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ABSTRACT 

Honoka Suzuki: Measurement Non-invariance in Machine Learning: An Intersection of Machine 

Learning Bias and Test Bias 

(Under the direction of Oscar Gonzalez) 

 

 Algorithmic and machine learning bias have stirred concern in society as machine 

learning continues to channel into sensitive and high-stakes applications, including in healthcare, 

hiring, and criminal justice. While research surrounding machine learning bias may be relatively 

new, psychometricians have for decades researched a closely paralleled topic of test bias in 

psychological and educational testing. Leveraging the connection between these two fairness 

domains, this thesis studies the problem of machine learning bias from a measurement 

perspective, specifically focusing on measurement non-invariance in outcome variables as a 

source of machine learning bias. A framework is introduced, which conceptualizes machine 

learning bias in a psychometric sense and allows for tests of measurement invariance in machine 

learning. Using a Monte Carlo simulation study, the consequences of measurement bias on 

machine learning bias are demonstrated, as well as the effectiveness of a proposed bias 

mitigation technique to address these effects of measurement bias, which also follows from the 

proposed framework. The application of the proposed methods is illustrated with data from a 

large-scale health survey. Broader implications of the relevance of fairness in measurement for 

fairness in machine learning are discussed.   
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CHAPTER 1: INTRODUCTION 

In a popular article published in Science, Obermeyer and colleagues (2019) describe a 

commercial machine learning model used in a health system to identify patients with the highest 

health needs for enrollment in a high-risk care management program. The model was trained on 

patients’ past-year insurance claims data to predict their current year’s medical expenses—the 

model’s outcome variable, chosen by the model-creators as a proxy for health needs. The 

rationale here was that by selecting patients with the highest predicted medical expenses, patients 

with the highest projected health needs, and therefore patients who will benefit the most from 

enrolling in the program, were being selected. However, possible evidence of racial bias in the 

model surfaced when the authors formulated a different proxy for health needs: a patient’s 

number of chronic medical conditions. Given the same level of model-predicted medical 

expenses, black patients had more chronic conditions than white patients. The authors attributed 

this disparity to racial differences in access to healthcare. With similar chronic conditions but 

different access to care, patients would have different expenses (i.e., care received) recorded in 

the system, from which the machine learning model was trained. As such, by enrolling patients 

for care based on model-predicted expenses, patients with high care needs but limited care access 

were disadvantaged, thereby perpetuating health disparities.  

This Science article is just one of many to spotlight algorithmic fairness and bias in 

machine learning—topics gaining vast attention as machine learning increasingly informs 

consequential decision-making in a myriad of disciplines (Mehrabi et al., 2021). Psychology is 

no exception: machine learning informs hiring pipelines in industrial-organizational psychology 
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(Liem et al., 2018), intelligent tutoring systems in educational psychology (Koedinger et al., 

2015), and mental health screening in clinical psychology (Graham et al., 2019). While 

algorithmic decision-making has been touted for its seemingly objective nature, grounded in 

data-driven reasoning rather than subjective human judgment, there is emerging evidence that 

machine learning models are vulnerable to societal and human biases (O’Neil, 2017). Decisions 

based on models and predictions tainted by such biases can unintentionally discriminate against 

and amplify inequities across groups (e.g., race, sex), resulting in machine learning bias.  

Responding to these concerns, the computer science community has proposed various 

definitions of fairness in machine learning, such that machine learning models may be audited 

for evidence of possible biases (Mehrabi et al., 2021; Mitchell et al., 2021). For example, 

sufficiency refers to the conditional independence of group membership and the observed value 

of the outcome variable given a certain level of machine learning predictions. Unfortunately, no 

such single definition can identify all instances of machine learning bias. In fact, the Science 

article mentions that given any level of model-predicted expenses, white and black patients had 

similar levels of observed expenses (Obermeyer et al., 2019), meaning sufficiency was satisfied 

in this situation, despite the evidence of racial bias found otherwise.  

While in this article, the authors uncovered the bias by examining the relationship of 

model predictions to the number of chronic conditions, we propose another way to view this 

problem, by framing it as a problem of measurement. We could think of medical expenses, the 

model’s proxy outcome variable, as having been a biased indicator of health needs, a target latent 

variable which the model-creators ideally intended to predict. In other words, medical expenses, 

the observed variable, did not measure health needs, the latent construct, equivalently across 
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racial groups. This framing motivates this thesis to examine machine learning bias from the 

psychometric lens of measurement bias or non-invariance. 

This perspective draws from the psychometric literature on test bias in psychological and 

educational testing. In this body of literature, test scores (e.g., SAT scores) are examined for bias 

to ensure fairness in their use across groups, such as those defined by race, sex, or nationality 

(Zwick, 2019). These fairness considerations of the testing domain closely parallel those of the 

machine learning domain—a connection that has been recognized in previous machine learning 

fairness literature (Barocas et al., 2019; Hutchinson & Mitchell, 2019). However, to date, this 

machine learning-test fairness connection has primarily focused on the analogy between machine 

learning fairness and the psychometric practice of predictive invariance testing. Predictive 

invariance testing assesses for predictive bias in test scores by examining whether a test score 

predicts some future, observed criterion (e.g., college grades) equivalently across groups 

(Millsap, 2007; Millsap, 2011). Measurement invariance testing, on the other hand, checks for 

measurement bias by assessing whether test items or sub-test scores measure or relate to the 

intended latent construct (e.g., math achievement) in the same way across groups (Millsap, 2007; 

Millsap, 2011).  

Extending the machine learning-test fairness connection that has previously focused on 

predictive invariance, we aim to contribute a framework to study machine learning bias from the 

viewpoint of measurement invariance. Motivated by the Science article of Obermeyer et al. 

(2019), we will specifically focus on measurement non-invariance in outcome variables as a 

source of machine learning bias. Especially in social and behavioral science applications, what a 

machine learning task intends to predict may be a latent construct (e.g., job performance, 

depression), but it is not uncommon for one observed indicator to be chosen as a proxy to serve 
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as the outcome variable. There is much emphasis on defining predictors (features) in machine 

learning, as feature selection and feature engineering are routine steps in machine learning 

workflows (Domingos, 2012). However, as demonstrated in the Science article, careful 

consideration in defining and selecting valid outcome variables can be just as critical, if not more 

(Goretzko & Israel, 2022). In light of these considerations, this thesis explores the following 

interconnected questions: How can we test for measurement invariance of outcome variables in 

machine learning?; How can machine learning bias be conceptualized in a measurement 

framework?; What are the effects of measurement bias on machine learning bias, as 

conceptualized in this framework?; and How can these of effects of measurement bias be 

addressed? 

There are three main components to this thesis. First, we introduce a simple framework to 

operationalize the true target variable in a machine learning task as a latent variable, to allow for 

tests of measurement invariance with respect to a grouping variable. This also leads to a 

definition of machine learning fairness that aligns with the psychometric concept of 

measurement invariance, providing a useful notion of machine learning bias from a measurement 

perspective. Second, in part 1 of a two-part Monte Carlo simulation study, we investigate the 

effects of measurement bias on the fulfilment of this definition under various conditions, to 

demonstrate the role of measurement bias as a source of machine learning bias, as defined in this 

framework. We additionally introduce a bias mitigation technique, which follows from the 

proposed framework, to address measurement bias in machine learning by combining methods 

from measurement modeling with a bias mitigation technique from the machine learning fairness 

literature. We evaluate the effectiveness of this proposed technique in part 2 of the simulation 
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study. Third, we demonstrate the application of these proposed methods on an empirical health 

dataset.  

The rest of Chapter 1 is organized as follows. In Section 1.1, we provide a high-level 

overview of machine learning, how machine learning differs from statistical techniques 

traditionally used in psychological research, and why machine learning is becoming increasingly 

important and relevant in psychological research. In Section 1.2, we provide a more detailed 

background on fairness research in machine learning, possible sources of machine learning bias, 

and current research efforts in the computer science community around tackling such biases. In 

Section 1.3, we review relevant psychometric research on predictive and measurement 

invariance testing. We then draw a more thorough connection between machine learning fairness 

and test fairness, as well as past research efforts that have drawn this connection, upon which this 

thesis builds. Following Chapter 1, we introduce the proposed framework in Chapter 2. We then 

describe and execute the two-part Monte Carlo simulation study in Chapters 3 and 4, and we 

demonstrate a relevant use case of the proposed methods with an applied example in Chapter 5. 

Finally, we conclude with a discussion of the broader contributions of this thesis in Chapter 6. 

Section 1.1: Machine Learning and Psychology 

Machine learning 

Broadly, machine learning refers to the automatic detection or learning of patterns in data 

(Domingos, 2012; Dwyer et al., 2018; Liem et al., 2018). In supervised machine learning, the 

goal is to learn patterns among provided examples (i.e., training data) of predictor and outcome 

variable values, such that given new instances (i.e., test data) of predictor values, the learned 

mapping of predictors to the outcome variable generates accurate predictions of the outcome 

variable (Jordan & Mitchell, 2015). As such, a key focus of machine learning is on accurate 
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prediction of unseen outcomes and generalizability of the model beyond the training data used to 

fit it (Domingos, 2012; Orrù et al., 2020).  

Machine learning differs from statistical methods traditionally used in psychological 

research (e.g., multiple regression, structural equation modeling) due to this heavier emphasis on 

prediction rather than explanation (Yarkoni & Westfall, 2017). A core aim of psychological 

research is to understand and explain human behavior, and it is largely theory-driven. In 

conducting statistical analyses in psychological research, relationships among predictors and 

outcome variables are specified a priori. Then, statistical models are fit accordingly to test the 

significance and magnitude of such relationships in the observed data by examining model 

parameter estimates, which carry interpretable, substantive meaning. In contrast, machine 

learning methods are suited for largely data-driven research. For example, in classic applications 

of machine learning, such as spam filtering or fraud detection, researchers may gather a large 

number of predictors without prior theory and observed instances of an outcome variable. Then, 

the machine learning model automatically (i.e., without explicit specification from the 

researcher) detects patterns from this data, which may be highly complex and uninterpretable. 

Rather than to examine parameter estimates or to test theories that explain the relationships or 

causal mechanisms underlying these variables, the interest lies in empirically identifying 

relationships among the variables to fit a model, explainable or not, for future application on data 

where the outcome variable is not yet observed, such that predictions can be generated for those 

future instances. In the machine learning context, the fitted model is evaluated with respect to the 

accuracy of its predictions on unseen (by the model) data. In the statistical analysis context, a 

model is evaluated in terms of its goodness of fit to the observed data used to fit it (Yarkoni & 

Westfall, 2017). 
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Machine learning applications in psychology 

Despite these fundamental differences, the psychological sciences have seen a recent 

surge of machine learning applications (Jacobucci & Grimm, 2020). This may in part be due to 

the growing availability of high-dimensional datasets and new or complex data types (e.g., text, 

video) that have made machine learning more applicable and relevant in psychological research 

(Adjerid & Kelley, 2018). For example, advances in computer technology have made possible 

the large-scale collection of data generated by users of digital services, such as social media 

platforms, which are increasingly used in the area of personality assessment (Bleidorn & 

Hopwood, 2019). Machine learning is a promising tool for the analysis of such digital records 

and footprints, including profile pictures, status updates, and follower networks, given its ability 

to empirically learn complex patterns among a large number of variables for which there is 

limited prior theory (Bleidorn & Hopwood, 2019).  

Another likely driver of machine learning applications in psychology is the growing 

recognition of the utility of prediction and the need for reproducibility in psychological research. 

For example, Dwyer et al. (2018) discussed the practical utility of machine learning approaches 

in informing clinical care (e.g., diagnosis, prognosis, treatment decisions), given its focus on 

predictive accuracy and generalizability at the individual patient-level, over statistical methods 

traditionally used in clinical psychology and psychiatry that focus on group differences. Further, 

Yarkoni and Westfall (2017) discussed practices in machine learning that could be useful for 

improving replicability of findings in psychological research. For example, taking steps to avoid 

a model from overfitting, or learning the idiosyncrasies of, the training data is routine practice in 

machine learning (e.g., cross-validation, regularization), given that it focuses on generalizability 

to the test data. With the replication crisis emerging as a serious concern in psychological 
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research (Shrout & Rodgers, 2018), such practices from machine learning could serve as useful 

guides, even if machine learning algorithms themselves may not be as applicable to the types of 

substantive research questions sought in traditional psychological research.  

In a similar vein, machine learning techniques can not only be applied to directly answer 

substantive research questions, but also instrumentally in enhancing tools for psychological 

measurement. For example, machine learning models, such as decision trees, can be used to 

select items from a full psychological questionnaire to create a short-form or tailored test to 

alleviate respondent burden (Gonzalez, 2021). Techniques common in machine learning, such as 

lasso regularization and recursive partitioning, have also been used to develop new methods for 

selecting anchor items and detecting differential item functioning in psychological scales (Belzak 

& Bauer, 2020; Strobl et al., 2015).  

In sum, machine learning presents a powerful set of tools with which researchers can 

leverage to automatically uncover patterns from large amounts of data, work with new and 

complex data types, and build models that are generalizable to external data. Despite possible 

tensions between the theory-guided, explanation-focused nature of psychology and the data-

driven, prediction-focused nature of machine learning, recent research occurring at the 

intersection of these two fields has underscored the potential of machine learning approaches to 

augment, not replace, traditional approaches to quantitative research in psychology. 

Section 1.2: Machine Learning Bias 

In considering the far-reaching utility of machine learning, we must also recognize the 

possible harms and dangers that come with its use. In many applications of machine learning, 

model predictions are used to inform selection and decision-making about individuals, such as 

whether to approve a loan applicant, whether to enroll a patient in a health service program, or 
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whether to select a candidate for a job interview. Especially when predictions are used in 

sensitive, high-stakes applications that are consequential to individuals’ lives, it is crucial that the 

resulting decisions are not skewed towards and do not discriminate against any groups based on 

sensitive attributes, such as race, sex, or nationality. These dangers may be heightened by the 

complex and black-box nature of most machine learning algorithms or the lack of transparency 

in their use and deployment in practice, making it difficult to assess possible causes or 

mechanisms of models’ discriminatory behavior (O’Neil, 2017).  

One example of machine learning bias that has received significant media attention and 

has stimulated much conversation around algorithmic fairness in recent years is the Correctional 

Offender Management Profiling for Alternative Sanctions (COMPAS), a recidivism risk 

assessment tool used by some U.S. courts to aid in judges’ decision-making, such as pretrial 

release decisions. An investigation into the COMPAS tool revealed possible concerns of racial 

bias, such that among those who did not re-offend, black defendants were more likely to be 

falsely predicted as being high-risk compared to white defendants (Angwin et al., 2016). Given 

the wide-spread use of machine learning in high-stakes domains such as criminal justice and the 

consequent need for fairness considerations in designing and deploying machine learning 

models, the study of algorithmic fairness has become a growing research area of its own in 

recent years (Mitchell et al., 2021). The topic has also been discussed in various influential 

outlets, including a recent White House report (Executive Office of the President, 2016).  

Sources of machine learning bias 

There are many ways in which bias can enter into a machine learning system. Mehrabi et 

al. (2021) described possible entry points within a feedback loop between data used to train the 

model, the model, and users’ interactions with the output of the model. First, the training data 
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may be biased in a number of ways. One such possible way, which will be the focus of this 

thesis, is if the variables in the data exhibit measurement bias or more generally contain 

differential measurement error across groups. The training data could also suffer from sampling 

bias, such that it is not representative of or generalizable to the population for which predictions 

are to be made (Mehrabi et al., 2021; Mitchell et al., 2021; Suresh & Guttag, 2021). Even if data 

are not collected erroneously or in a non-random manner, the training data can still be biased, in 

the sense that it reflects societal biases due to historical or existing structural inequities (Suresh 

& Guttag, 2021). Because the goal of machine learning is to learn patterns in data (Domingos, 

2012; Dwyer et al., 2018; Liem et al., 2018), it is problematic to feed biased training data to a 

model, as it can lead to the reproduction and exacerbation of unfair patterns. Besides the training 

data, several analytical decisions go into building a machine learning model which may induce 

bias, such as the functional form of the model, optimization function, and regularizations 

(Mehrabi et al., 2021; Mitchell et al., 2021). If biased predictions are generated, it is also possible 

that human interactions with such model outputs lead to the generation of more training data that 

confirm or reinforce biases, upon which future models may be built. For example, consider a 

company that is using an algorithmic hiring tool that is biased against female candidates for 

STEM-related roles and consequently has disproportionately fewer female employees in such 

roles. If the company then decides to update the model using data from its current employees, the 

model will be further trained on data which are a reflection of its own biased hiring decisions. 

Within the cycle of data generation, model building, and output usage, there is a clear danger of a 

feedback loop that can amplify any biases that enter into this cycle (O’Neil, 2017).  
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Machine learning fairness definitions 

Given these concerns, fairness research in machine learning has produced various 

technical definitions of fairness, such that machine learning models and their outputs may be 

evaluated for possible biases. The following are three definitions of fairness that are expressed as 

joint distributions of the grouping variable 𝐺, observed outcome variable 𝑌, and model 

prediction �̂� (Barocas et al., 2019).  

Independence refers to the independence of the prediction and group membership, or �̂� ⊥

𝐺 (Barocas et al., 2019), and is also commonly referred to as demographic parity. This definition 

requires groups to have equal distributions of machine learning predictions, such that groups are 

equal in their chances of selection or access to resources. While simple, this notion may be 

limited in utility. In cases where 𝑌 is correlated with 𝐺, imposing this constraint can hinder the 

predictive accuracy of the model (Hardt et al., 2016). A related concern is that independence can 

be satisfied by a model whose performance is excellent in one group but poor in the other, as 

long as the distribution of predictions is equal across groups. It may be odd to consider a model 

“fair” when errors (e.g., rejecting a qualified individual or selecting an unqualified individual) 

are made at a higher rate in one group compared to another.  

Separation refers to the conditional independence of the prediction and group 

membership given the outcome variable, or �̂� ⊥ 𝐺 | 𝑌 (Barocas et al., 2019), and is also referred 

to as equalized odds (Hardt et al., 2016). This definition requires groups to have equal 

distributions of model predictions across groups within each level of the observed value of the 

outcome variable. By conditioning on 𝑌, the idea is to require independence only among 

individuals with the same level of “merit” or “success”, as indicated by the outcome variable. 

However, this assumes that the outcome variable is indeed a valid reflection of merit, which is 
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not always the case in practice (and is what this thesis aims to address). Separation can also be 

specifically expressed for cases where �̂� is a binary decision, rather than a continuously 

measured prediction. For example, equal opportunity refers to the equality 𝑃(�̂� = 1 | 𝑌 =

1, 𝐺) = 𝑃(�̂� = 1 | 𝑌 = 1), which posits that the probability of selection given “success” on the 

outcome variable is equal across groups.  

Sufficiency refers to the conditional independence of the outcome variable and group 

membership given the model prediction, or 𝑌 ⊥ 𝐺 | �̂� (Barocas et al., 2019). This definition 

requires that groups have equal distributions of the outcome variable within each level of model 

predictions (Barocas et al., 2019). This definition may be considered to reflect the perspective of 

the model-creators, as individuals are stratified based on their placement on model predictions 

rather than on the observed outcome variable (Mitchell et al., 2021). Sufficiency can also appear 

in more specific forms for binary predictions. For example, predictive parity refers to the 

equality 𝑃(𝑌 = 1 | �̂� = 1, 𝐺) = 𝑃(𝑌 = 1 | �̂� = 1), such that the probability of “success” on the 

outcome variable is the same across groups among those selected (Chouldechova, 2017). 

Given these various fairness definitions, researchers have developed methods to train 

machine learning models that satisfy these criteria and mitigate possible biases. These methods 

can be broadly grouped into three categories: those that pre-process the training data to “de-bias” 

it; those that impose constraints or modifications during the model training process to satisfy 

some fairness definition; and those that post-process or adjust the model outputs to “de-bias” 

predictions (Suresh & Guttag, 2021; Barocas et al., 2019). Various toolkits and software have 

also been developed that allow machine learning researchers and practitioners to measure and 

mitigate bias issues in their models using these definitions and different mitigation techniques, 
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including Aequitas (Saleiro et al., 2018), IBM’s AI Fairness 360 (Bellamy et al., 2019), and 

pymetrics’ Python package audit-AI.1 

Other broader notions of fairness have also been proposed besides the above (conditional) 

independence definitions. Fairness through unawareness refers to the notion that a machine 

learning model is fair if the grouping variable was not explicitly used as a predictor in the model. 

While simple, this approach can be problematic if other predictors are included that correlate 

with or contain information that can be used to approximate group membership (Barocas et al., 

2019; Kusner et al., 2017). Furthermore, this approach may be inappropriate when the use of 

group membership is legitimate and provides important information for accurate prediction, such 

as in a medical application where symptoms for diagnosis of illnesses may differ across groups 

(Suresh & Guttag, 2021). Individual fairness refers to the notion that similar individuals with 

respect to the outcome variable should be treated similarly across groups (Berk et al., 2017), 

where equality is considered at the individual-level rather than aggregated at the group-level 

(Mehrabi et al., 2021). Finally, counterfactual fairness examines fairness through a causal 

framework. In studying causal pathways between predictors, the grouping variable, and the 

outcome variable, this framework aims to assess how model predictions would differ for an 

individual in a counterfactual world where their group membership was set to a different value 

(Kusner et al., 2017; Mitchell et al., 2021). 

There is no one universally accepted definition of machine learning fairness, nor any 

agreement on which definition is preferred in what situation (Mehrabi et al., 2021). In fact, some 

definitions of fairness have been shown to be inconsistent with one another, such that they 

cannot be simultaneously satisfied except under stringent and/or unrealistic conditions (Barocas 

 
1 Available at https://github.com/pymetrics/audit-ai. 
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et al., 2019; Chouldechova, 2017; Friedler et al., 2016; Mitchell et al., 2021). As the machine 

learning fairness domain is still nascent, synthesizing these definitions into a more unified 

framework remains an open challenge (Mehrabi et al., 2021). It is also important to recognize 

that these technical notions of fairness alone do not address the complexity of the issues 

surrounding machine learning fairness. However, their utility is non-trivial, as their use can 

facilitate clear and explicit articulation of the objectives, assumptions, and values in terms of 

fairness that are implied within model predictions (Hutchinson & Mitchell, 2019; Mitchell et al., 

2021).  

Section 1.3: Machine Learning Bias and Test Bias 

Test bias 

While machine learning fairness may be a relatively new domain, the issue of fairness is 

no stranger to the field of psychometrics. During the late 1960s and into the 1970s, there was a 

surge in interest in the fairness of educational and psychological tests and their use in selection 

decisions, such as school admissions and personnel selection. This was largely prompted by the 

civil rights movement and the women’s rights movement, which heightened scrutiny around test 

scores and their meaning across different groups (Cole & Zieky, 2001). Fairness remains a 

prominent topic today, and the most recent edition of the Standards for Educational and 

Psychological Testing (American Educational Research Association, American Psychological 

Association, & National Council on Measurement in Education, 2014) discusses its importance 

as a foundational consideration in testing. 

From a purely technical standpoint, fairness in testing has been studied through 

conceptualizations of test bias based primarily on two forms of invariance: predictive invariance 

and measurement invariance (Borsboom et al., 2008; Millsap, 2007; Millsap, 2011).  
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Predictive invariance 

Predictive invariance (or a lack of predictive bias) involves some equality across groups 

in the relationship between test scores and a criterion variable to be predicted by the test scores 

(Millsap, 2007). In many testing settings, test scores are used for selection because they are 

deemed to predict a future outcome upon which decision-makers are interested in basing their 

selection decisions. A classic example is SAT scores. When SAT scores are used in college 

admissions to select applicants with the highest potential for success in college, it may be of 

interest to examine how SAT scores predict a relevant criterion, such as college grades or degree 

completion, across groups.  

Such studies of differential prediction in testing most commonly use regression lines of 

the criterion on the test score to examine for equivalence in regression slopes and intercepts 

across groups (AERA, APA & NCME, 2014; Zwick, 2019). This regression model of test bias 

was proposed by Cleary (1968) and is based on the notion that if group differences exist in 

slopes and/or intercepts, the use of a common regression line will lead to systematic errors in 

prediction of the criterion for one or both groups. If the regression lines are equivalent, a test can 

be fairly used to select individuals predicted to perform highest on the criterion. Throughout the 

early 1970s, many other definitions of test bias were explored, although not necessarily 

advocated, by different psychometricians. These notions typically involved setting a decision 

threshold on test scores to determine selection versus rejection, such that certain selection 

outcomes or proportions were equated across groups. For example, Thorndike (1971) proposed 

the constant ratio model, where the ratio of the proportion of individuals selected to the 

proportion of individuals successful (based on a cut score on the criterion) is equal across groups. 

Einhorn and Bass (1971) proposed that groups be equal in their probability of success at the 
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decision threshold of the test score. Cole (1973) explored the notion that groups should be equal 

in their conditional probability of selection given success, and Linn (1973) discussed the equality 

in the conditional probability of success given selection. Darlington (1971) presented four 

definitions in terms of correlations, such as a zero correlation between test scores and group 

membership and a zero partial correlation between test scores and group membership when the 

criterion is taken into account. 

From the various definitions proposed during this period, no universally accepted 

definition of test bias emerged (Cole & Zieky, 2001; Zwick, 2019), and it was generally held that 

no single technical definition will be entirely satisfactory (Hunter & Schmidt, 1976; Linn, 1973). 

The limitations of these definitions have been raised from various viewpoints. Petersen and 

Novick (1976) pointed out internal inconsistencies within some of these definitions, such that 

following a definition will lead to different thresholds on test scores, depending on whether one 

is considering the probability of success and selection or its converse (i.e., probability of failure 

and rejection). For example, the “converse” constant ratio model would refer to the equality 

across groups in the ratio of the proportion rejected to the proportion unsuccessful, and this can 

yield different results from the regular constant ratio model (Petersen & Novick, 1976). 

Inconsistencies between definitions have also been raised, such that different definitions cannot 

be simultaneously satisfied except under stringent and/or unrealistic conditions (Darlington, 

1971; Linn, 1973; Petersen & Novick, 1976; Thorndike, 1971). These revelations of 

contradictory definitions have led to the discussion of test bias notions and their reflections of 

different value judgments or “ethical positions” (Hunter & Schmidt, 1976; Sawyer et al., 1976). 

Other limitations regarding these definitions include the skepticism around the practice of setting 

different thresholds of selection for different groups (Zwick, 2019) and the disconnect between 
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these technical definitions and the general public’s perceptions of fairness (Cole & Zieky, 2001). 

Another widely recognized limitation (e.g., Linn, 1973; Petersen & Novick, 1976; Thorndike, 

1971) is that these definitions operate on the assumption that the criterion variable itself is an 

unbiased, reliable measure, which may be dubious in practice. 

Predictive invariance and machine learning fairness 

Much of the fairness research in machine learning closely resembles this line of research 

on predictive invariance in the testing domain (Hutchison & Mitchell, 2019). Hutchison and 

Mitchell (2019) detailed this correspondence between test bias and machine learning bias by 

drawing an analogy between tests and machine learning models and their respective outputs. 

Specifically, a test score can be considered analogous to a machine learning prediction, and a 

criterion variable in testing can be considered analogous to the observed outcome variable (i.e., 

the “ground truth”) in machine learning.2 From there, certain equivalencies between the technical 

definitions of fairness explored in the areas of testing and machine learning become clear. For 

example, Darlington’s (1971) fourth definition is equivalent to the independence criterion in 

machine learning (under a bivariate normal distribution), Cole’s (1971) definition is equivalent 

to the equal opportunity criterion, and Linn’s (1973) definition is equivalent to the predictive 

parity criterion. In addition to equivalent definitions, both the testing and machine learning 

literatures have discussed impossibilities in simultaneously satisfying multiple competing 

definitions, as well as the definitions’ reflections of different value judgments (Hutchinson & 

Mitchell, 2019).  

 
2 An interesting distinction between machine learning models and tests in this analogy is that in machine learning, 

the prediction is made precisely to reproduce the ground truth outcome variable, and therefore the outcome variable 

is “internal” to the model. In testing, on the other hand, a criterion variable is external to the test, and while test 

scores should correlate with the criterion, test scores are not necessarily made to reproduce the criterion, or at least 

that is not how a test is constructed. 
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These stark parallels between machine learning bias and test bias reveal much potential 

for psychometric perspectives to contribute towards the machine learning fairness literature, as 

the research area continues to expand. In fact, just as a connection can be drawn between 

machine learning fairness and predictive invariance, there is an important connection to be made 

between machine learning fairness and measurement invariance, to which we turn next. 

Measurement invariance 

The second form of invariance commonly studied in the context of test bias is 

measurement invariance (or a lack of measurement bias). Whereas predictive invariance focuses 

on the equality in the relationship between the test score and an observed criterion across groups, 

measurement invariance focuses on the equality in the relationship between the test score and the 

latent construct which the test score intends to measure (Millsap, 2007). Formally, measurement 

invariance can be expressed as 

𝑓(𝑇 | 𝜂, 𝐺) = 𝑓(𝑇 | 𝜂) (1) 

where 𝑓(∙) denotes a probability density function, 𝑇 is a test score,3 𝜂 is the latent construct, and 

𝐺 is a grouping variable. When Equation 1 holds, test scores have the same meaning across 

groups, or the latent construct is measured by the test score in the same way across groups. This 

is because conditional on the latent construct, individuals are expected to receive the same test 

score across groups, or 𝑇 ⊥ 𝐺 | 𝜂.  

While predictive invariance was the central focus of much of the research on test bias in 

the 1970s, measurement invariance has emerged as a “very serious competitor” to predictive 

invariance in contemporary psychometrics (Borsboom et al., 2008, p. 76). While predictive 

invariance may be more easily investigated given that it involves observed variables only, it has 

 
3 In some contexts, T may be a test item response rather than a test score, depending on whether invariance is 

considered at the item-level or at the scale- or test-level.  
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some limitations. First, the choice of the criterion variable, as well as the timing at which this 

criterion will be measured, are arbitrary choices, yet are influential determinants of the 

conclusions about the presence or absence of predictive bias. Further, different conclusions can 

be drawn depending on whether the prediction of the criterion from test scores is considered, or 

the prediction of test scores from the criterion is considered. Such ambiguities are avoided under 

measurement invariance testing because measurement invariance concerns the relationship of the 

test score to the latent construct at the time of testing, and the measurement model implies a clear 

causal direction of effects, where the latent construct gives rise to test scores (Borsboom et al., 

2008). Because predictive invariance and measurement invariance have been shown to contradict 

one another (Millsap, 2007; Millsap 2011), measurement invariance may be preferred, if one had 

to choose between the two (Borsboom et al., 2008).   

 One way in which measurement invariance is investigated for continuous variables is 

through a multiple-groups confirmatory factor analysis (MG-CFA; Millsap & Olivera-Aguilar, 

2012). A CFA model is a measurement model that connects observed variables, or items, to their 

underlying latent constructs, or factors (Brown & Moore, 2012). These item-factor relationships 

are inferred from the covariance structure of the items, such that a common factor(s) is theorized 

to explain the intercorrelations among the items. The parameters 𝜽 of a CFA model include a 

factor loading matrix 𝚲 and an item intercept vector 𝝉, which define the regression equations 

predicting each item from the factors, a factor mean vector 𝜿, factor (co)variance matrix 𝚿, and 

item residual (co)variance matrix 𝚯𝝐, whose diagonal elements are the portion of item variances 

unexplained by the set of factors (Brown & Moore, 2012). These parameters are estimated with 

the maximum likelihood estimator, with the goal of reproducing the observed mean vector 𝝁 and 

covariance matrix 𝚺 of the items as closely as possible, where  
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𝝁(𝜽) = 𝝉 + 𝚲𝜿 (2) 

𝚺(𝜽) = 𝚲𝚿𝚲′ + 𝚯𝝐 (3) 

with 𝝁(𝜽) and 𝚺(𝜽) denoting the CFA model-implied mean vector and covariance matrix, 

respectively. The goodness of fit of CFA models are evaluated on how well 𝝁(𝜽) and 𝚺(𝜽) 

match 𝝁 and 𝚺 respectively, using statistical tests and fit indices such as the model chi-square 

test, Tucker-Lewis Index (TLI), comparative fit index (CFI), and root mean square error of 

approximation (RMSEA; Brown & Moore, 2012). 

When discrete groupings are present among the sample observations (e.g., males vs. 

females), a MG-CFA can be applied to study differences in measurement properties across those 

groups, serving as a foundation for measurement invariance testing. Specifically, a series of 

nested MG-CFA models are fit sequentially, each time fitting a more restrictive model according 

to the level of invariance being tested (Meredith, 1993; Millsap & Olivera-Aguilar, 2012). A 

typical workflow starts with testing for configural invariance, where the general factor structure 

(i.e., number of factors, pattern of free and fixed factor loadings) is restricted to be equal across 

groups. If the configural model fits adequately well, weak factorial invariance is tested next. 

Here, the factor loading matrix is restricted to be equal across groups. If these additional 

constraints do not worsen model fit significantly more than the configural model according to a 

likelihood ratio test for nested models, weak factorial invariance is said to hold, and strong 

factorial invariance is tested next. Strong factorial invariance restricts the factor loading matrix 

and item intercept vector to be equal across groups. If this model does not fit significantly worse 

than the weak factorial model, then strong factorial invariance is said to hold. Finally, strict 

factorial invariance restricts factor loading matrices, item intercept vectors, and residual 
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(co)variance matrices to be equal across groups. However, this is not typically tested in practice, 

and invariance testing generally stops at strong factorial invariance (Putnick & Bornstein, 2016).  

Measurement invariance and machine learning fairness 

The connection between machine learning fairness and measurement invariance may not 

be as pronounced as the connection between machine learning fairness and predictive invariance, 

where there was a clear analogy to be drawn.4 However, discussions of measurement bias (and 

measurement considerations more generally) and machine learning bias have intersected in 

several avenues of research, highlighting a promising area for further advancement to machine 

learning fairness research. For example, Johnson et al. (2022) and Tay et al. (2022) recognized 

the use of predictors and/or outcome variables that exhibit measurement bias as a possible source 

of machine learning bias in automated scoring in educational testing and in personality 

assessment, respectively. Goretzko and Israel (2021), Landers and Behrend (2022), and 

Raghavan et al. (2020) discussed how choosing and defining an outcome variable that is an 

objective, reliable, and valid measure can be a particularly challenging task in algorithmic hiring 

applications, such as resume screening, video interview scoring, and pre-employment 

assessment. For example, the outcome of job performance could be based on an organization’s 

definition of a perfect employee using multiple indicators, a single objective metric like sales 

revenue, or simply the outcome of a traditional (i.e., not using machine learning) selection 

decision, and there are advantages and weaknesses to each one (Goretzko & Israel, 2021). 

 
4 Tay et al. (2022) proposed a framework called “machine learning measurement bias” for conceptualizing bias in 

machine learning applications for psychological assessment. They made an analogy between an observed test score 

(from a psychological assessment) and a machine learning prediction and between a latent variable and the ground 

truth outcome variable, to motivate a machine learning analogue of measurement bias that examines for differential 

relationships between a machine learning prediction and the outcome variable. However, a key feature of the 

proposed framework in this thesis is the distinguishing of the latent construct from the observed outcome variable, to 

recognize that the outcome variable is not necessarily a “truth” and that it should not be analogized to the latent 

construct. This makes our proposed framework fundamentally distinct from that of Tay et al. (2022). 
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Relatedly, Jacobs and Wallach (2021) and Tay et al. (2020) discussed the limitations of a 

“ground truth” outcome variable when imperfect proxy measures are used as outcome variables 

in machine learning tasks to predict latent constructs, such as personality, recidivism risk, and 

teacher effectiveness. In such cases, outcome variables may not necessarily represent a “truth”. 

Mismatches between the intended latent construct and observed proxies can jeopardize fairness 

in computational systems (Jacobs & Wallach, 2021).  

 This thesis builds upon these studies that have acknowledged measurement as a key 

consideration for machine learning fairness, as we propose a framework to assess for 

measurement invariance of outcome variables in machine learning and psychometrically 

conceptualize machine learning bias. While the importance of measurement for machine learning 

fairness has been recognized in previous literatures as discussed above, to our knowledge, no 

concrete methods have been proposed to practically address these considerations. Further, there 

is limited systematic evidence around the nature of the relationship of measurement bias to 

machine learning bias that empirically demonstrates the importance of measurement invariance 

in machine learning. As such, the aim of this thesis is to fill these gaps, such that researchers can 

be better aware of the effects of measurement bias and are better practically equipped to study 

and address machine learning bias from a measurement perspective. 

Finally, in this thesis, we almost exclusively focus on technical notions of machine 

learning bias and test bias, and to that end, we use “fairness” synonymously with “a lack of 

bias”. However, it should be noted that considerations of fairness in both domains of machine 

learning and testing extend beyond these narrow, statistical properties of machine learning 

models and tests, respectively. For example, fairness can be thought of as a construct informed 

by social and cultural values, personal experiences, and philosophy (Zwick, 2019), which does 
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not simply equate to an absence of bias in the technical sense. While it is beyond the scope of 

this thesis, an important extension of this work may be to study the machine learning-test 

fairness connection from a nontechnical standpoint. 
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CHAPTER 2: PROPOSED FRAMEWORK 

Suppose that there is a machine learning task, where fairness of predictions with respect 

to a binary grouping variable 𝐺 is of interest from a measurement perspective. In this framework, 

we posit the existence of a target latent variable 𝜂, which is the construct that the machine 

learning task ideally aims to predict, but is not directly observed. Reflective indicators of 𝜂 are M 

candidates to serve as the model’s proxy outcome variable (𝑌𝑚, 𝑚 = 1, 2, … ,𝑀), which are 

observed variables. The goal is to gather multiple, candidate proxy outcome variables which are 

observed indicators of 𝜂, such that a unidimensional factor model may be built to infer 𝜂 and 

examine the measurement properties of those observed outcome variables. Specifically, we may 

test for measurement invariance using a MG-CFA with 𝐺, as is done traditionally in a 

psychometric setting, and flag any outcome variables for a violation of measurement invariance. 

In doing so, it is assumed that all usual assumptions and best practices of a MG-CFA with 

maximum likelihood estimation have been considered, including having adequate sample sizes 

from both groups, continuity and normality in the outcome variables (or with appropriate 

adjustments for nonnormality), and model identification. Furthermore, before a MG-CFA is 

applied, adequate fit of a one-factor CFA model within each group separately should be 

confirmed using fit indices and the model chi-square test.  

While the outcome variable is often referred to as the “ground truth” in machine learning 

tasks, this framework conceptually separates an observed outcome variable from its true 

underlying latent construct. This helps to avoid an unquestioning perception of the observed 



 
 

25 
 

outcome variable as necessarily being a “truth”, which is particularly important in social and 

behavioral science applications of machine learning where it is common for the true target of 

prediction to be latent.  

Further, by introducing 𝜂, a useful notion of machine learning fairness arises from this 

framework that aligns with the psychometric concept of measurement invariance: the conditional 

independence of the machine learning prediction and group membership given the target latent 

variable, or �̂� ⊥ 𝐺 | 𝜂. We will refer to this as machine learning measurement invariance 

(MLMI) hereafter. This definition requires that given a level of the target latent variable, 

machine learning models produce equal distributions of predictions across groups. This extends 

the analogy between tests and machine learning models of Hutchinson and Mitchell (2019), as it 

simply replaces the test score (𝑇) with a machine learning prediction (�̂�) in the definition of 

measurement invariance in Equation 1. Especially in machine learning applications where a 

proxy outcome variable is used, a definition that conditions on 𝜂 rather than Y, as in separation 

(�̂� ⊥ 𝐺 | 𝑌), provides a more rigorous and useful check of machine learning fairness from a 

measurement perspective. Using this conceptualization of machine learning fairness in the 

psychometric sense, we investigate the role of measurement bias as a source of machine learning 

bias in simulation part 1, demonstrating the importance of testing for measurement invariance 

using the proposed framework.  
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CHAPTER 3: SIMULATION STUDY PART 1 

Section 3.1: Methods 

In the first part of the two-part simulation study, we investigated the consequences of 

measurement bias for machine learning bias, as defined by a violation of MLMI. In particular, 

we examined whether training a machine learning model on a non-invariant outcome variable 

results in predictions that violate MLMI, even when separation is satisfied. In doing so, we 

aimed to elucidate the simulation conditions under which non-invariance in the outcome variable 

may manifest as biased predictions, even when attempts to train a “fair” model with observed 

variables have otherwise been made. Because 𝜂 is unobserved and one cannot test for MLMI in 

practice, examining this research question using a simulation (where 𝜂 is simulated and known) 

demonstrates when and why there is added benefit to assessing for non-invariance in outcome 

variables in machine learning using the proposed framework, even beyond working with existing 

definitions of machine learning fairness. We focus here on separation out of the various fairness 

definitions, as it serves as a natural counterpart to MLMI involving observed variables only. See 

Table 1 for a summary of these fairness-related concepts. While not the central focus of the 

simulation, we additionally studied effects of measurement bias on the predictive performance of 

machine learning models.  

Table 1 

Summary of the three fairness-related concepts explored in the simulation study 

Concept Type Definition 

Measurement invariant 

outcome variable 

Measurement property of training data 𝑌 ⊥ 𝐺 | 𝜂 
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Machine learning 

measurement invariance 

(MLMI) 

Machine learning fairness definition (proposed) �̂� ⊥ 𝐺 | 𝜂 

Separation Machine learning fairness definition (existing) �̂� ⊥ 𝐺 | 𝑌 

 

Data generation  

For each replication of a simulation condition, we generated a dataset using the below 

steps: 

1. Simulate a binary grouping variable 𝐺 ∈ {0,1} as 

𝐺𝑖~ Bernoulli(0.5) (4) 

for observation 𝑖 = 1,… ,𝑁 = 5,000. 

2. Simulate a 𝑁 × (𝑞 = 8) matrix of predictors 𝑿 = [𝑋1, … , 𝑋8] from a multivariate 

normal distribution with a specified mean vector 𝝁𝐺 and correlation matrix 𝑹, where 

𝝁𝐺=0 = [0, 0, 0, 0, 0, 0, 0, 0] (5) 

𝝁𝐺=1 = [0, 0.1, 0.2, 0.4, 0.5, 0, 0.3, 0.15] (6) 

𝑹 =

[
 
 
 
 
 
 
 
1.0
0.22 1.0
0.12 0.12 1.0
0.19 0.12 0.21 1.0
0.06 0.20 0.11 0.11 1.0
0.23 0.13 0.28 0.23 0.08 1.0
0.02 0.19 0.29 0.25 0.09 0.06 1.0
0.22 0.02 0.13 0.07 0.24 0.08 0.30 1.0]

 
 
 
 
 
 
 

 

(7) 

The elements of 𝝁𝐺=1 were generated between 0 to 0.5 to create group mean 

differences in predictors of up to a medium effect size (Cohen, 1988). The off-

diagonal elements of 𝑹 were generated between 0 and 0.3 to create correlations 

among predictors of up to a medium effect size (Cohen, 1988). 
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3. Simulate the target latent variable 𝜂 as a function of a subset of the predictors in 𝑿, 

such that 

𝜂𝑖 = 6𝑋1𝑖𝑋2𝑖 + 5.5𝐺𝑖𝑋2𝑖 + 8𝑋3𝑖 − 4𝑋4𝑖
2 + 6𝑋7𝑖 + 1.5𝑒𝑋8𝑖 + 𝜀𝑖  (8) 

for observation 𝑖 = 1,… ,𝑁, where 𝜀𝑖~𝑁(0, 22). Then, standardize 𝜂. The machine 

learning model will use predictors 𝑋1 through 𝑋6, such that 𝑋5, 𝑋6 are noise 

predictors, and 𝑋7, 𝑋8 are signal predictors that are unavailable to the analyst. 

4. Simulate four observed indicators of 𝜂 to serve as the candidate proxy outcome 

variables for the machine learning task.  

Three of the observed outcome variables in Step 4 were simulated to be measurement invariant 

across groups, and the fourth outcome variable was simulated to be measurement non-invariant 

across groups. Specifically, a vector of observed outcome variables 𝒀𝑖 = [𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖, 𝑌4𝑖] 

(indicators of 𝜂) was generated for observation i in group 𝐺𝑖 as  

𝒀𝑖 = 𝝉𝐺𝑖
+ 𝚲𝐺𝑖

𝜂𝑖 + 𝒖𝑖𝐺𝑖
 (9) 

where 𝝉𝐺=1 = [0, 0, 0, 0], 𝚲𝐺=1 = [𝜆, 𝜆, 𝜆, 𝜆 + 𝜆∗], 𝝉𝐺=0 = [0, 0, 0, 𝜏∗], 𝚲𝐺=0 = [𝜆, 𝜆, 𝜆, 𝜆 − 𝜆∗], 

and 𝒖𝑖𝐺~𝑁(𝟎, 𝟏 − 𝚲𝐺
2 ). This configuration implies that 𝝉𝐺=0 = 𝝉𝐺=1 and 𝚲G=0 = 𝚲G=1 for the 

first three outcome variables (𝑌1, 𝑌2, 𝑌3), whereas the fourth outcome variable (𝑌4) had loadings 

and/or intercepts that differ across groups according to the simulation condition, with magnitudes 

of group differences in parameters also varying by condition. Data were generated using R (R 

Core Team, 2023).  

Simulation factors 

 There were four manipulated simulation factors: (1) inclusion or exclusion of 𝐺 as a 

predictor when training the machine learning models (i.e., fairness through unawareness; see 

Section 1.2; two levels); (2) value of the factor loadings 𝜆 (three levels); (3) type of non-
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invariance in 𝑌4 (two levels); and (4) magnitude of the non-invariance in 𝑌4 (three levels). These 

four simulation factors and their respective levels resulted in a total of 36 simulation conditions 

for simulation part 1. We ran 500 replications within each condition.  

When 𝐺 is included as a predictor, the predictor matrix 𝑿 refers to [𝑋1, … , 𝑋6, 𝐺]. The 

values of 𝜆 investigated were 0.75, 0.65, and 0.55. Factor loadings in this range are expected in 

practice, including in several common scales in areas of health and psychology such as the eight-

item Patient Health Questionnaire depression scale (PHQ-8), seven-item General Anxiety 

Disorder scale (GAD-7), and Quality of Life Scale (QOLS; Burckhardt et al., 2003; Spitzer et al., 

2006). The types of non-invariance in 𝑌4 were non-invariant intercepts only (𝜆∗ = 0; 𝜏∗ ≠ 0) 

and non-invariant loadings and intercepts (𝜆∗ ≠ 0; 𝜏∗ ≠ 0). A level for non-invariant loadings 

only (𝜆∗ ≠ 0; 𝜏∗ = 0) was not considered, given that non-invariant loadings are typically 

accompanied by non-invariant intercepts (Millsap & Olivera-Aguilar, 2012). The levels of the 

magnitude of the non-invariance in 𝑌4 were small, medium, and large, each of which were 

defined in the following manner. For loadings, we used 𝜆∗ = 0.05, 0.10, 0.15 for a small, 

medium, and large difference, respectively. This creates a group difference in the loading of 𝑌4 

of 0.10 (small), 0.20 (medium), and 0.30 (large), while maintaining an average loading of 𝜆 

when pooling across groups. This ensures that despite the measurement non-invariance, 𝑌4 has 

the same average reliability as an indicator of 𝜂 as the rest of the outcome variables, such that 

any comparisons between 𝑌4 and the other invariant outcome variables are isolated to the 

measurement bias. For intercepts, we used 𝜏∗ = −0.2, −0.5, −0.8 for a small, medium, and large 

difference, respectively, to correspond to Cohen’s effect sizes for standardized mean differences 

(Cohen, 1988). Because 𝑌4 has a variance of 1 and its scale is “meaningful and familiar”, the 

intercept differences may be directly interpreted in this way (Millsap & Olivera-Aguilar, 2012, p. 
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384). The levels of these simulation factors and their resulting measurement parameters are 

summarized in Table 2. 

Table 2 

Summary of simulation factors and resulting measurement parameters 

Type of 

non-

invariance 

in 𝑌4 

𝜆 Magnitude 

of  

non-

invariance 

𝚲𝐺=0 𝚲𝐺=1 𝝉𝐺=0 

Non-

invariant 

intercepts 

only 

0.75 Small [0.75, 0.75, 0.75, 0.75] [0.75, 0.75, 0.75, 0.75] [0, 0, 0,−0.2] 
 Medium   [0, 0, 0,−0.5] 
 Large   [0, 0, 0,−0.8] 
0.65 Small [0.65, 0.65, 0.65, 0.65] [0.65, 0.65, 0.65, 0.65] [0, 0, 0,−0.2] 
 Medium   [0, 0, 0,−0.5] 
 Large   [0, 0, 0,−0.8] 
0.55 Small [0.55, 0.55, 0.55, 0.55] [0.55, 0.55, 0.55, 0.55] [0, 0, 0,−0.2] 
 Medium   [0, 0, 0,−0.5] 
 Large   [0, 0, 0,−0.8] 

Non-

invariant 

loadings 

and 

intercepts 

0.75 Small [0.75, 0.75, 0.75, 0.7] [0.75, 0.75, 0.75, 0.8] [0, 0, 0,−0.2] 
 Medium [0.75, 0.75, 0.75, 0.65] [0.75, 0.75, 0.75, 0.85] [0, 0, 0,−0.5] 
 Large [0.75, 0.75, 0.75, 0.6] [0.75, 0.75, 0.75, 0.9] [0, 0, 0,−0.8] 
0.65 Small [0.65, 0.65, 0.65, 0.6] [0.65, 0.65, 0.65, 0.7] [0, 0, 0,−0.2] 
 Medium [0.65, 0.65, 0.65, 0.55] [0.65, 0.65, 0.65, 0.75] [0, 0, 0,−0.5] 
 Large [0.65, 0.65, 0.65, 0.5] [0.65, 0.65, 0.65, 0.8] [0, 0, 0,−0.8] 
0.55 Small [0.55, 0.55, 0.55, 0.5] [0.55, 0.55, 0.55, 0.6] [0, 0, 0,−0.2] 
 Medium [0.55, 0.55, 0.55, 0.45] [0.55, 0.55, 0.55, 0.65] [0, 0, 0,−0.5] 
 Large [0.55, 0.55, 0.55, 0.4] [0.55, 0.55, 0.55, 0.7] [0, 0, 0,−0.8] 

 

Model building 

With the generated dataset in each replication, we randomly split the data into a training 

(60%; 𝑁𝑡𝑟𝑎𝑖𝑛 = 3,000) and test set (40%; 𝑁𝑡𝑒𝑠𝑡 = 2,000). We trained machine learning models 

on the training set (𝑌𝑚𝑖, 𝑿𝑖), 𝑖 ∈ 𝐼𝑡𝑟𝑎𝑖𝑛 and applied the trained models on the test set to obtain 

predictions �̂�𝑚𝑖, 𝑖 ∈ 𝐼𝑡𝑒𝑠𝑡. The machine learning models were feedforward neural networks 

(FNN), for reasons discussed in a subsequent section. Briefly, a FNN is a type of machine 

learning model that passes data through a series of function compositions to generate predictions 

(Goodfellow et al., 2016; Urban & Gates, 2021). This allows the model to learn complex, 
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flexible, nonlinear, multi-step mappings between the predictors and the outcome variable that 

often result in high predictive accuracy. The function composition works such that a function is 

first applied to the predictors, or the input layer, generating a vector of intermediate outputs, 

called a hidden layer, which in turn becomes the inputs of a subsequent function, generating 

another hidden layer. This chained procedure is repeated until the last hidden layer is reached, at 

which point a final function is applied to generate a prediction, or the output layer. Each element, 

or node, of a layer is generated as a weighted sum of its inputs (i.e., the preceding layer’s nodes) 

plus a bias term, which is then passed through an activation function. For instance, the 𝑎𝑡ℎ node 

of a hidden layer may be generated as  

ℎ𝑎 = 𝑓(𝑏𝑎,0
𝑔

+ ∑ 𝑤𝑎,𝑗
𝑔

𝑥𝑗

𝑝

𝑗=1
) 

(10) 

where 𝑓(∙) is an activation function, 𝑏0 is a bias term, 𝑤𝑗 and 𝑥𝑗 are the weight and value, 

respectively, of the 𝑗𝑡ℎ node of the preceding layer (of size 𝑝 nodes), and the subscript 𝑎 and 

superscript 𝑔 index the node and layer, respectively, to denote that there are unique weights and 

bias terms for each node per layer (Urban & Gates, 2021). A common choice for the activation is 

the rectified linear unit (ReLU), which refers to the function 𝑓(𝑧) = max {0, 𝑧}. 

A forward pass of the data from the input layer to the output layer generates a prediction, 

whose fit is then evaluated by some cost function 𝐽(𝜽). The parameters of a FNN, 𝜽 (i.e., the 

weights and bias terms that generate each layer’s nodes, or 𝑏𝑎,0
𝑔

 and 𝑤𝑎,𝑗
𝑔

 in Equation 10), are 

updated using optimization algorithms such as gradient descent (Goodfellow et al., 2016). The 

gradient, or partial derivative, of the cost function with respective to each parameter, is 

calculated using a technique called backpropagation, in a backward pass of the cost function 

from the output layer to the input layer. The negative of the calculated gradient informs the 

direction in which the cost function decreases the fastest, and 𝜽 is updated accordingly in that 
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direction, with a learning rate controlling the size of the update, or step (Goodfellow et al., 

2016). A FNN goes through many such steps during training.  

The simulation design involved building machine learning models that satisfy separation 

and testing whether their predictions satisfy MLMI. To do so, we used the procedures described 

in Romano et al. (2020). The testing procedure was originally proposed as a hypothesis test for 

separation, called the fair dummies test, but it can easily extend to checking for other conditional 

independence relations (Romano et al., 2020), such as MLMI. Below, we describe the details of 

these procedures. 

Methods of Romano et al. (2020): fair dummies test 

The fair dummies test (Romano et al., 2020) works by sampling a “dummy” copy of the 

grouping variable 𝐺, denoted �̃�, from the distribution 𝑃𝐺|𝑌. Because �̃� is generated without 

having seen �̂�, it by construction satisfies separation, or �̂� ⊥ �̃� | 𝑌,5 hence the naming of “fair 

dummy”. The test leverages this property to test the null hypothesis that (�̂�, 𝐺, 𝑌) and (�̂�, �̃�, 𝑌) 

are equal in distribution and therefore that �̂� ⊥ 𝐺 | 𝑌 holds. The test involves the following steps 

to compute a p-value: 

1. Split the test set observations (�̂�𝑖, 𝐺𝑖, 𝑌𝑖), 𝑖 ∈ 𝐼𝑡𝑒𝑠𝑡, into two disjoint subsets, 𝐼1 (50%) and 

𝐼2 (50%).  

2. Train a predictive model �̂�(·) that aims to predict �̂� given (𝐺, 𝑌) using the data subset 

(�̂�𝑖, 𝐺𝑖 , 𝑌𝑖), 𝑖 ∈ 𝐼1.6  Note that if the null is true, �̂�(·) should have poor, chance-level 

performance.  

 
5 Note that here, 𝑌 refers to a single observed outcome variable, rather than a vector of multiple observed outcome 

variables. 

 
6 The model �̂�(·) is a random forest made up of 10 trees. 
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3. Apply the trained model from Step 2 on the data subset (�̂�𝑖, G𝑖, 𝑌𝑖), 𝑖 ∈ 𝐼2 to compute the 

mean squared error as the observed test statistic: 𝑡∗ =
1

𝑁𝐼2

∑ (�̂�𝑖 − �̂�(𝐺𝑖, 𝑌𝑖))
2

𝑖∈𝐼2 . 

4.  Repeat the following procedure K times to obtain K test statistics under the null to 

compute an empirical p-value: 

a. Sample a fair dummy from the distribution 𝑃𝐺|𝑌 for each observation in 𝐼2: 

�̃�𝑖 ~ 𝑃𝐺|𝑌(𝐺𝑖 | 𝑌𝑖), 𝑖 ∈ 𝐼2. The conditional distribution 𝑃𝐺|𝑌 is estimated with the 

data (𝐺𝑖, 𝑌𝑖), 𝑖 ∈ 𝐼1 using Bayes’ theorem and a linear kernel density estimate.7 

b. Using the fair dummy from Step 4a, compute a test statistic for the 𝑘𝑡ℎ iteration 

as: 𝑡(𝑘) =
1

𝑁𝐼2

∑ (�̂�𝑖 − �̂�(�̃�𝑖, 𝑌𝑖))
2

𝑖∈𝐼2 .  

5. After K iterations, use the resulting (𝐾 + 1) × 1 vector of test statistics to compute a p-

value for the null hypothesis that �̂� ⊥ 𝐺 | 𝑌 holds: 𝑝𝑣 =
1+𝐼{𝑡∗≥𝑡(𝑘)}

1+𝐾
, or the proportion of 

times that a test statistic as small or smaller than the observed test statistic was obtained 

under the null.  

The fair dummies test can be implemented using the Python package fair_dummies 

(Romano et al., 2020). To test whether MLMI (�̂� ⊥ 𝐺 | 𝜂) holds, rather than separation, we 

applied the fair dummies test by substituting 𝜂 for Y in the procedure (Steps 1-5) described 

above. We used K = 1,000 iterations. 

Methods of Romano et al. (2020): model fitting technique for separation 

In addition to the fair dummies test, Romano et al. (2020) proposed a bias mitigation 

method to train a “fair” machine learning model approximately satisfying separation that also 

 
7 Using Bayes’ theorem, 𝑃(𝐺 = 𝑔|𝑌 = 𝑦) =

𝑃(𝑌=𝑦|𝐺=𝑔)𝑃(𝐺=𝑔)

𝑃(𝑌=𝑦|𝐺=𝑔)𝑃(𝐺=𝑔)+𝑃(𝑌=𝑦|𝐺=𝑔′)𝑃(𝐺=𝑔′)
. Terms of the form 

𝑃(𝑌 = 𝑦|𝐺 = 𝑔) are approximated with linear kernel density estimates.  
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leverages the fair dummy, �̃�. Conceptually, this is achieved by fitting a predictive model 𝑓(·) 

that minimizes a specific cost function, such that 

𝑓(𝑿) = argmin
𝑓

{(1 − 𝜑)
1

𝑁𝑡𝑟𝑎𝑖𝑛
[∑ ℓ(𝑌𝑖, 𝑓(𝑿𝑖)

𝑖
)] + 𝜑𝐷 ((�̂�, 𝐺, 𝑌), (�̂�, �̃�, 𝑌)) } 

(11) 

The minimized cost function includes a term for the usual loss function ℓ(·) that penalizes for 

prediction error (e.g., squared error) and a regularization term for a discrepancy function 𝐷(·) 

which quantifies the distinction between two probability distributions, meant to penalize for a 

violation of separation. Because (�̂�, �̃�, 𝑌) satisfies separation by construction, the aim is to make 

𝐷 ((�̂�, G, 𝑌), (�̂�, �̃�, 𝑌)) small, which would indicate (�̂�, 𝐺, 𝑌) nearing separation. The parameter 

𝜑 controls the trade-off between the emphasis on predictive accuracy versus fairness and can 

range from 0 to 1.  

 Romano et al. (2020)’s framework is based on a generative adversarial network 

architecture (Goodfellow et al., 2020) and involves training two sub-models, the predictive 

model 𝑓(·) and a discriminator �̂�(·), both of which are FNNs. The discriminator is a binary 

classifier whose goal is to tell apart an observation as one of two class types, (�̂�, 𝐺, 𝑌) or 

(�̂�, �̃�, 𝑌), which I will refer to as class observed (coded 1) and class dummy (coded 0), 

respectively. The performance of this discriminator serves as the basis of the discrepancy 

function 𝐷(·) in Equation 11. The predictive model is the focal machine learning model whose 

goal is to predict 𝑌 from predictors 𝑿. It is trained to minimize prediction error while at the same 

time generate predictions �̂� that would fool the discriminator (i.e., impair the performance of the 

trained discriminator if it were applied to this �̂�). In this way, the predictive model and the 

discriminator act as adversaries to one another.  
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To build the adversarial network structure, an initial predictive model is fit to the training 

data, minimizing prediction error only. Then, the following steps are repeated for B iterations to 

sequentially optimize each of the two sub-models within each iteration according to, or in 

response to, how the opposing sub-model was updated. First, as in the fair dummies test, a fair 

dummy is sampled from the distribution 𝑃𝐺|𝑌 for each training observation, or �̃�𝑖 ~ 𝑃𝐺|𝑌(𝐺𝑖 | 𝑌𝑖), 

𝑖 ∈ 𝐼𝑡𝑟𝑎𝑖𝑛. Using the current predictive model, the discriminator and its parameters 𝜽𝒅 are 

optimized via gradient descent with the following cost function for b steps: 

𝐽𝑑(𝜽𝒅) =
−1

𝑁𝑡𝑟𝑎𝑖𝑛
[∑ log (�̂�𝜃𝑑

(𝑓𝜃𝑓
(𝑿𝑖), 𝐺𝑖, 𝑌𝑖))

𝑖
+ log (1 − �̂�𝜃𝑑

(𝑓𝜃𝑓
(𝑿𝑖), �̃�𝑖, 𝑌𝑖))] 

(12) 

Equation 12 represents the binary cross entropy loss for the binary classification task of 

distinguishing between class observed and class dummy.8 During this process, the parameters of 

the predictive model 𝜽𝒇 remain static at their current values.  

Given the updated discriminator, the parameters of the predictive model 𝜽𝒇 are then 

optimized via gradient descent with the following cost function for b steps: 

𝐽𝑓(𝜽𝒇) = (1 − 𝜑)
1

𝑁𝑡𝑟𝑎𝑖𝑛
[∑ (𝑌𝑖 − 𝑓𝜃𝑓

(𝑿𝑖))
2

𝑖
] + 𝜑‖cov(�̂�, 𝐺) − cov(�̂�, �̃�)‖

2

− 𝜑
1

𝑁𝑡𝑟𝑎𝑖𝑛
[∑ log (�̂�𝜃𝑑

(𝑓𝜃𝑓
(𝑿𝑖), �̃�𝑖, 𝑌𝑖))

𝑖

+ log (1 − �̂�𝜃𝑑
(𝑓𝜃𝑓

(𝑿𝑖), 𝐺𝑖 , 𝑌𝑖))] 

(13) 

Equation 13 contains a term for the loss function (mean squared error; first term on the righthand 

side) and a discrepancy term (third term on the righthand side).9 The second term on the 

righthand side stabilizes the learning process with an additional penalty to minimize the 

 
8 The discriminator is a two-layer FNN with a hidden layer of size 30 and ReLU activation. 

 
9 The predictive model is a two-layer FNN with a hidden layer of size 64 and ReLU activation. 
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difference between covariances of class observed and class dummy variables. During this 

process, the parameters of the discriminator 𝜽𝒅 remain static at their current values. Note that in 

the discrepancy term of Equation 13, the placement of �̃�𝑖 and 𝐺𝑖 have flipped compared to how it 

appears in Equation 12. This is meant to penalize the predictive model for correct predictions 

made by the discriminator. This completes one iteration, and in the next iteration, the 

discriminator is optimized given this updated predictive model, and given the updated 

discriminator, the predictive model is optimized, and so on.  

This model-fitting procedure can be implemented with the fair_dummies Python package 

(Romano et al., 2020). We used 𝐵 = 100 iterations, 𝑏 = 50 steps for both the predictive model 

and discriminator per iteration, and a learning rate of 0.01 in the simulation. While these 

hyperparameters could be tuned within the training set per model in each replication, this is 

computationally expensive and therefore, we used these fixed values throughout the simulation 

study. We used 𝜑 = 0.9 for the trade-off parameter to place a heavy emphasis on satisfying 

separation, which is the highest value considered in Romano et al. (2020).  

Simulation outcomes and analysis 

We studied the effects of measurement bias on MLMI by comparing predictions obtained 

from two different machine learning models per replication (Models 1 and 2; see Table 3 for 

summary of the different models). Using the model-fitting procedure of Romano et al. (2020), 

Model 1 was trained on an invariant outcome variable (𝑌1), and Model 2 was trained on a non-

invariant outcome variable (𝑌4). Then, we obtained predictions on the test set from each model 

and assessed them each for MLMI using the fair dummies test, recording the resulting p-value 

from each replication. Within each condition, we compared the distribution of p-values for 

Model 1 versus Model 2, as well as the proportion of replications in which MLMI was violated 
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in Model 1 versus Model 2, according to an alpha level of 0.05. Distributions of p-values were 

compared graphically via boxplots per condition, and the difference in proportions was 

quantitatively assessed for significance using McNemar’s test and Cohen’s g effect sizes per 

condition, where pairings were made by replication. Cohen’s g was calculated as |𝑄 − 0.5|, 

where 𝑄 is the proportion of replications in a condition where Model 1 met MLMI but Model 2 

did not, out of the replications where Models 1 and 2’s MLMI outcome differed (Cohen, 1988). 

In addition to MLMI results, we also examined the effects of measurement bias on 

predictive accuracy, given that predictive performance is another key consideration in machine 

learning. We recorded predictive performance using root mean squared error (RMSE; 

√𝑁𝑡𝑒𝑠𝑡
−1 ∑ (𝑌𝑖 − �̂�𝑖)2𝑁𝑡𝑒𝑠𝑡

𝑖=1 ) and the correlation between 𝜂 and each model’s predictions on the test 

set (𝑟𝜂,�̂�). This allows for inspection of predictive performance from two different perspectives 

of (1) accurate reproduction of the observed outcome variable and (2) high correlation with the 

true underlying target latent variable. We made pairwise comparisons of each performance 

metric obtained in a replication between Model 1 versus Model 2. This was inspected for each 

metric graphically via boxplots and quantitatively via paired samples t-tests and Cohen’s d effect 

sizes within each condition, where pairings were made by replication.  

Note that 𝑌2 and 𝑌3 are not investigated as outcome variables in Models 1 nor 2, given 

that they were generated under identical properties as 𝑌1. However, generating these outcome 

variables was necessary for overidentification of the MG-CFA model, fit in part 2 of the 

simulation study.  
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Table 3 

Summary of the four machine learning models built across simulation parts 1 and 2 

 Outcome 

variable 

Outcome 

variable 

exhibits 

measurement 

bias 

Bias mitigation 

technique 

Metrics to record from 

each replication 

Simulation 

part 1 

    

Model 1 𝑌1 No Regularization for 

separation (𝜑 = 0.9) 

P-value from fair dummies 

test for MLMI, RMSE, 𝑟𝜂,�̂� 

Model 2 𝑌4 Yes Regularization for 

separation (𝜑 = 0.9) 

P-value from fair dummies 

test for MLMI, RMSE, 𝑟𝜂,�̂� 

Simulation 

part 2 

    

Model 3 𝑌4 Yes Regularization for 

MLMI using �̂� (𝜑 

varies by condition) 

P-value from fair dummies 

test for MLMI, RMSE, 𝑟𝜂,�̂� 

 

Model 4 𝑌4 Yes Regularization for 

separation (𝜑 varies by 

condition) 

P-value from fair dummies 

test for MLMI, RMSE, 𝑟𝜂,�̂� 

 

In addition to examining the effects of measurement bias within each condition 

separately, we studied the systematic influence of the simulation factors on these results using 

classification and regression trees (CART; Breiman et al., 1984). In these CART models, a single 

replication was the unit of analysis, the four simulation factors were the predictors, and a 

simulation outcome of interest was the outcome variable. Using CART to analyze Monte Carlo 

simulation results can be advantageous over more conventional approaches (e.g., analysis of 

variance) due to its ability to automatically detect higher-order interactions among predictors, 

flexibility in the type of outcome variable (continuous, binary, multinomial) it can handle, and its 

interpretable model output in the form of a decision tree diagram that intuitively describes 

relationships between predictors and outcomes (Gonzalez et al., 2018). We built a multi-class 

classification tree for the categorical simulation outcome of MLMI, with the following four 
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classes: (1) Model 1 violated MLMI and Model 2 did not; (2) Model 2 violated MLMI and Model 

1 did not; (3) both Models 1 and 2 violated MLMI; and (4) neither model violated MLMI. We 

built two separate regression trees for the two continuous simulation outcomes related to 

predictive performance: (1) the paired difference in RMSE between Models 1 and 2; and (2) the 

paired difference in 𝑟𝜂,�̂� between Models 1 and 2. The number of splits in a tree was determined 

using cost-complexity pruning with cross-validation, as described in Gonzalez et al. (2018). 

Because a large, complex tree (i.e., many splits) challenges interpretation and generalizability to 

new data, this searches for an optimal tree size while maintaining the tree’s ability to generate 

accurate out-of-sample predictions. Because splits on a predictor in CART are made sequentially 

according to the degree to which they homogenize the observations (replications) with respect to 

the outcome variable, the hierarchy of splits and the cut points of each split in the resulting tree 

diagrams were examined to interpret the importance and specific influence of the simulation 

factors on the simulation outcomes. We examined the 𝑅2 values and misclassification rate from 

each of the regression and classification trees, respectively, to gauge how well the simulation 

factors predicted each simulation outcome. CART models were built using the R package rpart 

(Therneau & Atkinson, 2022). 

Simulation hypotheses 

We hypothesized that MLMI will generally be violated when a model is trained on a non-

invariant outcome variable (Model 2) compared to when trained on an invariant outcome 

variable (Model 1). This effect of measurement bias on MLMI may be most present under larger 

magnitudes of non-invariance, larger factor loadings, and when 𝐺 is included as a predictor. 

With regards to predictive performance, we hypothesized that in general, Model 2 will have 

comparable predictive performance as Model 1 in terms of RMSE when 𝐺 is included as a 
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predictor, but worse in terms of 𝑟𝜂,�̂� across all conditions. This effect of measurement bias on 

predictive performance may be most pronounced under larger magnitudes of non-invariance and 

larger factor loadings.  

It is worth noting that grouping variables often in practice have imbalanced groups rather 

than each group comprising approximately 50% of the sample, as configured in our simulation 

study. We therefore conducted a supplemental simulation study, in which groups 1 and 0 

comprised 75% and 25% of the sample, respectively (i.e., generate the grouping variable as 

𝐺𝑖~ Bernoulli(0.75) in Equation 4). Because the results remained largely the same as when 

using balanced groups, we only present the results from the main simulation study in Sections 

3.2 and 4.2. Results of this supplemental simulation study can be found in the Appendix.  

Section 3.2: Results 

Machine learning fairness  

 First, we investigated the effects of measurement bias on models’ abilities to meet 

MLMI, by comparing the MLMI results between Model 1 (trained on invariant outcome 

variable) and Model 2 (trained on non-invariant outcome variable). The condition-wise 

distributions of p-values of the fair dummies test for MLMI from the two models are plotted in 

Figure 1. The results from Model 1 provide a baseline for what can be expected under an 

invariant outcome variable and show that when constrained for separation, MLMI is typically 

satisfied in all conditions (MLMI violations in 16.8% of replications across all 36 conditions). In 

contrast to this, we found Model 2 to violate MLMI substantially more in select conditions, 

indicating that with a non-invariant outcome variable, constraining for separation can be 

insufficient to satisfy MLMI. In particular, under medium and large magnitudes of non-

invariance, Model 2 violated MLMI in 39.7% and 73.0% of replications, respectively, when 
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pooling across levels of all other simulation factors. MLMI violations were especially salient 

with higher factor loadings and the inclusion of 𝐺 as a predictor. Under small magnitudes of non-

invariance, Model 2 violated MLMI in just 9.52% of replications, indicating that with a small 

enough magnitude of bias, constraining for separation may be sufficient to mitigate the effects of 

measurement bias on MLMI. 

The results of McNemar’s tests and Cohen’s g effect sizes calculated within each of the 

36 conditions corroborated these observations. In all conditions with a large magnitude of non-

invariance, regardless of the levels of all other simulation factors, there was a significant (𝑝 <

.05

36
; Bonferroni-corrected for multiple testing across conditions) and at least moderate (𝑔 ≥ 0.15) 

difference in the proportion of MLMI violation between Models 1 and 2, with Model 2 

consistently violating MLMI more than Model 1. All conditions with a medium magnitude of 

non-invariance, except when 𝜆 = 0.55, also showed a significant difference in the proportion of 

MLMI violation between Models 1 and 2, with Model 2 violating MLMI more than Model 1. 

Under small magnitudes of non-invariance, most conditions showed no significant difference in 

the proportion of MLMI violation between Models 1 and 2. However, in a couple of the small-

magnitude conditions, namely when 𝐺 was included as a predictor and with lower factor 

loadings (𝜆 = 0.55, 0.65), we found significant differences, where Model 2 violated MLMI less 

than Model 1. This unexpected finding could be a result of the outcome variables being less 

reliable indicators of 𝜂 (due to the low 𝜆), which may have led to lower-quality predictions, 

combined with the magnitude of non-invariance in 𝑌4 not being large enough, such that patterns 

of MLMI violation did not surface as expected.  
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Figure 1 

Condition-wise boxplots of the p-values of the fair dummies test for MLMI for Models 1 and 2 

 

Note. A “significant” difference refers to McNemar’s 𝑝 <
.05

36
 and Cohen’s 𝑔 ≥ 0.15.  

 Moving beyond condition-wise analyses, we next used CART models to analyze the 

Monte Carlo data from all conditions together to investigate the systematic influence of the 

simulation factors on the simulation outcome of MLMI in Models 1 and 2. Figure 2 presents the 

resulting classification tree diagram. While the MLMI simulation outcome modeled in this 

CART analysis was originally a four-level categorical variable, the optimal CART model found 

here using cross-validation, and its resulting decision rule, classified replications into one of two 

classes: (1) neither model violated MLMI (i.e., no consequences of measurement bias) or (2) 
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Model 2 violated MLMI and Model 1 did not (i.e., consequence of measurement bias present). 

The misclassification rate of this classification tree was 32.4%.  

Consistent with the observations made from Figure 1, the hierarchy of splits in Figure 2 

revealed that the most useful simulation factor in explaining the effects of measurement bias on 

MLMI was the magnitude of non-invariance, followed by the inclusion/exclusion of 𝐺 and the 

value of 𝜆. As hypothesized, the effects of measurement bias on MLMI were most prevalent with 

larger magnitudes of non-invariance, the inclusion of 𝐺, and higher values of 𝜆. Figure 2 shows 

that under a large magnitude of non-invariance with 𝐺 included as a predictor, or with 

𝐺 excluded but with higher factor loadings, replications were optimally classified as Model 2 

violated MLMI and Model 1 did not. With a medium magnitude of non-invariance, 𝐺 included as 

a predictor, and 𝜆 = 0.75, replications were also optimally classified as Model 2 violated MLMI 

and Model 1 did not. Under all other conditions, the optimal classification was neither model 

violated MLMI.  

The effects of measurement bias on MLMI becoming more prevalent with larger 

magnitudes of non-invariance makes intuitive sense. The inclusion of 𝐺 being associated with 

more prevalent effects of measurement bias is also expected, given that the machine learning 

model explicitly “sees” the grouping variable that characterizes the measurement bias in the 

outcome variable, such that this pattern of non-invariance may more easily be learned and 

manifested in the model predictions. On the other hand, with 𝐺 excluded, the model may be 

more “oblivious” to the measurement bias, such that it is less likely to learn and generate 

predictions reflecting the pattern of non-invariance. A possible explanation for the effects of 

measurement bias on MLMI becoming more prevalent with higher factor loadings is that with a 

lower 𝜆, the unreliability in the outcome variable leads to lower-quality model predictions that 
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may muddle any patterns of MLMI violation, that are otherwise generated under higher values of 

𝜆 and therefore higher-quality predictions. Because the type of non-invariance is not used in any 

splits of the tree in Figure 2, we can interpret that the effect of measurement bias on MLMI did 

not meaningfully differ according to whether the bias was in intercepts only or in both loadings 

and intercepts. 

Figure 2 

Tree diagram of a classification tree modeling the MLMI outcome in Models 1 and 2, fit to 

simulation results across all conditions 

 

Note. In each node of the tree diagram, the top value represents the majority class, the middle 

value represents the proportional breakdown of the classes of the observations belonging to that 

node, and the bottom value represents the percentage of total observations that belong to that 

node. 

 

Predictive performance 

 Next, we studied the effects of measurement bias on models’ predictive abilities by 

comparing the test-set performance between Models 1 and 2. Because predictive performance is 

a key consideration for the utility of machine learning models, it can be useful to contextualize 
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fairness results with performance considerations and to understand any trade-offs between 

fairness and predictive accuracy.  

Condition-wise distributions of the performance metrics of Models 1 and 2 are presented 

in Figures 3a (RMSE) and 3b (𝑟𝜂,�̂�). In terms of accurate reproduction of the observed outcome 

variable (i.e., RMSE), as hypothesized, Model 2 performed worse than Model 1 in all conditions 

with medium and large magnitudes of non-invariance, suggesting a performance drop associated 

with measurement bias when the magnitude of bias is substantial. The performance gap grew 

with increasing factor loadings but narrowed with the inclusion of 𝐺 as a predictor. This is likely 

because without “seeing” 𝐺 (i.e., when 𝐺 is excluded as a predictor), it becomes relatively more 

difficult for Model 2 to accurately predict 𝑌4 than it is for Model 1 to predict 𝑌1, given that 𝑌4 

additionally (i.e., above and beyond the predictors in 𝑿) and directly depends on 𝐺, as implied by 

the definition of measurement bias. On the other hand, with 𝐺 included, Model 2 is better able to 

account for the additional variability in 𝑌4 that is directly due to 𝐺, such that the effect of 

measurement bias on predictive performance is subdued. Under small magnitudes of non-

invariance, any performance gap between Models 1 and 2 appeared trivial. These observations 

were supported statistically with paired sample t-tests and Cohen’s d effect sizes calculated 

within each of the 36 conditions, which revealed significant (𝑝 <
.05

36
) and at least moderate 

(|𝑑| ≥ 0.5) differences only in conditions with medium or large magnitudes of non-invariance.  

 Findings differed slightly when studying predictive performance in terms of the 

predictions’ correlations with the target latent variable (i.e., 𝑟𝜂,�̂�). We still found Model 2 to 

perform significantly (𝑝 <
.05

36
 and |𝑑| ≥ 0.5) worse than Model 1 in some conditions with 

medium and large magnitudes of non-invariance, with the performance gap growing with 

increasing factor loadings, as before. However, unlike the RMSE, the performance gap in 𝑟𝜂,�̂� 
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almost entirely closed with the inclusion of 𝐺 as a predictor, such that Model 2 performed 

comparably to Model 1 in those conditions, meaning there was no effect of measurement bias on 

𝑟𝜂,�̂� in those conditions. This pattern held for high magnitudes of non-invariance or when 𝜆 =

0.75. With medium magnitudes of non-invariance and lower factor loadings, we found no 

observable difference between Models 1 and 2, even when 𝐺 was excluded as a predictor.  

Furthermore, in three conditions with small magnitudes of non-invariance, namely when 

𝐺 was excluded as a predictor and with lower factor loadings (𝜆 = 0.55, 0.65), we found Model 

2 to outperform Model 1, although by a small margin. As discussed with the MLMI results 

above, these unexpected results associated with lower values of 𝜆 may be attributed to the 

unreliability of the outcome variable as indicators of 𝜂 in those conditions, such that the “true” 

effect of the measurement bias on predictive performance was muddled due to the models 

struggling to generate accurate predictions in the first place. This may also explain the 

phenomenon of the performance gap narrowing with lower factor loadings in the medium- and 

high-magnitude conditions noted above.  
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Figure 3 

Condition-wise boxplots of the test performance of Models 1 and 2 in terms of RMSE (Panel a) 

and 𝑟𝜂,�̂� (Panel b) 

 

Panel a 

 

 

 

 

 

 

 

 

 

Panel b 

 

 

 

 

 

 

 

 

 

Note. A “significant” difference refers to paired sample t-test 𝑝 <
.05

36
 and Cohen’s |𝑑| ≥ 0.5. 
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To study the systematic influence of the simulation factors on the performance gap 

between Models 1 and 2, we analyzed the simulation results from all conditions together using 

CART models. Figures 4a and 4b present the resulting regression tree diagrams modeling the 

pairwise (by replication) differences in RMSE and 𝑟𝜂,�̂�, respectively, between Models 1 and 2. 

Note that in both regression trees, the differences in performance metrics were calculated such 

that a positive difference corresponds to Model 1 performing better than Model 2. The 𝑅2 values 

of these regression trees were 0.70 and 0.53 for the RMSE and 𝑟𝜂,�̂� difference, respectively. 

The tree diagrams in Figures 4a and 4b allow for similar interpretations and corroborate 

the observations made from Figures 3a and 3b: the performance gap between Models 1 and 2 

(i.e., the effect of measurement bias on predictive performance) became more prevalent with a 

larger magnitude of non-invariance, exclusion of 𝐺 as a predictor, and higher factor loadings. 

Again, because the type of non-invariance was not used as a split in either tree, we can interpret 

that the effect of measurement bias on predictive performance was consistent for both non-

invariant intercepts only and non-invariant intercepts and loadings.  
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Figure 4 

Tree diagram of a regression tree modeling the difference in RMSE (Panel a) and 𝑟𝜂,�̂� (Panel b) 

between Models 1 and 2, fit to simulation results across all conditions 

 

Panel a     Panel b 

 

Note. In each node of the tree diagram, the top value represents the mean value of the simulation 

outcome among observations belonging to that node, and the bottom value represents the 

percentage of total observations that belong to that node. 

 

Summary of simulation part 1 

 We proposed a framework that allows for tests of measurement invariance of outcome 

variables in machine learning. The importance and utility of such a framework is demonstrated 

in this simulation, which revealed several practical consequences of measurement bias on the 

fairness and predictive performance of machine learning models. First, as hypothesized, the 

results suggest that with medium and large magnitudes of non-invariance, we can expect the use 

of a non-invariant outcome variable to result in machine learning predictions that violate MLMI. 

These MLMI violations were observed even when a strong constraint (𝜑 = 0.9) for separation 

was made during model training, meaning MLMI cannot be approximated with separation if the 

outcome variable exhibits measurement bias. In contrast, with an invariant outcome variable or 
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under a small magnitude of non-invariance, MLMI was often satisfied when constraining for 

separation. In general, we found measurement bias to harm predictive performance.  

We also found that by excluding 𝐺 as a predictor, MLMI was less frequently violated 

than when 𝐺 was included. While this may appear to suggest fairness through unawareness as a 

possible treatment for mitigating the effects of measurement bias on MLMI, we do not 

unconditionally recommend this approach. First, from a predictive performance perspective, the 

simulation showed that the performance drop associated with measurement bias, both in terms of 

accurate reproduction of the observed outcome variable and a high correlation with the target 

latent variable, is most salient when 𝐺 is excluded, which can disincentivize fairness through 

unawareness. Second, the simulation showed that the effect of measurement bias on MLMI can 

still be present even when 𝐺 is excluded, if the magnitude of non-invariance is large enough. 

Third, while not demonstrated with this simulation, previous studies have discussed how fairness 

through unawareness may be ineffective if other variables that are highly correlated with 𝐺, that 

can be used to approximate 𝐺, are included as predictors in the machine learning model (Barocas 

et al., 2019; Kusner et al., 2017).  

 Finally, throughout this simulation, we encountered a couple of counterintuitive findings, 

where the effects of measurement bias on both MLMI and predictive performance were subdued 

or even reversed (e.g., no performance drop associated with measurement bias, MLMI being 

violated more with an invariant than a non-invariant outcome variable) when factor loadings 

were low. While this may appear to suggest that it is favorable to use outcome variables with low 

factor loadings in the presence of measurement bias, this is not necessarily the case. Low factor 

loadings themselves are unfavorable for the utility of a machine learning model in general, as 

they indicate low reliability of outcome variables as indicators of the target latent variable. In 
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fact, the simulation showed that with low factor loadings, MLMI can be violated even if the 

outcome variable does not exhibit measurement bias, and predictive performance was 

consistently lowered with decreasing factor loadings within each model. As such, having low 

loadings should not be viewed as a treatment to counter the effects of measurements bias—it   

should be more so gathered from this simulation that in those conditions with low factor 

loadings, the outcome variable was not reliable enough for its model predictions to generate 

patterns of non-invariance that were otherwise generated under higher loadings, such that 

measurement bias appeared to “matter less”.  

In sum, measurement bias in the outcome variable demonstrably presents concerns for 

both fairness and predictive performance in machine learning, especially with growing 

magnitudes of non-invariance. Furthermore, these effects are not entirely addressed with 

treatments such as fairness through unawareness or by constraining for separation during model 

training. Because 𝜂 is unobserved and testing for MLMI is not possible in practice, testing for 

measurement invariance in the outcome variable is one way to check for a possible source of 

MLMI violation. This highlights the importance of assessing for measurement invariance using 

the proposed framework and that it brings additional value above and beyond existing fairness 

considerations (i.e., excluding 𝐺 as a predictor, testing or constraining the model for separation). 
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CHAPTER 4: SIMULATION STUDY PART 2 

Section 4.1: Methods 

In simulation part 1, we demonstrated why assessing for measurement bias in machine 

learning using the proposed framework matters by studying its consequences for machine 

learning bias and predictive performance. Now, if evidence of non-invariance is found in an 

outcome variable using the proposed framework, a natural follow-up question may be what to do 

about it. One simple option is to abandon the non-invariant outcome variable and to seek a 

different one. However, there may be practical cases where changing the outcome variable is not 

well-received. For example, the machine learning model in question may already be deployed 

and integrated within a larger system (e.g., a medical expense prediction model used in a health 

system; see Chapter 1), such that there is hesitation to change such a fundamental aspect of the 

model. As the second part of the simulation study, we explored an alternative option—to address 

and mitigate the bias.  

In a traditional psychometric setting, measurement bias may be accounted for at the level 

of the latent variable by modeling the non-invariance using a partially invariant model. In a 

partially invariant model, items found to be non-invariant have model parameters (i.e., loadings 

and intercepts) that are allowed to vary across groups in the MG-CFA model (Byrne et al., 

1989). For example, a partial strong invariance model constrains only a portion of intercepts to 

be equal across groups. Non-invariant parameters are typically identified by examining residuals 

(difference between observed and model-implied moments) and modification indices (Millsap & 
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Olivera-Aguilar, 2012), which help to determine which across-group equality constraint should 

be lifted to improve model fit and for partial invariance to hold. We combined this with the bias 

mitigation method of Romano et al. (2020) to explore how machine learning models 

approximately satisfying MLMI may be trained, even when the outcome variable is non-

invariant.  

Proposed bias mitigation technique 

To do so, we propose to simply modify the discrepancy term in the cost function of the 

predictive model in Romano et al. (2020)’s fair dummies model-fitting procedure (Equation 11) 

to minimize 𝐷 ((�̂�, 𝐺, 𝜂), (�̂�, �̃�, 𝜂)) instead of 𝐷 ((�̂�, 𝐺, 𝑌), (�̂�, �̃�, 𝑌)). However, because 𝜂 is 

unobserved in practice, we approximate it with factor scores estimates obtained from a partially 

invariant MG-CFA model (fit following the proposed framework), in which the measurement 

bias has been “corrected” at the level of the latent variable. Therefore, a predictive model 𝑓(∙) is 

fit, such that 

𝑓(𝑿) = argmin
𝑓

{(1 − 𝜑)
1

𝑁𝑡𝑟𝑎𝑖𝑛
[∑ ℓ(𝑌𝑖, 𝑓(𝑿𝑖)

𝑖
)] + 𝜑𝐷 ((�̂�, 𝐺, �̂�), (�̂�, �̃�, �̂�)) } 

(14) 

where �̂� are factor score estimates from a partially invariant MG-CFA model, 𝑌 is a non-

invariant outcome variable, and the fair dummy �̃� is now sampled from 𝑃𝐺|�̂�. Factor score 

estimates are used to represent each observation’s placement on the latent variable according to a 

factor model (DiStefano et al., 2009). However, factor score estimates are indeterminate, 

meaning that there can be infinitely many sets of factor scores that are consistent with the factor 

model at hand (i.e., there is no unique solution; Grice, 2001).  
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Simulation factors and model building 

Thus, the goal of simulation part 2 was to study the effectiveness of using factor score 

estimates in generating machine learning predictions fulfilling MLMI in the presence of 

measurement bias. Following simulation part 1, we recorded the simulation conditions under 

which Model 2 (trained on non-invariant outcome variable) predictions failed to meet MLMI for 

over 25% of the replications. Then, for those conditions only, we repeated the data generation 

steps from simulation part 1 and trained a new machine learning model (Model 3) using the 

proposed bias mitigation technique, as in Equation 14, with the non-invariant 𝑌4 as the outcome 

variable.  

For simulation part 2, we considered two additional simulation factors: (1) the value of 

the trade-off parameter 𝜑 (three levels; 𝜑 = 0.5, 0.7, 0.9) and (2) the use of covariate-informed 

factor score estimates (two levels; covariates are used or not used in calculating factor scores). A 

possible way to improve factor score estimates is to model the structural relationships between 𝜂 

and the predictors in 𝑿 (i.e., predictors of the latent factor, or “covariates”) in the factor model 

(Curran et al., 2016). Therefore, in simulation conditions using covariate-informed factor scores, 

we included the additive main effects of each predictor on the latent factor in the MG-CFA 

model from which the factor scores were calculated. However, it should be noted that these 

structural relationships are misspecified, given that the predictor matrix 𝑿 contains some noise 

predictors, 𝑿 excludes some signal predictors, and the data generating function for 𝜂 is not an 

additive function of all predictors in 𝑿. We believe this misspecification is expected in practice, 

given that in a machine learning setting, the analyst typically lacks strong a priori knowledge of 

structural relationships among variables and aims to empirically identify those relationships in a 

data-driven manner (see Section 1.1). As such, with this simulation factor, our aim was to 
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investigate whether the use of covariates, despite the misspecification, improves the calculation 

of factor scores and, as a result, the effectiveness of the proposed bias mitigation technique.  

We ran 500 replications in each condition, with a total of 6 × 𝑐 conditions, where 𝑐 was 

the number of conditions flagged from simulation part 1 as described above. To compute factor 

scores, a MG-CFA model was fit to 𝒀 = [𝑌1, 𝑌2, 𝑌3, 𝑌4], as in the proposed framework, using the 

R package lavaan (Rosseel, 2012). We used the regression method (Thurstone, 1935) to 

calculate factor scores, which are computed per observation 𝑖 as 

�̂�𝑖 = (𝒀𝑖 − 𝝁𝒀)𝚺𝒀
−1𝚲𝐺𝑖

𝚿 + 𝜿 (15) 

where 𝝁𝒀 and 𝚺𝒀 are the mean vector and (co)variance matrix, respectively, of the observed 

outcome variables, 𝚲𝐺𝑖
 is the factor loading matrix for group for group 𝐺𝑖, and 𝜿 and 𝚿 refer to 

the factor mean vector and (co)variance matrix, respectively. The MG-CFA model was identified 

by standardizing the factor in group 1 and constraining all intercepts and loadings except for 𝑌4 

to be equal across groups. For 𝑌4, intercepts and/or loadings, depending on the simulation 

condition, were freely estimated with no across-group equality constraints to model partial 

invariance. Model 3 was fit using the fair_dummies package (Romano et al., 2020), manually 

customized (in the source code) to train models with the modified cost function, as in Equation 

14. We used the same hyperparameters as described in simulation part 1. To provide a 

benchmark to which the proposed bias mitigation technique (Model 3) can be compared, we 

trained an additional model (Model 4) in each replication using the original model-fitting 

procedure for separation (Romano et al., 2020), as in Equation 11. 

Simulation outcomes and analysis 

Using the predictions obtained from Models 3 and 4, we recorded the p-value for the fair 

dummies test for MLMI (testing for �̂� ⊥ 𝐺 | 𝜂, not �̂� ⊥ 𝐺 | �̂�) from each model in each 
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replication. Per condition, we examined the proportion of replications in which Model 3 

predictions violated MLMI according to an alpha level of 0.05, to determine how successful the 

proposed technique is in building a “fair” model in the presence of measurement bias. We 

additionally compared the proportions of MLMI violation between Models 3 and 4 to investigate 

the effectiveness of the proposed strategy relative to the original model-fitting procedure for 

separation. Similar to simulation part 1, the distributions of p-values were compared graphically 

via boxplots per condition, and the difference in proportions of MLMI violation were assessed 

for significance using McNemar’s test and Cohen’s g effect sizes per condition, where pairings 

were made by replication.  

To evaluate the proposed technique from the perspective of predictive performance, we 

additionally examined how predictive accuracy may be affected due to the modified cost 

function, compared to the original cost function for separation. Per condition, we made pairwise 

comparisons in the RMSE and 𝑟𝜂,�̂� obtained in each replication from Model 3 versus Model 4. 

We made across-model comparisons for each performance metric graphically via boxplots and 

quantitatively via paired samples t-tests and Cohen’s d effect sizes within each condition, where 

pairings were made by replication.  

Similar to simulation part 1, we additionally studied the systematic influence of the 

simulation factors on these simulation outcomes using CART models. We built a multi-class 

classification tree for the categorical simulation outcome of MLMI, with the following four 

classes: (1) Model 3 violated MLMI and Model 4 did not; (2) Model 4 violated MLMI and Model 

3 did not; (3) both Models 3 and 4 violated MLMI; and (4) neither model violated MLMI. We 

built two regression trees for the two continuous simulation outcomes for predictive 

performance: (1) the paired difference in RMSE between Models 3 and 4 and (2) the paired 
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difference in 𝑟𝜂,�̂� between Models 3 and 4. All other procedures to analyze the simulation results 

remained the same as part 1.  

Simulation hypotheses 

We hypothesized that Model 3 (proposed technique) will satisfy MLMI with higher 

values of 𝜑 and with larger factor loadings. Model 3 may also show a higher rate of MLMI 

satisfaction under covariate-informed factor scores given that the quality of factor score 

estimates are expected to improve, such that they become better approximations of the target 

latent variable. However, differences across factor score types may not manifest when 𝜑 is high 

and with large factor loadings, as MLMI will likely be satisfied under both types of factor scores 

in such conditions. In terms of predictive performance, we hypothesized that Model 3 will have a 

lower RMSE but a higher 𝑟𝜂,�̂� compared to Model 4, with this difference becoming more 

pronounced with larger magnitudes of non-invariance. 

Section 4.2: Results 

Of the 36 total conditions tested in simulation part 1, there were 𝑐 = 20 conditions where 

over 25% of its replications resulted in MLMI violation by a model trained on a non-invariant 

outcome variable, even when constrained for separation. This included all 12 conditions with 

large magnitudes of non-invariance, plus 8 conditions with medium magnitudes of non-

invariance when 𝐺 was included as a predictor (6 conditions) or when 𝐺 was excluded and 𝜆 =

0.75 (2 conditions).  

In simulation part 2, we investigated whether the proposed bias mitigation technique can 

act as an alternative treatment to satisfy MLMI in the presence of measurement bias, in those 20 

conditions where the original bias mitigation technique for separation was unsuccessful in 

satisfying MLMI. We crossed those 20 conditions with two new simulation factors (value of 𝜑 
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and the use of covariate-informed factor scores), which resulted in 120 total conditions tested in 

simulation part 2. We did not encounter any issues of model convergence for all MG-CFA 

models fit throughout this simulation.   

Machine learning fairness  

 First, we investigated the effectiveness of the proposed bias mitigation technique to train 

models satisfying MLMI in the presence of measurement bias. Figure 5 presents the condition-

wise distributions of p-values from the fair dummies test for MLMI for Model 3 (proposed 

technique regularizing for �̂� ⊥ 𝐺 | �̂�) and Model 4 (original technique regularizing for 

separation, i.e., �̂� ⊥ 𝐺 | 𝑌). Focusing first on the MLMI results of Model 3 only, we found that if 

𝐺 is excluded as a predictor, the proposed technique was largely successful in training models 

satisfying MLMI, regardless of the levels of all other simulation factors (11.7% MLMI violation 

among all replications where 𝐺 is excluded). If 𝐺 is to be included as a predictor, Figure 3 shows 

that a strong emphasis on the regularization term (𝜑 = 0.9) was needed for Model 3 to largely 

meet MLMI (23.1% MLMI violation). With 𝜑 = 0.7 or 0.5, Model 3 largely violated MLMI 

(63.4% and 95.4% MLMI violation, respectively), meaning the proposed technique was 

ineffective in satisfying MLMI with any weaker emphasis on the regularization term. Because 𝜑 

signifies the emphasis on fairness (i.e., satisfying �̂� ⊥ 𝐺 | �̂�) during model training, it follows 

that the higher the value of 𝜑, the more successful the proposed technique was in meeting 

MLMI. In general, we found conditions with higher values of 𝜆 to have higher success in 

meeting MLMI. This is likely due to the quality of factor score estimates improving with 

increasing factor loadings, such that �̂� ⊥ 𝐺 | �̂� becomes a better approximation to �̂� ⊥ 𝐺 | 𝜂 (i.e., 

MLMI). In fact, the factor score estimates on average correlated with 𝜂 at 0.83, 0.88, and 0.92 

for 𝜆 = 0.55, 0.65, 0.75, respectively, when pooling across levels of all other simulation factors. 
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Contrary to our hypothesis, Model 3’s ability to meet MLMI did not appear to meaningfully 

differ according to the use of covariate-informed factor scores. This may be due to the 

misspecification of the structural relationships between the predictors and 𝜂 in the factor model, 

as discussed in Section 4.1. Accordingly, examining the correlation between the factor score 

estimates and 𝜂 revealed only a minimal improvement with the inclusion of covariates, with the 

average correlation (when pooling across levels of all other simulation factors) being 0.90 for 

covariate-informed factor scores and 0.87 for factor scores computed without covariates.  

Next, we compared the MLMI results of Model 3 to those of Model 4 in Figure 5. This 

comparison helps to demonstrate the improvement that regularizing for �̂� ⊥ 𝐺 | �̂� with the 

proposed technique provides over the original model-fitting procedure for separation. Figure 5 

shows that differences between Models 3 and 4 with respect to MLMI violation were most 

salient in conditions where 𝐺 was included as a predictor and 𝜑 = 0.9, where Model 3 violated 

MLMI much less frequently than Model 4 (23.1% MLMI violation for Model 3 versus 76.3% for 

Model 4). In simulation part 1, we found MLMI violations were most prevalent when 𝐺 was 

included as a predictor, so it follows that these are the conditions in which the proposed 

technique was most useful and differentiated from Model 4’s results. This is corroborated with 

McNemar’s tests and Cohen’s g effect sizes, which revealed significant (𝑝 <
.05

120
; Bonferroni-

corrected for multiple testing across conditions) and at least moderate-sized (𝑔 ≥ 0.15) 

differences in the proportion of MLMI violation between Models 3 and 4 in nearly all such 

conditions. With 𝐺 included as a predictor and 𝜑 = 0.7, we found Model 3 to frequently violate 

MLMI, although still significantly (𝑝 <
.05

120
 and 𝑔 ≥ 0.15) less than Model 4. With 𝐺 included 

as a predictor and 𝜑 = 0.5, Model 3 violated MLMI just as much as Model 4, resulting in some 

nonsignificant (𝑝 ≥
.05

120
 and 𝑔 < 0.15) differences between the two models. This again shows 
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that the proposed technique becomes increasingly more effective (over constraining for 

separation) with increasing values of 𝜑. When 𝐺 was excluded as a predictor, Model 3 still 

consistently had fewer MLMI violations than Model 4, although the differences did not appear as 

notable. This is likely because when 𝐺 was excluded, the original model-fitting procedure for 

separation (Model 4) already did a decent job of satisfying MLMI, such that the proposed 

technique (Model 3) did not make as large of a difference from separation as when 𝐺 was 

included.  

These patterns were observed for both types of non-invariance and for both kinds of 

factor score estimates. In general, differences in MLMI violation between Models 3 and 4 

appeared most notable under higher factor loadings. This is likely because Model 3’s ability to 

meet MLMI improved with increasing factor loadings, and on top of that, Model 4’s MLMI 

violations became more crystallized with increasing reliability of the outcome variable as an 

indicator of 𝜂, as discussed in Section 3.2. Similarly, differences were also more apparent with a 

large magnitude of non-invariance, given that MLMI violations by Model 4 were also most 

prevalent under large magnitudes of non-invariance.  

Note that in eight of the 120 conditions, McNemar’s test and Cohen’s g effect size could 

not be calculated, because there was only one pattern of MLMI results across Models 3 and 4 

among all replications (i.e., both Models 3 and 4 violated MLMI in all 500 replications of the 

condition).  
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Figure 5 

Condition-wise boxplots of the p-values of the fair dummies test for MLMI for Models 3 and 4  
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Note. A “significant” difference refers to McNemar’s 𝑝 <
.05

120
 and Cohen’s 𝑔 ≥ 0.15. “NA” 

refers to conditions with no variability in the MLMI results among all 500 replications.   

 

 The above observations from Figure 5 can be collectively summarized with results from 

the CART analysis, with the classification tree diagram presented in Figure 6. The MLMI 

simulation outcome modeled in this classification tree was originally a four-level categorical 

variable, but no replications were classified as Model 3 violated MLMI and Model 4 did not in 

the optimal decision rule found. The misclassification rate of this classification tree was 31.0%.  

The hierarchy of the splits in Figure 6 suggests that the most useful simulation factor for 

explaining the improvement in MLMI associated with the proposed technique over separation 

was the inclusion/exclusion of 𝐺, followed by the value of 𝜑. When 𝐺 was excluded as a 

predictor, the optimal classification of a replication was neither model violated MLMI, meaning 

both approaches were effective in meeting MLMI in the presence of measurement bias (i.e., no 

improvement). When 𝐺 was included, the optimal classification depended on the value of 𝜑. 
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When 𝜑 = 0.5 or 0.7, a replication was optimally classified as both models violated MLMI, 

meaning neither approach was effective (i.e., no improvement). When 𝜑 = 0.9, the optimal 

classification was Model 4 violated MLMI and Model 3 did not, meaning only the proposed bias 

mitigation technique was effective (i.e., improvement present). The tree diagram further split this 

node (𝐺 is included and 𝜑 = 0.9), such that only when the magnitude of non-invariance is 

medium and factor loadings are low (𝜆 = 0.55, 0.65), the optimal classification was neither 

model violated MLMI. All other conditions from this node were classified as Model 4 violated 

MLMI and Model 3 did not. Because the tree did not split on the type of factor scores or the type 

of non-invariance, we can interpret that the MLMI results did not differ meaningfully according 

to whether covariates are used in the calculation of factor scores or whether there is bias in 

intercepts only or both intercepts and loadings.  

Figure 6 

Tree diagram of a classification tree modeling the MLMI outcome in Models 3 and 4, fit to 

simulation results across all conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. In each node of the tree diagram, the top value represents the majority class, the middle 

value represents the proportional breakdown of the classes of the observations belonging to that 

node, and the bottom value represents the percentage of total observations that belong to that 

node. 



 
 

64 
 

Predictive performance 

 Next, we examined for any predictive performance differences between Models 3 and 4 

to understand how performance may be altered with the proposed bias mitigation technique in 

comparison to the original model-fitting procedure for separation, if at all. Figures 7a and 7b 

present the condition-wise distributions of the RMSE and 𝑟𝜂,�̂�, respectively, from Models 3 and 

4. In terms of the RMSE, we found patterns to differ according to the inclusion/exclusion of 𝐺. 

When 𝐺 was included, Model 3 performed significantly worse than Model 4 (𝑝 <
.05

120
 and |𝑑| ≥

0.5), indicating that predictive performance was sacrificed when implementing the proposed 

strategy. This performance gap was largest under a large magnitude of non-invariance and with 

higher loadings. This is expected, given that these are the conditions in which we observed the 

biggest improvement in MLMI satisfaction by implementing the proposed technique over 

constraining for separation. Therefore, we may anticipate observing the biggest sacrifices in 

predictive performance where there are the biggest gains in MLMI satisfaction. When 𝐺 was 

excluded, we did not observe notable differences between Models 3 and 4, meaning predictive 

performance was preserved in those conditions.  

 In terms of 𝑟𝜂,�̂�, Model 3 performed significantly better than Model 4 (𝑝 <
.05

120
 and |𝑑| ≥

0.5) in a majority of the conditions, meaning the proposed technique improved performance over 

the original model-fitting procedure for separation. The exception was in conditions where 𝐺 was 

included and 𝜑 = 0.9, where the two models performed comparably to one another. As 

hypothesized, this is opposite from the pattern observed when examining performance in terms 

of the RMSE, where the proposed technique led to worse performance than constraining for 

separation in most conditions. This difference in patterns across the two metrics highlights the 

distinct natures of the RMSE and 𝑟𝜂,�̂� as performance indicators. Because the RMSE involves 
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observed variables only in its calculation, it may generally favor a model that regularizes for 

separation (Model 4), which also involves observed variables only, over Model 3. On the other 

hand, 𝑟𝜂,�̂� involves the target latent variable, or the factor, in its calculation, so it may favor a 

model that regularizes for �̂� ⊥ 𝐺 | �̂� (Model 3), which involves the factor score estimates, over 

Model 4. This means that in attempting to satisfy MLMI by constraining for �̂� ⊥ 𝐺 | �̂�, the 

proposed bias mitigation technique generates predictions that better correlate with the target 

latent variable, but worse at reproducing the observed outcome variable, compared to the original 

model-fitting procedure for separation.   

Figure 7 

Condition-wise boxplots of the test performance of Models 3 and 4 in terms of RMSE (Panel a) 

and 𝑟𝜂,�̂� (Panel b) 

 

Panel a 
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Panel b
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Note. A “significant” difference refers to paired sample t-test 𝑝 <
.05

120
 and Cohen’s |𝑑| ≥ 0.5. 

 To understand the systematic influence of the simulation factors on the performance 

differences between Models 3 and 4, we again used CART models to analyze results across all 

simulation conditions together. Figures 8a and 8b present the resulting regression tree diagrams 

for the pairwise (by replication) differences in RMSE and 𝑟𝜂,�̂�, respectively, between Models 3 

and 4. Note that in both regression trees, the differences in performance metrics were calculated 

such that a positive difference corresponds to Model 3 performing better than Model 4, and a 

negative difference corresponds to Model 3 performing worse than Model 4. The 𝑅2 values of 

these regression trees were 0.84 and 0.55 for the RMSE and 𝑟𝜂,�̂� difference, respectively. 

 From Figure 8a, we can gather that the most important determinant of the RMSE 

difference between Models 3 and 4 was the inclusion/exclusion of 𝐺, followed by the magnitude 

of non-invariance and value of 𝜆. As observed from Figure 7, the exclusion of 𝐺 often resulted in 
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comparable performance between Models 3 and 4. When 𝐺 was included, the performance drop 

associated with the proposed technique grew in size with a larger magnitude of non-invariance 

and with higher factor loadings. Again, these are the same conditions in which we observed the 

biggest gains in MLMI satisfaction by implementing the proposed technique as opposed to 

constraining for separation, such that we may expect the biggest sacrifices in RMSE associated 

with the proposed technique in those conditions. 

 From Figure 8b, we can gather that the most influential determinant of the difference in 

𝑟𝜂,�̂� between Models 3 and 4 was the magnitude of non-invariance, followed by the 

inclusion/exclusion of 𝐺 and the value of 𝜑. First, a larger magnitude of non-invariance led to a 

larger performance boost in 𝑟𝜂,�̂� associated with Model 3. Figure 8b also shows that the effect of 

𝜑 depended on whether 𝐺 is included as a predictor. When 𝐺 was excluded, a higher 𝜑 was 

associated with a larger performance gap between Models 3 and 4. This is intuitive, given that a 

larger 𝜑 indicates a greater emphasis on the regularization term (i.e., constraining for �̂� ⊥ 𝐺 | �̂� 

for Model 3 versus separation for Model 4) that distinguishes the two models. On the other hand, 

when 𝐺 was included, we found an unintuitive pattern, where a larger 𝜑 led to a smaller 

performance gap between Models 3 and 4. This was observed earlier in Figure 7b, where Model 

3 performed significantly better than Model 4 in all conditions except when 𝐺 was included and 

𝜑 = 0.9. A possible explanation for this is that when 𝐺 is included as a predictor, changing 𝜑 

has a differential effect on 𝑟𝜂,�̂� between Models 3 and 4 compared to when 𝐺 is excluded. When 

𝐺 is included, increasing 𝜑 for Model 3 steadily nears it closer to MLMI satisfaction, whereas 

increasing 𝜑 for Model 4 appears to have little impact on nearing it to MLMI satisfaction, 

because Model 4 violates MLMI even with a strong constraint for separation, such that 

increasing 𝜑 does not affect performance as much for Model 4. Therefore, as 𝜑 increases, any 
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changes in MLMI satisfaction within each model and as a result, differences in 𝑟𝜂,�̂� between 

Models 3 and 4 becomes narrower, given that Model 4’s performance remains relatively 

unharmed compared to that of Model 3. 

 Because neither tree in Figure 8a nor 8b split on the type of factor score estimates or type 

of non-invariance, we can interpret that performance differences between the two cost functions 

(in terms of both RMSE and 𝑟𝜂,�̂�) did not differ meaningfully according to whether covariates 

are used in the calculation of factor scores or whether there is bias in intercepts only or both 

intercepts and loadings. 

Figure 8 

Tree diagram of a regression tree modeling the difference in root mean squared error (Panel a) 

and 𝑟𝜂,�̂� (Panel b) between Models 3 and 4, fit to simulation results across all conditions 

 

Panel a     Panel b 

 

Note. In each node of the tree diagram, the top value represents the mean value of the simulation 

outcome among observations belonging to that node, and the bottom value represents the 

percentage of total observations that belong to that node. 
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Summary of simulation part 2 

 In simulation part 1, we found several conditions with substantial (over 25% of 

replications) MLMI violations associated with the use of a non-invariant outcome variable, even 

when the machine learning model was constrained for separation during training. We explored 

the effectiveness of a possible bias mitigation technique to address this effect of measurement 

bias on MLMI in simulation part 2, which showed that under certain conditions, MLMI can be 

met even in the presence of measurement bias using this technique. 

First, if 𝐺 is to be excluded as a predictor, MLMI was often successfully met using the 

proposed bias mitigation technique, regardless of the type or magnitude of non-invariance, value 

of 𝜆 or 𝜑, and the type of factor score estimates used. However, the added utility of the proposed 

technique over the original model-fitting procedure for separation may be maximized when 𝐺 is 

to be included as a predictor, which is where MLMI violations associated with a non-invariant 

outcome variable were most salient (see simulation part 1; Section 3.2). When 𝐺 is included and 

a strong emphasis is placed on regularizing for �̂� ⊥ 𝐺 | �̂� (𝜑 = 0.9) during training, the proposed 

bias mitigation technique was largely effective in satisfying MLMI, where constraining for 

separation was ineffective. In such conditions, the proposed technique was effective for both 

medium and large magnitudes of non-invariance, for both types of non-invariance, and for both 

types of factor score estimates. However, the caveat to meeting MLMI using the proposed 

technique is that predictive performance in terms of RMSE was negatively impacted, although 

performance in terms of 𝑟𝜂,�̂� was preserved, if not improved. Therefore, there is a trade-off to be 

made in generating predictions that satisfy MLMI versus those that accurately reproduce the 

observed outcome variable. With a weaker emphasis on regularizing for �̂� ⊥ 𝐺 | �̂� (𝜑 = 0.5 or 

0.7), MLMI violations were still frequently prevalent, although to a lesser extent than when 
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constraining for separation. Therefore, while constraining for �̂� ⊥ 𝐺 | �̂� provided a relative 

improvement over separation across all values of 𝜑 tested, a strong emphasis (𝜑 = 0.9) was 

needed for the proposed technique to be effective in the absolute sense, if 𝐺 is to be included as a 

predictor. 

In sum, the proposed technique can be an effective treatment for mitigating the effects of 

measurement bias on the fairness of machine learning models under certain conditions where 

constraining for separation is unsuccessful in meeting MLMI. Further, the predictions obtained 

from the proposed technique often showed a higher correlation with the target latent variable, 

compared to predictions obtained from the original model-fitting procedure for separation. 

However, these improvements in MLMI satisfaction and 𝑟𝜂,�̂� were qualified by an increase in 

RMSE. Given that the observed outcome variable exhibits measurement bias and should 

therefore not be regarded as the “ground truth”, this sacrifice in accurately reproducing the 

observed outcome variable may not be so detrimental. 
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CHAPTER 5: APPLIED EXAMPLE 

To demonstrate the application of the proposed methods on empirical data, we analyzed 

the public use files of the Medical Expenditure Panel Survey (MEPS). The household component 

of this nationally representative, large-scale survey, given by the Agency for Healthcare 

Research and Quality (AHRQ), collects data from sampled U.S. households and their members 

about their use of health services, health conditions and status, medical expenditures, sources of 

payment, health insurance coverage, access to care, employment, income, and demographic 

characteristics (AHRQ, 2019). MEPS has been previously used in the machine learning fairness 

literature to emulate a use case where the task is to develop a “fair” machine learning model for 

healthcare utilization or expense prediction that scores patients to aid in care management 

prioritization and enrollment decisions (e.g., Bellamy et al., 2019; Fabris et al., 2022; Romano et 

al., 2020; Singh & Ramamurthy, 2019). Future healthcare utilization and expense have been used 

as outcome variables in algorithms in healthcare systems as proxies or indicators of health to 

prospectively identify those with high projected health needs or risk (Fleishman & Cohen, 2010; 

Morid et al., 2017; Obermeyer et al., 2019; Rakovski et al., 2002; Singh & Ramamurthy, 2019; 

Wherry et al., 2014). It should be noted that while MEPS is not the data source that was used in 

the motivating Science article of Obermeyer et al. (2019) from Chapter 1, it provides a similar 

example.   

In MEPS, a new panel or cohort is initiated each year and is surveyed over five rounds of 

interviews spanning two calendar years. For example, Panel 22 was surveyed in 2017 for rounds 

1, 2, and 3 and in 2018 for rounds 3, 4, and 5. We followed the methodology of Fleishman and 
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Cohen (2010) and Singh and Ramamurthy (2019) in using a panel’s data collected from the first 

year to predict their medical expenses in the second year, given that in a realistic use case, the 

prediction of future, rather than current, medical expenses is often of interest. Specifically, we 

used the MEPS full-year consolidated data files of 2017 and 2018 (AHRQ, 2019; AHRQ, 2020) 

for Panel 22 to build a machine learning model, using health characteristics and demographic 

variables collected in 2017 to predict expenses in 2018.  

As such, using the MEPS data, the emulated task was to build a “fair” medical expense 

prediction model with respect to race/ethnicity, where we took a measurement approach to 

machine learning fairness, using the framework and bias mitigation technique proposed in this 

thesis. The grouping variable used was a binary indicator of race/ethnicity, with the two levels 

being non-Hispanic white (coded 1) and non-Hispanic black (coded 0). All other race/ethnicity 

categories were excluded from the analysis. To infer a target latent variable of health needs, we 

collected additional indicators of health needs, besides medical expenses, that were captured in 

the survey to be considered as proxy outcome variables. Then, we used the proposed framework 

and bias mitigation technique respectively to test for measurement invariance and build a 

medical expense prediction model that takes fairness into consideration from a measurement 

perspective.  

Section 5.1: Measurement Invariance Testing using the Proposed Framework 

It is possible that the medical expense measure exhibits measurement bias with respect to 

race. In other words, medical expenses may indicate a differential level of underlying health 

needs across black and white individuals. Applying the proposed framework to test for 

measurement invariance, we gathered multiple other indicators of health needs available in the 

MEPS data to fit a MG-CFA model. These additional indicators included three patient-reported 
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outcome measures: a measure of self-assessed perceived health, the health in general score of the 

Veterans RAND 12-Item Health Survey (VR-12), and another item from the VR-12 on the extent 

to which one’s physical health limit the kind of work or daily activities they are able to do 

(“daily limitations” hereafter). Medical expense was calculated as the sum of payments made 

(including out-of-pocket payments and payments made by insurance) for various health services, 

including office-based care, hospital-based care (e.g., inpatient stays, outpatient visits, 

emergency room visits), home health care, dental and vision care, and prescribed medications. 

Perceived health status and general health were rated on a scale of 1 (excellent) to 5 (poor). Daily 

limitations were rated on a scale of 1 (none of the time) to 5 (all of the time). Because the health 

in general score and daily limitations score came from the self-administered questionnaire (SAQ) 

portion of the MEPS, which was only administered to respondents 18 and older, the analysis was 

limited to those who were eligible for the SAQ. For simplicity, we additionally limited the 

analysis to those with a non-zero medical expenditure. This resulted in an unweighted analytic 

sample size of 𝑁 = 6,232 (𝑁 = 5,021 for non-Hispanic whites; 𝑁 = 1,211 for non-Hispanic 

blacks). All four measures were treated as continuous in the analysis.  

First, we examined the distributions of each measure, plotted in Figure 9. The medical 

expense measure was log-transformed to bring the distribution closer to normality and the scale 

closer to the rest of the measures, which are on a scale of 1 to 5 (references to medical expenses 

hereafter assume log-transformation). Due to the skewness seen in the distributions, particularly 

the daily limitations measure, we used maximum likelihood estimation with robust standard 

errors, test statistics, and fit indices. Missing data (0.42%, 3.23%, 3.67%, 0% missingness for 

perceived health status, health in general, daily limitations, and medical expenses, respectively) 

were handled with full-information maximum likelihood. 
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Figure 9 

Histograms of the four measures, including perceived health status (Panel a), health in general 

(Panel b), daily limitations (Panel c), and medical expenses (Panel d) 

 

Panel a      Panel b 

 

Panel c      Panel d 

 

 We began the analysis by fitting a single-group CFA model separately in each of the two 

groups. For the non-Hispanic white group, a one-factor CFA model had suboptimal fit to the data 

(𝜒2(2) = 165.11, 𝑝 < .01; 𝐶𝐹𝐼 = 0.97;  𝑇𝐿𝐼 = 0.92;  𝑅𝑀𝑆𝐸𝐴 =

0.13, 95% 𝐶𝐼: [0.11, 0.15]; 𝑆𝑅𝑀𝑅 = 0.03). Examining the top modification indices led us to 

estimate a residual covariance between the perceived health status and health in general 

measures. Given that these measures are similar in content, we found this modification to be 

theoretically defensible. Therefore, we next estimated a one-factor CFA model with a residual 
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covariance and found this model to fit well to the data (𝜒2(1) = 11.73, 𝑝 < .01; 𝐶𝐹𝐼 =

1.00; 𝑇𝐿𝐼 = 0.99; 𝑅𝑀𝑆𝐸𝐴 = 0.05, 95% 𝐶𝐼: [0.03, 0.08]; 𝑆𝑅𝑀𝑅 = 0.01). A scaled chi-square 

likelihood ratio test also indicated a significant improvement in model fit following this 

modification (𝜒2(1) = 160.88, 𝑝 < .01). Repeating the analysis on the non-Hispanic black 

group also led to a one-factor CFA model with a residual covariance between the perceived 

health status and health in general measures to be optimally fitting (𝜒2(1) = 6.47, 𝑝 =

.01; 𝐶𝐹𝐼 = 1.00; 𝑇𝐿𝐼 = 0.98; 𝑅𝑀𝑆𝐸𝐴 = 0.07, 95% 𝐶𝐼: [0.03, 0.12]; 𝑆𝑅𝑀𝑅 = 0.01).  

 Next, we estimated this one-factor model in both groups simultaneously using a MG-

CFA, starting with a configural model with an equal general factor structure across groups. The 

model was identified by setting the mean and variance of the factor to 0 and 1, respectively, for 

the non-Hispanic white group and freely estimating them for the non-Hispanic black group, and 

freely estimating but setting across-group equality constraints on the intercept and factor loading 

of the perceived health status measure. This configural model showed adequate fit to the data, so 

we moved on to test for weak invariance by constraining all factor loadings to be equal. This 

model also showed adequate fit to the data, and a non-significant chi-square likelihood ratio test 

indicated no decrement in fit following these constraints (𝜒2(3) = 4.53, 𝑝 = .21). This indicates 

that weak invariance is met. Next, we tested for strong invariance by placing across-group 

equality constraints on all factor loadings and intercepts. This led to a significant decrement in 

model fit according to a chi-square likelihood ratio test (𝜒2(3) = 167.41, 𝑝 < .01). After 

examining the top modification indices, we lifted the across-group equality constraint on the 

intercept of the medical expense measure. This partial strong invariance model fit significantly 

better than the strong invariance model (𝜒2(1) = 129.42, 𝑝 < .01), but it still fit significantly 

worse than the weak invariance model (𝜒2(2) = 56.89, 𝑝 < .01). Therefore, we examined the 
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top modification indices of the partial strong invariance model and additionally lifted the across-

group equality constraint on the intercept of the daily limitations measure. This led to a 

significant improvement in model fit over the previous partial strong invariance model (𝜒2(1) =

55.78, 𝑝 < .01), and it further showed no decrement in fit over the weak invariance model 

(𝜒2(1) = 0.04, 𝑝 = .85). Therefore, we conclude that partial strong invariance is met, with two 

measures’ intercept parameters being freely estimated with no across-equality constraints. The 

parameter estimates of this final partial strong invariance model are given in Table 4.  

Table 4 

Parameter estimates of partial strong invariance MG-CFA model 

 Group 0 (non-Hispanic black) Group 1 (non-Hispanic white) 

 Estimate Std. 

error 

P-value Std. 

estimate 

Estimate  Std. 

error 

P-value Std. 

estimate 

Factor loadings         

Perceived health status 0.66 0.02 <.01 0.63 0.66 0.02 <.01 0.64 

Daily limitations 0.93 0.02 <.01 0.79 0.93 0.02 <.01 0.82 

Health in general 0.72 0.02 <.01 0.70 0.72 0.02 <.01 0.73 

Medical expenses 0.82 0.02 <.01 0.45 0.82 0.02 <.01 0.50 

Item intercepts         

Perceived health status 2.40 0.01 <.01 2.28 2.40 0.01 <.01 2.30 

Daily limitations 1.43 0.04 <.01 1.21 1.71 0.02 <.01 1.51 

Health in general 2.43 0.01 <.01 2.36 2.43 0.01 <.01 2.45 

Medical expenses 7.39 0.05 <.01 4.09 8.06 0.02 <.01 4.92 

Item residual 

(co)variances 

        

Perceived health status 0.67 0.04 <.01 0.60 0.64 0.02 <.01 0.59 

Daily limitations 0.53 0.05 <.01 0.38 0.41 0.03 <.01 0.32 

Health in general 0.53 0.03 <.01 0.50 0.46 0.02 <.01 0.47 

Medical expenses 2.60 0.13 <.01 0.80 2.02 0.05 <.01 0.75 

Perceived health status 

~~ Health in general 

0.23 0.03 <.01 0.38 0.25 0.02 <.01 0.46 

Factor mean 0.38 0.03 <.01 0.38 0.00   0.00 

Factor variance 1.00 0.06 <.01 1.00 1.00   1.00 

Note. ~~ indicates a covariance between two item residuals.   

While Table 4 shows that the standardized factor loading of the medical expense measure 

is rather low (𝜆 = 0.50) and it therefore may lack in utility as a reliable indicator of health needs, 
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we proceeded to use this as the outcome variable of the machine learning task for demonstration 

purposes.  

Finally, all fit measures from the series of MG-CFA models are summarized in Table 5, 

as well as results from all chi-square likelihood ratio tests comparing the relative fit of each 

subsequent model.  

Table 5 

Results of measurement invariance testing, including fit statistics and chi-square likelihood ratio 

tests of the sequence of MG-CFA models 

 
MG-CFA 

model 

Absolute fit Relative fit 

 𝜒2 df CFI TLI RMSEA SRMR Rel. to 

model 
∆𝜒2 ∆df p-

value 

1. Configural 18.38 2 1.00 0.99 0.05  

[0.03, 0.08] 

0.01  

2. Weak 22.80 5 1.00 0.99 0.04  

[0.02, 0.05] 

0.01 1 4.53 3 .21 

3. Strong 177.70 8 0.98 0.97 0.08  

[0.07, 0.10] 

0.03 2 167.41 3 < .01 

4. Partial strong 

(expense) 

78.23 7 0.99 0.98 0.06  

[0.05, 0.07] 

0.02 3 129.42 1 < .01 

2 56.89 2 < .01 

5. Partial strong 

(expense, daily 

limitations) 

23.07 6 1.00 1.00 0.03  

[0.02, 0.05] 

0.01 4 55.78 1 < .01 

2 0.04 1 .85 

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis Index; RMSEA 

= root mean squared error of approximation; SRMR = standardized root mean squared residual. 

 

Section 5.2: Meeting MLMI using the Proposed Bias Mitigation Technique 

 We found evidence of measurement bias in our chosen observed outcome variable, the 

medical expense measure, where its intercept parameter differed across non-Hispanic whites and 

non-Hispanic blacks. This means that the same level of underlying health needs is manifested as 

differential levels of expenses according to race. As we learned in simulation part 1, using this 

non-invariant measure as the outcome variable of the machine learning model, without 

accounting for this bias, can lead to an “unfair” model that violates MLMI (i.e., machine learning 
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model gives individuals with the same underlying health needs differing predictions according to 

race). Therefore, we used factor score estimates calculated from the partial strong invariance 

model presented in Table 4 to implement the proposed bias mitigation technique, in an attempt to 

build a “fair” model satisfying MLMI in the presence of measurement bias in the outcome 

variable. We used factor scores computed without covariates, given that we did not observe 

notable improvements in the effectiveness of the proposed bias mitigation technique associated 

with the use of covariate-informed factor scores in simulation part 2 (see Section 4.2), and we do 

not have strong a priori knowledge of the structural relationships between the predictors of the 

machine learning model and health needs.  

We split the MEPS data into a training (60%) and test (40%) set. Predictors of the 

machine learning model included age, marital status, military active-duty status, diagnoses of 

priority conditions (e.g., high blood pressure, diabetes, high cholesterol, asthma), physical 

limitations (e.g., hearing, vision), health behaviors (e.g., smoking), and insurance coverage. 

Missing values in the predictors (0.4% missing) were imputed using the R package and function 

missForest (Stekhoven, 2013). There were 29 predictors in total, including race.  

Table 6 summarizes the test-set performance of the various machine learning models we 

built, which differed in their values of 𝜑 (𝜑 = 0.9, 0.7, 0.5), whether race was included as a 

predictor in the machine learning model, and the fairness constraint used (model-fitting 

procedure for separation of Romano et al., 2020 or proposed bias mitigation technique). We used 

the same set of hyperparameter values as used in the simulation study. Table 6 shows that 

performance differed only negligibly by changing these factors. Therefore, it may be sound to 

select a model that is most favorable with respect to fairness (i.e., most likely to satisfy MLMI), 
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which would be the model trained using the proposed bias mitigation technique, with a strong 

emphasis on the regularization term (𝜑 = 0.9), and excluding race as a predictor.  

Table 6 

Predictive performance of the medical expense prediction model 

Fairness 

constraint 

Predictive 

performance (RMSE) 

    

 𝜑 = 0.9 𝜑 = 0.7 𝜑 = 0.5 

 Race 

included 

Race 

excluded  

Race 

included  

Race 

excluded  

Race 

included  

Race 

excluded  

Proposed 

technique 

1.46 1.48 1.46 1.46 1.46 1.46 

Separation  1.45 1.45 1.45 1.45 1.46 1.46 
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CHAPTER 6: DISCUSSION 

As machine learning continues to govern sensitive and high-stakes decisions in everyday 

life, studying machine learning fairness remains critical in ensuring and advancing the equity of 

machine learning-based decisions. In this thesis, we presented how the psychometric literature on 

test fairness contributes a useful perspective to machine learning fairness, focusing on how bias 

in measurement channels into bias in machine learning.  

First, in taking a measurement perspective to the problem of machine learning bias, we 

emphasized the idea of a target latent variable, or the true, underlying construct to be predicted in 

the machine learning task—an entity to be distinguished from the observed outcome variable, 

which is often only an imperfect proxy of it. To ensure that the observed outcome variable is an 

unbiased measure of the target latent variable, we proposed a simple framework to conduct 

measurement invariance testing among multiple, candidate observed outcome variables in 

machine learning. We also introduced the concept of MLMI, or the conditional independence of 

machine learning predictions and group membership given the target latent variable—a 

definition of machine learning fairness that is analogous to the psychometric concept of 

measurement invariance.  

We demonstrated the importance of assessing for measurement invariance using this 

proposed framework in simulation part 1, which showed that training a machine learning model 

on a non-invariant outcome variable often leads to “unfair” predictions that violate MLMI. In 

other words, the model gives unequal predictions to observations according to group 

membership, despite them having equal levels of the target latent variable. Furthermore, with 
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growing magnitudes of non-invariance, violations of MLMI were not entirely mitigated by 

constraining the model for separation (the observed-variable counterpart to MLMI) or by 

removing the grouping variable as a predictor from the model. Because these effects of 

measurement bias on machine learning bias are not entirely addressed with these techniques, we 

emphasize the added utility and importance of assessing for measurement invariance in machine 

learning beyond these existing fairness considerations.  

To counter the effects of measurement bias on machine learning bias, we proposed a bias 

mitigation technique, a natural byproduct of the proposed framework, to train “fair” models in 

the presence of measurement bias. We demonstrated the effectiveness of this proposed technique 

in simulation part 2, which showed that MLMI can be satisfied even with a non-invariant 

outcome variable and that MLMI was better met using the proposed technique than an existing 

technique constraining for separation. While these improvements in MLMI satisfaction were 

accompanied by inflations in RMSE (i.e., worse reproduction of the observed outcome variable), 

we view this trade-off to be warranted, given that the observed outcome variable in this case is 

non-invariant and therefore, not necessarily the “truth”. This may lead one to wonder why we 

would not simply use a different, invariant outcome variable or alternatively, predict the factor 

score estimates directly as the outcome variable. Regarding the former point, we view the 

proposed bias mitigation technique to be useful in cases where there is hesitation to change the 

outcome variable for practical reasons (see Section 4.1). Regarding the latter point, predicting the 

observed outcome variable provides enhanced interpretability of model predictions compared to 

predicting factor score estimates, as the units of factor scores are uninterpretable. Given that 

model predictions are the main output of interest that machine learning users take away from the 
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model (i.e., users are interested in making decisions based on model predictions), we view this 

advantage to be an essential aspect of the proposed technique. 

There are several limitations associated with this thesis that lend themselves to useful 

future directions. First, the simulation study applies only Romano et al. (2020)’s bias mitigation 

method to train models satisfying separation, and the tests of MLMI as well as the proposed bias 

mitigation technique are both modified versions of Romano et al. (2020)’s methods leveraging 

the fair dummy. While there exist many other bias mitigation methods in the machine learning 

fairness literature, we used Romano et al. (2020)’s technique throughout this thesis because these 

methods provide a unified framework to both train and test models for separation, and they are 

flexibly adaptable to the modified applications used in this thesis (e.g., testing for MLMI instead 

of separation; modifying the cost function to use factor score estimates in the regularization 

term). However, future studies may benefit from a broader consideration of other existing 

methods in the machine learning fairness literature and how they may be adapted to be used to 

study fairness from a measurement perspective.  

Second, the simulation set-up and conditions considered in the study are rather limited 

and may be overly simplistic. For example, the data were simulated such that groups differ only 

in their mean values of the predictor variables (with up to a medium effect size) and not in the 

(co)variances, and the predictor variables define the mean of the target latent variable, but not the 

variance. Furthermore, we have only considered the case in which the grouping variable is a 

single binary variable, and there is measurement bias only with respect to that grouping variable 

and no other predictors. Given these narrow specifications, an important extension of this thesis 

from a simulation perspective would be to consider more complex data generating mechanisms 

and measurement bias configurations. From a methodological development perspective, a useful 
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extension of the proposed methods is to expand the proposed bias mitigation technique to be 

applicable for cases where the grouping variable is continuous or has more than two groups. In 

the psychometric literature, there exist methods that provide enhanced flexibility over the MG-

CFA model in the evaluation of measurement invariance, such as assessing invariance with 

respect to a grouping variable with many groups, allowing for both continuous and categorical 

grouping variables, and simultaneously evaluating more than one grouping variable (Asparouhov 

& Muthén, 2014; Bauer, 2017). Similarly, there exist bias mitigation methods in the machine 

learning fairness literature which provide similar flexibility, such as methods to train “fair” 

machine learning models with respect to multiple grouping variables or allow for both 

continuous and categorical grouping variables (Chakraborty et al., 2021; Zhang et al., 2018). A 

creative integration of such methods from the psychometric and machine learning fairness 

literatures would be an interesting future direction. 

Third, the findings from the simulation study may be limited to the quality of the 

predictions generated by the machine learning models in this simulation. With increasing 

predictive ability of the models such that the �̂�’s become closer to the 𝑌’s, we may find results to 

differ. As such, we warn against overinterpretation of the results obtained particularly from 

simulation conditions with low factor loadings, where unexpected patterns emerged, as further 

investigation into the replicability of such unexpected patterns may be needed. We nevertheless 

chose to test these values of factor loadings (𝜆 = 0.55, 0.65, 0.75) in the simulation, given that 

we anticipate encountering indicators (observed outcome variables) with factor loadings in this 

range in practice. To heighten predictive ability in other ways, future simulations may benefit 

from building more complex machine learning models (e.g., a deeper FNN) or conducting a 



 
 

85 
 

thorough hyperparameter (e.g., number of epochs, learning rate) tuning process during training, 

although it will be more computationally expensive.  

From a practical standpoint, another limitation of the proposed methods is the 

conceivability of having multiple indicators of the target latent variable, such that one could 

overidentify the MG-CFA model—the core component of the proposed methods. We recognize 

that in many practical settings, the observed outcome variable used in the machine learning 

model may be the only indicator of the target latent variable readily available to the analyst. 

Nevertheless, this limitation should underscore that a single proxy or indicator is not enough to 

infer an unobserved, underlying construct and to take a measurement perspective to the problem 

of machine learning bias. We therefore hope that the proposed methods can bring awareness to 

this risk and at the least facilitate the consideration of collecting more data to allow access to 

multiple indicators of the target latent variable, rather than relying on a single proxy outcome 

variable.  

With these limitations in mind, we emphasize that while the methods proposed in this 

thesis may be presented and studied under rather narrow specifications in the simulation, the 

larger (and arguably more meaningful) contribution lies in the novelty of the integration of 

concrete, psychometric techniques into the study of machine learning fairness. Building upon the 

connection between predictive invariance testing and machine learning fairness drawn in 

Hutchinson and Mitchell (2019), we presented a psychometric addition to the toolbox with which 

researchers can identify and address sources of machine learning bias. We believe measurement 

is a key perspective to machine learning fairness that the field of psychometrics is uniquely 

equipped to contribute, given its closely paralleled work in test fairness and foundation in 

measurement theory. We therefore envision future work to continue to emphasize the importance 
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and relevance of fairness in measurement for fairness in machine learning, build upon the ties 

between test bias and machine learning bias, and elucidate how these two domains may further 

intersect or learn from one another. 
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APPENDIX 

Below, we present results from a supplemental simulation study, in which the group 

proportions are imbalanced. This was done by simulating the binary grouping variable as  

𝐺𝑖~ Bernoulli(0.75) instead of 𝐺𝑖~ Bernoulli(0.5), as in the main study’s simulation. All other 

aspects of this supplemental simulation study remained the same as the main study’s simulation. 

See Table 3 for reference to the details of Models 1-4.  

Supplemental Simulation Part 1 

Figure A1 

Condition-wise boxplots of the p-values of the fair dummies test for MLMI for Models 1 and 2 

 

Note. A “significant” difference refers to McNemar’s 𝑝 <
.05

36
 and Cohen’s 𝑔 ≥ 0.15.  
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Figure A2 

Tree diagram of a classification tree modeling the MLMI outcome in Models 1 and 2, fit to 

simulation results across all conditions

 
Note. In each node of the tree diagram, the top value represents the majority class, the middle 

value represents the proportional breakdown of the classes of the observations belonging to that 

node, and the bottom value represents the percentage of total observations that belong to that 

node. 
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Figure A3 

Condition-wise boxplots of the test performance of Models 1 and 2 in terms of RMSE (Panel a) 

and 𝑟𝜂,�̂� (Panel b) 

 

Panel a 

 

 

 

 

 

 

 

 

 

Panel b 

 

 

 

 

 

 

 

 

 

Note. A “significant” difference refers to paired sample t-test 𝑝 <
.05

36
 and Cohen’s |𝑑| ≥ 0.5. 
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Figure A4 

Tree diagram of a regression tree modeling the difference in RMSE (Panel a) and 𝑟𝜂,�̂� (Panel b) 

between Models 1 and 2, fit to simulation results across all conditions 

 

Panel a     Panel b 

 

Supplemental Simulation Part 2  

Of the 36 total conditions tested in supplemental simulation part 1, there were 𝑐 = 17 

conditions where over 25% of its replications resulted in MLMI violation by Model 2 (non-

invariant outcome variable), even when constrained for separation. This included all conditions 

with large magnitudes of bias, except for when 𝐺 was excluded, 𝜆 = 0.55, and the type of bias is 

both intercept and loading (11 conditions), plus all conditions with medium magnitudes of bias 

with 𝐺 included as a predictor (6 conditions). As done in the main study’s simulation, we crossed 

these 17 conditions with two new simulation factors (value of 𝜑 and the use of covariate-

informed factor scores), which resulted in 102 total conditions tested in supplemental simulation 

part two. 
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Figure A5 

Condition-wise boxplots of the p-values of the fair dummies test for MLMI for Models 3 and 4  

 

 

Note. A “significant” difference refers to McNemar’s 𝑝 <
.05

102
 and Cohen’s 𝑔 ≥ 0.15. “NA” 

refers to conditions with no variability in the MLMI results among all 500 replications.   
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Figure A6 

Tree diagram of a classification tree modeling the MLMI outcome in Models 3 and 4, fit to 

simulation results across all conditions 

 

 

Note. In each node of the tree diagram, the top value represents the majority class, the middle 

value represents the proportional breakdown of the classes of the observations belonging to that 

node, and the bottom value represents the percentage of total observations that belong to that 

node. 

 

 

 

 

 

 

 

 

 

 

 



 
 

93 
 

Figure A7 

Condition-wise boxplots of the test performance of Models 3 and 4 in terms of RMSE (Panel a) 

and 𝑟𝜂,�̂� (Panel b) 

 

Panel a 
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Panel b 

 

 

Note. A “significant” difference refers to paired sample t-test 𝑝 <
.05

102
 and Cohen’s |𝑑| ≥ 0.5. 
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Figure A8 

Tree diagram of a regression tree modeling the difference in root mean squared error (Panel a) 

and 𝑟𝜂,�̂� (Panel b) between Models 3 and 4, fit to simulation results across all conditions 

 

Panel a     Panel b 

 

Note. In each node of the tree diagram, the top value represents the mean value of the simulation 

outcome among observations belonging to that node, and the bottom value represents the 

percentage of total observations that belong to that node. 
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