3cBR+6tVP6+D7Lhl+wEWq+WX7oS
https://paperpile.com/c/uEyN9q/eV8ZF+X45qb+n3cBR+6tVP6+D7Lhl+wEWq+WX7oS
https://paperpile.com/c/uEyN9q/eV8ZF+X45qb+n3cBR+6tVP6+D7Lhl+wEWq+WX7oS
https://paperpile.com/c/uEyN9q/JVTmB+JrQSx+Ob8pf
https://paperpile.com/c/uEyN9q/JVTmB+JrQSx+Ob8pf


 

26 

genetic correlations are not observed at gross brain structural levels with some neuropsychiatric 

disorders. Measuring phenotypes manifested at the cellular and molecular levels, closer to the 

effects of a genetic risk factor on the causal chain, will likely be more mechanistically 

informative and have higher effect sizes - though until association studies are conducted, we will 

not know the effect sizes. Below, we discuss two emerging imaging technologies that provide 

cellular resolution or subcellular 3D images of post-mortem human neural tissues, and how they 

could be applied in a genetically informative design. We describe how modern fluorescence-

aided imaging of tissue-cleared samples and high-magnification serial electron microscopy can 

help to more completely explain the causal mechanisms underlying the genetic risk for disorders 

of the brain (Figure 1.4). 

 

Figure 1.4: Structural brain imaging modalities for the future of imaging genetics 

Each of three neuroimaging techniques provides distinct advantages and disadvantages 

at different biological scales. Neuroimaging of gross brain structures through MRI 

(leftmost diagram) reveals macro-scale anatomy of specific brain regions at millimeter 

resolution. The center depicts “micro-scale” imaging achieved by tissue-clearing followed 

by light sheet microscopy at micrometer resolution. Ultra-scale imaging is possible with 

serial block-face scanning electron microscopy (SBFSEM) at nanometer resolution. 
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Combined observations at all three scales using genetically informative experimental 

designs will facilitate the mapping of causal pathways underlying genetic risk for 

neuropsychiatric disorders. 

 

Imaging brain structure at cellular resolution with tissue clearing 

Our understanding of nervous system function is critically dependent on visualizing the 

three-dimensional structure of the brain. Cellular resolution volumetric imaging enables 

interrogations of cell number, density, morphology, and spatial architecture impossible with 

macroscale imaging, and increases the accuracy and detail of these measurements compared to 

2-D image sections. The ability to label and quantify specific cell-types using fluorescence 

immunohistochemistry in 3-D could help explain the cellular basis of allelic differences in 

specific brain regions implicated in macroscale imaging genetic studies. For instance, 3-D 

microscale imaging may reveal cell-type specific spatial disruptions, aberrant cellular 

morphology, imbalanced numbers of excitatory versus inhibitory neurons, or disorganized 

cortical lamination.  

Cellular resolution optical imaging of post-mortem brain tissue is often restricted to thin 

2-D sections due to light’s inability to penetrate deeply into the sample. Imaging many serial 2-

D sections to reconstruct 3-D images is possible (Stoner et al. 2014), but inefficient and may 

distort features within the images. Several tissue-clearing techniques have recently been 

developed to address this problem (Kuwajima et al. 2013; Ertürk et al. 2012; Liu et al. 2016; 

Aoyagi et al. 2015; Ertürk et al. 2011). These techniques remove light-scattering lipids while 

preserving cellular spatial arrangements of proteins to yield intact, transparent tissue amenable 

to light microscopy. Most techniques involve a series of immersions in chemical solvents that 

dehydrate the sample, dissolve away lipids and induce chemical modifications to create a 

uniform refractive index, thus minimizing destructive interference (Richardson and Lichtman 

2015). In combination with light sheet microscopy for quick image acquisition (Tomer et al. 
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2015), these methods enable cellular and circuit measurements at micrometer resolution, and 

are compatible with the use of modern histochemical labeling methods in human tissue. Tissue-

clearing approaches are also being scaled and adapted specifically for use on post-mortem 

human brain tissues, providing a valuable tool for obtaining high resolution volumetric 

observations of neuropsychiatric pathologies (Lai et al. 2018). As an example, tissue cleared 

brains from Alzheimer’s disease patients showed remarkably detailed 3D measurements of 

amyloid plaque volume, morphology, and arrangement which varies distinctly across subjects 

(Liebmann et al. 2016).  

These techniques make it possible to design an imaging genetics study of post-mortem 

brain structure at micrometer resolution. Such a study may be able to directly answer some of 

the questions posed above about the cellular basis for imaging genetics findings identified with 

MRI, as well as to identify new genetic influences on cellular level brain structure that were not 

observable in current association studies given the poor resolution of MRI. In order to design 

such a study, one needs access to a large set of post-mortem brain samples from genetically 

diverse and genotyped individuals. Brain banks are therefore a key resource in order to 

accomplish this goal (Kretzschmar 2009). In addition, genotyping can be completed on existing 

brain-banked samples and is at this point quite affordable (<$100 USD for arrays which allow 

genome-wide genotype imputation). 

There are of course some barriers to completing such a study. First, post-mortem tissue 

can be stored either through flash freezing or fixation, and though tissue clearing has been 

performed on both types, there are limitations: for archival frozen tissue, large chunks may be 

difficult to fix fully, and for archival fixed tissue, over-fixing may mask the epitopes. Second, it is 

not known how post-mortem interval affects the degradation of proteins or the ability to label 

and image them. Third, collecting large sample sizes will likely involve the concerted efforts of 

multiple different brain banks working together, which can introduce technical variation.  

Quantifying the degree of technical variation across samples processed at different facilities, 
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minimizing that technical variation via standard operating procedures, and statistical 

adjustment for uncontrolled for technical variation has been accomplished for many fields 

including gene expression via RNA-seq (Lappalainen et al. 2013; ’t Hoen et al. 2013), induced 

pluripotent stem cells (Volpato et al. 2018), and other post-mortem tissue biobanks (Carithers et 

al. 2015), so will likely be possible in this field as well. Fourth, tissue clearing allows labeling 

most molecules (assuming an antibody or probe exists and is diffusable within the tissue) with 

specific expression in a cell-type. It is often not clear which specific cell types are driving an 

imaging genetic association, so it may be difficult to design the experiment labeling proteins of 

interest. When trying to explain the specific cell types underlying an observed gross brain 

structural hit, the proximity on the genome or functional evidence linking to a specific gene may 

guide cell types to probe (Won et al. 2016). If however, there is no prior hypothesis, studying the 

most prevalent cell types may be a good place to start, for example labeling upper and lower 

layer excitatory neurons in the cortex as well as all nuclei. This can lead to future hypotheses 

about cell fates, spatial architecture and density. Fifth, tissue clearing and light sheet microscopy 

are not currently possible within an entire intact human brain.  Current working distances of 

light-sheet microscopes allow imaging of chunks of tissue near the size of a mouse brain 

(10x10x5.6 mm). Given that cortical thickness in humans is on average 2.5 mm (Fischl and Dale 

2000), it is possible to image the entire cortical depth of a tissue-cleared sample at a particular 

location, but covering the entire cortical wall across the ~2500 cm2 surface area of the cortex 

would require imaging over 2000 chunks of tissue. Finally, few tools exist for image 

segmentation, analysis, and storage in large tissue cleared images (Renier et al. 2016; Fürth et 

al. 2018; Ye et al. 2016). Image segmentation currently works best on features that are sparse 

and with simple morphology. For example, using a nuclear label for sparse inhibitory neurons in 

the cortex will be much easier and more accurate to segment than all nuclei. Additionally, 

computational storage space for images of voxel size ~1x1x4 µm/pixel is around 0.5TB for each 

channel for an image the size of a mouse brain (or a chunk of the human cortical wall). Raw data 
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for a sample size of 100 donors for the cortical wall with 4 different types of cells labeled would 

be 200 TB alone, not including copies of data made in downstream processing. Clearly, large 

computational resources would be needed to tackle this problem. 

By observing tissue-cleared cell populations in brain areas where MRI has identified 

structural aberrations associated with genetic risk, we can begin to build causal pathways that 

more explicitly connect genetic risk to brain disorders. When important phenotypes occur in 

small subcellular structures, such as synapses, electron microscopy techniques that can resolve 

ultrastructures may be more appropriate, and are discussed below. 

Imaging brain structure at subcellular resolution with scanning electron microscopy 

Genetic variation may impact synaptic morphology and density, fine-wiring of neuronal 

processes, axonal myelination and diameter, or other subcellular features. Such ultrastructural 

phenotypes will be difficult to capture with gross anatomical imaging or optical microscopy. A 

long standing tool to observe ultrastructures is electron microscopy (EM) which has the power 

to resolve subcellular organelles, neuronal processes, and the detailed structure of synaptic 

machinery. 

Scanning electron microscopy (SEM) focuses and sweeps a beam of electrons across a 

fixed and dehydrated biological sample. As the electron beam interacts with molecules within 

the sample, emitted electrons are detected to create a micrograph image with lateral pixel 

resolution down to 3.7nm (Horstmann et al. 2012). While SEM micrographs provide an 

impressive depth of field, traditionally a given image is limited to a single surface of a tissue 

section. However, modern SEM approaches can reconstruct a 3D volume from a series of two-

dimensional images made on thin sections of tissue prepared using a microtome or cryostat 

(Miranda et al. 2015; Peddie and Collinson 2014). One way this process has been streamlined is 

via serial block-face scanning electron microscopy (SBFSEM), which combines high-throughput 

tissue sectioning and subsequent image acquisition (Denk and Horstmann 2004). In this 

technique, the surface of a tissue block is imaged with repeated passes of Scanning EM as the 
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top layer of the tissue is shaved away by a microtome to access successively deeper sections. 

Initial 3D reconstructions using SBFSEM achieved a per-section depth of 50nm with lateral 

resolution less than 10nm, sufficient to resolve synaptic nanostructures and map circuitry by 

following axonal paths (Denk and Horstmann 2004). Kasthuri and others employed a similar 

technique when they captured SEM micrographs of brain volumes serialized using an automatic 

and tape-collecting microtome to visualize a small volume of mouse cortex with astonishing 

detail, such that nearly all subcellular elements could be identified with a voxel size of 

3x3x30nm (Kasthuri et al. 2015). Their 3D reconstructions clearly resolved axons, dendrites, 

interactions between glia and neurons, and many subcellular ultrastructures, including 

synapses, synaptic vesicles, spines, postsynaptic densities, and mitochondria - all features that 

could play major mechanistic roles in disorders of the brain.  

Volumetric ultrascale imaging techniques could be employed to understand the 

underlying subcellular influences of genetic variation associated with gross brain structure and 

may identify novel genetic associations structural phenotypes undetectable using tools that are 

limited to measuring gross brain structure. As an example, let us revisit the study of Sekar and 

others, who connected a specific genetic locus associated with schizophrenia to the complement 

immune response and its role in pruning synaptic connections (Sekar et al. 2016). No gross 

brain structural associations have been detected at this locus to date. However, detailed 

ultrastructural imaging of synaptic number, morphology, and density in post-mortem samples 

carrying the C4 risk alleles or protective alleles would provide direct and valuable evidence to 

support a mechanism of regionally specific synapse loss in schizophrenia. Similarly, SBFSEM 

could probe cellular hypotheses to explain genetic effects on the volumes of particular brain 

areas. The volume of a brain structure could be affected by changes in cell size, the density of 

neuronal processes, rearrangement of spatial architecture, or a mixture of these effects. All of 

these possibilities could be investigated with ultrascale electron microscopy on samples from the 

brain region of interest. 
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There are again limitations to performing such a study, some of which we detail here. 

Kasthuri et al’s impressive saturated reconstructions at 3nm/pixel resolution were performed on 

just a 40x40x50 µm subset of the tissue block to provide an extremely detailed inventory of one 

apical dendrite’s surroundings. This size represents ~2% of the thickness of the human cortical 

wall and less than a millionth of total human cortex volume (Toro et al. 2008). In addition, even 

with expected improvements in acquisition speeds, a 1 mm3 section of brain can take ~2 months 

to acquire (Wanner, Kirschmann, and Genoud 2015). Because of this, specific regional 

hypotheses and/or scaling up imaging acquisitions are needed to apply this technique for 

imaging genetics studies. With such detailed ultrastructural images, data storage and 

downstream processing present technical bottlenecks (Wanner, Kirschmann, and Genoud 

2015). A single SBFSEM volumetric reconstruction may create an image stack comprising 

thousands of micrographs (Kasthuri et al. 2015), which can occupy hundreds of gigabytes, and 

this would represent only a fraction of the data needed to describe the reach of one pyramidal 

neuron (Peddie and Collinson 2014). For large-scale ultrastructural studies, automated analysis 

tools and data storage solutions are needed to facilitate the processing of large imaging data sets 

collected from many individuals across broad swaths of the brain (Kleissas et al. 2017). While 

obstacles in access to tissue samples, image collection time, and data storage are nontrivial, we 

highlight these imaging techniques because of their unique potential for providing direct 

evidence of structural disruptions producing pathology. Further, we hope that appraisal of both 

the promise and limitations associated with these approaches can accelerate their development 

and eventual application.  

The combination of well-powered genetic studies and gross anatomical imaging of 

human brain tissues with MRI has provided valuable hints towards the brain regions mediating 

genetic risk for neuropsychiatric disorders. Microscale and ultrascale imaging genetics will likely 

identify genetic influences on cellular density, number, arrangement, and synaptic connections 
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that may be able to both explain the cellular basis of gross imaging genetics associations as well 

as identifying novel associations to brain structure.  

Conclusions 

Many loci in the genome have a replicable association with risk for neuropsychiatric 

disorders. To understand how variation at these loci leads to alterations in cognition and 

behavior, we need to understand the cell-types, developmental time periods, brain regions, and 

biological processes impacted by those variants. To do this, we can map webs of QTLs between 

genetic variation and multiple endophenotypes leading to disorder symptoms. We provide 

examples of successful integration of multiple lines of genetic association data to explain the 

basis of genetic risk for other complex traits like obesity and diabetes. We assert that similar 

approaches augmented by increasingly high-powered and high-resolution genetic associations 

to brain structure and function will help us understand the causal basis for disorders of the 

brain. Indeed, MRI measurements have demonstrated significant genetic correlations between 

certain brain structures and ADHD, major depressive disorder, bipolar disorder and Alzheimer’s 

disease, though the causality of these effects remains to be confirmed. Subsequent modulation 

of endophenotypes along a causal chain with experiments in model systems can validate the 

downstream effects of those genetic variants. Layering multiple levels of genetic association with 

imaging data and experimental validation will generate important mechanistic connections that 

can illuminate previously dimly-lit causal pathways creating risk for neuropsychiatric illness. 

1.2 Challenges in defining genetic mechanisms influencing the expression of brain-
related traits 

Common genetic variation influences the expression of complex human traits, with SNP-

based heritability estimated at an average of 43% among 19 traits (Speed et al. 2017). But, once 

genetic variants show association with brain traits such as cortical structure or risk for bipolar 

disorder, how can we map a causal path from variant to trait? A combination of experimental 

https://paperpile.com/c/uEyN9q/EhkO
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and analytical approaches must be applied to evaluate molecular mechanisms explaining GWAS 

loci (X. Xiao, Chang, and Li 2017), which is no small task. 

First, each GWAS locus represents a genomic region containing many SNPs, and it is not 

guaranteed that the lead or index SNP defined by the smallest association P-value in the region 

is the causal variant. So, which variant(s) at a GWAS trait-associated loci are actually causal? We 

can prioritize SNPs within a GWAS locus by comparing their varying strengths of association 

and levels of correlation to the lead or index SNPs. Correlations between SNPs in a region are 

defined by linkage-disequilibrium patterns based on observed rates of genetic recombination 

which vary across human populations, and are thus unique to each GWAS cohort. Strong 

correlation between a GWAS index SNP and nearby SNP is observed as high pairwise LD, and 

these LD patterns are incorporated  into statistical fine-mapping methods that estimate the 

combined effects of multiple linked SNPs on a trait, narrowing the search for causal variants 

from perhaps dozens of candidates down to smaller credible set (Schaid, Chen, and Larson 

2018). 

Still, how can a credible set of GWAS variants prioritized by fine-mapping, identified 

statistically, be validated experimentally? Unfortunately, direct avenues of validating GWAS 

variant effects on the expression of complex-traits are intractable. Experimental manipulation of 

DNA sequences in living humans is unprecedented and unethical. Even if ethics were not an 

obstacle, experimental validation would require an intractable number of challenging genetic 

editing events to evaluate even a single GWAS loci harboring many linked and putatively causal 

SNPs. Furthermore, since GWAS variants may function during development to influence adult 

phenotypes later on, experiments would not only require risky genetic engineering but also 

comprehensive longitudinal measurements. The GWAS field must come to terms with the fact 

that traits and their associated variants reside at opposite ends of a causal chain connected by 

mechanisms that remain concealed. 
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One way to side-step this challenge is to study the function of genetic variation on a 

smaller scale. Instead of interrogating genetic effects scattered across many levels of biology, we 

might focus specifically on how variants influence gene regulation (Cano-Gamez and Trynka 

2020). A hypothetical causal chain leading from a noncoding genetic variant, through gene 

regulation, to effects on a complex trait may be envisioned as follows: 

1. A genetic variant changes the function of a DNA sequence that regulates the 

transcription or splicing of mRNA from one or more genes. 

2. Altered gene expression alters the outcomes of cellular processes such as cell-signaling 

pathways, proliferation, migration, differentiation, and response to stimuli.    

3. Modulation of cellular processes across time, cell- and tissue-types leads to changes in 

the GWAS-trait of interest. 

The research herein focuses on the level of genetic effects described by (1-2) above. At these 

molecular and cellular levels, effects of genetic variation on the accessibility of DNA itself and 

the mRNA encoded by that DNA are directly measured. These observations are relatively 

insulated from complexity introduced by polygenicity and pleiotropy which compounds as 

genetic effects ripple up through biological levels. Once genetic effects on a reduced scale are 

characterized, these signals can be colocalized with genetic effects on GWAS traits of interest 

that ostensibly result from the combined effects of many common variants traversing the 

various  levels of biology. A recent study demonstrated this concept by reporting that up to 50% 

of GWAS signals were shared with at least one molecular phenotype (Wu et al. 2023). 

Performing context-specific molecular and cellular QTL studies can nominate specific tissues, 

cell-types, and cellular states in which GWAS variants actually tune phenotypes. 

For example, consider a locus associated with adult risk for bipolar disorder identified 

via GWAS study. At this locus, a lead or index SNP displaying the most significant P-value of 

association to the GWAS trait is often reported. However, the locus also harbors several other 

linked SNPs, which tend to be inherited along with the index SNP due to linkage disequilibrium 

https://paperpile.com/c/uEyN9q/1JAP
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(LD). Without other evidence, it is impossible to determine which of the lead or linked SNPs is 

the true causal variant influencing the GWAS trait. Now consider that tissue or cell-type specific 

eQTL studies, such as those described by GTEx (GTEx Consortium 2020) or MetaBrain (N. de 

Klein et al. 2023), evaluated the same locus for genetic effects on gene expression, and found 

that the lead and/or linked SNPs also showed significant effects on the expression of a nearby 

gene in particular brain tissues or cell-types. While this still does not pinpoint the causal variant, 

it prioritizes eQTL SNPs among the potentially causal variants, and importantly assigns genetic 

effects to the expression of one or more local genes, thus providing functional evidence for a 

molecular mechanism underlying the association to bipolar disorder risk. This mechanism can 

then be explored experimentally to better understand how genetic modulation of eGene 

expression affects downstream cellular processes that in turn exert effects on bipolar disorder 

risk or other complex traits of interest. While this example describes how eQTL studies can link 

GWAS variants to gene expression, the same approach can be applied to other molecular QTL 

approaches such as those characterizing genetic effects on histone decoration, chromatin 

accessibility, mRNA splicing, or mRNA editing (Aguet et al. 2023). 

Still, while eQTL approaches have provided functional characterization of some GWAS 

loci, many more remain unexplained, begging the question of where the missing regulation 

mediating GWAS associations is hiding (Umans, Battle, and Gilad 2020)? One reason is that 

some GWAS variants function only in certain contexts, such as in particular cell types, within 

developmental windows, or in responses to stimuli. Variants that alter TF binding in a 

regulatory region, for example, may only affect gene expression in the presence of the relevant 

TF, which itself may be restricted to specific cell-types, or cell-states, such as the response to a 

developmental signal. In this way tissue and cell type-specific eQTL mapping studies (GTEx 

Consortium 2020; Donovan et al. 2020; Bryois et al. 2022), have been useful, but again do not 

adequately address the missing regulation problem. Recent studies have begun to characterize 

context-specific molecular QTLs (Alasoo et al. 2018; Kasela et al. 2023; Aygün et al. 2021; Liang 
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et al. 2021; Panousis et al. 2023; Oelen et al. 2022; Knowles et al. 2018) and allele specific 

expression (Findley et al. 2021), but dizzying numbers of contexts remain to be explored. This 

research seeks to use similar approach to considering the contexts of Wnt signaling activation 

and exposure to mood stabilizing medications in human neural progenitor cells (described in 

chapters 1.3-1.6).  

Another challenge is the fact that most GWAS to date perform genetic associations 

within samples dominated predominantly by caucasians of European descent. This systemic 

bias in sample composition fails to represent the diversity of genetic backgrounds within the 

human population. While most GWAS variants identified in European ancestry populations are 

generalizable, as many as 25% may show differential directions of effect in other ancestries 

(Carlson et al. 2013), and there is legitimate concern that polygenic risk scores derived from one 

ancestry group may not accurately predict phenotypes in others (Martin et al. 2019). Both 

GWAS and molecular QTL studies should expand sampling underrepresented ancestries to 

maximize discovery and applicability.  

1.3 Primary human neural progenitors: a cell-type specific model for exploring 
genetic effects on human fetal brain development 

Mechanistic understanding of complex traits like psychiatric disorder risk requires cell-

based models that provide experimental tractability and access to diverse genetic backgrounds 

(Brennand et al. 2012). These models strive to disentangle often complex symptomatology into 

cellular endophenotypes that can be readily studied in vitro. 

Which cells should be studied? While every cell in an individual has the same genome, 

the information usage of that genome is cell-type specific and observable as distinct patterns of 

epigenomic organization (Preissl, Gaulton, and Ren 2023) and gene expression (Arendt et al. 

2016). Dysfunction of cell-type specific genomic regulation explains why heritable traits and 

diseases may manifest only within certain tissues or cells (Hekselman and Yeger-Lotem 2020). 

Therefore, in order to understand the expression of complex traits and the basis for inherited 

https://paperpile.com/c/uEyN9q/vfg0T+r1Jr+xblxB+FBFAg+til8P+sYOI+Actq
https://paperpile.com/c/uEyN9q/uisK
https://paperpile.com/c/uEyN9q/aHhs
https://paperpile.com/c/uEyN9q/xUWX
https://paperpile.com/c/uEyN9q/fJv0
https://paperpile.com/c/uEyN9q/5NuA
https://paperpile.com/c/uEyN9q/5rnC
https://paperpile.com/c/uEyN9q/5rnC
https://paperpile.com/c/uEyN9q/VQLE


 

38 

disease risk, we must characterize the effects of genetic variation in specific cell populations. 

Tissue- and cell-type resolution molecular QTL studies have begun to address this (GTEx 

Consortium 2020; Preissl, Gaulton, and Ren 2023; Gaulton, Preissl, and Ren 2023), including 

within subregions of the cerebral cortex (N. de Klein et al. 2023). These studies have 

predominantly relied on samples of adult bulk postmortem tissues where cell-types are resolved 

using single-cell sequencing approaches. However, some genetic effects on gene regulatory 

mechanisms may not be present in adult tissues, instead exerting their effects during temporal 

windows such as fetal development. This may in part explain the limited ability of existing QTL 

studies to explain genetic effects on GWAS traits (Umans, Battle, and Gilad 2020). By targeting 

a specific cell-type and developmental time-period we can capture novel genetic effects on both 

molecular and cellular phenotypes that will improve understanding of complex trait 

expression(Liang et al. 2021; Aygün et al. 2021). Not only can molecular QTLs be characterized 

in specific cell-types and developmental states, data capture can be conducted in cultured cells. 

In addition to the benefit of phenotyping living (versus postmortem) cells, the experimental 

tractability of cultured cells affords new opportunities, including: 1) cellular assays can be 

conducted to evaluate genetic effects on biological processes, 2) cells can be exposed to stimuli 

to evaluate context-specific genetic effects, and 3) cell-lines can be cultured in replicates to 

improve reproducibility.  

So, targeting an appropriate cell-type and developmental time-point is crucial for 

applying a cell culture-based QTL study toward understanding genetic influences on complex 

brain traits and NPD risk. This research utilized human neural progenitor cell-lines derived 

from fetal dorsal telencephalic tissue ranging from gestation weeks 14-21. During this period, 

multipotent neural progenitor cells, or radial glia, proliferate via symmetric cell divisions. These 

radial glia comprise a neurogenic pool of progenitors that soon give rise to the cerebral cortex by 

differentiating into neurons that migrate into their final positions within the cortical laminae 

(Bystron, Blakemore, and Rakic 2008). The potent influence of radial glia on the resulting 
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neocortex is described by the radial unit hypothesis, which posits that increased proliferation of 

neural progenitors along the ventricular zone creates more columnar “radial units” that later 

undergo asymmetric cell divisions to generate increased numbers of differentiated cortical cell-

types including both neurons and glia (P. Rakic 1988).  The impact radial glia have on the brain 

is demonstrated by studies showing that genetic variation associated with cognition, risk for 

neuropsychiatric disorders, and inter-individual differences in cortical structure is enriched 

within regulatory elements of fetal brain tissue from the NPC-rich ventricular zone (de la Torre-

Ubieta et al. 2018). Developing primary human neural progenitor cells (hNPCs) are thus an 

appropriate cell-type in which to explore how genetic regulation influences the expression of 

complex brain-traits. Subsequent sections describe how these cells were utilized for context-

specific molecular and cellular to this end. 

1.4 Exploring gene regulation using context-specific chromatin accessibility and 
gene expression 

Mapping causal pathways that link genotypes to phenotypes requires characterization of 

both how DNA information is regulated and how it is expressed. Only about 2% of the human 

genome’s DNA sequence represents genes that encode information used for directing the 

synthesis of proteins. In contrast, the vast majority of DNA sequences are noncoding, where 

they are thought to serve a regulatory function by directing the transcription of genes, direct the 

transcription of non-protein-coding RNA molecules, or perhaps perform no known function 

(ENCODE Project Consortium et al. 2020). Most trait-associated variants identified by GWAS 

reside within non-coding genomic regions, posing a challenge for functional characterization 

(M. E. Cannon and Mohlke 2018; Elkon and Agami 2017). 

Let us first consider the regulation of DNA sequences. Genomic regions that are 

ostensibly engaged in some functional regulatory mechanism can be inferred by measuring 

chromatin accessibility (Klemm, Shipony, and Greenleaf 2019). Chromatin accessibility 

indicates which portions of the genome are available for participation in regulatory interactions 
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with other DNA sequences, proteins, or non-coding RNA. In contrast, inaccessible chromatin is 

thought to be prohibited from regulatory interactions due to nucleosomal packaging of DNA, 

where functional sequences are obscured by tight association with histones. A number of 

methods are available to profile accessible chromatin (Minnoye et al. 2021); research chronicled 

here relied on the assay for transposase-accessible chromatin, or ATAC-seq (Grandi et al. 2022). 

ATAC-seq relies on the preferential activity of the Tn5 transposase enzyme to cut and insert 

sequencing adapters at regions of open chromatin where DNA sequences are free of 

nucleosomes (Buenrostro et al. 2013). Open chromatin profiles obtained via ATAC-seq identify 

putative regulatory elements, which typically include transcriptional start sites, promoters, and 

enhancers. All of these elements likely influence gene expression through DNA sequences 

capable of binding TFs which convey regulatory complexity via interactions with other TFs, 

other DNA, or transcriptional machinery. 

The complex regulatory logic emerging from the dynamic interplay between enhancers, 

promoters, and TFs ultimately controls which genes are expressed and when. Open chromatin 

provides a snapshot of the regulatory landscape, but to understand how this regulation is being 

utilized, the transcriptional product, mRNA, must be quantified. This work applied standard 

total RNA-seq methods (Ozsolak and Milos 2011) to profile hNPC gene expression. By capturing 

ATAC-seq and RNA-seq data from the same batches of cultured hNPCs at the same time-point, 

the regulatory and gene expression profiles can be integrated to infer functional gene regulatory 

mechanisms.  

During cortical development, gene regulation is a highly dynamic process at the level of 

both chromatin accessibility and mRNA transcription (Trevino et al. 2021). Chromatin 

accessibility dynamics alter which regulatory elements are available for interactions with TFs 

and other chromatin regions, which in turn shapes transcriptional output. 3D interactions 

between accessible chromatin regions observed by chromatin conformation capture methods 

like Hi-C reveal major differences between human fetal brain cells from the ventricular zone 
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(progenitor-rich) versus cells from the cortical plate (neuron-rich) (Won et al. 2016), illustrating 

that epigenomic overhaul is a distinguishing feature of cortical development. Developmental 

changes in the epigenome underlie changes in gene expression producing major consequences 

for cell-type  identity and function. For example, gene regulatory dynamics mediate radial glia’s 

fate decisions, determining whether a cell will proliferate via symmetric division to maintain the 

progenitor pool in the ventricular zone, or differentiate via asymmetric division to generate 

intermediate progenitors and/or neurons that migrate up through the cortical plate where they 

form functional synaptic connections (Ohtaka-Maruyama and Okado 2015).  

Epigenomic and transcriptomic shifts during development are orchestrated by a complex 

interaction of both extracellular and intracellular signaling, with molecules such as Sonic 

Hedgehog, Notch, and Wnt playing major roles in patterning the telencephalon and directing 

the cell-fate decisions of neural progenitors (Hébert and Fishell 2008; Kageyama et al. 2009; 

Harrison-Uy and Pleasure 2012). Because in vivo cortical development depends on these and 

other signals, modeling this process in vitro without taking into account these cellular contexts 

provides an incomplete picture of a dynamic gene regulatory landscape. A major advantage of 

studying developing hNPCs in vitro is that cells can be stimulated by these or other molecules 

under controlled experimental conditions preceding preparation of ATAC-seq and RNA-seq 

samples. Context-specific epigenomic and transcriptomic dynamics can then be characterized by 

comparing unstimulated or baseline cellular states against stimulated cellular states. This 

research took advantage of the experimental tractability of cultured hNPCs to evaluate gene 

regulatory changes induced by exposure to Wnt-activating compounds, lithium, or valproic acid 

(described in detail in the following sections).  

Lastly, in vitro epigenomic and transcriptomic analyses can be performed on genetically 

distinct hNPC cell-lines. Comparing chromatin accessibility and gene expression across the 

entire cohort of hNPCs (nmax=82) enables evaluation of common genetic effects on these 

molecular phenotypes (caQTLs and eQTLs). Combined with GWAS variants, genetic effects on 
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gene regulation can prioritize variants, regulatory elements, and genes that may go on to 

influence trait expression. 

1.5 The Wnt signaling pathway, brain development, and neuropsychiatric 
disorders 

Molecular phenotyping of chromatin accessibility and gene expression in genetically 

diverse cultured hNPCs provides an opportunity to understand genetic effects on gene 

regulation that may tune neurodevelopment, and in turn, complex structural and functional 

brain traits. However, this dynamic process does not occur in a vacuum; myriad chemical 

signals cause epigenetic and/or transcriptional changes that drive development. A major portion 

of this research focused on molecular and cellular effects induced by activation of the canonical 

Wnt signaling pathway. 

Wnt signaling components are conserved across all metazoan organisms, underscoring 

their vital roles in embryogenesis, patterning, and cellular differentiation (Holstein 2012). The 

canonical Wnt signaling cascade is initiated by the binding of secreted Wnt ligands to 

membrane-bound Frizzled-LRP5/6 receptors. In the absence of Wnt ligand, the cytoplasmic 

protein β-Catenin is phosphorylated by GSK3β, targeting it for proteasomal degradation by a 

destruction complex composed of Axin, APC, CK1, and DVL. In the presence of Wnt ligand, the 

destruction complex is disassembled, allowing β-Catenin to elude phosphorylation and targeting 

by the proteasome. With the destruction complex inactivated, β-Catenin accumulates in the 

cytoplasm and translocates into the nucleus, where it binds TCF/LEF family proteins and 

recruits transcriptional coactivators that bind DNA-sequences at the promoters of Wnt target 

genes to promote the initiation of transcription (Bengoa-Vergniory and Kypta 2015). (see fig 

2.1A in data chapter 2) 

In the developing forebrain, Wnt ligands are secreted from cells of the cortical hem 

where they stimulate radial glia proliferation through symmetric cell divisions, increasing the 

neurogenic pool (Harrison-Uy and Pleasure 2012). As development continues, Wnt activation 
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wanes, shifting radial glia fate decisions towards asymmetric divisions which generate both 

intermediate progenitor cells and radial glia (Bielen and Houart 2014). Intermediate progenitor 

cells continue to respond to Wnt, but instead of stimulating self-renewal, Wnt promotes neural 

differentiation (Munji et al. 2011) and directs neural migration (W. J. Nelson and Nusse 2004).  

Wnt’s influence appears to extend into adulthood, where it maintains the potency of neural 

progenitors in the hippocampus (Wexler et al. 2009).  

Because of these critical roles, aberrant Wnt signaling is connected to both 

developmental and neurospychiatric disorders (Freese, Pino, and Pleasure 2010; Bem et al. 

2019). As an illustrative example, a constitutively active β-catenin transgene induces prominent 

cortical hyperexpansion in mice (Chenn and Walsh 2002). Genetic effects on canonical Wnt 

signaling are associated with the expression of complex brain traits. For example, rare variants 

affecting Wnt pathway genes are associated with ASD (Krumm et al. 2014; Caracci et al. 2021), 

common genetic variants associated with brain structure or neuropsychiatric disorders are 

enriched near Wnt pathway genes (Grasby et al. 2020; Mulligan and Cheyette 2017), and 

transcriptional dysregulation of Wnt-related genes is observed in schizophrenia and bipolar 

disorder (Hoseth et al. 2018).  

Elucidating Wnt-related disease mechanisms motivates functional characterization of 

both the upstream factors affecting the signaling cascade, and the downstream effects on 

cellular processes. Studying the Wnt pathway in cultured primary hNPCs unlocks experimental 

opportunities to achieve to do so. Because each hNPC line is genetically unique, any 

experimental measurement can be stratified by genotype to understand the impact of common 

genetic variation. Multi-omic profiling of each hNPC line enables molecular QTL mapping, as 

introduced previously. In this thesis research, we stimulated the Wnt pathway prior to profiling 

chromatin accessibility and gene expression, providing a genome-wide view of the effects of Wnt 

activation on gene regulation. We then use hNPC genotypes alongside these molecular 

phenotypes to discover context-specific QTLs, which describe genetic effects that are only 
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functional in the context of Wnt signaling activation. Wnt-stimulated hNPCs are also amenable 

to cellular assays, and cellular-QTL mapping. Here, a beta-catenin responsive luciferase assay 

reported canonical Wnt activation across available hNPC lines. Additionally, we measured 

cellular proliferation using EdU-incorporation assays in Wnt-stimulated hNPCs. As with the 

molecular phenotypes, context-specific genotypic effects on these cellular phenotypes of Wnt-

activation and proliferation were then characterized as cellular-QTLs. Together, these molecular 

and cellular phenotypes outline a path from gene regulation, through Wnt-signaling, to effects 

on radial glia proliferation. Furthermore, common genetic effects on this chain of events provide 

functional interpretation of genomic loci implicated by brain structure and neuropsychiatric 

disorder GWAS, further highlighting the importance of Wnt signaling in both brain 

development and function. 

1.6 Pharmacogenomics in a dish 

Pharmacogenomics is the application of genetic information towards improving clinical 

treatment outcomes, a major promise of precision medicine (Roden et al. 2019; Zeggini et al. 

2019). The rapid expansion of genomic profiling has shown promise for pharmacogenomic 

predictions for neuropsychiatric medications (Pardiñas, Owen, and Walters 2021), including 

those for bipolar disorder, schizophrenia, major depression and autism spectrum disorder 

(Shani Stern et al. 2018). Despite this promise, both defining molecular profiles that 

differentiate responders and non-responders, and implementing appropriate clinical 

interpretations has been challenging (Krebs and Milani 2019). One issue is that current efforts 

to understand genetic influences on clinical responses are limited by sample-size, 

polypharmacy, and varied compliance, duration, and dosing across participants (McInnes et al. 

2021). The underwhelming discovery of genetic variants that predict clinical responses to 

psychiatric treatment illustrates these limitations. We need high throughput interpretable 

pharmacogenomics experiments to make good on these promises. 
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This research leverages genotypic information, molecular and cellular profiling, and the 

experimental tractability afforded by hNPC cell culture to explore pharmacogenomic effects 

underlying responses to Lithium and valproic acid/valproate (VPA). These widely prescribed 

mood stabilizers treat manic symptoms associated with bipolar disorder (BD), an illness 

contributing a substantial global health burden by afflicting as much as 2.5% of the population 

(Crapanzano et al. 2022; Vigo, Thornicroft, and Atun 2016; Kato 2007). However, these 

treatments are only effective at preventing relapse of manic episodes in 40-60% of individuals, 

indicating a high degree of variability in clinical response (Tohen et al. 2005; BALANCE 

investigators and collaborators et al. 2010; Viguera, Tondo, and Baldessarini 2000). High 

heritability estimates for BD as revealed by twin studies (80% broad sense heritability) and case-

control GWAS (25% SNP-based heritability) suggest that translational genomics approaches to 

understand disease etiology hold promise (C. Zhang et al. 2021). GWAS on clinical responses to 

lithium and VPA are beginning to reveal genomic loci underlying variance in treatment 

outcomes. Several studies have identified loci associated with lithium responses in BD, including 

variants within genes GADL1 and SESTD1 (Hou et al. 2016; C.-H. Chen et al. 2014; Song et al. 

2016). For VPA, polymorphisms in specific pharmacodynamic genes affect clinical responses 

(Goey et al. 2016; M.-M. Zhu et al. 2017), but GWAS approaches have struggled to identify 

genome-wide significant loci (Wolking et al. 2020, 2021). So far, results from clinical response 

GWAS for lithium and VPA are hindered by small sample sizes and difficulties phenotyping 

complex outcomes. Furthermore, the function of noncoding variants associated with clinical 

responses is unclear. 

This research aimed to phenotype the response to lithium or VPA on both molecular and 

cellular levels in genetically diverse cultured hNPCs, and to identify common genetic variation 

that influences these phenotypes. The precise phenotyping afforded by ATAC-seq, RNA-seq, and 

cellular assays is expected to enhance discovery of genetic effects in smaller sample sizes than 

would be needed to conduct adequately powered clinical response GWAS.  Human cell culture-

https://paperpile.com/c/uEyN9q/lJ58+HIJw+6dQW
https://paperpile.com/c/uEyN9q/SxYmc+qj3Fp+sR55I
https://paperpile.com/c/uEyN9q/SxYmc+qj3Fp+sR55I
https://paperpile.com/c/uEyN9q/QgXF
https://paperpile.com/c/uEyN9q/kAYFc+K7N4+xzAdm
https://paperpile.com/c/uEyN9q/kAYFc+K7N4+xzAdm
https://paperpile.com/c/uEyN9q/kPtT+Ajji
https://paperpile.com/c/uEyN9q/SmNc+cLXs
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based methods offer an opportunity to interrogate pharmacogenomic effects under 

experimentally controlled conditions. A number of studies illustrate the efficacy of cell-based 

models by finding differences in excitability and transcription, including of Wnt-related genes, 

in iPSC-derived neurons from lithium-responsive versus lithium-non-responsive BD patients 

(Mertens et al. 2015; Shani Stern et al. 2020; Santos et al. 2021; Niemsiri et al. 2022). Since 

many genetic effects may exclusively function in specific cell types or contexts, comparison of 

molecular and cellular QTLs captured in baseline (vehicle) versus Lithium- or VPA-stimulated 

states will identify regulatory elements and genes that respond dynamically to these BD 

treatments. Colocalization of context-specific QTLs with current and future clinical response 

GWAS will provide gene-regulatory hypotheses that may underlie variance in treatment 

responses and can be investigated by follow-up experiments. Additionally, context-specific 

genetic effects stand to enhance functional interpretations of disease-associated loci, as outlined 

above.  

A pharmacogenomics in a dish approach represents a powerful and flexible cell-based 

model to explore treatment effects and mechanisms. If enough genetically distinct cell-lines are 

available, genetic effects on molecular and cellular treatment responses can be characterized 

that can act as footholds to interpret clinical response GWAS loci. Experiments described here 

utilized up to 82 hNPC lines which included diverse genotypes from population groups typically 

underrepresented in genetic studies, including samples from admixed ancestry (See 

supplementary figure 2.1: Multidimensional scaling analysis of genotype data). Diverse hNPC 

genotypes will expand the translatability of pharmacogenomic results to historically 

underserved populations (Wojcik et al. 2019; Peterson et al. 2019; Ju et al. 2022). 

 

 

  

https://paperpile.com/c/uEyN9q/ngvJK+8BCwS+CZlfI+7pIf
https://paperpile.com/c/uEyN9q/nbF5+N8FC+K3Cw


 

47 

 

 

 

CHAPTER 2: WNT ACTIVITY REVEALS CONTEXT-SPECIFIC GENETIC EFFECTS 
ON GENE REGULATION IN NEURAL PROGENITORS 

2.1 Introduction 

Common genetic variants associated with brain-relevant traits and risk for 

neuropsychiatric disorders have been identified and replicated, providing a molecular basis for 

understanding inter-individual variation in brain structure, function, and behavior (Sullivan and 

Geschwind 2019; Grasby et al. 2020). However, brain-trait associated loci are mostly found in 

non-coding regions without clear mechanisms of action. Gene regulatory mechanisms of non-

coding loci are inferred using datasets mapping the effects of genetic variation on regulatory 

element activity, marked by accessible chromatin peaks (chromatin accessibility quantitative 

trait loci or caQTL), or gene expression (eQTL) (Lappalainen and MacArthur 2021). Gene 

regulatory associated loci (ca/eQTLs) measured in bulk post-mortem tissue have explained 

mechanisms for a subset of brain-trait associated loci through sharing, or colocalization, of 

causal variants (Dong et al. 2022; Zeng et al. 2022; N. de Klein et al. 2023). Yet, many brain-

trait associated variants do not have detectable gene regulatory function in bulk post-mortem 

brain tissue, leading to the question of where the ‘missing regulation’ linking trait-associated 

variants to gene expression lies (Connally et al. 2022; Umans, Battle, and Gilad 2020; N. de 

Klein et al. 2023).  

One potential solution is that variants impact the accessibility of regulatory elements or 

the expression of target genes only in specific contexts or when activated by certain stimuli, and 

therefore are unlikely to be observed in bulk post-mortem tissue (Alasoo et al. 2018). The 

context specificity of genetic variant function, despite identical genetic sequence (excluding 

somatic mutations) being present in every cell, may be explained in part through the action of 

https://paperpile.com/c/uEyN9q/jwCNp+IKN25
https://paperpile.com/c/uEyN9q/jwCNp+IKN25
https://paperpile.com/c/uEyN9q/0rbxV
https://paperpile.com/c/uEyN9q/dXaiy+URWFi+6BUBH
https://paperpile.com/c/uEyN9q/1ScXP+hIev+6BUBH
https://paperpile.com/c/uEyN9q/1ScXP+hIev+6BUBH
https://paperpile.com/c/uEyN9q/vfg0T
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transcription factors only expressed, activated, or translocated to the nucleus within certain cell-

types or during stimulation. Context-specific genetic effects on gene expression are consistent 

with the observation that only a subset of genetic variants affecting unstimulated chromatin 

accessibility also affect gene expression, suggesting that some regulatory elements are primed to 

impact gene expression when a stimulus leads to the activation of additional transcription 

factors (Liang et al. 2021; Alasoo et al. 2018). Recent studies characterizing cell-type specific 

ca/eQTLs highlight the importance of cellular context by revealing novel brain trait 

colocalizations undetected in bulk tissues (Liang et al. 2021; Aygün et al. 2021; Bryois et al. 

2022; Kosoy et al. 2022). We hypothesized that the stimulation of a developmental signaling 

pathway in a homogeneous neural cell type would reveal previously undetected functions of 

genetic variation and explain some of the ‘missing regulation’ for brain-trait associated loci. 

We evaluated context-specific effects of genetic variation in a population of primary 

human neural progenitor cells (hNPCs), a developmental cell type with regulatory elements 

enriched with genetic association signals for multiple-brain related traits and neuropsychiatric 

disorders (Liang et al. 2021; Aygün et al. 2021; de la Torre-Ubieta et al. 2018). We measured 

chromatin accessibility and gene expression in hNPCs following stimulation of the canonical 

Wnt pathway. Wnt stimulation stabilizes cytoplasmic β-catenin, allowing it to translocate into 

the nucleus where it opens chromatin by displacing the repressor Groucho at TCF/LEF binding 

sites and promotes the expression of Wnt target genes (Fig. 1A) (Mosimann, Hausmann, and 

Basler 2009). Wnt signaling influences the patterning and development of the cerebral cortex by 

regulating proliferation and fate decisions of cortical progenitor cells (Pasko Rakic 2009; 

Harrison-Uy and Pleasure 2012). As an illustrative example, a constitutively active β-catenin 

transgene induces prominent cortical hyperexpansion in mice (Chenn and Walsh 2002). Genetic 

effects on canonical Wnt signaling are associated with the expression of complex brain traits. 

For example, rare variants affecting Wnt pathway genes are associated with ASD (Krumm et al. 

2014; Caracci et al. 2021), common genetic variants associated with brain structure or 

https://paperpile.com/c/uEyN9q/FBFAg+vfg0T
https://paperpile.com/c/uEyN9q/FBFAg+xblxB+mzMgB+bfFrr
https://paperpile.com/c/uEyN9q/FBFAg+xblxB+mzMgB+bfFrr
https://paperpile.com/c/uEyN9q/FBFAg+xblxB+GGtXw
https://paperpile.com/c/uEyN9q/nqKDh
https://paperpile.com/c/uEyN9q/nqKDh
https://paperpile.com/c/uEyN9q/WPv54+KOKok
https://paperpile.com/c/uEyN9q/WPv54+KOKok
https://paperpile.com/c/uEyN9q/EDiDj
https://paperpile.com/c/uEyN9q/zCtUx+GDihX
https://paperpile.com/c/uEyN9q/zCtUx+GDihX
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neuropsychiatric disorders are enriched near Wnt pathway genes (Grasby et al. 2020; Mulligan 

and Cheyette 2017), and transcriptional dysregulation of Wnt-related genes is observed in 

schizophrenia and bipolar disorder (Hoseth et al. 2018). Lastly, iPSC-derived neural cells from 

individuals with neuropsychiatric disorders show alterations in expression of Wnt pathway 

genes (Evgrafov et al. 2020; Topol et al. 2015; Marchetto et al. 2017). Our results characterize 

context-specific genetic effects in hNPCs that provide insights into neurodevelopmental gene 

regulatory mechanisms underlying brain trait-associated loci. 

2.2 Results 

Wnt stimuli impact gene regulation 

We interrogated gene regulation in the context of Wnt stimulation in a population of 

previously genotyped multi-ancestry hNPC donors that we cultured and maintained as 

proliferative neural progenitors (Stein et al. 2014; Liang et al. 2021) (Fig. 1B, fig. S1). To 

optimize activation of canonical Wnt signaling, we exposed hNPCs to various concentrations of 

either the WNT3A ligand, CHIR (CHIR99021, also known as CT99021), a potent GSK3β 

inhibitor and Wnt activator, or vehicle, for 48 hours (Bain et al. 2007). We evaluated the effect 

of each stimulus on canonical Wnt-signaling using a β-catenin-responsive luciferase reporter 

assay (Biechele, Adams, and Moon 2009) and the influence on hNPC proliferation using an EdU 

incorporation assay (fig. S2). Guided by the results from these assays, we selected 5nM WNT3A 

because it maximized both Wnt activity and proliferation. While CHIR exposure exceeding 

2.5µM increased Wnt pathway activation, we selected this concentration based on its ability to 

maximize hNPC proliferation (fig. S2). Following 48h stimulation by 5nM WNT3A, 2.5µM 

CHIR, or vehicle, we performed ATAC-seq and RNA-seq for all samples, including 2-6 replicates 

for each of six randomly selected donors to evaluate technical reproducibility (fig. S3-5). After 

quality checks and selection of one technical replicate from each donor-condition pair (see 

Methods), we detected expression of 15,762 protein-coding genes and 7,695 lncRNAs from 242 

https://paperpile.com/c/uEyN9q/IKN25+mnCjs
https://paperpile.com/c/uEyN9q/IKN25+mnCjs
https://paperpile.com/c/uEyN9q/TnF1r
https://paperpile.com/c/uEyN9q/ReT5K+cHGzj+Rdttf
https://paperpile.com/c/uEyN9q/IJddq+FBFAg
https://paperpile.com/c/uEyN9q/TfShF
https://paperpile.com/c/uEyN9q/TzcYS
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RNA-seq samples (nvehicle=79, nWNT3A=82, nCHIR=81) and chromatin accessibility at 172,887 peaks 

from 222 ATAC-seq samples (nvehicle=76, nWNT3A=68, nCHIR=78). 

 

Figure 2.1: Gene regulatory changes induced by WNT stimulation 

(A) Cartoon of the canonical WNT signaling pathway. (B) Schematic of study design. 

Enrichment of TF motifs in WNT3A-responsive (C) or CHIR-responsive (D) chromatin 

accessibility peaks. Z-scores reflect scaled enrichment scores (x-axis), and -log10(P-

values) depict the significance of enrichment (y-axis). TFBS motifs significantly enriched 

in peaks opening or closing due to the stimulus are represented by red and blue points, 

respectively. Volcano plots show gene expression changes induced by exposure to 
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WNT3A (E) or CHIR (F). Genes with significantly increased or decreased expression 

(DEGs) are represented by red and blue points, respectively. (G) WREs significantly 

correlated to AXIN2 expression during WNT3A stimulation. DAR: Differentially 

accessible chromatin regions measured by ATAC-seq. DARs and TSSs in the region 

overlap TCF/LEF motifs and Wnt-relevant TF binding from previous ChIP-seq 

experiments (Doumpas et al. 2019). 

 

To determine the gene regulatory impacts of Wnt stimulation on human neural 

progenitors, we performed differential analyses of chromatin accessibility and gene expression 

between WNT3A- or CHIR-stimulated conditions compared to vehicle control. Stimulation by 

WNT3A or CHIR revealed 21,383 unique differentially accessible chromatin regions (Wnt-

responsive elements or WREs; FDR Benjamini-Hochberg-adjusted P < 0.1, shrunken  - LFC| > 

0.5; WNT3A vs Vehicle (62 pairs): 4,819 WREs; CHIR vs Vehicle (72 pairs): 20,179 WREs; fig. 

S6A, table S1). We anticipated Wnt stimulation would increase chromatin accessibility at 

TCF/LEF binding sites as β-Catenin displaces the chromatin condenser Groucho (Mosimann, 

Hausmann, and Basler 2009). Consistent with these expectations, WREs opening due to Wnt 

stimulation were strongly enriched with TCF7, TCF7L1/2, and Lef1 motifs (Fig. 1C-D, table S2). 

β-Catenin, Lef1, and TCF7L2 binding sites defined by ChIP-seq in HEK293T cells (Doumpas et 

al. 2019) also overlapped WREs opened by Wnt stimulation significantly more than WREs 

closed by Wnt stimulation (fig. S7). Additional enrichment of HNF1a motifs within WREs (Fig. 

1C-D) implies a coregulatory relationship with TCF/LEF, as has been previously described in 

cancer cells (Hatzis et al. 2008). Interestingly, binding motifs of non-canonical Wnt signaling 

such as TEAD4 (Park et al. 2015) were enriched in WREs that closed in response to Wnt 

stimulation (Fig. 1C-D), suggesting an antagonistic relationship between canonical and non-

canonical WREs. These results show that Wnt stimulation in human neural progenitors 

https://paperpile.com/c/uEyN9q/wPPlO
https://paperpile.com/c/uEyN9q/nqKDh
https://paperpile.com/c/uEyN9q/nqKDh
https://paperpile.com/c/uEyN9q/wPPlO
https://paperpile.com/c/uEyN9q/wPPlO
https://paperpile.com/c/uEyN9q/im90u
https://paperpile.com/c/uEyN9q/3zS9u
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modulates known downstream DNA-binding protein effectors in expected directions and 

defines a set of human brain-developmental WREs. 

We detected a total of 3,254 unique Wnt-responsive differentially expressed genes 

(DEGs) across the two Wnt-stimulating conditions (DEGs, FDR-adjusted P < 0.1; |LFC| > 0.5; 

WNT3A vs Vehicle (75 pairs): 762 DEGs; CHIR vs Vehicle (74 pairs): 3,031 DEGs; Fig. 1E-F, fig. 

S6B, table S3). DEGs included known components of the Wnt pathway such as LEF1 and 

AXIN2, confirming that Wnt stimulation leads to autoregulation of the Wnt pathway (Nusse and 

Clevers 2017; Kunz et al. 2004). Pathway enrichment analysis of DEGs showed that those 

upregulated in response to Wnt stimulus were over-represented in Wnt-related pathways such 

as “TCF dependent signaling in response to WNT” (FDR-adjusted P = 3.81x10-7 and 4.69x10-7, 

for WNT3A vs Vehicle, or CHIR vs Vehicle, respectively), as expected (table S3-4). The Wnt 

pathway is also known to increase proliferation (fig. S2), and indeed, upregulated DEGs were 

enriched in “Cell Cycle [REAC]” related genes (FDR-adjusted P = 7.17 x 10-51 and 7.97 x 10-45, for 

WNT3A vs Vehicle, or CHIR vs Vehicle, respectively) (Niehrs and Acebron 2012). Additionally, 

Cyclin D1 (CCND1), a known target gene of WNT stimulation and a key factor regulating cell 

cycle progression (Shtutman et al. 1999), was significantly upregulated under WNT3A 

stimulation (LFC = 0.44, FDR-adjusted  P = 1.63 x 10-67, Fig. 1E). 

Wnt stimulation recruits novel regulatory elements 

Activation of the Wnt-signaling pathway alters gene expression patterns that modulate 

NPC cellular behaviors such as proliferation and differentiation to shape brain development (Hur 

and Zhou 2010; Bielen and Houart 2014). To link novel WREs to genes they putatively regulate, 

we estimated the correlation between chromatin accessibility and gene expression for proximal 

gene-peak pairs (+/-1Mb from the transcription start site (TSS)). We found that across 

stimulation and vehicle conditions, over 5% of peaks are significantly correlated with nearby 

genes and over 12% of genes are significantly correlated with nearby peaks (FDR-adjusted P < 0.1, 

median peak-TSS distance ~120 kb, fig. S9, table S5-6). Over 80% of gene-peak pairs showed a 

https://paperpile.com/c/uEyN9q/SfwY6+TC1Yo
https://paperpile.com/c/uEyN9q/SfwY6+TC1Yo
https://paperpile.com/c/uEyN9q/2Gzcw
https://paperpile.com/c/uEyN9q/nBe17
https://paperpile.com/c/uEyN9q/3TDZY+Xu98Y
https://paperpile.com/c/uEyN9q/3TDZY+Xu98Y
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positive correlation, supporting the idea that opening chromatin usually increases, while 

restricting chromatin accessibility usually decreases, the expression of target genes. Wnt 

stimulation revealed 12,643 enhancer-gene pairs not detected in the vehicle condition, while 6,461 

were lost (fig. S8). For example, AXIN2, a gene known to be upregulated by canonical Wnt 

signaling across tissues (Mosimann, Hausmann, and Basler 2009; Jho et al. 2002), linked to 11 

or 8 peaks each harboring TCF/LEF binding sites under WNT3A or CHIR condition, respectively, 

yet had no significantly correlated peak-gene links found in the vehicle condition (Fig. 1G). These 

data suggest that new regulatory elements are recruited to regulate gene expression during Wnt 

stimulation.   

Distinct effects of Wnt stimulation or inhibition with XAV 

Because WNT3A and CHIR stimulate the Wnt pathway through separate mechanisms, we 

anticipated a combination of shared and distinct effects on gene expression. Indeed, CHIR yielded 

considerably more WREs and DEGs as compared to WNT3A, suggesting that this potent small 

molecule inhibitor of GSK3𝛽 induces more gene regulatory changes as compared to the 

endogenous ligand at their respective concentrations. This difference possibly occurs because 

CHIR acts downstream of WNT3A where it may more directly affect target gene expression, 

though concentration differences between the two stimuli make direct comparisons difficult (Fig. 

1E-F; fig. S6). The expression level of GSK3𝛽 is upregulated in progenitor cells stimulated with 

CHIR (LFC = 0.15, FDR-adjusted P = 4.64x10-46), but not WNT3A (LFC = 0, FDR-adjusted P = 

0.97; differential impact estimated by interaction term = 9.14x10-26). This suggests that GSK3𝛽 

inhibition by CHIR triggers a compensatory gene expression response that is not induced by Wnt 

signaling activated via the recombinant version of the endogenous ligand (Fig. 1A)(Bengoa-

Vergniory and Kypta 2015). 

To provide additional evidence confirming that our experimental design was stimulating 

the canonical Wnt pathway, we compared gene expression during simultaneous activation and 

downstream inhibition of the pathway (WNT3A + XAV(S.-M. A. Huang et al. 2009)) with WNT3A 

https://paperpile.com/c/uEyN9q/nqKDh+LYrVZ
https://paperpile.com/c/uEyN9q/QwZG2
https://paperpile.com/c/uEyN9q/QwZG2
https://paperpile.com/c/uEyN9q/5UFB9
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activation alone in 6 hNPC donor lines (fig. S10A). Little endogenous Wnt activity is observed in 

unstimulated neural progenitors (fig. S2B-C), so we hypothesized that simultaneous stimulation 

and downstream inhibition of the Wnt pathway would reduce any Wnt-related transcriptional 

changes. As expected, inhibition of the Wnt signaling pathway suppressed expression of genes 

upregulated by Wnt stimulation as compared to vehicle (r = -0.59; P < 1 x 10-323; fig. S10B). For 

example, LEF1 expression increased in response to WNT3A stimulation, and decreased following 

inhibition of the WNT pathway. These opposing effects provide further support that the observed 

gene expression changes are caused by induction of canonical Wnt signaling.  

Wnt-responsive genes and regulatory elements contribute to inter-individual differences in 

brain traits. 

Wnt-responsive genes and regulatory elements contribute to inter-individual differences in 
brain traits 

Previous studies suggest that genes related to the Wnt pathway are mutated or 

differentially expressed in individuals with neuropsychiatric disorders (Evgrafov et al. 2020; 

Topol et al. 2015; Marchetto et al. 2017; Krumm et al. 2014; Caracci et al. 2021). We sought to 

determine whether Wnt-responsive genes further support these associations by testing for 

enrichment of Wnt-responsive DEGs in sets of brain-related disease-associated genes using 

curated gene-disease information from the DisGeNET database (Piñero et al. 2020). We found 

enrichment of Wnt-responsive DEGs among schizophrenia and ASD risk genes (Fig. 2A, table S7), 

while genes not significantly differentially expressed after Wnt stimulation did not show a 

detectable enrichment among brain-related disease associated genes (Packer 2016). This implies 

that alteration in the function of Wnt-responsive genes contributes to risk for 

neurodevelopmental disorders. 

https://paperpile.com/c/uEyN9q/ReT5K+cHGzj+Rdttf+zCtUx+GDihX
https://paperpile.com/c/uEyN9q/ReT5K+cHGzj+Rdttf+zCtUx+GDihX
https://paperpile.com/c/uEyN9q/nZqw9
https://paperpile.com/c/uEyN9q/IOx9N
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Figure 2.2: Contribution of Wnt-responsive regulatory elements to the heritability 
of brain traits 

(A) Enrichment of Wnt-responsive genes within neuropsychiatric disorder risk gene sets 

from the DisGeNET database41. Size of dot indicates overlapped gene counts in disease 

data sets. (B) Contribution of WREs to brain-related trait heritability evaluated by S-

LDSC. Traits are grouped by category. (C) Contribution of WREs to the heritability of 

adult cortical thickness and cortical surface area traits across regions (left). Brain regions 

with significant enrichment of cortical thickness (top) or cortical surface area (bottom) 

traits within WREs (right). The P values indicated by color in (B-C) denote whether the 

WREs contribute significantly to SNP heritability after controlling for other annotations 

including elements in baseline model and/or non-WREs. * indicates enrichments with 

FDR < 0.1. ADHD: Attention deficit hyperactivity disorder, ASD: Autism spectrum 
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disorder, SCZ: Schizophrenia, BP: Bipolar disorder, MDD: Major depressive disorder, 

EA: Educational attainment, AD: Alzheimer’s disease, PD: Parkinson’s disease, TH: 

Average cortical thickness, SA: Cortical surface area, IBD: Inflammatory bowel disease, 

LDL: low-density lipoprotein, RA: Rheumatoid arthritis (see table S8 for references). 

 

We next explored whether common genetic variants within WREs contribute to brain-

related traits (table S8). By performing stratified LD score regression (S-LDSC) accounting for the 

baseline-model (Bulik-Sullivan et al. 2015; Finucane et al. 2015), we replicated previous findings 

that regulatory elements in fetal brain tissues or hNPCs contribute to the heritability of 

neuropsychiatric disorders and brain-related traits (Liang et al. 2021; de la Torre-Ubieta et al. 

2018) (FDR-adjusted P < 0.1; Fig. 2B, table S9). We then applied S-LDSC to WREs and found that 

they contribute to the heritability of schizophrenia, ADHD, ASD, and glioma, as well as inter-

individual differences in intelligence, even when controlling for the effects of non-differentially 

accessible peaks (Fig. 2B, table S9). We also found that common variants within WREs 

significantly contribute to inter-individual differences in global cortical surface area, but not 

average cortical thickness, consistent with Wnt regulating progenitor proliferation and the 

predictions of the radial unit hypothesis (Chenn and Walsh 2002; P. Rakic 1988). We further 

estimated partitioned heritability enrichment for regional cortical surface area and thickness 

traits. We observed regional specificity where heritability was enriched in WREs for the surface 

area of medial regions close to the cortical hem, where WNT3A is secreted (Fig. 2C). The 

heritability of cortical thickness was also enriched in WREs within regions including lateral 

orbitofrontal and the isthmus of the cingulate. We did not detect partitioned heritability 

enrichment for neurodegenerative disorders (Alzheimer’s disease and Parkinson’s disease) or 

non-brain related traits (Irritable Bowel Disease, Low-Density Lipoprotein, Asthma, and 

Rheumatoid Arthritis), showing the specificity of these enrichments. In summary, common 

https://paperpile.com/c/uEyN9q/Jb3Fx+jLD4V
https://paperpile.com/c/uEyN9q/FBFAg+GGtXw
https://paperpile.com/c/uEyN9q/FBFAg+GGtXw
https://paperpile.com/c/uEyN9q/EDiDj+AM0mz
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variants within Wnt-responsive genes and regulatory elements contribute to inter-individual 

differences in brain structure, neuropsychiatric disease risk, and cognitive ability. 

Context-specific genetic effects on chromatin accessibility and gene expression 

Because Wnt-responsive gene expression and regulatory elements contribute to inter-

individual differences in brain traits, we sought to identify common single nucleotide 

polymorphisms (SNPs) and indels affecting gene regulation during Wnt-stimulation. We mapped 

chromatin accessibility and expression quantitative trait loci (ca/eQTL) using stringent control 

for known and unknown confounding and use of a hierarchical multiple testing correction 

(Methods). We identified over 43,000 caQTLs (caSNP-caPeak pairs) in each condition regulating 

36,423 unique caPeaks (FDR-adjusted P < 0.1; number of caQTL pairs = 43,664 Vehicle; 57,718 

WNT3A; 57,581 CHIR; Fig. 3A-B). We also identified ~2,000 eQTL (eSNP-eGene pairs) in each 

condition regulating 3,089 unique eGenes (FDR-adjusted P < 0.1; number of eQTL pairs = 2,025 

Vehicle; 2,075 WNT3A; 1,961 CHIR) (Fig. 3C-D, tables S10-11). The observed effect size of vehicle 

ca/eQTLs in this study strongly correlated with ca/eQTL effect sizes using largely overlapping 

hNPC samples cultured during previous studies (Liang et al. 2021; Aygün et al. 2021), indicating 

our findings are highly reproducible (caQTL r = 0.87, P < 1 x 10-323; eQTL r =  0.89, P < 1x10-323; 

fig. S11). The majority of caSNPs (mean of 74% across conditions) show experimentally validated 

effects on TF binding via the SNP-SELEX assay (Yan et al. 2021) (fig. S12), providing further 

validation of the associations discovered here. When the same SNP was identified as both a caQTL 

and an eQTL for a given stimulus, we observed strong positive correlation between effect sizes on 

chromatin accessibility and gene expression, also as found in our previous work (fig. S13, table 

S17), showing that alleles increasing chromatin accessibility generally lead to increased gene 

expression.  

https://paperpile.com/c/uEyN9q/FBFAg+xblxB
https://paperpile.com/c/uEyN9q/fQRew
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Figure 2.3: Context-specific genetic effects on chromatin accessibility and gene 
expression  

Miami plots depict significant caQTLs (A, B) or eQTLs (C, D) detected under WNT3A 

(orange) (A, C), CHIR (blue) (B, D) or vehicle conditions (gray) across the genome. Circled 

variants denote significant genotype-by-condition interaction effects (r-QTLs). A subset 
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of protein-coding eGenes overlapping r-caQTLs and eGenes are labeled. The number of 

context-specific caPeaks (E) or eGenes (F) shared across vehicle, WNT3A, and CHIR 

conditions. Columns labeled in red represent caPeaks or eGenes only detected in Wnt-

stimulated conditions. (G) Fraction of response-caQTL-regulated caPeaks vs all other 

caPeaks containing TCF7, TCF7L1, TCF7L2, or Lef1 motifs. P-values denote significance 

of the difference in proportions of response and non-response caPeaks containing a 

TCF/Lef motif, evaluated by logistic regression. (H) Distributions of absolute genomic 

distances between eQTLs and their target gene’s transcriptional sites (TSS). Boxplots 

summarizing these distances are shown in the inset.  

 

We observed a 66.2% increase in caPeaks and a 52.7% increase in eGenes detected in the 

Wnt stimulated states as compared to vehicle (Fig. 3E-F). Though stimulus-specific caPeaks and 

eGenes were not statistically evaluated for different genetic effects across conditions, we found 

the majority of these caPeak/eGenes were also novel when when comparing the stimulated 

condition with a previous unstimulated ca/eQTL dataset within the same cell type (Aygün et al. 

2021; Liang et al. 2021) (fig. S11). While we applied FDR-adjusted P < 0.1 thresholding to QTL 

discovery, these conclusions were robust to a more stringent FDR-adjusted P < 0.01 threshold 

(fig. S14). These results bolster confidence in the novel detection of genetically regulated elements 

under stimulated conditions, and show that Wnt stimulation reveals stimulus-specific genetic 

effects on gene regulation previously undetected in unstimulated cells. 

Together, stimulus-specific caQTLs and eQTLs enable inference of enhancer priming, 

where a genetic variant is associated with chromatin accessibility in both unstimulated and 

stimulated conditions, but only leads to changes in gene expression in the stimulated condition. 

In this way, enhancers are primed to drive gene expression upon recruitment of additional 

stimulus-specific TFs. In total, we detected 397 primed regulatory elements. Primed regulatory 

elements were significantly enriched for a variety of genomic annotations from the fetal brain 

https://paperpile.com/c/uEyN9q/xblxB+FBFAg
https://paperpile.com/c/uEyN9q/xblxB+FBFAg
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called by chromHMM, including transcription start sites, enhancers, and bivalent enhancers, but 

not heterochromatin, quiescent or transcribed regions (Fig. 4A-B). Surprisingly, we found that 

primed elements were not more enriched in bivalent enhancers as compared to non-primed 

elements. Instead, primed caPeaks showed greater enrichment  near active transcription start 

sites than did non-primed caPeaks (Fig. 4A-B). Because primed caPeaks are defined by their 

proximity to stimulation-specific eQTLs, this enrichment may in part be driven by the tendency 

of eQTLs themselves to be located near promoter regions (GTEx Consortium 2020). One example 

of a primed peak was found at a caPeak 53kb from the TSS of CLINT1, where we detected two high 

LD SNPs within the peak strongly associated with chromatin accessibility in both vehicle and 

under CHIR stimulation, one of which disrupts the CTCF motif (table S12). But, this locus was 

only associated with gene expression under CHIR stimulation, presumably due to the recruitment 

of β-catenin to TCF/LEF motifs present in this peak (Fig. 4C-E). CLINT1 protein interacts with 

clathrin to mediate endocytosis, a process important for both secretion of WNT ligands and WNT-

induced accumulation of β-catenin in the nucleus (Brunt and Scholpp 2018; Blitzer and Nusse 

2006). 

https://paperpile.com/c/uEyN9q/8HFPh
https://paperpile.com/c/uEyN9q/LGMx6+NCACB
https://paperpile.com/c/uEyN9q/LGMx6+NCACB
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Figure 2.4: Enhancer priming identified through context-specific molecular QTLs 

Enrichment of primed and non-primed CHIR (A) and WNT3A (B) caPeaks within 

chromHMM states defined in the fetal brain. *, **, *** indicate enrichments with P-values 

< 0.05, .01 and .001, respectively. Numeric labels indicate overlap count of a caPeak with 

a given annotation. (C) Allelic effects of rs34417617 on chromatin accessibility of WRE 

(chr5:157912521-157914710) (left) and CLINT1 expression (right). (D) Regional 

association plots at the CLINT1 locus. From top to bottom: Genomic coordinates, gene 

models, eQTL and caQTL P values for vehicle and CHIR-stimulated conditions, ATAC-seq 

coverage showing differential chromatin accessibility, with SNPs linked by LD (r2 > 0.8), 
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TCF/LEF elements annotated, and chromHMM features. (E) Putative mechanism for 

rs34417617 regulating chromatin accessibility and gene expression in the vehicle and 

stimulated conditions. 

 

To identify whether Wnt activation alters the function of a genetic variant in regulating 

chromatin accessibility or target gene expression, we performed a genotype by condition 

interaction test which statistically assesses the impact of stimulation on the genotypic effect 

compared to vehicle. We labeled the significant results as r-QTLs, which are complementary to 

the stimulus-specific QTLs defined above, though are not expected to be identical. For example, 

a genetic variant with effects on gene expression only in the vehicle condition, but not in the 

stimulated condition, would be an r-eQTL, but not a stimulus-specific eQTL. We detected 291 and 

1,800 r-caQTLs, and 22 and 102 significant r-eQTLs in WNT3A, CHIR, respectively (labeled with 

circles in Fig. 3A-D, fig. S15, tables S13-14). The directionality and magnitude of QTL effect sizes 

were generally consistent between stimulated and unstimulated conditions, but r-QTLs exhibited 

differential effects in the stimulated condition (fig. S15). Chromatin accessibility peaks regulated 

by r-caQTLs were enriched in specific transcription factor binding site (TFBS) motifs as compared 

to all other caPeaks (table S15). For example, significantly more TCF7, TCF7L1/2, and Lef1 motifs 

were found within CHIR or WNT3A response peaks as compared to non-response peaks (Fig. 3G), 

suggesting that these Wnt-stimulation-specific TFs lead to context-dependent genetic effects on 

chromatin accessibility. Interestingly, the transcription factor motif most significantly associated 

with response-caPeaks, ARID3A, is involved in neural fate specification (Yao et al. 2017; Pavlaki 

et al. 2022), and interacts with TCF7 to co-bind regulatory elements in murine T cell progenitors 

(Astori et al. 2020). Response caPeaks were enriched within several chromHMM genomic 

annotations including active TSS, enhancers, and bivalent enhancers. Response caPeaks were 

significantly less enriched for active TSS and enhancers as compared to non-response caPeaks, 

perhaps because these response caPeaks flag novel condition specific enhancers not annotated in 

https://paperpile.com/c/uEyN9q/tgMiy+CjRUE
https://paperpile.com/c/uEyN9q/tgMiy+CjRUE
https://paperpile.com/c/uEyN9q/EgYab
https://paperpile.com/c/uEyN9q/EgYab
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post-mortem fetal brain tissue (fig. S16). We also observed that r-eQTLs were more distal to the 

TSS of the regulated eGene as compared to non-r-eQTLs (Fig. 3H). This finding is consistent with 

the idea that context-dependent regulatory elements are farther from the genes they regulate than 

are non-context-dependent regulatory elements (Dimas et al. 2009). 

Genomic regions undergoing rapid human-specific evolution are enriched in caPeaks 

Non-coding genomic regions likely contributed to the expansion of the cerebral cortex 

along the human lineage, but it has been difficult to identify specific evolutionarily relevant 

regulatory elements involved in brain development (Sousa et al. 2017). Human accelerated 

regions (HARs) and human ancestor quickly evolved regions (HAQERs) are largely non-

overlapping sets of genomic regions that have acquired many mutations since the divergence of 

chimpanzees and humans (Capra et al. 2013; Mangan et al. 2022). HARs have the constraint of 

being highly conserved until the divergence of humans and chimpanzees, so likely represent 

ancestral regulatory elements with altered function in humans; whereas HAQERs do not have this 

constraint so could represent new regulatory elements generated from previously non-functional 

sequences along the human lineage. Many HARs have been shown to act as neurodevelopmental 

enhancers and HAQERs are highly enriched within bivalent chromatin states in the developing 

human brain, sites which are thought to regulate expression of context-responsive, 

developmentally relevant genes (Girskis et al. 2021; Mangan et al. 2022). We found 123 HARs 

and 37 HAQERs (out of 2,751 and 1,581 that were defined, respectively) overlapped caPeaks, 

yielding a highly significant enrichment both across and within stimulated and unstimulated 

conditions (Fig. 5A-D, table S16). Interestingly, Wnt stimulation led to a higher overlap of caPeaks 

with HARs/HAQERs compared to unstimulated cells (48% and 60% increase in HAR and 

HAQERs, respectively), consistent with the idea that these genomic elements have gained Wnt-

responsive developmental function that sets human cortical development apart from our recent 

non-human primate ancestors. 

https://paperpile.com/c/uEyN9q/lp24U
https://paperpile.com/c/uEyN9q/Qaile
https://paperpile.com/c/uEyN9q/IjClz+XAooD
https://paperpile.com/c/uEyN9q/jE4dG+XAooD
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A notable HAR-caPeak overlap was found at a previously validated distal enhancer of the 

Wnt ligand receptor gene FZD8, where the human, but not chimpanzee, enhancer ortholog has 

been shown to expand the cerebral cortex in transgenic mouse models (Boyd et al. 2015). Here, 

we found that this HAR overlapped a caPeak where Wnt stimulation led to significantly decreased 

chromatin accessibility. The peak also contained a common variant with consistent effects on 

chromatin accessibility across stimulation conditions that overlapped a Lef1 binding motif (Fig. 

5E-F). Though we found strong genetic regulation of chromatin accessibility at this HAR, we did 

not find evidence that FZD8 expression was genetically regulated by the same locus. Our results 

provide additional support that this evolutionarily relevant region is a functional Wnt-sensitive 

regulatory element in human neural progenitors and that common genetic variation influences 

its chromatin accessibility. 

Additionally, we highlight two HAQER-caPeak overlaps near PAX8/PSD4 and the 

promoter region of HAR1A/B that exhibit Wnt-responsive genetic effects on chromatin 

accessibility (fig. S17-18). Together, HAR/HAQER-caPeak overlaps show that some non-coding 

genetic elements with evidence of positive selection along the human lineage harbor common 

variation that alters chromatin accessibility in response to Wnt stimulation in developing neural 

progenitor cells. 

https://paperpile.com/c/uEyN9q/ss3Rs
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Figure 2.5: caPeaks overlap with regions undergoing rapid human-specific 
evolution 

(A, C) The number of caPeaks overlapping HARs and HAQERs, respectively, across 

vehicle, WNT3A, and CHIR conditions. Columns labeled in red represent overlaps only 

detected in Wnt-stimulated conditions. (B, D) Enrichment -log10(P) values of HARs and 

HAQERs, respectively within unique caPeaks across all conditions and within each 

condition. (E) Allelic effects of rs913167 on chromatin accessibility (chr10:35949291-

35950950). (D) Regional association plots at rs913167, the index SNP for a caPeak-HAR 

overlap. From top to bottom: Genomic coordinates, gene models where the boxed region 

shows the location of FZD8 ~300kb away from the caPeak, caQTL P-values for vehicle, 

WNT3A, and CHIR-stimulated conditions, ATAC-seq coverage showing differential 

chromatin accessibility, TCF/LEF elements annotated, and HAR location.  
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Identifying context-dependent gene regulatory loci shared with brain-related GWAS traits 

Partitioned heritability analysis revealed that GWAS loci associated with neuropsychiatric 

disorder risk and brain structures are enriched at WREs, demonstrating that these elements 

contribute broadly to brain phenotypes (Fig. 2). However, enrichments do not nominate specific 

genes and variants underlying these contributions. In order to identify variants and putative gene 

regulatory mechanisms to explain brain trait GWAS loci including brain structure, function, 

neuropsychiatric disorders, and cognitive ability, we examined caQTLs and eQTLs with LD-

overlap to GWAS loci (table S8). Based on this analysis, we identified 1,684 regulatory elements 

and 169 genes involved in brain-traits in the vehicle condition (Fig. 6A). The use of stimulated 

conditions increased the number of brain-trait associated peaks by 72.2% and genes by 57.3% 

(Fig. 6B), demonstrating that they may explain some of the ‘missing regulation’ underlying GWAS 

loci. 6,965 caQTL-GWAS pairs and 1,189 eGene-GWAS pairs were unique to stimulated 

conditions (Fig. 6C, table S18-19). 27% of eGenes regulated by any eQTL detected in our study 

that overlapped GWAS loci represent novel overlaps specific to developing hNPCs not previously 

reported as eQTLs detected in bulk postmortem human brain frontal cortex (GTEx Consortium 

et al. 2017). Of these eGenes detected only in WNT3A- or CHIR-stimulated conditions, 30% were 

not identified as eQTLs in  adult bulk postmortem frontal cortex from GTEx, showing that 

stimulus specific eQTLs reveal novel mechanisms underlying GWAS loci undetected without 

stimulation (table S19). 

Among GWAS colocalized regions, 45 caPeaks (7 WNT3A, 38 CHIR) and 5 eGenes (1 

WNT3A, 4 CHIR) are regulated by r-QTLs. We highlight two context-dependent colocalizations 

with r-e/ca-QTLs that we confirmed by conditional analysis. First, a CHIR r-eQTL modulating 

expression of ANKRD44 (rs979020-T, Fig. 6D, fig. S19A) colocalized with schizophrenia GWAS 

and the volume of the left presubiculum body hippocampal subfield (Trubetskoy et al. 2022; 

Smith et al. 2021). ANKRD44 encodes an ankyrin repeat domain functioning as a regulatory 

subunit of protein phosphatase-6 (PP6), an enzyme that regulates the cell cycle and suppresses 

https://paperpile.com/c/uEyN9q/YojpH
https://paperpile.com/c/uEyN9q/YojpH
https://paperpile.com/c/uEyN9q/1Ataf+4mGbG
https://paperpile.com/c/uEyN9q/1Ataf+4mGbG
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NF-kB signaling, a pathway known to engage in cross-talk with Wnt signaling (B. Stefansson et 

al. 2008; Bastians and Ponstingl 1996; Ziembik et al. 2017; Du and Geller 2010). The T allele of 

rs979020 is associated with increased expression of ANKRD44, decreased risk of schizophrenia, 

and reduced volume of the hippocampal presubiculum. This colocalization underscores the 

connection between decreased hippocampal volume and schizophrenia (Roeske et al. 2021; 

Sasabayashi et al. 2021) and suggests Wnt-responsive regulation of ANKRD44 in neural 

progenitors plays a role in the expression of these traits. A second example is the colocalization of 

a CHIR r-caQTL (rs1992311; Fig. 6E, fig. S20) with a CHIR-responsive DPYSL5 eQTL signal and 

a GWAS of average thickness of the isthmus cingulate region. DPYSL5, also known as CRMP5, 

has shown to be a negative regulator of neural progenitor proliferation (Veyrac et al. 2011). A 

Pou5f1::Sox2 motif is predicted to be disrupted by the caSNP in this caPeak (rs4665363-G; fig. 

S20E) which is likely modulated in the stimulation condition by TCF/LEF binding to motifs 

present in the same peak. This suggests that rs4665363 is a putative causal variant altering 

chromatin accessibility and downregulating DPYSL5 expression, which may lead to increase of 

average thickness of the isthmus cingulate. We also observed stimulus-specific colocalizations 

supported by eCAVIAR (fig. S21), including FADS3 with bipolar disorder (Mullins et al. 2021), 

and ENO4 with variants associated with regional cortical surface area including insula (Grasby et 

al. 2020) (figs. S22-S23). These results highlight that fine-mapping via integrating r-QTLs and 

GWAS traits support putative regulatory mechanisms that impact brain-related GWAS traits. 

https://paperpile.com/c/uEyN9q/txmvC+xxAPE+Kz7Ey+f0GAF
https://paperpile.com/c/uEyN9q/txmvC+xxAPE+Kz7Ey+f0GAF
https://paperpile.com/c/uEyN9q/EqIe0+oUoRD
https://paperpile.com/c/uEyN9q/EqIe0+oUoRD
https://paperpile.com/c/uEyN9q/Ra8hm
https://paperpile.com/c/uEyN9q/bbqX
https://paperpile.com/c/uEyN9q/IKN25
https://paperpile.com/c/uEyN9q/IKN25
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Figure 2.6: Using WNT context-dependent gene regulation to inform mechanisms 
underlying complex brain traits 

(A) The number of caPeaks (left) or eGenes (right) overlapping brain-related GWAS loci 

defined by moderate LD (r2 > 0.6 in either 1KG EUR population or our study) across 

vehicle, WNT3A and CHIR conditions. (B) The cumulative number of colocalized caPeaks 

or eGenes increases across stimulation conditions. (C) Shared or condition-specific 

caPeaks (left) or eGenes (right) colocalized with brain-related GWAS traits in each 

condition. Columns labeled in red indicate colocalizations only detected in Wnt-

stimulated conditions. (D) Regional association plot depicting colocalization of 

schizophrenia (top panel) and the volume of a hippocampal subfield (presubiculum body, 

left hemisphere) GWAS with a CHIR-responsive eQTL modulating ANKRD44 expression 

(rs979020-T, CHIR vs vehicle interaction FDR-adjusted P = 0.09). From top to bottom: 

Genomic coordinates and gene models, P values for brain-related GWAS, P values for 

condition-specific QTLs discovered in this study, and differentially accessible regions 

(DAR) within the locus. Differences in the patterns of association are likely due to 

population differences in LD between the GWAS and QTL studies. (E) Regional 

association plot depicting colocalization of average thickness of isthmus cingulate GWAS 

with a CHIR-responsive eQTL modulating DPYSL5 expression and a CHIR-responsive 

caQTL (rs1992311, interaction FDR-adjusted P = 0.041; chr2:26932281-26934470, in an 

intron of DPYSL5), arranged as in (D). 

2.3 Discussion 
In this study, we stimulated the Wnt pathway in a library of human neural progenitor 

cells and measured chromatin accessibility and gene expression across the genome. Wnt 

stimulation robustly altered chromatin accessibility and gene expression including opening of 

chromatin at TCF/Lef motifs, and increased expression of known Wnt-pathway target genes 

including those associated with cell cycle (Nusse and Clevers 2017) (Fig. 1A-F). We defined a 

https://paperpile.com/c/uEyN9q/SfwY6
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comprehensive set of Wnt-responsive regulatory elements present in human neural progenitor 

cells, and show that these elements are recruited during stimulation to regulate Wnt-responsive 

genes, like AXIN2 (Fig. 1G). WREs strongly contribute to heritability for a variety of psychiatric 

disorders, brain structure, and cognitive traits, implying that these brain-trait associated 

variants function during patterning of neural progenitors in fetal development and contribute to 

inter-individual differences in adult brain traits (Fig. 2). Inherent genetic variation in this hNPC 

library led to significant differences in chromatin accessibility at over 30,000 regulatory 

elements, and significant differences in gene expression at over 3,000 genes (Fig. 3). 

Interestingly, Wnt stimulation impacted regulatory elements and genes that were undetected in 

unstimulated states, and enabled inference of stimulation-specific gene regulatory relationships. 

Our results show that genetic variation has context-dependent function, even within a single 

cell-type (Fig. 3,4). Some genetically influenced regulatory elements show evidence of positive 

selection along the human lineage, indicating they are context-dependent regulatory elements 

important for the evolution of the human brain (Fig. 5). In addition, genetically influenced 

regulatory elements and genes revealed additional mechanisms underlying GWAS signals, 

providing regulatory elements, genes, cell types, and cell states that impact psychiatric disorder 

risk and other brain-related traits that are candidates for future functional testing (Fig. 6). 

These results demonstrate that the function of some genetic variants are dependent on 

environmental stimuli. New genetic variant function can be revealed through stimulation, where 

no detectable effect on gene regulation is observed in unstimulated states (Fig. 3,6D). 

Conversely, genetic variant function can be hidden during stimulation but only revealed in 

unstimulated states (Fig. 3). Another possibility is that genetic variants can have an effect in 

both unstimulated and stimulated states, but a stronger effect in one condition showing that the 

stimulus modulates a variant’s effect (Fig. 3,6E). All scenarios indicate that stimulation alters 

the function of genetic variation and are detectable through interaction analyses, but future 
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development of statistical tools that can separate these possibilities will aid biological 

interpretations. 

Common genetic variants associated with complex brain traits have low effect sizes 

individually, but represent an important causal foothold to understand mechanisms underlying 

neuropsychiatric disorder risk and inter-individual differences in brain traits (Sullivan and 

Geschwind 2019). Most research focusing on understanding the regulatory function of non-

coding genetic variation relies on bulk adult post-mortem tissue which cannot respond to 

external stimuli and lacks cell-type specificity. Our study addresses this limitation and reveals 

novel mechanisms underlying GWAS traits, where some colocalizations were undetected by bulk 

adult post-mortem eQTLs (GTEx Consortium et al. 2017). 30% of unique Wnt stimulus-specific 

eGenes overlapping brain-trait GWAS, and 57% of genes regulated by primed enhancers were 

novel compared to post-mortem frontal cortex GTEx eQTLs. While increasing sample sizes 

using large multi-site consortia-based bulk post-mortem molecular QTLs may also capture some 

context-specific genetic effects, still 11% of stimulus-specific eGenes overlapping brain-trait 

GWAS were regulated by novel eQTLs undiscovered by Metabrain, which has >12 times the 

sample size of GTEx (N. de Klein et al. 2023). These context-specific gains are similar to those 

reported in a recent study characterizing response-eQTLs in a similar sample size which found 

39% novel disease-colocalized eGenes compared to GTEx (Panousis et al. 2023). This suggests 

that context-specific QTL approaches will yield additional colocalizations relative to post-

mortem brain QTLs, which are unable to model stimulus response (Umans, Battle, and Gilad 

2020) A growing number of novel context-specific signals underscores that consideration of 

stimulus, cell-type, and developmental time illuminates some of the ‘missing regulation’ linking 

genetic variants to the expression of GWAS traits. 

Previous work from our group and others has found that brain-trait associated genetic 

variants are enriched in regulatory elements present in the fetal brain (Grasby et al. 2020; M. Li 

et al. 2018; Warrier et al. 2023; Liang et al. 2021; de la Torre-Ubieta et al. 2018). Here, we 

https://paperpile.com/c/uEyN9q/jwCNp
https://paperpile.com/c/uEyN9q/jwCNp
https://paperpile.com/c/uEyN9q/YojpH
https://paperpile.com/c/uEyN9q/6BUBH
https://paperpile.com/c/uEyN9q/til8P
https://paperpile.com/c/uEyN9q/hIev
https://paperpile.com/c/uEyN9q/hIev
https://paperpile.com/c/uEyN9q/IKN25+DycWU+o0k1P+FBFAg+GGtXw
https://paperpile.com/c/uEyN9q/IKN25+DycWU+o0k1P+FBFAg+GGtXw
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extend this work using a study design that employed prenatally-derived primary human neural 

progenitor cells stimulated with a potent developmental signaling pathway involved in cell 

proliferation and brain patterning. Our results imply that genetic variants exert context-

dependent effects during early neurodevelopment that can lead to differences in adult brain and 

behavioral traits.  

Paired chromatin accessibility and gene expression QTLs allowed us to detect 397 gene 

regulatory relationships indicative of enhancer priming, where genetic effects on chromatin 

accessibility are present in both unstimulated and stimulated conditions, but genetic effects on 

gene expression require a stimulus (Alasoo et al. 2018) (Fig. 4). Bivalent elements are defined as 

those with both active and repressive chromatin marks. These elements are posited to poise 

regulatory elements for quick activation of target genes, though little support for this function 

has been described (Kumar et al. 2021; Macrae, Fothergill-Robinson, and Ramalho-Santos 

2023). We found that primed enhancers were less enriched in regions with bivalent chromatin 

than non-primed elements. While this could be due to differences in eQTL detection power, 

another possibility is that priming and poising are not necessarily overlapping mechanisms. We 

hypothesize that bivalent enhancers tend to regulate gene expression that establishes 

commitment to cell fate decisions and operate on a relatively slower time-scale that requires 

editing of chromatin modifications (Macrae, Fothergill-Robinson, and Ramalho-Santos 2023). 

In contrast, primed enhancers may regulate genes in a relatively faster and more plastic manner 

dependent on binding of stimulus specific transcription factors and do not require both active 

and repressive chromatin marks. 

We noted significant overlap between our caPeaks and regions of rapid evolution in 

human ancestors defined by cross-species sequence comparisons (HARs/HAQERs) (Mangan et 

al. 2022; Capra et al. 2013) (Fig. 5). These overlaps provide further evidence that at least some 

HARs/HAQERs are indeed functional stimulus-specific regulatory elements active during brain 

development. Most previous research to understand the function of these regions has been 

https://paperpile.com/c/uEyN9q/vfg0T
https://paperpile.com/c/uEyN9q/DHpV4+yETDp
https://paperpile.com/c/uEyN9q/DHpV4+yETDp
https://paperpile.com/c/uEyN9q/yETDp
https://paperpile.com/c/uEyN9q/XAooD+IjClz
https://paperpile.com/c/uEyN9q/XAooD+IjClz
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conducted in post-mortem tissue or unstimulated cells, but here we show that consideration of 

developmentally relevant cell-types and stimuli can identify undiscovered functions of 

regulatory elements important for human-specific evolution (Girskis et al. 2021; Won et al. 

2019; Mangan et al. 2022). A striking example was identified at an overlap of the HARE5 distal 

enhancer of FZD8, where the human ortholog has been shown to drive brain enlargement by 

accelerating the cell cycle in neural progenitor cells when expressed as a transgene construct in 

mice (Boyd et al. 2015). Here, we were able to additionally confirm that this HAR has regulatory 

function in the endogenous human genome within neural progenitor cells and is Wnt sensitive. 

Interestingly, this HAR-overlapping caPeak also harbors common genetic variation within a Lef 

binding site that alters its chromatin accessibility, showing that HARs tolerate functional 

variation. Similarly, HAQERs are highly mutable and enriched for common genetic variants 

associated with a variety of neuropsychiatric disorders, further supporting that genetic variation 

within evolutionarily relevant hot-spots influences the expression of complex brain traits (Doan 

et al. 2016). Because common genetic variants within both HARs and HAQERs can influence 

local chromatin accessibility, we speculate that these annotations represent functional 

regulatory elements that affect hNPC developmental fate decisions driving human-specific 

cortical expansion and in turn may influence brain-related traits. 

caQTL and eQTL mapping revealed novel effects of common genetic variants undetected 

in unstimulated states. While sample size limits QTL discovery, and especially response-QTL 

power, we discovered thousands of Wnt stimulus-specific caPeaks and eGenes. Genetic effects 

detected under unstimulated conditions replicated those found in previous studies of 

unstimulated hNPC QTLs, underscoring the robustness of in vitro QTL study design. We 

focused on studying genetic variation during stimulation of the well-studied and 

developmentally important Wnt signaling pathway, because alterations in this pathway have 

been associated with risk for neuropsychiatric disorders, all brains are exposed to this stimulus 

during development, activators and inhibitors are available, and the downstream effectors of the 

https://paperpile.com/c/uEyN9q/jE4dG+7Cwyq+XAooD
https://paperpile.com/c/uEyN9q/jE4dG+7Cwyq+XAooD
https://paperpile.com/c/uEyN9q/ss3Rs
https://paperpile.com/c/uEyN9q/cssq6
https://paperpile.com/c/uEyN9q/cssq6
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signaling pathway on gene expression are well-characterized (Chenn and Walsh 2002; D. V. 

Hansen, Rubenstein, and Kriegstein 2011; Harrison-Uy and Pleasure 2012; Grasby et al. 2020; 

Evgrafov et al. 2020; Topol et al. 2015; Marchetto et al. 2017; Krumm et al. 2014; Caracci et al. 

2021; Pasko Rakic 2009). Expansion of this approach in large populations of primary human 

neural progenitor cells or induced pluripotent stem cells can investigate other gene-by-

environment interactions in a dish. Specifically, similar study designs evaluating stimulation for 

different durations, stimulation of additional signaling pathways relevant to brain development 

(T. Sun and Hevner 2014), exposures to environmental insults (Jerber et al. 2021), responses to 

clinically useful drugs (Wolter, Le, et al. 2022) or modulation of neuronal activity (Boulting et al. 

2021), may reveal additional genetic effects that are masked in QTL studies conducted in bulk 

post-mortem tissue. 

2.4 Materials and Methods 

Ethics statement for human tissue-derived cell-lines 

This study followed IRB regulations to derive human NPC cell-lines from prenatal tissue 

collected at the UCLA Gene and Cell Therapy facility following voluntary termination of 

pregnancy. 

Generation of hNPC lines 

Fetal brain tissue visually consistent with dorsal telencephalon morphology (flat and 

sheet-like) was collected at 14-21 gestation weeks from presumed neurotypical donors to derive 

primary human NPCs as previously described (Aygün et al. 2021; Stein et al. 2014; Liang et al. 

2021). To summarize, tissue was dissociated into single cells which were cultured as neurospheres 

before transfer to fibronectin (Sigma F1141) and Poly-L-Ornithine (Sigma P3655) coated plates. 

Neuronal differentiation was suppressed to maintain NPCs in a proliferative state by following 

previously established culture methods (Liang et al. 2021). After 2-3 passages, NPC lines were 

cryopreserved and transferred to UNC Chapel Hill. NPC media: Neurobasal A (Life Technologies 

10888-022) supplemented with 100 µg ml−1 primocin (Invivogen ant-pm-2), 10% BIT 9500 

https://paperpile.com/c/uEyN9q/EDiDj+ZK5vH+KOKok+IKN25+ReT5K+cHGzj+Rdttf+zCtUx+GDihX+WPv54
https://paperpile.com/c/uEyN9q/EDiDj+ZK5vH+KOKok+IKN25+ReT5K+cHGzj+Rdttf+zCtUx+GDihX+WPv54
https://paperpile.com/c/uEyN9q/EDiDj+ZK5vH+KOKok+IKN25+ReT5K+cHGzj+Rdttf+zCtUx+GDihX+WPv54
https://paperpile.com/c/uEyN9q/EDiDj+ZK5vH+KOKok+IKN25+ReT5K+cHGzj+Rdttf+zCtUx+GDihX+WPv54
https://paperpile.com/c/uEyN9q/rM53E
https://paperpile.com/c/uEyN9q/rM53E
https://paperpile.com/c/uEyN9q/W74Xl
https://paperpile.com/c/uEyN9q/uSIrN
https://paperpile.com/c/uEyN9q/1X8Aa
https://paperpile.com/c/uEyN9q/1X8Aa
https://paperpile.com/c/uEyN9q/xblxB+IJddq+FBFAg
https://paperpile.com/c/uEyN9q/xblxB+IJddq+FBFAg
https://paperpile.com/c/uEyN9q/FBFAg
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(Stemcell Technologies 09500), 1% glutamax (100x; Life Technologies 35050061), 1 µg ml−1 

heparin (Sigma-Aldrich H3393-10KU), 20 ng ml−1 EGF/FGF (Life Technologies 

PHG0313/PHG0023), 2 ng ml−1 LIF (Life Technologies PHC9481) and 10 ng ml−1 PDGF (Life 

Technologies PHG1034).  

hNPC cell culture and WNT-stimulation 

We cultured cryopreserved hNPCs in batches of 8 cell lines per week, pseudo-randomizing 

each experimental group for biological variables (sex and donor gestation week), and technical 

variables (passage number). Following a two-week expansion period, we plated 400k NPCs per 

well of a 6-well plate for each cell-line. Next, we exposed each well to either vehicle (Neurobasal 

A media supplemented with PBS+0.1%BSA and DMSO), 5nM WNT3A in PBS+0.1% BSA, or 

2.5uM CHIR in DMSO for 48h. All exposures were prepared such that equal volumes were applied 

for each stimulated condition, including a “balancer” solution composed of culture media, 

PBS+0.1% BSA, DMSO, and water in order to standardize diluents across all exposures. We 

focused on this time-point because Wnt target gene expression was maximized in hNPCs after 

48h exposure to 10uM CHIR in previous experiments (Wolter, Le, et al. 2022). The well-position 

of each exposure was rotated every week of the experiment to minimize the potential effects of 

plate position. After 48h exposure to stimuli or vehicle, cells were lifted with Accutase (Thermo 

Fisher Scientific A1110501) for preparation of ATAC-seq and RNA-seq libraries. We generated 2-

6 separately cultured replicates for each of 6 randomly selected donors to measure technical 

variation across the experiment. We utilized cell culture media, growth factors, additives, and 

WNT-stimulating exposures from the same manufacturer lots across the entire experiment, 

whenever possible, to mitigate potential batch effects. When it was not possible to use the same 

lot of reagent, this information was recorded. One individual (JMV) performed all hNPC cultures 

and exposures to stimuli to minimize variance in handling effects. The investigators were not 

explicitly blinded to the donor during cell culture or library preparation. However, the 

https://paperpile.com/c/uEyN9q/uSIrN
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investigators did not have knowledge of donor genotype when performing cell culture or library 

preparation. Regular pre-assay screening detected no mycoplasma contamination (ATCC 30-

1012K). 

hNPC Wnt activity luciferase assays 

Canonical Wnt pathway signaling activity was measured via a luciferase reporter assay 

(fig.  S2A-C). After two weeks of hNPC culture expansion as described above, we lifted cells with 

0.05% trypsin (Gibco 25300062) and plated 10k cells counted by hemocytometer per well of 96-

well plates (Corning 07-200-91). Cells were transduced with 10uL lentivirus carrying 

BAR:Luciferase and Tk:Renilla constructs 24 hours after plating. Plasmids were generous gifts 

from the lab of Ben Major (Major et al. 2007) and lentivirus was generated as previously 

described (Wolter, Le, et al. 2022) . After a two-day incubation, cells were exposed with either 

vehicle, CHIR, or WNT3A as described above. 48 hours later, cell lysates were collected and 

luminescence measured using the Dual-Glo luciferase system (Promega E2920) on the GloMax 

Discover plate reader (Promega). β-Catenin induced BAR:Luciferase signal was normalized by 

Renilla luminescence from the constitutively active Tk promoter.  

hNPC proliferation assays 

After two weeks of hNPC culture expansion as described above, we lifted cells with 0.05% 

trypsin (Gibco 25300062), and plated 12.5k cells counted by hemocytometer per well of 96-well 

plates (Corning 3610). We generated 4 technical replicate wells for each concentration of Wnt-

activating stimulus or vehicle, and 8 technical replicate wells for vehicle exposures per hNPC 

donor cell-line, distributing replicates across each culture plate to mitigate potential artifacts 

introduced by plate position. One day later, vehicle or Wnt activating stimuli were applied, as 

described above. 46 hours later, we exposed cells with 10 µM EdU with a 10% media addition for 

2 hours. hNPCs were collected and fixed via a 10-minute incubation in 4% paraformaldehyde in 

phosphate-buffered saline. On these cells, we labeled total DNA content with FxCycle Far Red dye 

(Thermo Fisher Scientific F10347) and performed Click-iT EdU-incorporation assays (Thermo 

https://paperpile.com/c/uEyN9q/kL9v2
https://paperpile.com/c/uEyN9q/uSIrN
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Fisher Scientific C10337) according to the manufacturer’s protocols. We quantified EdU and 

FxCycle signals using the Attune NxT 96-well Flow Cytometer (Thermo Fisher Scientific) (fig. 

S2D-F), or via high content imaging on the Nikon Eclipse Ti2 microscope followed by manual 

quantification with Fiji (fig. S2G-H). Flow cytometry data was processed with FlowJo v10.7.1 and 

cell-cycle populations defined by automated gating with FlowDensity software (Malek et al. 2015). 

Detailed methods for analysis of flow cytometry can be found in previous work (Wolter, Le, et al. 

2022).  

ATAC-seq Library preparation 

Cells were lifted and counted to isolate 50k cells per sample to be used as input for the 

Omni-ATAC protocol for library preparation (Corces et al. 2017). To summarize, 50k nuclei from 

fresh NPCs were counted via hemocytometer and tagmented using TDE1 enzyme (Illumina 

20034198) and tagmentation buffer composed of 20mM Tris-HCl pH 7.6, 10mM MgCl2, and 20% 

Dimethyl Formamide. All libraries were PCR amplified (NEB M0544S) for 5 cycles, and then each 

library was further amplified for a sample-specific additional number of cycles (average 2 

additional cycles across all samples) determined by a qPCR side reaction to avoid 

overamplification. Nextera-compatible unique dual-indexing primers barcoded each sample 

during amplification (Illumina 20027213). We purified libraries to remove primer dimers and 

eliminate fragments over 1000bp (Roche 07983298001). We validated ATAC-seq library quality 

before sequencing for a subset of samples by observing appropriate nucleosomal banding patterns 

via capillary gel electrophoresis on an Agilent 4150 TapeStation system (Agilent 5067-5584). We 

then pooled ~70 ATAC-seq libraries with unique barcodes in each of four pools, and sent pooled 

libraries for multiplexed sequencing. One individual (BDL) generated all ATAC-seq library 

preparations in order to minimize batch effects introduced by handling variance. 

RNA-seq Library Preparation 

Total RNA was isolated from each hNPC line and condition using all cells remaining 

(average 1.1M cells per sample) after removing 50k cells for ATAC-seq library preparation as 

https://paperpile.com/c/uEyN9q/zy0js
https://paperpile.com/c/uEyN9q/uSIrN
https://paperpile.com/c/uEyN9q/uSIrN
https://paperpile.com/c/uEyN9q/LWiZe
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described above. For each experimental week, hNPCs were lifted with Accutase (Thermo Fisher 

Scientific A1110501), lysed, and stored in TriZol (Thermo 15-596-026) at -80C for subsequent 

purification of total RNA using RNeasy Mini Kits and on-column DNase digestion (Qiagen 74106, 

79256). All RNA extractions were performed by the same individual (JTM) to minimize potential 

batch effects introduced by handling. We quantified RNA isolates using fluorescence-based 

Quant-iT RNA assay kits (Thermo Q33140). Mean RNA integrity number (RIN) across all samples 

was 9.86 (SD = 0.39). Library preparation was performed using a stranded total RNA kit (KAPA 

KR0934) after samples were depleted of ribosomal RNA (KAPA KR1151). 

Sequencing of ATAC-seq and RNA-seq libraries 

ATAC-seq libraries were sequenced at the NYGC to an average read depth of 49M (SD = 

13.6M) paired-end reads (2x100bp) per sample on the Illumina Novaseq platform. Total RNA-

seq libraries were sequenced at the NYGC to an average sequencing depth of 55M (SD = 13M) 

paired-end reads (2x100bp) per sample on the Illumina Novaseq platform. 

Genotyping and imputation 

hNPC genotypes were obtained from genomic DNA isolated with DNeasy Blood and Tissue 

Kit (QIAGEN 69504) using Illumina’s HumanOmni2.5 platform. Additional variants were 

imputed using the TOPMed freeze 5 reference panel (Taliun et al. 2021) with minimac4 software 

(Das et al. 2016) on the University of Michigan Imputation server. We performed quality control, 

pre-processing, and filtering of SNPs with PLINK v1.9 (Chang et al. 2015) as previously described 

(Liang et al. 2021) based on Hardy-Weinberg equilibrium, minor allele frequency, individual 

missing genotype rates, and variant missing genotype rate (plink --hwe 1e-6 --maf 0.01 --mind 

0.1 --geno 0.05). 

ATAC-seq data preprocessing 

FastQC (v0.11.9) (“Babraham Bioinformatics - FastQC A Quality Control Tool for High 

Throughput Sequence Data” n.d.) and MultiQC (v1.7) (Ewels et al. 2016) software performed 

quality control for all ATAC-seq libraries before and after trimming sequencing adapters with 

https://paperpile.com/c/uEyN9q/k8zRN
https://paperpile.com/c/uEyN9q/i4BYr
https://paperpile.com/c/uEyN9q/i4BYr
https://paperpile.com/c/uEyN9q/3dwGw
https://paperpile.com/c/uEyN9q/FBFAg
https://paperpile.com/c/uEyN9q/FBFAg
https://paperpile.com/c/uEyN9q/I65Cf
https://paperpile.com/c/uEyN9q/I65Cf
https://paperpile.com/c/uEyN9q/htp4L
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BBMap (v38.98) (“BBMap” 2022). We then mapped ATAC-seq reads to the hg38 reference 

genome with the Burrows-Wheeler Alignment tool (BWA-MEM v0.7.17) (H. Li and Durbin 2009). 

We then refined alignments to minimize mapping bias at sites where ATAC-seq reads overlapping 

bi-allelic SNPs using imputed genotypes by re-mapping and removing duplicate reads with WASP 

(v0.3.4) (van de Geijn et al. 2015). Samtools (v1.16) (Danecek et al. 2021) then removed 

unmapped or mitochondrial reads and bedtools (v2.3) (Quinlan and Hall 2010) removed reads 

mapped to genomic blacklist regions as defined by ENCODE (Luo et al. 2020).  ATAC-seq read 

metrics during and following preprocessing were calculated using picard (v2.21.7) (“Picard” n.d.) 

and ataqv software (v1.0.0) (Orchard et al. 2020) (fig. S4). We evaluated cross-sample 

contamination using verifyBAMID (Jun et al. 2012), and omitted samples with FREEMIX or 

CHIPMIX scores greater than 0.02. We also omitted samples with low transcriptional start site 

enrichment (TSSe < 5) and aberrant short read/mononucleosomal read ratios (S/M <1 or S/M > 

7). In total, 51 samples were omitted by these criteria. Principal component analysis (PCA) on 

ATAC-seq samples separated samples by stimulus condition, and not by sex or other biological or 

technical variables in the first two principal components (PCs) of variance (fig. S5). Sex and Donor 

ID, which captures cell-line intrinsic effects for each hNPC showed some correlation with other 

PCs, leading us to include these variables in QTL models described below and use residualized 

data following regression of PCs 1-10. 

Chromatin Accessibility Peak Calling 

After selecting a single ATAC-seq replicate for each donor-condition pair based first on 

whether stimulated conditions and vehicle were cultured in the same plate, and subsequently on 

on QC metrics, we called chromatin accessibility peaks from ATAC-seq reads using all samples 

excluding technical replicates with CSAW’s (v1.28) (Lun and Smyth 2016) windowCounts 

function with the options (ext = mean length of fragments, filter = 5 * sample number spacing = 

10, param = pe.param) where pe.param were max.frag = 1500, pe=’both’, minq=20. Windows 

within 100bp were merged with the mergeWindows function. Read counts were normalized 

https://paperpile.com/c/uEyN9q/gnfQX
https://paperpile.com/c/uEyN9q/XcIIo
https://paperpile.com/c/uEyN9q/8ClXH
https://paperpile.com/c/uEyN9q/0yji4
https://paperpile.com/c/uEyN9q/9CRJo
https://paperpile.com/c/uEyN9q/GfDfv
https://paperpile.com/c/uEyN9q/PXqA6
https://paperpile.com/c/uEyN9q/49uP2
https://paperpile.com/c/uEyN9q/Wf08y
https://paperpile.com/c/uEyN9q/Gv4og
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accounting for GC-content via conditional quantile normalization with cqn software (K. D. 

Hansen, Irizarry, and Wu 2012).  

Differential chromatin accessibility analysis 

We ran DEseq2 for the read counts described above to identify peaks with differential 

accessibility due to stimulus condition, called WREs. The comparisons were performed as paired 

tests within donor, hence, the model was set to Peak Accessibility ~ Donor ID + 

stimulus_condition, where Donor ID and stimulus condition were factor variables. We repeated 

this analysis for each WNT stimulus condition vs vehicle pairs (e.g. WNT3A vs Vehicle and CHIR 

vs Vehicle) or WNT3A+XAV vs WNT3A. FDR-adjusted P < 0.1 was used as the significance 

threshold. 

RNA-seq data pre-processing and analysis 

Similar to the preprocessing of ATAC-seq data described above, we initially screened RNA-

sequencing libraries using FastQC and MultiQC. We then trimmed sequencing adapters and 

mapped reads to genes as annotated by Ensembl v104 for the hg38 reference genome using the 

STAR aligner (v2.7.7a) (Dobin et al. 2013). We filtered samples with (1) low RIN score (<7), (2) 

low unique mapped rate (< 80%), (3) high mismatched rate (>50%), (4) high multi-mapping rates 

(>8%), (5) high duplicated read rates (> 30%), or (6) FREEMIX or CHIPMIX scores from 

verifyBAMID greater than 0.02. QC filtering by these criteria removed 27 samples, and retained 

a total of 242 samples. Transcripts were collapsed using collapse_annotation.py ( 

https://github.com/broadinstitute/gtex-pipeline/tree/master/gene_model) into a single gene 

model and gene-level reads were  summarized for each sample using featureCounts from 

Rsubread (v2.8.2) (Liao, Smyth, and Shi 2019). As with the ATAC-seq samples, we performed 

PCA and found that the RNA-seq samples clustered according to stimulus condition and not sex, 

RIN, or other variables in PC1 vs PC2 plots (fig. S5). Again, some PCs correlated with hNPC donor 

sex and RIN, indicating that we should include these variables in the QTL models described below 

for data corrected for PCs 1-10. Significantly higher pair-wise correlations within RNA-seq sample 

https://paperpile.com/c/uEyN9q/3m5rl
https://paperpile.com/c/uEyN9q/3m5rl
https://paperpile.com/c/uEyN9q/3OD8K
https://github.com/broadinstitute/gtex-pipeline/tree/master/gene_model
https://paperpile.com/c/uEyN9q/nAaMP
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technical replicates generated for the same hNPC donor and condition (“within donor”) compared 

to correlation across distinct donors (Evaluated by the Welch two sample t-test) supports the 

technical reproducibility of the RNA-seq dataset (fig. S3).  

After selecting a single RNA-seq replicate for each donor-condition pair based first on 

whether stimulated conditions and vehicle were cultured in the same plate, and subsequently on 

QC metrics, DESeq2 (Soneson, Love, and Robinson 2015) was used to assess differential gene 

expression from RNA-seq reads mapped to protein-coding genes or lncRNA where at least 1% of 

samples in either condition show at least 10 normalized counts. We evaluated the model RNAseq 

Count ~ RIN + Donor ID + stimulus_condition to identify DEGs. In this model, we represented 

RIN as a numeric variable and Donor ID and stimulus condition as factor variables. Shrunken 

log2 fold change (LFC) (Love, Huber, and Anders 2014) was used for estimating dispersions and 

FDR-adjusted P-value < 0.1 was used as significance threshold.  

Pathway enrichment analysis on differentially expressed genes 

To determine pathways enriched in DEGs, we first obtained up-/ down-regulated genes in 

WNT stimulus condition as compared to vehicle (shrunken LFC > 0, < 0, respectively; and FDR-

adjusted P < 0.1). All genes included in DEG analysis were used as the background. For both DEG 

and background genes, we restricted the analysis to protein-coding genes located outside the 

MHC region (chr6:28,510,120-33,480,577). Analysis was run by g:COSt from g:profiler (Reimand 

et al. 2007) for KEGG and REACTOME pathways (Ogata et al. 1999; Croft et al. 2011). FDR-

adjusted P < 0.1 was used as the statistical significance threshold. 

Motif Enrichment Analysis 

We tested differential transcription factor (TF) motif enrichment within WREs, primed-

caPeaks, or response-caPeaks for 841 predicted human TFs in JASPAR 2022 (Castro-Mondragon 

et al. 2022) core database (taxonomic group = vertebrates), using data downloaded from 

http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/ (data access date:  

May 4th 2022). We restricted analysis to TFBS motifs within conserved regions, defined by 100-

https://paperpile.com/c/uEyN9q/nSDJk
https://paperpile.com/c/uEyN9q/lBPom
https://paperpile.com/c/uEyN9q/UNMZH
https://paperpile.com/c/uEyN9q/UNMZH
https://paperpile.com/c/uEyN9q/8V8SJ+U0axH
https://paperpile.com/c/uEyN9q/PfThG
https://paperpile.com/c/uEyN9q/PfThG
http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/
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way phastCons scores > 0.4 downloaded from UCSC Genome Browser in regions ≥ 20bp (Pollard 

et al. 2010). For WREs, estimated TFBS motif enrichment within the top 2,000 chromatin 

accessibility peaks representing chromatin regions gained or lost in each stimulus condition 

(|LogFC| at FDR-adj P < 0.1 as compared to vehicle) to avoid bias introduced by the different 

number WREs across conditions. We ran a logistic regression to identify TF motifs observed more 

often in opened vs. closed peaks or response vs. non-response peaks while accounting for 

differences in peak width and percentage of peaks in conserved regions using the following model: 

glm(TFBS ~ peaktype + peadkwidth + conservedbppercent, family =’binomial’), where TFBS is 

a binary outcome that indicates whether each differentially accessible peak overlaps with TF 

binding sites, peaktype indicates open/closed WREs, or response/non-response caPeaks for each 

stimulus condition, peadkwidth indicates window size of peak and conservedbppercent indicates 

percentage of conserved regions (conserved bp / peak width ). We considered estimated effects 

of peaktype on TFBS motif presence with FDR-adjusted P < 0.1 as statistically significant. 

Correlation between chromatin accessibility and gene expression 

We estimated Pearson’s correlation between chromatin accessibility and gene expression 

using variance stabilizing transformation (VST) normalized ATAC-seq and RNA-seq read counts 

residualized by 10 global chromatin peak or gene expression PCs, respectively. For each condition, 

we tested all peaks located within 1Mb from the transcription starting site (TSS) of each gene. 

FDR-adjusted P < 0.1 was used for the statistical significance threshold.  

Disease enrichment analysis using differentially expressed genes  

We performed disease enrichment analysis for each DEG category (all-regulated/non-

DEGs) using disease_enrichment() function implemented in disgenet2r (Piñero et al. 2020). 

Disease enrichments referenced “CURATED” genes from 4,254 diseases from the DisGeNET 

database (Piñero et al. 2020), and we classified results with FDR-adjusted P < 0.1 generated by 

the disease_enrichment() function as significant. Due to limited space, we only presented diseases 

https://paperpile.com/c/uEyN9q/b1Iuu
https://paperpile.com/c/uEyN9q/b1Iuu
https://paperpile.com/c/uEyN9q/nZqw9
https://paperpile.com/c/uEyN9q/nZqw9
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if disease_semantic_type is either “Mental”, “ Behavioral Dysfunction”, “Individual Behavior” or 

“Mental Process” in Fig. 2. Full lists are provided in table S7. 

Partitioning GWAS heritability by WREs 

We first assessed the contribution of regulatory elements including tissue-type-specific or 

cell-type-specific regulatory annotations to the overall heritability of brain-related and other traits  

(table S8). Analyses were performed using Stratified LD Score regression (S-LDSC) (Finucane et 

al. 2015; Gazal et al. 2017) (v1.0.0) including the baseline-LD model (v1.2). Annotations included 

(1) Active enhancer or promoter states in fetal brains (female/male). Active enhancer and 

promoter regions were defined based on chromatin states predicted by chromHMM (Ernst and 

Kellis 2012) and included: ‘active transcription start site’, ‘flanking active TSS’, ’genic enhancers’, 

and ’enhancers’ in the core 15-state model   

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). (2) Progenitor-

specific chromatin accessible regions were defined as logFC > 0 and FDR-adjusted P < 0.1 as a 

comparison to differentiated neuronal cells. ATAC-seq data were obtained from our previous 

work (Liang et al. 2021). (3) Open or closed chromatin accessible regions by stimulus condition 

compared to vehicle conditions were defined by logFC > 0 or logFC < 0, FDR-adjusted P < 0.1 and 

identified in the current study as WREs. For (3), we included non-WREs (FDR-adjusted P > 0.1) 

in the model to test the specificity of WREs. We obtained publicly available GWAS summary 

statistics for testing partitioned heritability. The details of GWAS are provided in table S8. For 

each GWAS summary statistics, SNPs were filtered to those found in HapMap3 (The International 

HapMap 3 Consortium 2010) using munge_sumstats.py provided by LDSC. The pre-computed 

LD scores for the European population from the 1,000 Genome Project Phase 3 (1KG) (1000 

Genomes Project Consortium et al. 2015) were downloaded from 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2. Enrichment was 

assessed using P-values calculated by the annotation's standardized effect size (tau) that was 

conditioned on other annotations included in the model. FDR-adjusted P < 0.1 was used for 

https://paperpile.com/c/uEyN9q/jLD4V+LTnQH
https://paperpile.com/c/uEyN9q/jLD4V+LTnQH
https://paperpile.com/c/uEyN9q/AWTVT
https://paperpile.com/c/uEyN9q/AWTVT
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://paperpile.com/c/uEyN9q/FBFAg
https://paperpile.com/c/uEyN9q/ONHRF
https://paperpile.com/c/uEyN9q/ONHRF
https://paperpile.com/c/uEyN9q/7N0kw
https://paperpile.com/c/uEyN9q/7N0kw
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
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statistical significance threshold. We note that we also performed this analysis with a more 

stringent threshold (FDR-adjusted P < 0.01) for defining WREs, which was then used to perform 

S-LDSC partitioned heritability enrichments. The correlation of results from these two different 

thresholds was high (r > 0.85) (fig. S14). 

caQTL and response-caQTL mapping 

caQTL analyses within each condition (Vehicle, WNT3A, CHIR) were performed using the 

joint model implemented in RASQUAL (Kumasaka, Knights, and Gaffney 2016) which integrates 

both between-individual signals and allele-specific signals within individuals. Previously 

described cqn normalization factors were used as sample specific offsets. Covariates were 

included consisting of 10 count-based principal components and 10 multidimensional scaling 

(MDS) genotype components to reduce the confounding effects of technical factors and 

population structure, respectively. Variants were tested according to the following criteria (1) in a 

given accessible region or within +/- 25kb (2) minor allele frequency (MAF) ≥ 1% (3) Hardy-

Weinberg equilibrium < 0.000001 (4) imputation quality ≥ 0.3 (5) at least two individuals have 

minor homozygous allele or heterozygous allele. Multiple testing correction followed a 

hierarchical correction procedure (Aygün et al. 2021; Q. Q. Huang et al. 2018) consisting of (1) 

adjusting nominal P-values of all SNPs for each peak separately using the eigenMT method (Davis 

et al. 2016) (2) BH procedure was then applied to these locally adjusted P-values to determine 

globally adjusted P-values lower than 0.1 (3) To determine other independent SNPs for each peak, 

the maximum nominal P-value from step 1 corresponding to a globally adjusted P-value of 0.1 was 

used as a significance threshold. Due to limitations of RASQUAL, conditional analysis, where the 

top caSNP was controlled for in the association model to find additional independent signals, was 

not possible. To determine signals most likely to be distinct from the lead for each peak a LD 

threshold of < 0.2 was used iteratively until no additional significant caQTL remained. Response 

caQTL interaction analyses between vehicle and each WNT-stimulus condition (WNT3a or CHIR) 

https://paperpile.com/c/uEyN9q/DrH7T
https://paperpile.com/c/uEyN9q/xblxB+GhQIZ
https://paperpile.com/c/uEyN9q/oI2Wa
https://paperpile.com/c/uEyN9q/oI2Wa
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used the R package lme4 to evaluate the following linear mixed model for all index caQTL with 

main effects (ncaSNP = 136,163 (WNT3A_Vehicle pairs), 136,641 (CHIR_Vehicle pairs)): 

𝑎𝑑𝑗𝐶𝑜𝑢𝑛𝑡𝑠	 = 	𝑆𝑁𝑃	 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑆𝑁𝑃	 + 	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	 +	(1|𝐷𝑜𝑛𝑜𝑟) 

where condition = 0 or 1 (Veh or WNT activators, respectively). The first 10 count-based PCs were 

used as covariates. We compared the fit of the model above with and without the condition:SNP 

interaction term to assess significance. BH was then used to adjust for multiple testing (FDR-

adjusted P < 0.1). We also ran this analysis with a more stringent threshold (FDR-adjusted P < 

0.01) and our conclusions remain robust to the choice of threshold (fig. S14). 

cis-eQTL and response-eQTL mapping 

Cis-eQTL analyses within each condition (Vehicle, WNT3A, CHIR) were performed using 

a linear mixed model implemented in limix_qtl (Cuomo et al. 2021) ( https://github.com/single-

cell-genetics/limix_qtl), an optimized version of limix (Casale et al. 2015). The following genes 

and SNPs were tested: Gene: (1) at least 1% of samples in the condition have at least ≥ 10 

normalized counts; (2) protein-coding gene or lncRNA; SNP: (1) located in gene body or within 

+/- 1Mb from gene body. (2) minor allele frequency (MAF) ≥ 1% (3) Hardy-Weinberg equilibrium 

< 0.000001, (4) imputation quality ≥ 0.3, (5) at least two individuals have minor homozygous 

allele or heterozygous allele). We used the following model:  

 𝑎𝑑𝑗𝐸	 = 	𝑆𝑁𝑃	 + 𝜀 

where adjE is VST-normalized gene read count and further corrected with 10 principal 

components across the gene expression matrix, that were chosen to maximize the number of 

eQTLs (fig. S24), SNP is a genotype (0/1/2), ɛ is an error term with cov(ɛ) = (σ2uuK + σ2eI) where 

uK is the kinship matrix, σ2u Is the variance attributable to genetic relatedness, and σ2e is the 

variance attributable to random noise. The kinship matrix was generated by pcrelate() function 

in GENESIS (v2.14.1) (Conomos et al., n.d.; Gogarten et al. 2019) with 10 PCs to control ancestry 

population structure. 

https://paperpile.com/c/uEyN9q/qwxa7
https://paperpile.com/c/uEyN9q/V0148
https://paperpile.com/c/uEyN9q/psMpE+4zk0i
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Gene-level multiple corrections were done for each gene by permutation test implemented 

in limix_qtl, then applied BH-FDR for global correction. eSNP-eGene pairs with FDR-adjusted P 

< 0.1 were considered as statistically significant eQTLs. The impact of using a more stringent 

significance threshold (FDR-adjusted P < 0.01) is provided in the fig. S14D. Those eGenes were 

further tested for independent signals through conditional testing, whereby the index eSNP is 

included as a covariate in the association model. For visualization purposes, we set the 

significance line threshold for loci with no significant eQTL in the condition as follows. First, we 

obtained the maximum permutation test P-value satisfying FDR-adjusted P < 0.1 (max_permP). 

Then, we estimated the median of the maximum raw P-value less than max_permP across eGene 

as the significant line threshold. 

Response eQTL interaction analyses between vehicle and each WNT-stimulus condition 

(WNT3A or CHIR), were also performed by limix_qtl for all index eQTLs with main effects (n eSNP 

= 2,966 (WNT3A_Vehicle pairs), 2,906 (CHIR_Vehicle pairs)). The interaction term for the 

model:  

adjE = SNP + condition + condition:SNP + ε  

was tested to identify interaction effects between SNP and condition where condition = 0 or 1 

(Vehicle or WNT activators, respectively), and ɛ is defined as above. We used BH to adjust 

multiple testing (FDR-adjusted P < 0.1).  

Effects of ca/eQTLs on transcription factor binding sites  

We used motifBreakR (v.2.6.1) (Coetzee, Coetzee, and Hazelett 2015) to assess the impact 

of genetic variants within peaks on TF binding motifs surrounding significant caSNP-caPeak 

associations (parameter setting, threshold of 1x10-4) (Touzet and Varré 2007) (table S12). 

Annotated motifs (839 total TF motifs) from JASPAR2022 vertebrate were used in MotifDb 

(v1.37.1) (Shannon and Richards 2022). Relative entropy (parameter setting method, ‘ic’) for both 

reference and alternative allele was calculated and only TFBSs strongly affected by the SNPs 

(parameter setting effect, ‘strong’) were retained.  

https://paperpile.com/c/uEyN9q/yxC2K
https://paperpile.com/c/uEyN9q/o0R6f
https://paperpile.com/c/uEyN9q/Fpz3e
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Support for context-specific caQTLs from SNP-SELEX experiments 

Experimental SNP-SELEX data (Yan et al. 2021) was downloaded from 

https://renlab.sdsc.edu/GVATdb/ and used to evaluate whether caSNPs from our study altered 

TF-binding. Because the SNP-SELEX study only evaluated a subset of the SNPs we tested for 

genetic effects on chromatin accessibility, we considered all local SNPs with linkage 

disequilibrium r2 > 0.6 from the index caSNP in our study. The percentage of caQTL loci with 

caSNPs altering TF binding was calculated by dividing the number of those caQTL loci where at 

least one linked caSNP had a significant protein-binding score (PB score) by the total number of 

caQTL loci with at least one linked caSNP tested via SNP-SELEX. After evaluating the level of 

experimental support for the top 1000 significant caQTLs (and the surrounding linked caSNPs) 

with the smallest P-values in each condition, we compared this to the mean level of support for 

100 random samples of 1000 non-significant caSNPs and their surrounding linked caSNPs (fig. 

S12).   

Determining Primed Enhancer Candidates 

caPeaks sites were assessed for patterns indicative of priming or stimulus-specific signals 

within each Vehicle-WNT stimulus pair. caPeak and eGene overlaps were determined where a 

caPeak was within 1Mb of an eGene and at least 1 significant SNP in both datasets were in LD r2 

≥ 0.8 (table S17). Priming signals were called based on: (1) significant caPeaks common to both 

Vehicle and WNT stimulus condition, (2) only those loci which overlapped an eGene signal, and 

(3) a significant eGene was found specifically in the WNT stimulated condition. Stimulus-specific 

signals were assessed following the same criteria but filtering to significant caPeaks specific to the 

WNT stimulus.  

Genomic Feature Enrichment Analysis 

Primed and non-primed caPeaks were evaluated for overlaps within each Vehicle-WNT 

stimulus pair for overlaps with the 15 core chromHMM states defined in fetal brain male (E081) 

(Roadmap Epigenomics Consortium et al. 2015). All unique caPeaks across both WNT stimulated 

https://paperpile.com/c/uEyN9q/fQRew
https://renlab.sdsc.edu/GVATdb/
https://paperpile.com/c/uEyN9q/j7Lsz
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conditions were subset into response and non-response sets and overlapped with the same 

chromHMM states. HAQERs (1,581 total) and HARs (2,751 total after liftover from hg17 to hg38) 

were downloaded from previous papers and were also assessed for overlaps with genetically 

regulated caPeaks within each condition (Mangan et al. 2022; Capra et al. 2013). Significance of 

enrichment of overlaps with previously annotated genomic features within each of these datasets 

were then assessed using a binomial test (McLean et al. 2010). The method determines if the 

number of evolutionarily annotated genomic regions falling into the proportion of the genome 

annotated as caPeak/eGene is beyond that expected by chance, using a binomial test. 

Neighborhood enrichment scores were calculated using a previously defined method (Roadmap 

Epigenomics Consortium et al. 2015). The differences in enrichment between two annotations 

was calculated with Fisher’s exact test. 

Shared eSNPs/caSNPs and GWAS SNPs  

We assessed colocalization between all ca/e-QTL variants identified in our study and 

GWAS signals in brain-related traits (tables S8, S18 and S19) through a three-step process. First, 

we extracted all GWAS lead (P < 5x10-8) SNP-ca/eQTL pairs located within 1Mb from each other. 

Second, we selected GWAS-QTL pairs for which index SNPs are in LD (r2 > 0.6) in either 

population (1KG EUR or samples used in this study). To consider the possibility of undefined 

secondary GWAS signals, we also selected GWAS-QTL pairs for which at least one non-index but 

genome-wide (GW) significant (P < 5 x 10-8) GWAS SNP was in LD with an ca/eQTL index SNP. 

We tested two colocalization approaches and reported if either approach suggested colocalization. 

As the first approach, we estimated residual GWAS association statistics after conditioning 

ca/eQTL index SNPs. We performed approximate conditional analysis using default GCTA 

settings on variants within 1Mb of those variants (Yang et al. 2011, 2012). We used a subset of 

40,000 European-ancestry UKBB participants for the LD reference panel 

(https://www.ukbiobank.ac.uk/). We excluded variants from GCTA output if the frequency of 

effect allele differed by >0.2 between UKBB and GWAS summary results, and masked 

https://paperpile.com/c/uEyN9q/XAooD+IjClz
https://paperpile.com/c/uEyN9q/BR2mt
https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/NaxMj+Ji827
https://www.ukbiobank.ac.uk/


 

89 

approximate conditional results if variants exceeded a collinearity threshold of 0.9 with the 

ca/eQTL index SNP. The second approach was to use eCAVIAR (Hormozdiari et al. 2016). We 

calculated SNP-level colocalization posterior probability (CLPP) for each SNP in a locus that 

passed the previous two steps. CLPP was estimated by eCAVIAR (Hormozdiari et al. 2016) for 

SNP at P < 0.05 in both GWAS and QTL. We considered any locus with CLPP > 1% and r2 between 

causal SNP and at least one of GW SNPs in the region > 0.8 as evidence of colocalization in this 

approach. False positives for QTL condition-specificity could occur due to insufficient power 

limited by sample size. Thus, we repeated eCAVIAR to salvage potentially shared eGene/caPeak-

GWAS pairs that failed to meet FDR-adjusted significance thresholds (P < 0.1), but passed the 

raw significance threshold (P < 10-6) for QTL mapping under a particular condition, and showed 

shared caPeak/eGene-GWAS pairs under a separate condition. To evaluate the novelty of context-

specific eQTL signals, we asked whether eQTLs regulating unique eGenes discovered in this study 

and their locally linked SNPs (LD r2 < 0.6) were significant in frontal cortex GTEx v8 (GTEx 

Consortium 2020) or MetaBrain (N. de Klein et al. 2023) eQTL data. 

https://paperpile.com/c/uEyN9q/cdybn
https://paperpile.com/c/uEyN9q/cdybn
https://paperpile.com/c/uEyN9q/8HFPh
https://paperpile.com/c/uEyN9q/8HFPh
https://paperpile.com/c/uEyN9q/6BUBH
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2.5 Supplemental Figures 

 

Supplementary Figure 2.1: Multidimensional scaling analysis of genotype data 

Multi-dimensional scaling (MDS) plot shows the first two components of genetic similarity for 

all HapMap populations and donors in this study, allowing inference of genetic ancestry. 

Multiple ancestries of donors are present in this population.  
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Supplementary Figure 2.2: Effects of CHIR and WNT3A on proliferation and Wnt 
activity 

Cellular assays show that WNT3A and CHIR stimulation increase canonical Wnt pathway 

signaling and hNPC proliferation. Diagram of luciferase reporter assay measuring β-catenin 

mediated Wnt pathway activation by CHIR or WNT3A (A). Effects of 48h CHIR (B) or WNT3A 

(C) exposure on Wnt pathway activation, reported as the log of luciferase luminescence 

(activated by Wnt stimulation) normalized by renilla luminescence (from a constitutively active 

reporter transgene). We focused on this time-point because Wnt target gene expression was 
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maximized in hNPCs after 48h exposure to CHIR in previous experiments (Wolter, Le, et al. 

2022). Representative flow cytometry scatter plots from proliferation assays depict newly 

synthesized DNA from a 2h hr EdU pulse vs total DNA content following 48h vehicle (left) or 

2.5uM CHIR (right) exposure (D). Percentage of cells in S-phase (%EdU+) exposed to vehicle or 

increasing doses of CHIR for 48h as measured by flow cytometry in a subset of cell-lines (E), 

and in all cell-lines used for ATAC-seq and RNA-seq in this study (F). Representative 

immunocytochemistry images from proliferation assay of hNPCs following 48h vehicle (left) and 

5nM WNT3A (right) exposure (G). Green (GFP) labels cells in S-phase during the EdU pulse, 

and blue (DAPI) stains all nuclei. Percentage of cells in S-phase (%EdU+) exposed to vehicle or 

increasing doses of WNT3A for 48h as measured by flow cytometry in a subset of cell-lines (H). 

CHIR and WNT3A concentrations (boxed) that maximize Wnt activation and proliferative 

responses were used in this study for ca/eQTL mapping. 

https://paperpile.com/c/uEyN9q/uSIrN
https://paperpile.com/c/uEyN9q/uSIrN
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Supplementary Figure 2.3: Technical reproducibility of RNA-seq and ATAC-seq 

Pairwise correlations normalized sequencing counts from technical replicates across open 

chromatin peaks measured by ATAC-seq (A) or genes measured by RNA-seq (B). Higher 

correlations for within donor vs across donor pairs indicates robust reproducibility of 

measurements for a given donor and condition. Violin plots represent the distribution of Pearson 

correlation coefficients calculated between a pair of genotypically distinct donors (“across donor”) 

or between two technical replicates of the same donor cultured at different times (“within donor”). 
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Top and bottom horizontal lines within violin plots represent the interquartile range of the data, 

and the middle bar represents the median. P-values report significant differences between the 

across vs. within donor correlations following Fisher’s Z transformation and evaluated with the 

Welch two sample t-test. The total number of cell-lines and pairwise correlations (n) for each 

experimental condition is reported along the x-axis. 
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Supplementary Figure 2.4: ATAC-seq Quality Control 

Total ATAC-seq reads (A), unique non mitochondrial reads (B), transcription start site (TSS) 

enrichment (C), total read duplication rate (D), mitochondrial read duplication rate (E), and 

fraction of reads within chromatin accessibility peaks (FRiP) (F) across stimulus conditions. Mean 

insert size distributions in base pairs across all samples colored by stimulus condition (G) exhibit 

a nucleosomal phasing pattern; right: insert size distribution plotted on log- scale. Mean TSS 

enrichments (> 7) and FRiP scores (>0.3) exceed the “ideal” metrics for ATAC-seq libraries 
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defined by the ENCODE project (Luo et al. 2020). Together, these measurements validate the 

quality of ATAC-seq samples used in this study. 

 

Supplementary Figure 2.5: Global gene expression and chromatin accessibility 
patterns 

Principal component analysis (PCA) of ATAC-seq (A, C) and RNA-seq (B, D) data after batch 

correction for technical variables included in differential accessibility or expression models, 

respectively. Samples are labeled by condition (A, B), or sex (C, D). Variance in global gene 

expression and chromatin accessibility profiles across the first two PCs is driven by stimulation 

https://paperpile.com/c/uEyN9q/GfDfv
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condition, but not by sex. Correlation matrix of ATAC-seq (E) or RNA-seq (F) principal 

components 1-10 with technical (RIN) and biological variables (donor and sex). We performed 

linear regression to remove effects of PCs 1-10 and the residualized sequencing count data was 

used as QTL model input to account for measured and unmeasured confounding. 

 

Supplementary Figure 2.6: Number of differentially accessible regions and 
differentially expressed genes 

Barplots showing the number of differentially accessible regions (WREs) (A) and differentially 

expressed genes (DEGs) (B). The reference indicates referenced condition (either vehicle or 

WNT3A). Sample size indicates paired samples between conditions. Percentage of increased 

(shrunken log2FC > 0.5 in dark blue, shrunken log2FC > 0 in blue) or decreased (shrunken 

log2FC < -0.5 in red, shrunken log2FC < 0 in pink) accessibility or expression are shown for each 

category. Nonsignificant peaks and genes (FDR-adjusted P >=0.1) are colored gray. Greater 

changes were observed in both chromatin accessibility and gene expression for CHIR, a potent 

Wnt activator, as compared to WNT3A, an endogenous Wnt ligand. Simultaneous WNT3A 

activation and inhibition via XAV as compared to WNT3A activation yielded few differentially 

expressed genes and chromatin elements, likely due to the low sample size. We also note that 

93,853 peaks and 9,890 genes were filtered out (adjusted P value were set to NA) by DESeq2 

(Bourgon, Gentleman, and Huber 2010; Love, Huber, and Anders 2014) as those have low mean 

read counts.  

https://paperpile.com/c/uEyN9q/2iAj9+lBPom
https://paperpile.com/c/uEyN9q/2iAj9+lBPom
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Supplementary Figure 2.7: Wnt-pathway related transcription factor binding sites 
are enriched in upregulated WREs 

The canonical Wnt-pathway downstream effectors, ß-catenin, LEF1, and TCF7L2 binding sites 

previously identified by ChIP-seq experiments in HEK cells (Doumpas et al. 2019; Luo et al. 2020) 

are more often overlapped with WREs opening due to WNT3A (A) or CHIR (B) than closing 

WREs. The figures show the percentage of overlaps with the indicated TF binding sites in either 

the 2,000 most upregulated peaks or the 2,000 most downregulated peaks based on shrunken 

logFC. Statistical significance was estimated using Fisher’s exact test on the number of overlaps. 

  

https://paperpile.com/c/uEyN9q/wPPlO+GfDfv
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Supplementary Figure 2.8: Stimulus-specific regulatory element-gene correlation 

We identified stimulus-specific regulatory elements which regulate gene expression by correlating 

expression with chromatin accessibility. The number in the plot indicates significant and 

positively correlated peak-gene pairs. In total, 12,643 peak-gene pairs are detected only under the 

stimulus condition (highlighted in red), demonstrating new stimulus-specific regulatory 

elements. 
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Supplementary Figure 2.9: Absolute distance from TSS of correlated genes 

Distribution of absolute peak distance to TSS of correlated gene are shown for Vehicle (left), 

WNT3A (middle), and CHIR (right). Color represents the sign of correlation coefficient (pos: 

pink, neg:blue). 

 

 

Supplementary Figure 2.10: Opposing gene regulation by WNT pathway inhibition 

(A) Volcano plot showing differential expressed genes between simultaneous excitation and 

inhibition of WNT3A (WNT3A+XAV) as compared to WNT3A stimulus alone. Note that LEF1, a 

downstream effector of the Wnt pathways, has decreased expression under inhibition of the Wnt 

pathway. (B) Among 1413 genes that are differentially expressed at BH-adj P < 0.1 in both 

comparisons (WNT3A+XAV vs WNT3A (6 pairs) and WNT3A vs Vehicle (75 pairs)), 70.8% (1001 
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genes), opposing changes in gene expression were observed. This result is consistent with most 

gene expression changes being caused by the stimulus of the Wnt pathway. 

 

Supplementary Figure 2.11: ca/eQTL discovery and effect sizes compared to 
previous data 

We compared the effect size of ca-QTL (A) and eQTL (B) in vehicle condition to previous studies 

using the same hNPC cell lines with slightly larger sample size (Liang et al. 2021; Aygün et al. 

2021). Strongly correlated effect sizes for unstimulated ca/eQTLs were found between the two 

https://paperpile.com/c/uEyN9q/FBFAg+xblxB
https://paperpile.com/c/uEyN9q/FBFAg+xblxB
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datasets. One SNP showed opposite effect directionality across the caQTL datasets between the 

current and previous datasets (rs2076179). We suspect this was due to an error in allele 

assignment for that SNP in the previous analysis caused by sampling differences incorrectly 

changing the labeled minor allele for a SNP with allele frequency close to 0.50. We corrected this 

error for the one SNP prior to plotting. (C) caPeaks identified in WNT3A or CHIR stimulated 

conditions but not in vehicle (this study) were compared with caPeaks identified in WNT3A or 

CHIR stimulated conditions but not in a previous caQTL study using the same cell lines (Liang et 

al., 2021). (D) eGenes identified in WNT3A or CHIR stimulated conditions but not in vehicle (this 

study) were compared with eGenes identified in WNT3A or CHIR stimulated conditions but not 

in a previous eQTL study using the same cell lines (Aygün et al., 2021). Overall, the vast majority 

of stimulus-specific caPeaks/eGenes were shared regardless of the unstimulated dataset used, 

providing confidence in the context specificity of the caPeak/eGenes. 

 

 

Supplementary Figure 2.12 : Support for context-specific caQTLs from SNP-SELEX 
experiments 

(A) The fraction of caSNPs discovered in this study tested by SNP-SELEX experiments (Yan et al. 

2021) that were determined to have allelic effects on TF-binding. Solid line curves represent the 

https://paperpile.com/c/uEyN9q/fQRew
https://paperpile.com/c/uEyN9q/fQRew
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frequency distribution of SNP-SELEX support for 100 random samples of 1,000 non-significant 

caSNPs for each of the Vehicle, WNT3A or CHIR conditions. Dashed lines mark the level of SNP-

SELEX support for the top 1,000 most significant caSNPs in each condition. 

 

 

Supplementary Figure 2.13: eQTL-caQTL overlaps 

Overlaps between caQTLs and eQTLs were called where a caSNP was within 1Mb of an eGene and 

at least 1 significant SNP in both datasets were in LD r2 ≥ 0.8. The percentage of eQTLs (A) and 

caQTLs (B) overlapped within vehicle and WNT stimulus conditions are shown. The effect size of 

caQTL-eQTL sites which shared the same SNP position were compared within vehicle (C) and 

WNT stimulus conditions (WNT3A and CHIR shown in D and E respectively). SNPs selected to 

influence chromatin accessibility had relatively little overlap with those influencing gene 
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expression likely because genetic variation affecting chromatin accessibility often does not lead to 

changes in gene expression (about <2% of caQTLs had a shared eQTL based on LD overlap (r2 >= 

0.8). However, SNPs selected to influence gene expression more often also influence chromatin 

accessibility in that ~27% of eQTLs have a shared caQTL within condition, a comparable number 

observed in our previous study (34.9% caQTL-eQTLs overlap (Liang et al. 2021)). 

 

Supplementary Figure 2.14: Conclusions remain robust to varying FDR thresholds 

We evaluated how varying FDR thresholds (FDR < 0.01 or 0.10) impacted our conclusions for 

TF motif binding site enrichment analysis (A), S-LDSC heritability enrichment analysis (B), and 

ca/e-QTL mappings (C) and (D). TF motif enrichment based on differentially accessible peaks 

due to Wnt stimulation are almost identical when using FDR < 0.01 or FDR < 0.10 thresholds, 

due to use of the top 2,000 opened or closed peaks as compared to vehicle (A). Partitioned 

heritability enrichment is highly similar based on defining WREs using a FDR < 0.01 or FDR < 

0.10 threshold (B). We do observe a smaller Z score in the FDR < 0.01 threshold, likely due to 

https://paperpile.com/c/uEyN9q/FBFAg
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lower power because less of the genome was annotated as a WRE, but the correlation between 

results from the two thresholds is very high (r > 0.85). We also called e/caQTLs at a more 

stringent FDR < 0.01 threshold (C, D). As expected, we observed a decrease in the number of 

QTLs found at FDR < 0.01 compared to FDR < 0.10. But the conclusion, that stimulation 

enables us to identify more caPeaks/eGenes as compared to the vehicle condition alone, remains 

the same. 
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Supplementary Figure 2.15: Effect size differences across conditions 

We compared effect sizes of index caQTLs (A-B) / eQTLs (C-D) in stimulated conditions versus 

vehicle conditions (WNT3A or CHIR in (A,C) and (B,D), respectively). Dots in red indicate 

significant interaction effects were observed (r-QTLs). Error bars are standard errors of beta. We 
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observed lower correlation in r-QTLs as compared to non-r-QTLs. We note that some SNPs are 

not tested for a baseline model due to low expression thus could not be plotted because no beta 

value was calculated. 

 

Supplementary Figure 2.16: Response and Non−Response caPeaks enrichment 
within chromHMM Annotations  

Enrichment of response and non-response caPeaks within chromHMM states defined within fetal 

brain male (E081) (Roadmap Epigenomics Consortium et al. 2015). *, **, *** indicate 

enrichments of overlaps relative to the entire genome, evaluated with a binomial test, similar to 

the GREAT test (McLean et al. 2010), with P-values < 0.05, .01 and .001, respectively. We 

observed a significant enrichment of both response and non-response caPeaks within promoters, 

https://paperpile.com/c/uEyN9q/j7Lsz
https://paperpile.com/c/uEyN9q/BR2mt
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enhancers, and bivalent regions. TssA, TssFlnk, and Enh states showed a significant difference in 

overlap counts between response and non-response caPeaks (P = 3.9x10-5; 2.8x10-4; 7.4x10-7, 

respectively), as evaluated with Fisher's exact test. There was significantly less enrichment of 

response caPeaks in active TSS and enhancers as compared to non-response caPeaks, perhaps 

because these response caPeaks flag novel condition specific enhancers not annotated in post-

mortem fetal brain tissue. 

 

Supplementary Figure 2.17: Wnt responsive caPeak overlaps HAQER near PAX8 

(A) Allelic effects of rs2305133 on chromatin accessibility (chr2:113198521-11319959). (B) 

Regional association plots at rs2305133, the index SNP for a caPeak-HAQER overlap. From top 

to bottom: Genomic coordinates, gene models, caQTL P-values for vehicle, WNT3A, and 

CHIR-stimulated conditions, ATAC-seq coverage showing differential chromatin accessibility 

and HAQER location. 
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Supplementary Figure 2.18: Stimulus-specific caPeak overlaps HAQER near 
HAR1A/B 

(A) Allelic effects of rs112675456 on chromatin accessibility (chr20:63101761-63102670), reveal 

a caQTL significant in CHIR stimulated condition but not vehicle. (B) Regional association plots 

at rs112675456, the index SNP for a caPeak-HAQER overlap near the transcription start sites of 

HAR1A/B. From top to bottom: Genomic coordinates, gene models, caQTL P values for vehicle 

and CHIR-stimulated conditions, ATAC-seq coverage showing differential chromatin 

accessibility, and HAQER. 
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Supplementary Figure 2.19: Colocalization of ANKRD44 r-eQTL, schizophrenia, 
and the volume of a hippocampal subfield (presubiculum body) 

(A) Boxplot showing increased ANKRD44 gene expression by rs979020-T and the SNP a 

significant interaction effect.  (B) P-P plot from schizophrenia GWAS vs eQTL colored by r2 in this 

study population to rs979020, providing evidence for a colocalization. (C) Conditional analysis of 

schizophrenia GWAS was performed using GCTA-cojo tool with LD from the UKBB reference 

panel (White British). GWAS P value (upper panel) and post-conditional analysis P value (bottom 

panel) are shown. An absence of GWAS signal after conditioning on the r-eQTL index provides 

evidence for colocalization. (D, E) Similar to (B, C) but using GWAS for volume of a hippocampal 

subfield (presubiculum body; left hemisphere). 
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Supplementary Figure 2.20: Colocalization of an r-caQTL in DPYSL5 region and 
average thickness of the isthmus Cingulate 

(A) We detected an r-caQTL at rs1992311 (FDR-adjusted P value = 0.04). We present boxplots 

showing differential genetic effects on chromatin accessibility in stimulated versus vehicle 

conditions in a linked SNP within the peak that disrupts a motif (rs4665363-G). (B) P-P plot for 

isthmus Cingulate GWAS (Grasby et al. 2020) vs caQTL colored by r2 in our population to 

rs1992311, providing evidence for colocalization. (C) Boxplot showing decreased DPYSL5 

expression by rs4665363-G. (D) Conditional analysis on GWAS for average thickness of Isthmus 

Cingulate was performed using the UKBB reference panel (White British). GWAS P value (upper 

panel) and post-conditional analysis P value (bottom panel) are shown. GCTA-cojo identified 

collinearity between rs4665363 and rs3820823 (r2>0.9) thus both SNPs are not shown in the 

https://paperpile.com/c/uEyN9q/IKN25


 

112 

bottom panel. A decrease in GWAS signal after conditioning on the r-caQTL provides evidence 

for colocalization. (E) Logo plot predicting disruption of the Pou5f1::Sox2 motif by rs4665363-G. 

(F) Coverage plots of the peak showing the location of rs4665363 and a TCF/LEF motif present 

in the peak. 

 

Supplementary Figure 2.21: Shared and context-specific QTL GWAS overlaps 
confirmed by eCAVIAR 

Colocalization of eQTLs/caQTLs and brain-related GWAS phenotypes tested by eCAVIAR.  (A) A 

cumulative number of colocalized eGenes/caPeaks after colocalization analysis by eCAVIAR and 

(B) shared/distinct colocalization in each condition. The use of stimulated conditions increased 

the number of brain-trait associated genes by 75.6% and peaks by 77.0%.   
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Supplementary Figure 2.22: Stimulus-specific GWAS colocalization of FADS3 and 
Bipolar disorder 

(A) GWAS and QTL locus plots in the region of FADS3. GWAS index SNP rs174592-A (protective 

allele) of bipolar disorder (BP) is in high LD with index caQTL (rs99780, r2 = 0.86 in EUR, 0.85 

in this study population) for RE (chr11:61850491-61851800) and FAD3 index eQTL (rs174583, r2 

= 0.89 in EUR, r2 = 0.78 in this study population). Rs174592-A is located within the peak and 

predicted to disrupt a STAT1::STAT2 transcription factor binding site motif. (B) Rs174592-A 

decreases chromatin accessibility of this WRE (Beta = -0.10; P = 6.81 x 10-13, left), and expression 
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of FADS3 (Beta = -0.13 P = 2.95 x 10-7, right) in CHIR condition. (C) Differential chromatin 

accessibility and FADS3 gene expression between CHIR and Vehicle. (D) VST normalized 

expression counts of STAT1 and STAT2 are shown. Shrunken LFC and FDR-adjusted P values 

were estimated for 78 pairs. In the boxplots, chromatin accessibility or gene expression are 

colored by condition (gray: vehicle, blue:CHIR). (E) Schematic of FADS3 regulation through 

STAT1::STAT2 binding. Our data suggests characterization of the colocalized putative BP risk 

SNP (rs174592) as a functional variant regulating FADS3 expression through differences in 

STAT1::STAT2 binding, which is inhibited during Wnt stimulation. 
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Supplementary Figure 2.23: Stimulus-specific ENO4 eQTL colocalizing with 
regional cortical surface area GWAS 

(A) Chromatin accessibility (chr10:116973711-116975130; left) and ENO4 gene expression 

regulated by rs11197861. eQTL of ENO4 was detected only in the stimulated condition (A, B). The 

eQTL is colocalized with several brain-related traits including surface area of Insula (B, C). (B) P 

values from Insula surface area GWAS, eQTL, caQTL for vehicle, CHIR condition are shown 

respectively. ETV2:FOXl1 motif is disrupted by the rs11197861-T located in the peak, which may 
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result in decreased chromatin accessibility and ENO4 gene expression. (C) Z scores from regional 

cortical surface area(Grasby et al. 2020). In addition to Insula, surface area of precentral and 

precuneus are also associated with this SNP (indicated by asterisks; p < 5 x 10-8).   

 

Supplementary Figure 2.24: Optimizing control for known and unknown technical 
confounding in eQTL 

We tested different numbers of PC variables to determine the number of PCs to include for 

correcting expression values prior to running limix_qtl. (A) The plot shows the number of 

discovered eGenes with respect to the number of PCs at FDR-adjusted P < 0.1. and the number of 

overlapping found eGenes across models (B-D). To identify independent eQTLs, we repeated 

eQTL mapping by including the index eSNP in the association model until no SNP passed the 

https://paperpile.com/c/uEyN9q/IKN25
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genome-wide threshold (FDR-adjusted P < 0.1). In table (E), we show the number of SNPs 

discovered in each round of conditional associations.  
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CHAPTER 3: CELLULAR GENOME-WIDE ASSOCIATION STUDY IDENTIFIES 
COMMON VARIATION INFLUENCING LITHIUM-INDUCED NEURAL 

PROGENITOR PROLIFERATION 

3.1 Introduction 

Bipolar disorder (BD) is a highly heritable neuropsychiatric illness commonly treated 

with lithium salts (Geddes et al. 2004; Malhi, Gessler, and Outhred 2017; Geddes and Miklowitz 

2013; Johansson et al. 2019). Lithium treatment is effective at preventing relapse of bipolar 

disorder episodes in 40-60% of individuals, indicating a high degree of variability in clinical 

response (Tohen et al. 2005; BALANCE investigators and collaborators et al. 2010; Viguera, 

Tondo, and Baldessarini 2000). Genetic background influences risk for BD (Mullins et al. 2021), 

as well as lithium response in individuals with BD (Grof et al. 2002; Hou et al. 2016; Song et al. 

2016). These genetic effects are underscored by studies recapitulating lithium responsiveness in 

induced pluripotent stem cell (iPSC) lines generated from individuals with BD (Mertens et al. 

2015; S. Stern et al. 2018; Shani Stern et al. 2020; Santos et al. 2021). Despite recent advances 

in identifying the genetic loci that underlie BD risk (Mullins et al. 2021), much less is known of 

the genetic underpinnings of lithium responsiveness (Senner et al. 2021). This is at least in part 

due to the difficulty of performing sufficiently powered pharmacogenomic studies in human 

populations, and lithium’s diverse context- and cell-type-dependent effects (Wolter, Jimenez, et 

al. 2022). The mechanism underlying lithium’s therapeutic effects is unclear, but an attractive 

hypothesis is that lithium increases adult neurogenesis by stimulating NPC proliferation, as 

observed for some antidepressant drugs (Santarelli et al. 2003; Sahay and Hen 2007; Boldrini et 

al. 2012, 2009; Perera et al. 2007; G. Chen et al. 2000). While the presence and timing of adult 

neurogenesis in the human brain has been questioned (Eriksson et al. 1998; Franjic et al. 2022), 

recent scRNA-seq in macaque and human hippocampus detected adult neural progenitors or 

https://paperpile.com/c/uEyN9q/90FII+PgOh9+xGkJR+tr8mj
https://paperpile.com/c/uEyN9q/90FII+PgOh9+xGkJR+tr8mj
https://paperpile.com/c/uEyN9q/SxYmc+qj3Fp+sR55I
https://paperpile.com/c/uEyN9q/SxYmc+qj3Fp+sR55I
https://paperpile.com/c/uEyN9q/bbqX
https://paperpile.com/c/uEyN9q/OsdxT+kAYFc+xzAdm
https://paperpile.com/c/uEyN9q/OsdxT+kAYFc+xzAdm
https://paperpile.com/c/uEyN9q/ngvJK+Rr5Ox+8BCwS+CZlfI
https://paperpile.com/c/uEyN9q/ngvJK+Rr5Ox+8BCwS+CZlfI
https://paperpile.com/c/uEyN9q/bbqX
https://paperpile.com/c/uEyN9q/Qzt7F
https://paperpile.com/c/uEyN9q/BSoKO
https://paperpile.com/c/uEyN9q/BSoKO
https://paperpile.com/c/uEyN9q/QoEn8+UtXMm+M96My+p8KRB+JbXaU+vRbzu
https://paperpile.com/c/uEyN9q/QoEn8+UtXMm+M96My+p8KRB+JbXaU+vRbzu
https://paperpile.com/c/uEyN9q/KFvEu+mH6mj
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immature neurons (Hao et al. 2022; Wang et al. 2022; Zhou et al. 2022). Furthermore, lithium 

accumulates in neurogenic brain regions such as the hippocampus (Zanni et al. 2017; Schoepfer 

et al. 2021), increases the volume of the hippocampus in individuals with BD (Yucel et al. 2007, 

2008; Bearden et al. 2008; Hajek et al. 2012), and stimulates adult hippocampal NPC 

proliferation in rodents (G. Chen et al. 2000). Based on this evidence, we designed an 

experiment to identify common genetic variants which influence lithium-induced NPC 

proliferation. To do this, we employed a library of genetically diverse primary human NPCs 

previously characterized by genotyping, RNA-seq, and ATAC-seq (Aygün et al. 2021; Liang et al. 

2021; Stein et al. 2014). 

3.2 Results 

To identify genetic variants which modulate lithium induced proliferation, we utilized a 

library of fetally derived genetically diverse primary human NPC lines. Genetic effects on adult 

NPC proliferation may be observable in fetally derived NPCs because embryonic and adult 

neural stem cells exhibit similar gene expression profiles, signaling pathways, morphology, and 

cellular differentiation behaviors (Toda and Gage 2018; Kriegstein and Alvarez-Buylla 2009; 

Yuzwa et al. 2017; Hochgerner et al. 2018). We measured proliferation in these cells in the 

presence or absence of lithium using an EdU-incorporation assay, which fluorescently labels 

cells in S-phase of the cell cycle. Following a two-hour EdU pulse, cells were fixed, dual labeled 

with a fluorescent DNA content dye and EdU, and the number of cells within each phase of the 

cell cycle was quantified using flow cytometry (Fig. 1A). We found that lithium increased NPC 

proliferation at relatively low concentrations (≤2.5 mM), and decreased proliferation at higher 

concentrations (≥5 mM) (Supplemental Fig. 1A,B). Lithium has been shown to induce 

proliferation by activating Wnt signaling through competitive inhibition of GSK3B (Valvezan 

and Klein 2012). However, we did not observe activated Wnt signaling at proliferation-inducing 

concentrations using either a beta catenin activated luciferase reporter assay or qPCR measuring 

endogenous Wnt target gene expression (Supplemental Fig. 1C-E). GSK3B also directly 

https://paperpile.com/c/uEyN9q/ehuDu+mfaOt+hoEs7
https://paperpile.com/c/uEyN9q/LOqKo+umsWE
https://paperpile.com/c/uEyN9q/LOqKo+umsWE
https://paperpile.com/c/uEyN9q/prUiQ+J0si3+Z9bqB+913fq
https://paperpile.com/c/uEyN9q/prUiQ+J0si3+Z9bqB+913fq
https://paperpile.com/c/uEyN9q/vRbzu
https://paperpile.com/c/uEyN9q/xblxB+FBFAg+IJddq
https://paperpile.com/c/uEyN9q/xblxB+FBFAg+IJddq
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phosphorylates many transcription factors which in turn activate signaling pathways such as 

CREB and NFAT (Hur and Zhou 2010). We found that lithium activated expression of target 

genes of the NFAT signaling pathway at proliferation-inducing concentrations in NPCs (Qu, 

Sun, and Young 2011), but did not detectably affect gene expression of Wnt or CREB pathway 

associated genes (Supplemental Fig. 1G-J). 

As the target serum concentration for long term lithium treatment is 0.6-1.2 mM, we 

focused on concentrations that approximate therapeutically relevant levels (0.75 and 1.5mM), as 

well as a higher concentration (3mM) that we hypothesized may be associated with negative side 

effects (Nolen et al. 2019). We measured lithium-induced proliferation using the previously 

described EdU incorporation and flow cytometry assay in a population of 80 genetically diverse 

NPC donors (Fig. 1A, see Supplemental Fig. 2, 3A-C and Methods). NPCs from all donor lines 

increased proliferation in a concentration dependent manner at 0.75 and 1.5 mM LiCl, while 

some NPC donor lines decreased proliferation at 3mM (Fig. 1B). Phenotypic values were 

normally distributed, and technical replicates (the same donor thawed at different times) were 

reasonably correlated (Supplemental Fig. 3D-H). Proliferation rates in vehicle and lithium 

conditions were strongly correlated (Supplemental Fig. 3I), which could mask the effect of 

genetic variation on lithium-induced proliferation. Therefore, our primary phenotype, termed 

∆S-phase, subtracted the vehicle proliferation rate from the lithium exposure proliferation rate.  

  To identify genetic variants associated with lithium-induced NPC proliferation, we 

performed genome-wide association tests using a linear mixed effects model (Kang et al. 2010). 

While proliferation rates were not correlated with any measured biological or technical variables 

(Supplemental Figs. 3J-N), we included gestation week, sex, and multi-dimensional scaling 

components as covariates in the association model to control for ancestry. We identified 80 

nominally significant (p < 1x10-5) loci across all conditions (vehicle, ∆S-phase 0.75, 1.5, and 3 

mM LiCl), and one study-wide significant association (p < 1.67x10-8, corrected for the number 

of independent tests (Nyholt 2004)) (Fig. 1C, Supplemental Fig. 4, Supplemental Table 1). The 
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study-wide significant locus was associated with lithium induced proliferation (∆S-phase) at 1.5 

mM LiCl, but the association was attenuated in response to other lithium concentrations, and 

not detectably associated with vehicle proliferation rate (Fig. 1D-G). In all, these results 

demonstrate that GWAS performed in cultured cells can identify novel context-dependent 

pharmacogenomic effects (Jerber et al. 2021).  

 

Figure 3.1: Cellular GWAS identifies genomic loci associated with lithium induced 
proliferation in NPCs 

A) Experimental strategy to identify common genetic variants associated with lithium-

induced NPC proliferation. 

B) Percentage of cells in S-phase measured by EdU incorporation across indicated 

concentrations of LiCl in n=80 distinct NPC donors, each represented by a gray line. The 
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mean across donors is represented by the black dotted line. The distribution of cells in S-

phase for each concentration is shown as a violin plot. 

C) Manhattan plot showing GWAS of ∆S-phase in response to 1.5 mM LiCl. The red line 

denotes study-wide significance threshold (p = 1.67 x 10-8). The blue line denotes 

nominal significance threshold (p = 1 x 10-5). 

D-G) Boxplots showing proliferation across genotypes at SNP rs11709284 in response to 

vehicle (D), ∆S-phase at 0.75mM (E), 1.5mM (F), and 3mM LiCl (G). Each point is a 

single NPC donor line with the indicated genotype. For all boxplots, the center line 

represents the median value, the bounds of the box are 25th and 75th percentiles, and 

the whiskers equal 1.5 times the interquartile range. 

 

The study-wide significant locus at chr3p21.1 spans a >500kb gene dense region (Fig. 

2A). This locus contains two SNPs with the lowest study-wide p-values (rs352140, p = 5.71x10-9; 

rs11709284, p = 8.00x10-9), which are weakly correlated by linkage disequilibrium (LD, r2 = 

0.22). To evaluate whether rs352140 and rs11709284 tag independent loci, we conditioned the 

associations on either SNP, both of which reduced the significance of the association of the 

other, indicating that the association signal identifies a single but complex locus (Supplemental 

Fig. 5A-C).  

To explore the association of this locus to other complex brain traits we tested for 

colocalization with existing brain-related GWAS summary statistics using conditional analysis 

(Ying Wu et al. 2019). We identified colocalizations with risk for BD (Mullins et al. 2021), 

schizophrenia (Trubetskoy et al. 2022), and inter-individual differences in intelligence (Savage 

et al. 2018) (Fig. 2B-D). Conditioning on each index SNP from these brain-related GWAS 

markedly reduced proliferation associations, especially for rs11709284 (Supplemental Fig. 5D-

F), suggesting that causal variant(s) affecting lithium-induced proliferation and these complex 

brain traits are shared. We expect that the colocalization between lithium responsive 
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proliferation, inter-individual differences in intelligence, BD risk, and schizophrenia risk is 

driven by the strong genetic correlation and polygenic overlap among these traits (Smeland et al. 

2020; Frei et al. 2019; Mullins et al. 2021), and suggests that the GNL3 locus is broadly relevant 

to brain function. Moving forward, we focus on rs11709284 as marking the lithium-induced 

proliferation associated locus given its stronger association with these other traits. The lithium-

induced proliferation-increasing allele is a risk allele for BD and schizophrenia, and an 

intelligence-decreasing allele. The lithium induced proliferation locus was not associated with 

lithium response in individuals with BD (Hou et al. 2016) (Supplemental Fig. 5G). The lone 

genome-wide significant locus associated with lithium response in individuals with BD was also 

not associated with lithium induced proliferation or risk for BD (Supplemental Fig. 6). To 

explore patterns of polygenic overlap between lithium-sensitive proliferation and other traits, 

we selected variants associated with 1.5mM lithium-induced proliferation at increasing 

significance thresholds, and plotted other trait GWAS p-values at these selected variants using 

quantile-quantile (QQ) plots (Supplemental Fig 7, Supplemental Table 2). SNPs most 

significantly associated with lithium-induced NPC proliferation phenotype showed highest 

enrichment in neuropsychiatric disorder GWAS (bipolar disorder, schizophrenia, major 

depressive disorder, autism spectrum disorder), relatively moderate enrichment in non-disorder 

brain traits (intelligence, global cortical thickness), and little enrichment in non-brain traits 

(HDL being the only exception) (Supplemental Fig. 7A-D). This pattern of enrichment suggests 

that the genetic variants associated with lithium-sensitive NPC proliferation are also associated 

with risk for neuropsychiatric disorders. 
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Figure 3.2: Lithium-induced proliferation at chr3p21.1 colocalizes with 
neuropsychiatric disorders and intelligence GWAS 

A) Locus zoom of the 1.5 mM LiCl ∆S-phase phenotype. Dashed line denotes study-wide 

significance level. ◇: SNP of interest from this study (rs11709284). Each SNP is colored 

by LD (r2) to rs11709284 in NPC donors. 

B-D) GWAS results for BD (Mullins et al. 2021) (B), schizophrenia (The Schizophrenia 

Working Group of the Psychiatric Genomics Consortium et al. 2020) (C), and 

intelligence (Savage et al. 2018) (D) at the same locus as (a). SNP annotations: □: index 

SNP for BD (rs2336147). △: index SNP for schizophrenia (rs2710323). ▽: index SNP for 

intelligence (rs4687625). r2 values relative to rs11709284 were calculated using the 1000 

Genomes EUR reference panel (1000 Genomes Project Consortium et al. 2015). Dashed 

lines indicate standard genome wide significance threshold (p = 5 x 10-8). 

https://paperpile.com/c/uEyN9q/bbqX
https://paperpile.com/c/uEyN9q/Xmh0R
https://paperpile.com/c/uEyN9q/Xmh0R
https://paperpile.com/c/uEyN9q/bk1RW
https://paperpile.com/c/uEyN9q/7N0kw
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To identify putative causal genes underlying the association with lithium induced 

proliferation, we considered a ~1.2 Mb window containing 29 protein coding genes surrounding 

rs11709284 (Supplemental Fig. 8A). Previous expression measurements via RNA-seq in these 

NPCs showed that 21 of these genes had detectable expression at baseline (Aygün et al. 2021; 

Liang et al. 2021) (Supplemental Fig. 8B). We quantified the expression of each of these genes 

over time in response to 1.5 mM LiCl in one NPC donor line using qPCR, and GNL3 was the only 

gene with significantly different expression at multiple timepoints (Supplemental Fig. 8C). 

Repeating this experiment in NPCs from three additional donors confirmed that 1.5 mM LiCl 

transiently induces GNL3 expression, peaking eight hours post exposure (Fig. 3A). Increasing 

lithium concentration also resulted in relatively higher GNL3 expression at 8 hours, without 

extending the duration of expression (Supplemental Fig. 8D).  

GNL3, also known as nucleostemin, regulates cell cycle progression and genome 

stability, and is essential for maintenance of stem cell fate (L. Meng et al. 2013; Tsai and McKay 

2002). GNL3 was also identified as a putative BD risk gene in the most recent BD GWAS 

(Mullins et al. 2021), and an integrated eQTL analysis of previous BD GWAS (Q. Meng et al. 

2020). rs11709284 is an eQTL in GTEx for multiple nearby genes (PBRM1, NT5DC2, GLYCTK, 

NEK4), but most significantly for GNL3 in brain tissues, including frontal cortex and 

hippocampus (GTEx Consortium et al. 2017) (Fig. 3B,C), and these associations colocalize 

(Supplemental Fig. 9A-G). The allele associated with increased GNL3 is also associated with 

increased lithium-induced proliferation (Fig. 1F). We next assessed allele specific GNL3 

expression in the population of NPCs using SNPs in LD with rs11709284 in the GNL3 open 

reading frame, and found that the allele associated with increased GNL3 expression at baseline 

was also associated with increased lithium-induced proliferation (Aygün et al. 2021) (Fig. 3D, 

Supplemental Fig. 9H). To assess how lithium affects the expression of each GNL3 allele, we 

used allele specific qPCR probes targeting a SNP in the 5’UTR of GNL3 (r2 = 0.68) 
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(Supplemental Fig. 10A). Again, we observed that the allele associated with increased 

proliferation rates had increased GNL3 expression in a temporally controlled manner (Fig. 

3E,F). Immunolabeling for GNL3 suggested that cells in S-phase have increased nuclear GNL3 

puncta compared to cells which are not in S-phase (Fig. 3G,H). While lithium increased GNL3 

RNA in bulk qPCR measurements (Fig. 3A), we were not able to detect that lithium further 

increased GNL3 protein levels in individual cells (Fig. 3H). This suggests that lithium is causing 

more cells to enter the cell cycle but is not directly affecting GNL3 expression on an individual 

cell basis. In all, this data suggests that GNL3 is a lithium and proliferation responsive gene, and 

that common genetic variants associated with increased GNL3 expression are also associated 

with increased lithium induced NPC proliferation. 

  

 

Figure 3.3: Lithium induced proliferation increasing alleles are also GNL3 
increasing alleles 

A) GNL3 expression in NPCs from three randomly selected donor lines following treatment 

with 1.5 mM LiCl, quantified by RT-qPCR. Each time-point was normalized to vehicle-



 

127 

treated samples extracted at the same time (dashed line). Each colored dot is a distinct 

NPC donor line. All error bars throughout this study are standard error of the mean.  

 B,C) Allelic effects on GNL3 expression at SNP rs11709284 in frontal cortex and 

hippocampus from GTEx (GTEx Consortium et al. 2017), FDR < 0.05. Alleles associated 

with increased GNL3 expression are also associated with increased ∆S-phase (compare 

alleles with Fig. 1F). In all subsequent figures purple denotes the allele associated with 

less proliferation, whereas blue denotes the allele associated with increased proliferation 

from this study.  

D) Allele specific expression of two SNPs in GNL3 open reading frame in NPCs where donor 

lines are heterozygous for each SNP, assessed from baseline RNAseq data (Aygün et al. 

2021). r2 values relative to rs11709284. Alleles associated with increased GNL3 

expression at baseline are also associated with increased lithium ∆S-phase (compare 

alleles with Supplemental Fig. 9H). 

E) Allele specific RT-qPCR for GNL3 in response to 1.5 mM LiCl, quantified in NPCs from 

n=3 distinct donors which are heterozygous for a SNP in GNL3 5’-UTR (rs1108842). 

Relative expression of each allele was quantified by calculating the cycle difference 

between each allele at 0.5 Rn, as in (Wolter et al. 2020). Each colored dot represents 

NPCs from a distinct donor. Four technical qPCR replicates were acquired per donor and 

averaged, and the data was then normalized to vehicle, as in Fig. 3A. Significance was 

determined by paired t-test. 

F) Proliferation phenotypes of SNP in GNL3 5’UTR (rs1108842). The A-allele is associated 

with higher lithium-induced proliferation, and increased GNL3 expression in response to 

lithium.  

G,H) NPCs treated with LiCl for 48 hrs with a 2 hr. EdU pulse, followed by labeling with 

anti-GNL3 antibody and DAPI. (G) Representative image demonstrates GNL3 is a 

nuclear protein. (H) Quantification of GNL3 puncta in cells in EdU- cells versus EdU+ 

https://paperpile.com/c/uEyN9q/YojpH
https://paperpile.com/c/uEyN9q/xblxB
https://paperpile.com/c/uEyN9q/xblxB
https://paperpile.com/c/uEyN9q/A7crP
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cells in the presence and absence of LiCl. n=8 wells per condition, nine tiled images per 

well. Significance was determined by a paired t-test. Scale bar = 10 um. 

 

Next, we sought to determine whether manipulating GNL3 expression is sufficient to 

affect lithium responsive NPC proliferation. We targeted the promoter of GNL3 with dCas9 

fused to either a chromatin repressive (KRAB) or chromatin opening (VP64) domain (Thakore 

et al. 2015; Pickar-Oliver and Gersbach 2019), and identified guide RNAs (gRNAs) capable of 

decreasing or increasing GNL3 expression (Supplemental Fig. 10A, Fig. 4A). We found these 

constructs do not detectably affect expression of genes within a 250kb window surrounding the 

gRNA target sites, except for PBRM1, which shares a bidirectional promoter with GNL3 

(Supplemental Fig. 10A-C). Because PBRM1 was not found to have lithium responsive gene 

expression, we focused on the effects of modulating GNL3 at this locus (Supplemental Figure 

8C). Interestingly, changing baseline GNL3 levels did not affect the relative magnitude of 

lithium’s activation of GNL3 expression (Supplemental Fig. 10B). Increasing GNL3 expression 

was sufficient to increase proliferation in the absence of lithium, while decreasing GNL3 

expression had no detectable effect on baseline proliferation (Fig. 4B). In contrast, NPCs with 

decreased GNL3 expression had 52-54% less lithium-induced proliferation (Fig. 4C). Increasing 

GNL3 expression did not further affect lithium’s induction of proliferation (Fig. 4C), which we 

speculate could be a ceiling effect as the dCas9 VP64 treated NPCs already had ~4% increased 

proliferation rate at baseline (Fig. 4B). In all, these experiments indicate that GNL3 is necessary 

for lithium’s full proliferative effects in NPCs, and sufficient to induce NPC proliferation. 
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Figure 3.4: GNL3 expression is necessary for the full effects of lithium-induced 
proliferation, and sufficient to induce NPC proliferation. 

A) An NPC donor line heterozygous for index SNP (rs11709284) was transduced with 

lentivirus carrying the indicated gRNA, and dSpCas9:KRAB (CRISPRi) or dSpCas9:VP64 

(CRISPRa). Cells were incubated for four days, followed by an eight hour treatment with 

1.5 mM LiCl. GNL3 expression was analyzed by RT-qPCR. Data normalized to neg. 

control gRNA (non-targeting, dashed line). n=4 qPCR replicates, significance 

determined by two sample t-test. * p<0.05, ** p<0.01, *** p<0.001.  

B) Proportion of NPCs in S-phase expressing indicated dSpCas9 and gRNAs at baseline, 

analyzed by high content imaging, as in Fig. 3G. n=7 wells per condition, nine tiled 

images per well, significance determined by two sample t-test.  

C) Change in the proportion of NPCs in S-phase in response to 1.5mM LiCl, while 

expressing indicated dSpCas9 and gRNAs. n=7 wells per condition, significance 

determined by two sample t-test. 

3.3 Discussion 

We performed a GWAS in cultured human NPCs and identified common genetic variants 

which impact lithium-induced proliferation. The chr3p21.1 locus was only detectable following 

lithium treatment (Fig. 1D,F), supporting the hypothesis that certain genetic variants influence 

traits only in specific contexts (Umans, Battle, and Gilad 2020). We also detected a 

colocalization between genetic effects on lithium induced proliferation and BD risk, 

https://paperpile.com/c/uEyN9q/hIev
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schizophrenia risk, and inter-individual differences in intelligence (Fig. 2 and Supplemental Fig. 

5), demonstrating that genetic variation at this locus is also relevant for differences in brain-

related traits and risk for neuropsychiatric disorders. We identified a single gene in this locus, 

GNL3, whose expression changed in response to lithium, has previously been implicated in BD 

risk (Mullins et al. 2021; Q. Meng et al. 2020), and has known roles in neural stem cell self-

renewal by mitigating DNA damage induced by DNA replication (L. Meng et al. 2013; Tsai and 

McKay 2002) (Fig. 3 and Supplemental Fig. 8). We found that common genetic variation 

influences GNL3 expression, and using CRISPRi/a demonstrated that modulating GNL3 

expression can influence proliferation in both the presence and absence of lithium (Fig. 4). In 

all, using a cell-culture GWAS system in a pharmacogenomics design and CRISPR-based 

experimental manipulations, we discover and validate a gene that contributes to differences in 

neural progenitor proliferation in response to lithium. 

  Colocalization analysis suggests that genetic variation at the chr3p21.1 locus modulates 

molecular, cellular, cognitive, and neuropsychiatric risk traits. Genetic predisposition for a 

disorder has previously been shown to be related to treatment response in that disorder (Kappel 

et al. 2022), which could explain the colocalization between risk for BD and cellular lithium 

response. Interestingly, combining schizophrenia and BD polygenic risk scores improves genetic 

prediction of lithium response in individuals with BD (Schubert et al. 2021), suggesting that 

shared genetic variation modulating risk for either disorder may also influence treatment 

responses. Previous studies describing strong genetic correlation and polygenic overlap between 

risk for BD, risk for schizophrenia, and inter-individual differences in intelligence also lead us to 

expect detection of some shared genetic effects for these traits (Smeland et al. 2020; Frei et al. 

2019; Mullins et al. 2021). GNL3 may also function through additional cellular contexts other 

than lithium exposure in NPCs to alter risk for these disorders and inter-individual differences 

in cognitive ability. 

https://paperpile.com/c/uEyN9q/bbqX+vucBQ
https://paperpile.com/c/uEyN9q/iwPAG+K0puR
https://paperpile.com/c/uEyN9q/iwPAG+K0puR
https://paperpile.com/c/uEyN9q/a8OhN
https://paperpile.com/c/uEyN9q/a8OhN
https://paperpile.com/c/uEyN9q/6PxYY
https://paperpile.com/c/uEyN9q/rJpok+oiVWs+bbqX
https://paperpile.com/c/uEyN9q/rJpok+oiVWs+bbqX


 

131 

Our results can be interpreted in environmental, developmental, and clinical contexts. 

Lithium’s effects on NPC proliferation or other cellular processes via environmental or dietary 

sources could explain the correlation between lithium exposure and population-level measures 

of psychiatric health (Schrauzer and Shrestha 1990; Kessing et al. 2017; Memon et al. 2020). 

Lithium is also classified as a class D teratogen due to increased risk of fetal cardiac 

malformations (Newport et al. 2005; Poels, Bijma, et al. 2018), but effects on human brain 

tissues resulting from fetal exposure to lithium are unclear (Munk-Olsen et al. 2018; Forsberg et 

al. 2018). While fetal lithium exposure may lead to subtle neurodevelopmental alterations in 

animal models (Abu-Taweel 2012; Messiha 1986; Poels, Schrijver, et al. 2018; Giles and 

Bannigan 2006), whether fetal NPC proliferation contributes to these effects is unknown. Given 

the limited evidence for lithium’s teratogenic effects on the human brain, we favor interpreting 

our results in the context of the clinical lithium response. If fetally derived NPCs can model the 

proliferative activity of adult hippocampal progenitor cells and NPC proliferation provides 

therapeutic benefit as has been shown for antidepressants (Santarelli et al. 2003; Sahay and 

Hen 2007; Perera et al. 2007; Boldrini et al. 2009, 2012), our results suggest genetic effects on 

GNL3 expression and lithium-induced NPC proliferation may contribute to variance in clinical 

outcomes of lithium treatment. 

Our study must also be viewed in light of some limitations. The study-wide significant 

locus discovered here was not identified in GWAS for lithium response in BD individuals (Hou 

et al. 2016; Song et al. 2016). The disparity between these cellular and clinical phenotypes may 

be a result of limited sample sizes or differing population structure. Clinical lithium response 

GWAS were conducted using ~12,000 individuals in the Song et al. 2016 (Song et al. 2016) and 

~1,500 individuals in the Hou et al. 2016 (Hou et al. 2016) studies, substantially smaller sample 

sizes than well-powered neuropsychiatric disorder GWAS (Mullins et al. 2021; Trubetskoy et al. 

2022). Population structure differences may also obscure shared genetic effects (Martin et al. 

2017). The Hou et al. and Song et al. lithium response GWAS were restricted to individuals with 

https://paperpile.com/c/uEyN9q/WW0ti+lJ7ey+fYhds
https://paperpile.com/c/uEyN9q/ADuDu+Qm7KY
https://paperpile.com/c/uEyN9q/UZBm0+LaktC
https://paperpile.com/c/uEyN9q/UZBm0+LaktC
https://paperpile.com/c/uEyN9q/SS5sU+Qo6Li+FaX2a+RXCcO
https://paperpile.com/c/uEyN9q/SS5sU+Qo6Li+FaX2a+RXCcO
https://paperpile.com/c/uEyN9q/QoEn8+UtXMm+JbXaU+p8KRB+M96My
https://paperpile.com/c/uEyN9q/QoEn8+UtXMm+JbXaU+p8KRB+M96My
https://paperpile.com/c/uEyN9q/kAYFc+xzAdm
https://paperpile.com/c/uEyN9q/kAYFc+xzAdm
https://paperpile.com/c/uEyN9q/xzAdm
https://paperpile.com/c/uEyN9q/kAYFc
https://paperpile.com/c/uEyN9q/bbqX+1Ataf
https://paperpile.com/c/uEyN9q/bbqX+1Ataf
https://paperpile.com/c/uEyN9q/WzMIS
https://paperpile.com/c/uEyN9q/WzMIS
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European ancestries, while only 10% of cell lines used in our study were of European ancestry. 

Future lithium response GWAS with increased sample size and genetic diversity will improve 

our understanding of the genetic architecture of lithium response in BD and provide higher 

power for assessing colocalization. Another potential limitation is that lithium-induced 

proliferation in cultured NPCs may not accurately model the clinical lithium response. While 

lithium stimulates hippocampal NPC proliferation in adult rodents, and the fetal NPCs used 

here share many properties with adult hippocampal NPCs (G. Chen et al. 2000; Yuzwa et al. 

2017; Hochgerner et al. 2018; Kriegstein and Alvarez-Buylla 2009), further experiments are 

necessary to evaluate a connection between NPC proliferation and clinical lithium response in 

humans. Experiments testing whether lithium induced NPC proliferation differs in iPSCs 

derived from lithium responders or non-responders may provide further insight into the clinical 

relevance of our findings (Mertens et al. 2015; S. Stern et al. 2018; Shani Stern et al. 2020; 

Santos et al. 2021). Finally, while our study focused on lithium’s acute (48h) effects on 

proliferation following administration of a single therapeutically relevant concentration, 

lithium’s beneficial effects typically occur through sustained maintenance treatment (Tondo et 

al. 1998). Further experiments will be necessary to evaluate how genetic variation alters 

proliferation or differentiation outcomes after prolonged exposure to lithium in a cell culture-

based model. 

Despite these limitations, our data lead us to hypothesize that manipulating GNL3 

expression during lithium treatment may enhance clinical outcomes. Our findings also suggest 

that lithium’s therapeutic effects will be reduced in individuals with genetic backgrounds 

producing lower GNL3 expression. These hypotheses can be tested by determining the effects on 

NPC proliferation, neurogenesis, and relevant behavioral paradigms after experimental 

manipulation of GNL3 expression in the brain during lithium exposure in rodents (O’Donnell 

and Gould 2007). In conclusion, our study sheds light on how common genetic variation can 

influence the cellular effects of a widely used mood stabilizing treatment. Our approach also 

https://paperpile.com/c/uEyN9q/vRbzu+GgEun+s86uI+wZHT8
https://paperpile.com/c/uEyN9q/vRbzu+GgEun+s86uI+wZHT8
https://paperpile.com/c/uEyN9q/ngvJK+Rr5Ox+8BCwS+CZlfI
https://paperpile.com/c/uEyN9q/ngvJK+Rr5Ox+8BCwS+CZlfI
https://paperpile.com/c/uEyN9q/F2RZH
https://paperpile.com/c/uEyN9q/F2RZH
https://paperpile.com/c/uEyN9q/yf2y9
https://paperpile.com/c/uEyN9q/yf2y9
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suggests that the genetic diversity inherent in libraries of human cell lines can be leveraged to 

identify novel therapeutically relevant genes and pathways. 

3.4 Materials and Methods 

Ethics statement for human tissue-derived cell-lines 

Human NPC cell-lines in this study originated from prenatal tissue collected following 

voluntary termination of pregnancy at the UCLA Gene and Cell Therapy facility following IRB 

regulations. 

NPC cultures 

Primary human NPCs were obtained from fetal brain tissue, assumed to be derived from 

the dorsal telencephalon based on visual inspection, at approximately 14-21 gestation weeks, as 

previously described (Stein et al. 2014; Aygün et al. 2021; Liang et al. 2021). After single cell 

dissociation, cells were initially cultured as neurospheres before plating on fibronectin (Sigma, 

F1141) and Poly-L-Ornithine (Sigma, P3655) coated plates, passaged 2-3 times, cryopreserved, 

and transferred to UNC Chapel Hill. NPC media: Neurobasal A (Life Technologies, 10888-022) 

supplemented with 100 µg ml−1 primocin (Invivogen, ant-pm-2), 10% BIT 9500 (Stemcell 

Technologies, 09500), 1% glutamax (100x; Life Technologies, 35050061), 1 µg ml−1 heparin 

(Sigma-Aldrich, H3393-10KU), 20 ng ml−1 EGF/FGF (Life Technologies, PHG0313/PHG0023), 

2 ng ml−1 LIF (Life Technologies, PHC9481) and 20 ng ml−1 PDGF (Life Technologies, 

PHG1034). We followed previously established protocols to maintain NPCs as proliferating 

neural progenitors and inhibit differentiation into neurons (Liang et al. 2021). No mycoplasma 

contamination was detected during regular pre-assay screens of cell culture media (ATCC, 30-

1012K). 

LiCl treatments 

This describes the general approach for the lithium exposure performed in all 

experiments. LiCl (Sigma, 203637) was diluted in water to 3M and stored in single use aliquots 

https://paperpile.com/c/uEyN9q/IJddq+xblxB+FBFAg
https://paperpile.com/c/uEyN9q/FBFAg
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at -80˙C. NPCs were plated at densities dependent on culture plate size, as described below for 

each experiment. The following day LiCl was diluted in NPC media, without growth factors, to 

10X concentration in 10% of the total volume media in each well. Control wells (vehicle) 

contained a volume of water equal to the amount of 3M LiCl required to obtain 10X 

concentration. 

High-throughput proliferation assays 

We thawed cryopreserved NPCs in batches of ~8-10 NPC donor lines, which were 

pseudorandomized for biological and technical variables (sex, gestation week, passage). We 

included at least one technical replicate (distinct cryovials of the same NPC donor line thawed 

and assayed multiple times) in each batch to assess technical reproducibility (29 unique NPC 

donor lines replicated in duplicate, Supplemental Fig. 3H). Each batch was cultured with weekly 

passaging for two weeks to allow recovery from thawing. On week three, cells were lifted using 

0.05% Trypsin (Gibco, 25300062), and 12,500 cells per well were plated in each well of 96 well 

plates (Corning, 3610). 24 hours later, LiCl (0.75, 1.5, or 3 mM) or vehicle (water) was added as 

described above. After 46 hours, cells were treated with 10 uM EdU with a 10% media addition 

and incubated for 2 hours. Cells were then lifted off the plate using 0.05% trypsin (Gibco, 

25300062) and transferred to a u-bottom 96-well plate. Cells were fixed with 4% PFA in PBS for 

10 minutes. EdU labeling was performed using the Click-iT EdU Cell Proliferation Kit 

(ThermoFisher, C10337) per manufacturer’s protocols. Total DNA content was labeled with the 

FxCycle Far Red dye (ThermoFisher, F10347). Cell suspensions were quantified using the 

Attune NxT 96-well Flow Cytometer. For each LiCl concentration, 4 wells per NPC donor line 

were quantified. For vehicle treatment (water), 8 wells per NPC donor line were acquired. 

Replicates were spatially distributed across each plate to avoid positional bias. All liquid 

handling steps, including the additions of LiCl, EdU, trypsin, fixation, and the Click-iT reaction, 

were performed using the Tecan Evo liquid handling robot to reduce handling variability. 
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Analysis of flow cytometry data 

FCS output files from the Attune NxT were initially analyzed using FlowJo, using SSC to 

retain only singlets (Supplemental Fig. 2A,B). To perform automated gating of stages of the cell 

cycle, we combined technical replicates into a single FCS file, and bounds were drawn for 

G0/G1, S-phase, and G2/M using the automated gating software FlowDensity (Malek et al. 

2015), with three non-elliptical gates (Supplemental Fig. 2C). These gates were then applied to 

each well independently. Technical replicates were averaged to obtain the percentage of cells in 

S-phase for each NPC donor line in each condition. Wells which failed for technical reasons 

(such as a bubble in the flow cytometer or no EdU labeling due to a failed Click-iT reaction), 

were identified by calculating the coefficient of variation (CV), followed by manual inspection of 

FCS files for all conditions where CV > 0.1. This filtering removed ~0.5% of wells. For donor 

lines which were assayed in multiple rounds, we averaged all replicates together for genetic 

associations. 

Genome-wide association 

The percentage of cells in S-phase for each experimental condition for each NPC donor 

line was calculated using the average across all wells. ∆S-phase was calculated by subtracting the 

percentage of cells in S-phase in vehicle condition from the percentage of cells in S-phase for each 

concentration of LiCl. We used a linear mixed effects model to conduct genetic association tests 

implemented with EMMAX software (Kang et al. 2010). In this model, we included an m x m 

Balding Nichols kinship matrix inferred from NPC genotypes (K) (Kang et al. 2008) as a random 

effect variable to control for effects of cryptic relatedness, and 10 multidimensional scaling (MDS) 

genotype components as covariates to mitigate confounding effects of population structure. While 

we did not find that sex or gestation week correlated with proliferation phenotypes (Supplemental 

Figs. 3J-L), we included sex and gestation week as standard technical covariates in the model. 

 

 

https://paperpile.com/c/uEyN9q/zy0js
https://paperpile.com/c/uEyN9q/zy0js
https://paperpile.com/c/uEyN9q/FYZid
https://paperpile.com/c/uEyN9q/BYS4C
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CRISPR based modulation of gene expression 

gRNAs were selected using the GPP sgRNA Designer (Broad Institute) and cloned into 

CRISPRi (pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP; Addgene 71237) or CRISPRa (pLV 

hU6-gRNA (anti-sense) hUbC-VP64-dCas9-VP64-T2A-GFP; Addgene 66707) plasmids, which 

were kind gifts from the lab of Charles Gersbach. See supplemental information for Lentivirus 

production. For experiments in Fig. 4A an NPC donor line heterozygous for rs11709284 was 

plated at 200,000 cells per well in 12 well plates. 75 uL of each viral prep was delivered to each 

well. Cells were incubated for 96 hours. RNA extraction, cDNA synthesis, and qPCR were 

performed as described in Supplemental Information. Consistency of lentivirus infection and 

dCas9 expression was verified using qPCR for dCas9. The negative control gRNA is a random 

sequence that does not align to the human genome. 

RNA extraction and RT-qPCR 

200,000 NPCs were plated in each well of a 12 well plate (Fisher Scientific, 0720082). 

LiCl was added at different times, and RNA for all timepoints was collected simultaneously. 

Each timepoint had paired vehicle/LiCl exposed samples for normalization purposes. RNA was 

extracted using standard Trizol extraction method (Ambion, 15596026). cDNA was synthesized 

from 100-200 ng RNA using VILO SSIV Master Mix with ezDNAse (ThermoFisher, 11766051). 

qPCR was performed with SSO Advanced SYBR Green MasterMix (BioRad, 1725271). n=4 qPCR 

replicates were performed for all experiments. Relative gene expression was determined using 

the ∆∆Ct method, normalized to EIF4A2. Each LiCl condition was normalized to its respective 

vehicle time point. Statistical tests for timepoint experiments use the paired Student’s t-test 

(Fig. 3a,e, Supplemental Figs. 1b,d,e, 8c,d), all other qPCR experiments use the two-sample 

Student’s t-test (Fig. 4a, Supplemental Figs.1f-j, 10c). qPCR primers are listed in Supplemental 

Table 3. 
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NPC line selection for GWAS and QC 

Cell type heterogeneity in the NPC library could introduce phenotypic variation based on 

cell type, which could be a confounding factor in genetic associations. Proliferation assays were 

performed on 94 NPC donor lines, but we excluded NPC donors with outlier gene expression 

patterns likely resulting from cell-type heterogeneity due to errors in dissection. Principal 

component analysis was performed on previously acquired (Aygün et al. 2021) baseline 

expression of the 500 highest variance transcripts followed by k-means clustering (k=2) 

(Supplemental Fig. 3a-c). This analysis identified NPC donor lines with relatively low expression 

of the canonical NPC marker PAX6, and relatively high levels of NKX2.1 and VAX1, markers of 

ventral inhibitory NPCs (Campbell 2003; Hallonet et al. 1998). To assess sample swaps or 

mixing between NPC lines we used verifyBamID (Jun et al. 2012), which flagged an additional 4 

lines with FREEMIX or CHIPMIX scores greater than 0.04. This resulted in NPCs from 80 

distinct donors that were carried forward into association analyses. 

Quantifying proliferation via EdU incorporation and high content imaging 

For experiments in Fig. 3g,h, a randomly selected NPC line was plated at 10,000 cells per 

well in black walled 96 well plates (Corning, 3603). 24 hours later LiCl was added to the plate as 

described above and incubated for 48 hours, with an EdU pulse during the last two hours of 

incubation. For experiments in Fig. 4b,c, a randomly selected NPC donor line was plated at 

200,000 cells per well in 12 well plates. 75 uL of each CRISPRi/a viral prep was delivered to 

each well. Cells were incubated for 96 hours. Cells were then lifted off the plate using 0.05% 

trypsin, counted, and plated in black walled 96-well plates at 10,000 cells per well. 24 hours 

later cells were treated with LiCl at the indicated concentrations, and incubated for 48 hours 

with an EdU pulse during the last two hours of incubation. Cells were fixed on the plate with 4% 

PFA in PBS, and Click-iT EdU labeling was performed per the manufacturer's protocol 

(ThermoFisher, C10337). Cells were additionally labeled with anti-GNL3 antibody 

(ThermoFisher, AB_2532414, clone:3H20L2, 1:250 dilution), anti-GFP antibody to label Cas9+ 

https://paperpile.com/c/uEyN9q/xblxB
https://paperpile.com/c/uEyN9q/7qKQM+eTpV1
https://paperpile.com/c/uEyN9q/Wf08y
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cells (AbCam, ab5450, 1:1000 dilution) and DAPI (1:4000). Images were acquired at 20x using 

the GE IN CELL Analyzer 2200 high-content imager. Images were analyzed using a custom 

CellProfiler pipeline. We isolated Cas9+/DAPI+ positive cells, and quantified the number of 

GNL3 puncta per nucleus (puncta defined as nuclear object 3-10 pixels in diameter), and 

percentage of Cas9+/EdU+ cells using n=7-8 wells per condition, with 9 images captured per 

well. Cell counts of each image were averaged for each well, and wells were averaged across 

conditions. Significance was determined by a paired t-test, paired by well. 

Lentivirus production  

Lentivirus was produced in HEK293T cells using the third-generation packaging 

plasmids (Addgene, 12260, 12259). Multiple densities (200,000-600,000 cells) of HEK293T 

cells were plated in 12 well plates in 1 mL media. 24 hours later the cell density at ~90% 

confluency was transfected with 1200 ng psPAX2, 800 ng pMD2.G, and 1600 ng of each 

lentiviral plasmid, using 8 uL FuGene6 (Promega, E2691). Cells were incubated for 24 hours, 

followed by a 50% media change in the morning, and a 1 mL media addition in the afternoon. 24 

hours later supernatant was collected, filtered using 0.45 µm filters, and stored in single use 

aliquots at -80˙C.  

Wnt signaling luciferase assays  

10,000 NPCs per well were plated in 96 well plates (Corning, 07-200-91), and 24 hours 

later were transduced with 10 uL lentivirus carrying BAR:luciferase lentivirus, and 2 uL 

Tk:Renilla lentivirus. Cells were incubated for two days, treated with LiCl as above, and 

incubated for 48 hours. Cell lysate was used in dual luciferase assays using the Dual-Glo 

luciferase system (Promega, E2920), measured on the GloMax Discover plate reader (Promega). 

BAR:Luciferase and Tk:Renilla plasmids were kind gifts from the lab of Ben Major (Major et al. 

2007). Statistical significance was determined using paired Student’s t-test. 

 

 

https://paperpile.com/c/uEyN9q/kL9v2
https://paperpile.com/c/uEyN9q/kL9v2
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GWAS Study Wide Significance Threshold 

Study-wide significance threshold (as in Nyholt, et al (Nyholt 2004)) was used because 

we tested four phenotypes (S-phase: vehicle, ∆S-phase 0.75 mM, 1.5 mM, 3 mM LiCl). In brief, 

we first calculated the total number of independent tests across these GWAS using summary 

statistics (determined to be 2.996 independent tests), and then adjusted the standard genome-

wide significance threshold (𝛾 = 5x10-8) by the effective number of independent tests (n), to 

derive a study-wide significance threshold using a Sidak correction of 𝛼	 = 	1	 − 	(1 − 𝛾)!/# = 

1.67x10-8. 

GWAS colocalization 

We evaluated numerous GWAS summary statistics (Supplemental table 2) for 

colocalization with the study-wide significant locus on chromosome 3. We first filtered 

downloaded GWAS summary statistics for SNPs with genome-wide significant p-values (p < 

5x10-8) within 1Mb upstream or downstream from rs11709284. Next, we calculated LD between 

these SNPs and rs11709284 using either our population of NPC donors or 1000 Genomes 

Project Europeans (EUR) (Fairley et al. 2020). We required variants to exceed r2 > 0.6 to be 

considered a colocalization candidate, and then used conditional analysis to provide evidence 

for colocalization (Civelek et al. 2017). We considered GWAS signals to be colocalized when the 

proliferation associated p-value no longer reached nominal significance (p > 1 x 10-5) after 

conditioning on the GWAS index SNPs. 

Cross-trait enrichment analysis 

GWAS summary statistics (Supplemental Table 2) were filtered for variants also 

associated with proliferation phenotypes from this study under increasingly stringent p value 

thresholds (p < 1x10-3, 1x10-4,1x10-5, 1x10-6, 1x10-7). Observed distributions of filtered association 

p values from the various GWAS were compared to expectations under a null hypothesis where 

no genetic effect on the phenotype exists using quantile-quantile plots. Genomic inflation factor 

https://paperpile.com/c/uEyN9q/LGPkL
https://paperpile.com/c/uEyN9q/5Q4W4
https://paperpile.com/c/uEyN9q/5nydv
https://paperpile.com/c/uEyN9q/JMR38
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(Devlin and Roeder 1999), 𝜆$%, was calculated from filtered p values to quantify enrichment of 

associations across traits. 

Allele-specific gene expression via RNAseq and qPCR 

ASE analysis was performed as described in Aygün et al. 2021(Aygün et al. 2021) with 

the following modification: we included variants supported by at least 10 allele-specific counts 

in total (at least 2 from either allele) from each of the heterozygous donors in the analysis. 3 

NPC donor lines heterozygous for rs1108842 (r2rs11709284,rs1108842 = 0.68) were plated in 12 well 

plates and treated with LiCl as described above. cDNA was generated from 200 ng total RNA 

using VILO SSIV Mastermix (ThermoFisher). Allele specific expression levels were determined 

using TaqMan Universal Master Mix II (ThermoFisher), and TaqMan genotyping probes for 

rs1108842 (Applied Biosystems). Quantification of allele specific expression was calculated by 

assessing the difference between Ct values for each allele within each PCR well at ∆Rn=0.5, as 

previously described (Wolter et al. 2020). Experiments were performed in three distinct NPC 

donors, n=4 technical replicates per NPC donor line. Each LiCl time point was normalized to its 

respective vehicle time point, and then further normalized to the 0-hour time point. Statistical 

significance was determined using paired Student’s t-test. 

https://paperpile.com/c/uEyN9q/JMR38
https://paperpile.com/c/uEyN9q/xblxB
https://paperpile.com/c/uEyN9q/A7crP
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3.5 Supplemental Information 
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Supplemental Figure 3.1: Effects of lithium on NPCs 

a) NPCs from one donor were exposed to LiCl for 48 hours, with an EdU pulse during the 

last two hours to label cells in S-phase. Cells were then lifted off the plate, fixed, labeled 

with a DNA content dye, and analyzed by flow cytometry. n=4 wells per concentration. 

Significance was determined by two sample t-test. All error bars are standard error of the 

mean. * p<0.05, ** p<0.01, *** p<0.001.  

b) NPCs from three donors were exposed to LiCl for 48 hours at the indicated 

concentrations, followed by RNA extraction and RT-qPCR using primers for the 

proliferation marker gene MKI67. Data was normalized to the housekeeping gene 

EIF4A2. n=4 per wells per concentration. Significance was determined by paired t-test. 

c) NPCs from 8 distinct donors were transduced with lentivirus carrying Firefly luciferase 

under control of the TCF/LEF sensitive promoter to measure Wnt signaling activity and 

a constitutively active Renilla luciferase to control for level of transduction. 48 hours 

later cells were treated with the indicated concentration of LiCl, followed by a 48 hour 

incubation. Cell lysate was then subjected to a dual luciferase assay. Firefly luciferase 

was normalized Renilla luciferase in each well. Data were normalized to vehicle. n=4 

technical replicates per condition, significance at each concentration compared to vehicle 

was determined by paired t-test. 

d-e) NPCs from three donors treated with LiCl for 48 hours at the indicated concentrations, 

followed by RNA extraction and RT-qPCR using primers for the indicated Wnt pathway 

associated genes. Data were normalized to the housekeeping gene EIF4A2. n=4 per 

condition, significance determined by paired t-test.  

f-j) Gene expression in one NPC line across multiple timepoints following treatment with the 

highly selective Wnt activator CT99021 (f), or 1.5 mM LiCl (g-j). f,g: target genes of Wnt 

signaling pathway, h: target genes of the CREB signaling pathway, i: target genes of the 

NFAT signaling pathway (Qu, Sun, and Young 2011), j: NFATC3 transcription factor. 

https://paperpile.com/c/uEyN9q/W54fH
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Data normalized to the vehicle sample that was extracted at the same time (dashed line). 

n=4 wells per concentration. Significance was determined by two sample t-test.  

 

 

Supplemental Figure 3.2: Flow cytometry gating strategy 

a) Density plots of a well from a representative NPC donor line. Forward scatter area (FSC-

A) and side scatter area (SSC-A) were used to gate around cells and remove debris from 

analysis. This gate was manually drawn for a vehicle well, and applied to all wells 

corresponding to that NPC donor line. The percentage refers to the percent of events 

within the gate. 
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b) SSC height and SSC-A were used to isolate singlets. 

c) Representative density plots from single cells isolated from b, for arbitrarily selected 

wells treated with each experimental condition. All wells from each NPC donor line were 

combined into a single FCS file, and FlowDensity (Malek et al. 2015) was used to 

automatically draw boundaries between cells in each phase of the cell cycle. These gates 

were then applied to each well individually to quantify the percentage of cells in S-phase. 

 

https://paperpile.com/c/uEyN9q/zy0js
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Supplemental Figure 3.3: Proliferation phenotype quality control 

a) To identify transcriptional heterogeneity in the library of NPCs we performed principal 

component analysis (PCA) of baseline gene expression (Aygün et al. 2021) of the 500 

highest variance genes in NPCs from 94 distinct NPC donor lines. Each donor line is a 

single point plotted in PC space. Clusters were identified by k-means clustering (k=2). 

Genetic association was performed in NPCs from cluster 1.  

b) Scatterplot of VST-normalized SOX2 and PAX6 expression across NPCs in each cluster 

suggests that cluster 2 are outliers for expression of canonical NPC marker genes PAX6 

and SOX2.  

c) Scatterplot of VST-normalized VAX1 and NKX2.1, which are markers of cells derived 

from the medial ganglionic eminence (MGE) in the ventral telencephalon.  

d-g) Distribution of proliferation rates across NPCs from 80 distinct donor lines at the 

indicated LiCl concentrations. Approximate normality suggests proliferation phenotypes 

are amenable to linear modeling in genetic association tests.  

h) Correlation between technical replicates, defined as NPCs from the same donor line 

thawed and assayed in two different batches. Dashed line, y=x. 

i) Correlation between proliferation in vehicle and 1.5 mM LiCl conditions. Dashed line, y=x. 

j-n) Correlation between proliferation rate and technical variables: sex (j), gestation week 

(k), passage number (l), and average number of cells in each well (m,n). 

 

https://paperpile.com/c/uEyN9q/xblxB
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Supplemental Figure 3.4: Lithium induced proliferation GWAS results 

Manhattan plots of GWAS results from vehicle S-phase (a), 0.75mM LiCl ∆S-phase (b), and 

3mM LiCl ∆S-phase (c). Red line denotes study-wide significance level (P < 1.67 x 10-8); blue 

line denotes nominal significance level (p < 1 x 10-5) 
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Supplemental Figure 3.5: GWAS results at chr3p21.1 - conditional tests and lithium 
response 

a) Locus zoom of the study wide significant locus on chr3p21.1, associated with 1.5 mM LiCl 

∆S-phase phenotype (Same data as Fig 2a). ◇: SNP from this study (rs11709284). 

Dashed line denotes the study-wide significance threshold (p < 1.67x10-8) for all plots. 

For all plots, variants are colored by LD relative to rs11709284 in NPCs used for this 

study. 

b) Locus zoom of 1.5 mM LiCl ∆S-phase phenotype while conditioning on rs11709284 (b) 

and rs352140 (c).  

d-f) Locus zoom of 1.5 mM LiCl ∆S-phase phenotype while conditioning on indicated 

SNPs from colocalized traits: BD (Mullins et al. 2021) (d), schizophrenia (The 

Schizophrenia Working Group of the Psychiatric Genomics Consortium et al. 2020) (e), 

and intelligence (Savage et al. 2018) (f). SNP annotations: □: index SNP for BD 

(rs2336147). △: index SNP for schizophrenia (rs2710323). ▽: index SNP for intelligence 

(rs4687625). 

g) Locus zoom for GWAS summary stats from the ConLiGen GWAS on lithium response in 

individuals with Bipolar disorder (Continuous variable, all populations) (Hou et al. 

2016).  

 

https://paperpile.com/c/uEyN9q/bbqX
https://paperpile.com/c/uEyN9q/Xmh0R
https://paperpile.com/c/uEyN9q/Xmh0R
https://paperpile.com/c/uEyN9q/bk1RW
https://paperpile.com/c/uEyN9q/kAYFc
https://paperpile.com/c/uEyN9q/kAYFc
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Supplemental Figure 3.6: A locus associated with lithium response in individuals 
with bipolar disorder does not colocalize with lithium-induced proliferation or 

Bipolar disorder risk 

a) Locus zoom plot of Lithium response in bipolar patients phenotype at chr21q21.1 

(Continuous variable, all populations) (Hou et al. 2016). ◇: index SNP (rs74795342). 

Each SNP is colored by LD (r2) to rs74795342 in 1000 Genomes ALL reference panel. 

Dashed line denotes genome-wide significance threshold (p < 5x10-8). 

https://paperpile.com/c/uEyN9q/kAYFc
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b) Locus zoom plot of 1.5 mM LiCl ∆S-phase phenotype. Dashed line denotes the study-

wide significance threshold (p < 1.67x10-8). 

c) Locus zoom plot of Bipolar Disorder GWAS results (Mullins et al. 2021). Dashed line 

denotes genome-wide significance threshold (p < 5x10-8). 

  

 

Supplemental Figure 3.7: Evaluation of shared genetic effects using quantile-
quantile plots 

(a-c) Quantile-quantile (QQ) plots of association p-values for neuropsychiatric disorder 

traits (a), brain traits (b), and non-brain traits (c) (references for GWAS used found in 

Supplemental Table 2). Point color denotes SNPs passing increasing filtering strength based 

https://paperpile.com/c/uEyN9q/bbqX
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on p-value of association to 1.5 mM LiCl ∆S-phase. Each plot depicts the expected 

distribution of test-statistics on the x-axis vs. the observed test-statistics for the indicated 

trait on the y-axis. To visualize enrichment of significant GWAS results, y-axes were scaled 

to the maximum -log10(p value) for GWAS sumstats associated with 1.5mM LiCl ∆S-phase 

phenotype at a threshold of p < 1 x 10-7. (d) Lambda GC (Devlin and Roeder 1999) values for 

each GWAS filtered by ∆S-phase 1.5 mM LiCl GWAS results at increasing p value thresholds. 

Numbers in parentheses reflect total GWAS sample size for each trait. *sample size for ASD 

SPARK meta-analysis (Matoba et al. 2020) includes 6222 case-pseudocontrol pairs. 

 

https://paperpile.com/c/uEyN9q/JMR38
https://paperpile.com/c/uEyN9q/edgcL
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Supplemental Figure 3.8: Lithium induced gene expression of genes at the 
associated Chr3 locus 

a) 1.2 Mb window surrounding the Chr3 locus, with gene models for all protein coding 

genes.  

b) Expression levels (VST) of all genes in the window from (Aygün et al. 2021). 

c) RT-qPCR from one NPC donor line of all genes with detectable expression at baseline, in 

response to 1.5 mM LiCl at various time points. GNL3 is the only gene whose expression 

changes at multiple timepoints. Data analyzed as in Supplemental Fig. 1d-h. n=4 

https://paperpile.com/c/uEyN9q/xblxB
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technical qPCR replicates. Statistical significance assessed by paired Student’s t-test * 

p<0.05, ** p<0.01, *** p<0.001.  

d) GNL3 expression in response to 6 mM LiCl.  
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Supplemental Figure 3.9: Colocalizations with GNL3 eQTL 

a) Locus zoom of the study wide significant locus associated with 1.5 mM LiCl ∆S-phase 

phenotype (Same data as Fig 2a/b). ◇: SNP of interest from this study (rs11709284). □: 

GTEx index eQTL SNP from Frontal Cortex (BA9) (rs13083798). △: GTEx index eQTL 

SNP from hippocampus (rs6778735). ▽: GTEx index eQTL SNP for cerebellum 

(rs6787154). Variants are colored by LD relative to rs11709284 in NPCs used for this 

study. Dashed line denotes the study-wide significance threshold (p < 1.67x10-8).  

b) GTEx eQTL for GNL3 (EUR) from Frontal Cortex (BA9) brain tissue. Dashed line 

denotes the eQTL significance threshold (p < 0.000176, FDR < 0.05). Variants are 

colored by LD relative to rs11709284 in the 1000 Genomes Project reference panel 

(EUR). 

c) GWAS results as in (a), conditioned on GTEx eQTL index SNP from Frontal Cortex 

(BA9) brain tissue (rs13083798). Variants are colored by LD relative to rs11709284 in 

NPCs used for this study and annotated as in panel (a). Dashed line denotes the study-

wide significance threshold (p < 1.67x10-8). 

d) GTEx eQTL for GNL3 (EUR) from hippocampus.  

e) GWAS results as in (a), conditioned on GTEx eQTL (EUR) from hippocampus brain 

tissue (rs6778735).  

f) GTEx eQTL for GNL3 (EUR) from cerebellum brain tissue.  

g) GWAS results as in (a), conditioned on GTEx eQTL (EUR) from cerebellum brain tissue 

(rs6787154).  

h,i) Boxplots showing proliferation across genotypes at SNP rs11177 (h) and rs2289247 (i). 

Related to Fig. 3d. 
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Supplemental Figure 3.10: CRISPRi/a targeting GNL3 in NPCs 

a) gRNA locations targeting the GNL3 promoter. rs1108842 is the SNP in the GNL3 5’UTR 

used to assess allele specific expression in Fig. 3e. 

b) GNL3 expression in an NPC donor line transduced with the indicated lentivirus and 

treated with 1.5 mM LiCl. Data normalized to vehicle condition, related to Fig. 4a. 

Results suggest that regardless of baseline expression, lithium increases GNL3 

expression to uniform levels. n=4 technical qPCR replicates, significance determined by 

two sample Student’s t-test. 
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c) RT-qPCR for the six nearest genes to gRNA target sites other than GNL3, to test for off 

target activity. Expression normalized to EIF4A2. n=4 technical qPCR replicates, 

significance determined by two sample Student’s t-test. ** p<0.01, *** p<0.001.  

 

Supplemental Table 3.1: Nominally significant clumped GWAS results 

Nominally significant (p < 1x10-5) GWAS loci from this study clumped using PLINK with 250kb 

windows and LD r2 > 0.2. Each row reports the most significantly associated variant at each 

locus. Columns: Trait - associated proliferation phenotype, SNP - variant ID, rsid - variant rsID, 

CHR - chromosome, BP - chromosomal base-pair coordinates (hg38), P - association p-value, 

SEbeta - standard error adjusted effect size, TOTAL - number of SNPs in locus clumped with r2 

> 0.2, A1 - non-effect (typically minor) allele, A2 - effect allele, freqA1_WntI_n80 - reference 

allele (A1) frequency within donor-derived NPC lines in this study, freqA1_1kgALL - reference 

allele (A1) frequency in all subjects from the 1000 Genomes Project reference panel, 

freqA1_1kgEUR - reference (A1) allele frequency in European subjects from the 1000 Genomes 

Project reference panel. 

 

Supplemental Table 3.2: GWAS summary statistics used for colocalization analysis 
and cross-trait enrichments 

Columns: trait - description of GWAS trait, PMID/ref - PubMed ID or link to reference, Year - 

year of study, sample size - total number of subjects in study, nCase - number of cases in study, 

nControl - number of Control subjects in study, note - additional information about subjects and 

sample sizes 

 

Supplemental Table 3.3: qPCR primers and gRNA sequences used in this study 

Columns: Name - Forward, “F” and Reverse “R” qPCR primers labeled by target gene (rows 2-

83), or guide RNAs targeting the GNL3 transcriptional start site (rows 84-86), Sequence - 

nucleotide sequence of primer or gRNA  
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CHAPTER 4: STIMULUS-SPECIFIC GENETIC EFFECTS ON GENE REGULATION 
DURING RESPONSE TO LITHIUM AND VALPROIC ACID TREATMENT IN 

PRIMARY NEURAL PROGENITOR CELLS 

4.1 Introduction 

Lithium (Li) and valproic Acid (VPA) are widely used first-line treatments for BD, but 

clinical responses are highly variable and mechanisms driving their effects are largely unknown. 

Fetal VPA exposure can impair neurodevelopment and increase risk for ASD. Genetic influences 

on clinical responses in patient populations are beginning to be characterized, but are limited by 

low power, difficulty in isolating specific effects due to the prevalence of polypharmacy, and 

uncontrolled compliance, duration, and dose across participants. Here, a “pharmacogenomics in 

a dish” approach aims to understand how genetic variation impacts response to these 

compounds. We describe the effects of Li and VPA on gene regulation, and how these changes 

are tuned by common genetic variation within primary human neural progenitor cells (hNPCs). 

Our experiment measured chromatin accessibility via ATAC-seq and gene expression via RNA-

seq in 78 genotyped hNPC lines after 48 hour exposure to approximately clinically-relevant 

concentrations of either 1.5mM LiCl, 1mM VPA, or vehicle. This final data chapter compiles 

preliminary results from an ongoing study. Experimental and analytical methods are identical to 

those described in chapter 2: “Wnt activity reveals context-specific genetic effects on gene 

regulation in neural progenitors” (Matoba et al. 2023). 

4.2 Effects of lithium or VPA stimulation on chromatin accessibility and gene 
expression 

Over 10,000 and 45,000 regulatory elements showed significant changes in chromatin 

accessibility in response to Li or VPA, respectively (Figure 4.21, FDR < 0.1, |logFoldChange| < 

0.25). Many transcription factor binding site (TFBS) motifs, such as RFX, were enriched within 

https://paperpile.com/c/uEyN9q/f6h3
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regulatory regions opened by Li treatment. While Li is known to inhibit GSK3B, a critical 

component of the canonical Wnt pathway, TCF/Lef TFBS motifs were not enriched in peaks 

opening or closing due to Li stimulation. TFBS motifs such as LHX6, VENTX, and GSC were 

enriched within regulatory regions opened by VPA treatment. In contrast, some TFBS motifs 

mediating canonical Wnt pathway activation such as Lef1 and TCF7 were enriched within 

chromatin regions closed by VPA treatment (Figure 4.22). 

 

 

Figure 4.1: Differentially accessible chromatin regions (DARs) induced by Lithium 
and VPA 

Differentially accessible chromatin regions (DARs) induced by 48h exposure to LiCl 

(left) or VPA (right). Each point is a chromatin region; labels denote nearest 

transcription start sites. DARs are defined by |LFC| > 0.25 and FDR < 0.05. 
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Figure 4.2: TFBS motif enrichment within Lithium and VPA DARs 

TFBS motif enrichment within Li (top) or VPA (bottom) DARs. Each point represents a 

TFBS motif from 841 predicted human TFs in the JASPAR 2022 database (Castro-

Mondragon et al. 2022). 

 

We detected 493 and 7,700 differentially expressed genes in response to Li or VPA 

treatments, respectively (Figure 4.23, FDR < 0.1, |logFoldChange| > 0.25). VPA mostly 

increased DEG expression, consistent with its activity as an HDAC inhibitor. Cellular 

proliferation genes were upregulated by Li and downregulated by VPA, consistent with 

proliferation assays conducted in the same samples (Figure 4.24). 

 

Figure 4.3: Differential gene expression in response to lithium or VPA 

Differentially expressed genes (DEGs) induced by 48h exposure to Li (left) or VPA 

(right).  Each point is a protein-coding gene. DEGs are defined by |LFC| > 0.25 and FDR 

< 0.05 

 

 

https://paperpile.com/c/uEyN9q/PfThG
https://paperpile.com/c/uEyN9q/PfThG
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Figure 4.4: DEG gene ontology enrichment analysis  

Gene ontology categories significantly (FDR < 0.1)  downregulated (down) or 

upregulated (up) in response to lithium (left) or VPA treatment (right). Gene ratios 

reflect the fraction of total DEGs in each gene-ontology category. 

 

4.3 Lithium and VPA stimulus-specific genetic effects on chromatin accessibility 
and gene expression 

We mapped caQTLs and eQTLs in each of the vehicle, lithium, or VPA conditions. 

Estimated genetic effect sizes for the vehicle condition were correlated with those from previous 

experiments using a similar sample of hNPCs to assess the quality of these results and evaluate 

cross-experiment reproducibility. Vehicle condition caQTL and eQTL effect sizes were highly 

and significantly correlated, suggesting that hNPCs consistently model genetic effects on gene 

regulation (Figure 4.25). Stimulus-specific caQTLs regulated 20,762 and 4239 unique caPeaks 

following Li or VPA exposure, respectively, an up to 80% increase in discovery compared to 

25,710 caPeaks detected under vehicle conditions. Stimulus-specific eQTLs regulated 439 and 

462 unique eGenes following Li or VPA exposure, respectively, a ~50% increase in discovery 

compared to the 1899 eGenes detected under vehicle conditions (Figure 4.26). 
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Figure 4.5: Correlation of vehicle caQTL and eQTL effect sizes across experiments 

Effect size correlations between vehicle caQTLs (left) or eQTLs (right) captured in this 

study and those previous experiments (Liang et al. 2021; Aygün et al. 2021). 

 

 

 

 

https://paperpile.com/c/uEyN9q/FBFAg+xblxB
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Figure 4.6: Stimulus-specific genetic effects on chromatin accessibility and gene 
expression following stimulation by lithium or VPA 

Upset plot depicts sharing of unique caPeaks influenced by caQTLs (left) or eGenes 

influenced by eQTLs across stimulation conditions (FDR < 0.1). Colored bars show 

stimulus-specific genetic effects exclusive to lithium or VPA conditions. 

 

4.4 Ongoing analyses and future directions 

Epigenomic and transcriptomic profiles characterized the gene regulatory response to Li 

and VPA. Despite their shared roles as mood stabilizers, changes in chromatin accessibility and 

gene expression induced by each stimulus were notably distinct. A forthcoming more detailed 

appraisal of DARs and DEGs will elucidate molecular mechanisms underlying therapeutic 

effects. This will include linking li or VPA-responsive regulatory elements to the genes they 

regulate by calculating peak-gene correlations. Stimulus-specific QTLs showed novel genetic 

influences undetected in unstimulated cells. Future work will characterize genotype by stimulus 

interaction effects by mapping response-ca/eQTLs. I eagerly anticipate comparison of these 

molecular QTL signals with known genetic influences on clinical responses to lithium and VPA, 

as well as colocalization with neuropsychiatric disorder and brain structure GWAS. We 

anticipate upcoming analyses will shed light upon gene regulatory dynamics that may mediate 

responses to these treatments within neural progenitor cells, and facilitate pharmacogenomic 

interpretations that have the potential to improve clinical outcomes. 
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CHAPTER 5: DISCUSSION 

This research characterized molecular and cellular phenotypes in hNPCs across a variety 

of stimulation conditions using ATAC-seq, RNA-seq, and cellular assays. Genetic effects on the 

molecular phenotypes of chromatin accessibility and gene expression were estimated using 

ca/eQTL mapping, while genetic effects on the cellular phenotypes of Wnt activation and 

proliferation were estimated using GWAS methods. A key strength of this work resides in its 

consideration of stimulated cell-states as important contexts that shape gene regulation and 

cellular processes. One branch of research considered stimulated the Wnt pathway, and is 

broadly applicable to understanding developmental gene regulatory dynamics in the fetal 

neocortex, and how these dynamics may modulate cellular processes and the expression of 

complex brain-traits. Another, and ongoing, branch of research explored molecular and cellular 

responses to mood stabilizing drugs and is relevant to understanding both the therapeutic 

mechanisms of these treatments, and the genetic determinants influencing individual treatment 

responses. I will now contextualize these context-specific results (heh), discuss their 

implications, recognize their limitations, and forecast their future trajectories. 

Genetic effects aside, the extensive molecular and cellular phenotypic profiles we 

generated represent a rich and novel resource to understand context-specific effects on the 

epigenome, transcriptome, Wnt signaling, and proliferation. While other studies have captured 

omic data from fetal brain tissues, even at the single-cell level (M. Li et al. 2018; Zhong et al. 

2018), they describe baseline cell-states. Our results extend modern approaches to study gene 

regulation using parallel multi-omics, here ATAC-seq and RNA-seq, into developmentally and 

clinically relevant cell-states. Use of up to 82 hNPC lines for each experimental condition, 

required for sufficiently powered QTL mapping discussed later, ensured robust molecular and 

https://paperpile.com/c/uEyN9q/DycWU+QhKR
https://paperpile.com/c/uEyN9q/DycWU+QhKR
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cellular profiling. Parallel chromatin accessibility and gene expression profiles allowed inference 

of gene regulatory mechanisms supported by correlations between chromatin accessibility and 

local gene expression. These peak-gene correlations identified genes under the influence of 

nearby regulatory elements, perhaps via chromatin contact, including cases where regulatory 

relationships were sensitive to developmental or clinical stimuli. The DARs characterized here 

describe dynamic regulatory elements that are enriched with genetic variants associated with 

the expression of complex brain traits. Enrichment of TFBSs within DARs nominate specific 

factors with regulatory function that can be modulated by genetic variation. DEGs, discovered in 

parallel with DARs, show the regulatory landscape’s transcriptional output in response to 

stimuli and are enriched for genes with known links to brain diseases. A limitation of our 

approach is that we did not profile responses to multiple exposure durations or concentrations 

of stimuli.  Exposure conditions were selected based on pilot experiments that attempted to 

balance stimulation of robust effects, approximation of clinically-relevant dosing, and avoidance 

of toxicity. As such, these results characterize responses to one exposure for each stimulation 

condition, and do not illuminate dose-dependent effects. Nevertheless, stimulus-specific DARs 

and DEGs represent a novel inventory of regulatory elements and genes that serve as an 

important resource for future studies. Specifically, Wnt-stimulated DARs and DEGs can inform 

mechanisms driving corticogenesis, while Li/VPA-stimulated DARs and DEGs will illuminate 

therapeutic mechanisms of these mood-stabilizing treatments.  

A key advance of this research is its characterization of context-specific genetic effects on 

chromatin accessibility, gene expression, and proliferation in hNPCs. We detected myriad 

genetic effects that were undetected under vehicle conditions, building on the growing evidence 

that the function of some genetic variation depends on cell-state. Still, it should be stated that 

the majority of genetic effects were shared across vehicle and stimulated conditions, and these 

context-independent effects remain important footholds for understanding how genotype 

influences expression of phenotype. Advances in single-cell resolution QTL mapping, regardless 
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of stimulation state, will help to resolve whether these context-independent loci are specific to 

developing radial glia, or function across neural lineages and time. Thousands of significant 

genetic effects were detected across molecular phenotypes and stimulation conditions, 

suggesting that as few as 67 hNPC lines is sufficient for ca/eQTL mapping for variants with 

>=1% minor allele frequencies. Reduced, but still fruitful, ca/eQTL discovery is expected with 

slightly smaller sample sizes. Conversely, a larger sample size of hNPC genotypes may provide 

enhanced ca/eQTL discovery, enable the characterization of variants with smaller effect sizes, 

and improve detection of secondary signals within loci. Additional power to detect stimulus-

specific molecular QTLs may be found by increasing the potency of the stimuli applied to 

maximize molecular effect sizes with respect to vehicle conditions, under the assumption that 

stimulus-specific molecular and genetic effects exhibit dose-dependency. While this study was 

well-powered to detect abundant stimulus-specific QTLs, sample size did restrict the discovery 

of response-ca/eQTLs, which depend on an alternative model capable of evaluating genotype by 

environment (or in this case, stimulus condition) interaction effects. Future studies seeking to 

characterize such interaction effects should consider larger sample sizes for this reason. 

Response-caQTLs regulated chromatin peaks enriched with specific TFBS relative to all other 

chromatin peaks, including binding sites for Wnt-response and neural specification TFs. This 

suggests that response-QTLs are especially capable of responding to developmental signals 

through interactions between genotype and environments where key regulatory factors are 

available. The combination of chromatin accessibility QTLs with gene expression QTLs enabled 

the inference of enhancer priming. These loci are marked by accessible chromatin under both 

vehicle and stimulated conditions alongside stimulation-dependent gene expression. Enhancer-

primed loci may represent cases whereby gene expression is under the control of a regulatory 

element that is “waiting” for the presence of a transcription factor only present in a specific cell-

state or context. I speculate whether some trans-eQTL loci identified in studies with larger 

sample sizes, may regulate the expression of transcription factors under such context-specific 
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control, such that the functional trans-eQTL variant directly modulates context-specific TF 

expression, and that TF in turn regulates the distal trans-eQTL target gene. Further 

characterization of the genomic signatures and biological functions of primed loci is warranted. 

Importantly, context-specificity provided new explanations for GWAS loci, with each additional 

stimulus revealing additional colocalizations. It stands to reason that similar cell-based 

molecular QTL approaches expanded to a variety of stimulation conditions in relevant cell types 

would further improve functional support for GWAS loci.   

A cell-based approach allowed interrogation of Wnt-activation and proliferation 

phenotypes in a similar panel of hNPCs. These cellular phenotypes provided insights into hNPC 

responses to the Wnt agonist CHIR (CT99), Lithium, and VPA, but were flawed inputs for 

genetic association. GWAS detected many nominally significant associations to Wnt-activation 

and proliferation across vehicle and stimulated conditions, but only a single genome-wide 

significant association was identified at locus where common genetic variants influenced 

lithium-responsive proliferation. Our experimental design captured Wnt-activation and 

proliferation at the same 48h post-exposure time point. Retrospectively, simultaneous capture 

may not have been ideal, especially from the standpoint of the Wnt-activation luciferase assay. 

The majority of genetic effects on Wnt-signaling may occur quickly, during the first few hours 

following Wnt stimulation, and then dissipate over time. Proliferation differences in response to 

stimuli likely take longer to manifest because not all cells will be prepared to divide immediately 

upon stimulation, and cell-cycle completion may take up to 12h.  Also, while the assays used 

here were effective at resolving differences in Wnt-activation and proliferation with respect to 

stimulation condition, measurement noise may obscure discovery of genetic effects across this 

panel of hNPC lines. Due to these limitations, increased sample sizes and improved phenotyping 

are recommended to ensure successful genetic association to these cellular traits. Even so, the 

sole genome-wide significant lithium-sensitive proliferation association signal colocalized with 

GWAS for bipolar disorder, schizophrenia, and inter-individual differences in intelligence. 
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Fortunately, the GWAS “hit” was amenable to functional experimentation, allowing us to 

determine that lithium-sensitive genetic effects on proliferation acted through GNL3, a gene 

with known roles in cell-cycle regulation. Unfortunately, although GNL3 showed Lithium-

sensitive expression, this locus did not colocalize with Wnt- or lithium-specific caQTLs or 

eQTLs. Therefore, we were unable to trace a causal chain leading from genetic variation to the 

trio of colocalized brain-traits via shared genetic effects on chromatin, gene expression and 

cellular proliferation. In addition to improvements in sample sizes and assay methodology, 

simultaneous capture of both molecular and cellular phenotypes from the same hNPC cultures 

may facilitate detection of genetic effects that span multiple levels of biology. The possibility of 

supporting such mechanisms motivates building upon these studies.  

In discussing the variety of genetic effects characterized in this research, it is worth 

reiterating that this particular cohort of hNPCs possess genetic backgrounds of diverse 

ancestries. This genotypic diversity is in contrast with most large sample-size genetic studies to 

date, including brain-trait GWAS, in which discovery is biased towards caucasian individuals of 

European descent. Whether novel genetic associations reported here are applicable across all 

populations is an open question. However, studies showing that the most GWAS-identified 

genetic effects, including for schizophrenia risk (de Candia et al. 2013), are shared across 

ancestries (Marigorta et al. 2018), and the ongoing development of methods to maximize cross-

ancestry applicability of polygenic risk scores (Kachuri et al. 2023) are encouraging. Through 

this research, I note a need for standardized methodologies, including genetic effect model 

selection and false-discovery thresholding, and the development of new data integration tools 

that promote cross-comparisons between molecular, cellular, and complex traits. Additionally, 

the context-specific nature of genetic effects highlights the need for complementary context-

specific functional genomic annotations of the genome, a context-specific offshoot of the 

ENCODE project, perhaps. Establishment of field-standard best practices, analysis pipelines for 

QTL approaches and improved platforms for integrating results from GWAS and functional 

https://paperpile.com/c/uEyN9q/C6cnF
https://paperpile.com/c/uEyN9q/Gigq
https://paperpile.com/c/uEyN9q/AXm5
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genomic annotations will go some way to gleaning biological insights from this growing field of 

study. 

Molecular and cellular responses to the mood stabilizers lithium and VPA characterized 

these drugs’ mechanisms of effect in neural progenitor cells. Interestingly, from the standpoint 

of Wnt-activation and proliferation, these treatments have opposite effects despite similar 

clinical indications. At low and medium concentrations, Lithium stimulated the canonical Wnt 

pathway and hNPC proliferation. In contrast, VPA potently suppressed Wnt-activation and 

proliferation at all concentrations tested. Contrasting cellular responses between these drugs are 

reflected in distinct molecular responses. Compared to lithium, VPA had more robust effects on 

both chromatin accessibility and gene expression. VPA mostly increased the expression of 

thousands of genes, which is consistent with its known activity as a histone deacetylase 

inhibitor. Gene ontology enrichments for lithium or VPA DEGs showed contrasting results 

consistent with their opposite effects on Wnt-activation and proliferation. For example, lithium 

upregulated cell-cycle genes while VPA downregulated cell-cycle genes and upregulated gene 

categories related to neuronal function such as synaptic transmission and neurotransmitter 

release. This suggests that lithium promotes the maintenance of a pluripotent neural progenitor 

cell-state, and VPA promotes the differentiation of hNPCs at the expense of self-renewal. How 

contrasting molecular and cellular effects are exerted by two drugs both prescribed to mitigate 

mania is puzzling and highlights the need for further elucidation therapeutic mechanisms 

underlying lithium and VPA responses. 

Genetic association to molecular and cellular responses across hNPC lines can provide 

pharmacogenomic interpretations for lithium and VPA treatments. I will first consider the 

GNL3 locus where a genome-significant association to lithium-induced proliferation and 

colocalization with multiple brain trait GWAS signals was detected. Follow-up experiments at 

the locus suggested that genetic effects on GNL3 expression mediated effects on lithium-induced 

proliferation. As discussed in chapter 3, lithium’s ability to stimulate the proliferation of adult 
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neural stem cells has been proposed as a possible mechanism of therapeutic effect. CRISPRi/a 

experiments showed that modulation of lithium-sensitive GNL3 expression affected hNPC 

proliferation, fueling speculation that genetic effects on this gene regulatory mechanism and 

downstream neural progenitor proliferation may contribute to differences in patient responses 

to treatment. Future studies in non-human model systems should evaluate whether modulation 

of GNL3 expression can influence neural progenitor proliferation in vivo, and whether this 

activity mediates therapeutic effects. It is important to note that we did not find evidence that 

genetic variation at the GNL3 locus was also associated with clinical outcomes in the available 

lithium-response GWAS’ from individuals with BD, perhaps due to power limitations in those 

studies. Therefore, while these results support a role for neural progenitor cell proliferation in 

the response to lithium and demonstrate the feasibility of experimental manipulations to 

functionally characterize GWAS-identified loci, whether genetic influences on GNL3 also 

modulate clinical responses to lithium, and whether GNL3 function is a viable target for 

enhancing treatment outcomes remain open questions.  

Pharmacogenomics of these and other treatments are facilitated by cell-based systems 

that can faithfully recapitulate in vivo properties and processes. The hNPCs utilized here are 

beneficial for modeling neural progenitor proliferation, but are derived from developing fetal 

tissue. Since lithium and VPA are prescribed to treat mania in adults, it is not clear whether 

effects detected in developing fetal hNPCs will translate to clinical applications in adults. While 

fetal neural progenitors share many molecular and cellular properties with adult neural 

progenitors (Yuzwa et al. 2017; Hochgerner et al. 2018; Kriegstein and Alvarez-Buylla 2009), 

hNPCs may be inherently linked to developmental, and not adult, time-points. For this reason, 

hNPCs may be best suited to studying molecular, cellular, and genetic effects that act during 

fetal corticogenesis to influence the expression of complex brain traits later on in life. This 

developmental influence on adult phenotypes is supported by partitioned heritability analysis 

within dynamic chromatin regions in hNPCs (Chapter 2, Figure 2.2) and the many 

https://paperpile.com/c/uEyN9q/GgEun+s86uI+wZHT8
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colocalizations we identified between hNPC molecular or cellular QTLs with neuropsychiatric, 

brain structure, and cognitive traits (Chapter 2, 3). Still, as highlighted above for the GNL3 

locus, genetic effects on lithium- and VPA-responsive molecular and cellular phenotypes have so 

far failed to colocalize with existing clinical-response GWAS for these treatments. This may be 

due to a combination of power limitations hindering clinical-response studies and the possibility 

that fetal hNPCs do not adequately model important features of the clinical response. Ideal cell-

based systems for pharmacogenomics studies should strive to recreate the cell types, cell states, 

and genetic backgrounds underlying variance in clinical responses. Consequently, iPSC-based 

approaches are appealing since they use cells derived from living adults who can be stratified by 

their clinical responses, diagnostic profiles, and demographic information (Lagomarsino et al. 

2021), can be differentiated into a variety of cell-types, and are amenable to experimental 

manipulation. In contrast, the primary human cell-lines dissociated directly from fetal cortical 

tissue used here cannot be directly linked to clinical outcomes, although they do avoid potential 

molecular and cellular artifacts introduced by the genome remodeling required to reprogram 

iPSCs. Differentiated iPSC can generate the cell-types most relevant for pharmacogenomic 

interpretation, such as neurons. iPSC-derived cells can also be cultured as brain organoids 

which may recapitulate cell-types and functional phenotypes better than two-dimensional 

culture methods (Lago, Tomasik, and Bahn 2021). Currently, iPSC approaches are being applied 

to describe neuropsychiatric disease etiology (Evgrafov et al. 2020; Topol et al. 2015; Marchetto 

et al. 2017; Readhead et al. 2018), and clinical responses to lithium and other neuropsychiatric 

drugs (Mertens et al. 2015; S. Stern et al. 2018; Shani Stern et al. 2020; Santos et al. 2021). 

Work is ongoing to integrate lithium and VPA response profiles with results from iPSC and 

clinical studies in order to better understand patient variation in treatment responses. Ongoing 

and future analyses aim to describe mechanistic hypotheses involving lithium- or VPA-

responsive genetic variation, chromatin, genes, and cellular processes that can be evaluated to 

facilitate pharmacogenomic interpretations. 

https://paperpile.com/c/uEyN9q/bMnu
https://paperpile.com/c/uEyN9q/bMnu
https://paperpile.com/c/uEyN9q/lzTg
https://paperpile.com/c/uEyN9q/ReT5K+cHGzj+Rdttf+ihXZ
https://paperpile.com/c/uEyN9q/ReT5K+cHGzj+Rdttf+ihXZ
https://paperpile.com/c/uEyN9q/ngvJK+Rr5Ox+8BCwS+CZlfI
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In closing, this research generated several rich and complementary data sets spanning 

multiple levels of biology and cellular contexts. Together, these data emphasize the dynamic 

nature of the genome and its power to control cellular processes in response to specific cell-

states. Ample opportunities for further investigation remain, for instance functional 

characterization of individual genomic loci that support causal hypotheses explaining brain trait 

GWAS or predicting clinical responses to lithium and VPA. The depth and complexity of this 

work is such that I hope it will serve as a lasting resource for exploring genetic regulation, 

cortical development, pharmacogenomics of mood stabilizers, and the impact of genetic 

variation upon phenotypic expression.   
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ENDNOTES 

Overall, it Wnt pretty well. I did a lot. I learned a lot. There is much to do and learn yet, 

so I don’t plan on stopping. Certainly, whichever way the Wnt blows, the growth, skills, 

knowledge, and friendships I gained along the way will light the winding path forward. 
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