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ABSTRACT

Joshua P. Rutsohn: Estimating the Conditional Hazard Function of Joint Latent Class Mixed
Models using Hazard Regression with Applications to Psychology and Neuroscience

(Under the direction of Young Truong)

Research within the fields psychology and neuroscience often have interest in estimating

the change of a latent variable over repeated measurements. While the inference of interest

lies within this latent variable, observed variables that express this latent variable are instead

measured. If the latent variable is observed by a change in a specific biomarker as well as the

time-to-event, then a joint model may be more suitable for estimating the change of the latent

variable than a typical single-model approach. Given a heterogeneous sample comprising a

mixture of classes of this latent variable, a joint latent class mixed model may prove effective.

Within this joint model, the Cox proportional hazards model is a popular choice for modeling

the time-to-event due to its robustness and minimal assumptions. However, the Cox model still

requires a proportionality assumption. Hazard regression (HARE) was developed with relaxing

this assumption in mind. HARE uses an adaptive B-spline method to estimate the conditional

log-hazard function of the survival model not requiring that the hazard function follow this

proportionality assumption. The B-splines in HARE can take the form of covariates of interest,

time, or a tensor product of the two. An adaptive regression method estimates the conditional

log-hazard function via a partial likelihood method.

The purpose of this proposal is to introduce the HARE methodology to estimating the class-

specific conditional log-hazard function of a joint latent class mixed model with applications to

psychology and neuroscience research. This method is then tested on a study of simulated data,

on a subset of data from the Paquid longitudinal cohort study, data from an experiment assessing

visual information from infants as they engage in a social arousal task, and longitudinal data
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from the Infant Brain Imaging Study. The novelty and utility of HARE within the joint latent

class mixed model are explored and discussed.
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CHAPTER 1: JOINT MODELS IN STATISTICS

1.1 The Origins of Joint Modeling in Biomedical Research

During the height of the AIDS epidemic in the United States in the late 1980’s to mid 1990’s,

several serologic markers were found to be associated with the development of AIDS among

those infected with HIV (Fahey et al., 1990; Schecter et al. 1989). One serological biomarker

determined to have an association is the count of CD4 T-lymphocytes, more commonly known

as T-cells. This discovery led to the development of zidovudine (ZDV) to treat HIV by inhibiting

the replication of the HIV type 1 virus in vitro (Fischl et al., 1990). While ZDV worked through

the suppression of HIV replication, the efficacy of this drug was tested by estimating CD4 T-

lymphocyte (T4+) counts in blood samples. The primary issue with these early studies was that

they were cross-sectional, estimating associations between T4+ counts and time to AIDS at a

single point in time. This issue raised several difficulties. This methodology cannot tell whether

a decline of T4+ count within an individual is associated with time to AIDS development. If

HIV infection time was unobserved (i.e., left censoring was present) or time to AIDS after

enrollment was unobserved (i.e., right censoring was present), then a cross-sectional method

produces biased estimates. Even in a longitudinal or survival analysis setting, the estimation

between T4+ count and time to AIDS was challenging to model because T4+ counts varied

considerably between individuals and both types of censoring could be informative (Pawitan &

Self, 1993).

One of the earliest attempts to model this association while accounting for these issues was

done by De Gruttola, Lange, and Dafni (1991). They used longitudinal data and modeled the

cohort’s T4+ count using a growth model with random effects where measurement error was

added as a weight to the random effects estimates. The added measurement error accounted
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for the left censoring issue of not observing HIV infection time, whereas not accounting for

this error could bias the estimated parameters towards the null (Prentice, 1982). As Pawitan

and Self (1993) note, this method accounts for left censoring but not for the right censoring of

unobserved development of AIDS. As such, Pawitan and Self developed a method to estimate

jointly the time to HIV infection, time to AIDS development, and T4+ count where the former

two components of the model were estimated with parametric survival models and the latter with

a growth curve similar to De Gruttola, et al (1991). De Gruttola and Tu (1994) later improved

the growth curve model from the original paper where observed times to AIDS development

and T4+ count were jointly estimated assuming a multivariate normal distribution.

Wulfsohn and Tsiatis (1997) developed a joint method similar to the two aforementioned

methods with less restrictive assumptions for both the survival and random effects models. The

goals for the development of their method, however, stemmed from correcting drawbacks from

a two-stage approach to modeling T4+ counts and time to AIDS development. The two-stage

method estimated a growth curve with random effects for T4+ count and used the estimates from

that model as covariates for a Cox model estimating the time to AIDS (Tsiatis, De Gruttola, &

Wulfsohn, 1995). This approach makes strict assumptions that the random effects are normally

distributed at each event time, which is unlikely. Drug abuse, for example, is highly associated

with AIDS development through needle sharing (Des Jarlais & Friedman, 1988). A covariate

representing drug use would have a large negative slope in its prediction of time to AIDS

development leading to early development. The removal of these individuals from later random

effects estimates would likely skew the distribution to a nonnormal one. A second concern stems

from the lack of survival data in the growth curve model. While the survival model accounts

for the covariates estimated by the growth curve, the converse is not true for this two-step

approach. This setup treats survival data as secondary while making its usage less efficient

in the model estimation. Faucett and Thomas (1996) proposed a Markov chain Monte Carlo

technique with Gibbs sampling as a Bayesian alternative to jointly measuring T4+ count and

time to AIDS development. This method was intended to improve on the two-stage method,
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but it had the added benefit of an ability to treat covariate tracking and disease risk modeling

with simultaneous interest. This latter benefit of the MCM model contrasted with the major

limitation of the Pawitan and Self (1993) method, which conditioned time-to-AIDS on T4+

count thereby inhibiting the ability to make inference about T4+ count based on the time to

development of AIDS.

The origin of joint models highlight two details of interest: the models were developed

for subject-specific purposes and for accounting a variety of deficits endemic to the standard

models. These joint models advanced the understanding of HIV progression into AIDS by

improving the modeling of disease progression and of natural serologic history such as T4+

(Foulkes, 1998). Further, they were used to explore the efficacy of varying doses of ZDV against

AIDS development and of aerosolized pentamidine against Pneumocystis carinii pneumonia

common among those infected with HIV (Foulkes, 1998). Therefore, their utility for analyzing

disease prognosis in tandem with biomarker trajectory emerges prima facie. Additionally, the

focus on appropriately modeling the data, rather than attempting to transform data to fit within

the standard statistical models, helped establish the theoretical framework of joint models. This

foundation is apparent based on the history of joint models as improvements of two-stage and

measurement error models. The subsequent question is how can these joint models be adapted

for other types of data?

1.2 The Modern Joint Model for Longitudinal and Time-to-Event Data

While joint models encompass a wide array of models where distinct likelihood functions

are simultaneously maximized, this manuscript focuses on joint models that include longitudinal

and time-to-event data. These models have been applied to settings where participants are

followed over time while tracking the repeated measurements of a biomarker to a disease as

well as the time to an event related to that disease (e.g., onset of disease, death from disease,

intervention, etc.) (Papageorgiou et al., 2019). For the sake of simplicity, the biomarker and

time-to-event are two univariate dependent variables. However, extensions to multivariate
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longitudinal outcomes (Lin et al., 2002a; Brown et al., 2005; Chi & Ibrahim, 2006; Rizopoulos

& Ghosh, 2011) and to recurrent or competing events (Elashoff et al., 2008; Williamson et

al., 2008; Hu et al., 2009) have been developed for joint models. Joint models offer several

advantages over standard methods of analyzing a time-to-event outcome with a time-varying

covariate (i.e., using the dynamic biomarker as an independent variable in the survival model).

In a Cox model with a time-varying covariate, the value of this covariate is assumed constant

in between measurements. This assumption leads the Cox model to produce biased estimates

and standard errors (Prentice, 1982) as well as inefficient estimates (Ibrahim, Chu, & Chen,

2010). These issues derive from the endogeneity of the dynamic biomarker, where the value

changes over time based on a set of other independent variables that vary randomly between

participants. Joint models provide another advantage over simple survival models because of

their ability to make inference on the joint distribution of the longitudinal outcome and the

censoring/missingness of the time-to-event outcome (Rizopoulos, 2012). The probability of a

participant’s dropout from a study may depend on the level of the biomarker prior to dropout.

Therefore, the censoring of the event is informative and cannot be ignored. Joint models are

required when the study’s interest is understanding how the repeated biomarker measurement

and time-to-event are linked (Proust-Lima et al., 2014). Finally, joint models provide a superior

framework for prediction compared to the standard model due to the presence of dynamic

components within the joint model (Proust-Lima et al., 2014; Król et al., 2017).

The joint model comprises three primary components: (i) a model for the time-to-event

outcome, (ii) a model for the biomarker trajectory, and (iii) a method for linking the two

component structures. Component (i) is typically modeled as a survival model, with the

literature holding particular interest in either parametric models such as Weibull or exponential

survival models (Ibrahim, Chu, & Chen, 2010) or in a proportional hazards model such as the

Cox proportional hazards model (Proust-Lima et al., 2014). Component (ii) primarily uses

a generalized linear mixed-effects model–more specifically a linear mixed-effects model–to

model the biomarker trajectory. The method for component (iii) has produced a fork in the
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Figure 1.1.1 Diagram of a Joint Model

current literature producing two general ways of approaching this linking mechanism. Prior to

delineating these details, however, first consider the model shown in Figure 1.1.1 that illustrates

the causal path underlying the joint model.

Much of the literature describes the longitudinal outcome as a biomarker (Proust-Lima

et al., 2014; Papageorgiou et al., 2019). This description, while useful shorthand, may be

imprecise as various types of longitudinal outcomes may be modeled in a joint model such

as quality-of-life scores or health outcomes (Ibrahim, Chu, & Chen, 2010) or psychometric

scores (Xu and Zeger, 2001; Proust-Lima et al., 2017). Pawitan and Self (1993), Wulfsohn and

Tsiatis (1997), and Faucett and Thomas (1996) all describe joint models where the observed

serologic biomarker represents an unobserved health status. That is, T4+ count reflects the

infection prognosis of HIV. Xu and Zeger (2001) make this point more explicit by noting

how joint models of this type are latent variable models that estimate Ti, Yi given independent

variables Xi as [T, Y |X] =
∫

[T, Y |η,X]d[η|x]. The estimates of the time-to-event and the
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longitudinal outcome are determined through the change in some unobserved variable, η. The

goal of the studies described in §1.1 was not to estimate how T4+ count affects time to AIDS

development, but rather to estimate how HIV infection status affects time to AIDS development

where this status is indirectly observed through T4+ count. Any number of serologic or

immunologic biomarkers could have been used as the longitudinal outcome as long as that

biomarker appropriately represented the latent variable of HIV infection status. The manner in

which component (iii) is determined in a joint model largely dictates which of the prongs from

the aforementioned fork a researcher takes in modeling T and Y .

Xu and Zeger (2001) elaborate on the formulation of the joint estimation of T, Y as

[T, Y |X] =
∫

[T, Y |η,X][η,X]dη =
∫

[T |η,X][Y |η][η|X]dη. This equation essentially restates

the information provided in Figure 1.1.1. From the equation and diagram, three assumptions for

this latent variable method of joint modeling appear:

(a) Given knowledge about η, the latent variable, T is independent from Y ,

(b) X affects T either directly or indirectly through η,

(c) X only affects Y through the latent variable η.

These assumptions highlight the importance of how η is treated in the joint model. This latent

variable either directly wholly or partially determines the two outcomes, T and Y . Two popular

methods for the treatment of η is the Shared Random Effects Model and the Joint Latent Class

Mixed Model.

1.3 The Shared Random Effects Model

The Shared Random Effects Model (SRM) treats η through the use of a common random

effect between the longitudinal model and time-to-event model where the random effect from the

former is incorporated as a covariate in the latter. The longitudinal outcome, Yi(t), is assumed

to be the true latent variable ηi(t) plus some error εi(t) or Yi(t) = ηi(t) + εi(t). In practice, this

equation is often modeled using a linear mixed-effects model with ηi(t) = b0i + b1i(t) + βXi
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where b0i, b1i are multivariate normal random effects and β is the fixed effect (Ibrahim, Chu,

& Chen, 2010). Note that additional fixed and random effects may be added to this model.

The time-to-event model in practice is often modeled with a parametric survival model such as

the Weibull distribution, and the hazard function is estimated h(t) = h0(t) exp(γηi(t) + αXi)

where h0(t) is the baseline hazard function, γ is the effect of the longitudinal model on the

time-to-event, and α is the effect of the covariates on the time-to-event (Ibrahim, Chu, & Chen,

2010). Using the language of structural equation modeling (Bollen, 1989), α is the direct

effect of the covariates on the time-to-event, β is the indirect effect of the covariates on the

time-to-event, and γβ + α is the total effect. If γ = 0, then there is no association between

the longitudinal and survival models, and a joint model does not improve the estimation of the

time-to-event compared to a survival model alone (Ibrahim, Chu, & Chen, 2010). The function

of the random effects from the longitudinal model can take many forms in the survival model

such as individual deviation from the expected longitudinal trajectory, the instantaneous rate of

the trajectory at given time points (i.e., the derivative of the trajectory), or some combination of

functions (Proust-Lima et al., 2014).

The SRM is an appropriately popular joint model due to the simplicity of its inference.

The parameters are linear and separable in their estimation, and the effects of each outcome

on one another can be determined through a composition of their respective parameters. The

estimates of the parameters are more efficient and less biased than survival models with time-

varying covariates (Ibrahim, Chu, & Chen, 2010). Further, joint models typically lead to smaller

standard errors. These properties have implications for study design, where a study using

a joint model can require smaller sample sizes for equivalent power to a study using only a

longitudinal or survival model. Proust-Lima et al. (2014) note that SRMs are suitable joint

models when the researcher wants to test specific assumptions regarding characteristics of the

longitudinal trajectory on the time-to-event. That is, SRMs work well under circumstances

when the relationship between Y and T are either well-understood or the hypothesis test for one

outcome conditioned on another is specifically defined.
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The SRM has received extensive attention in the literature due to these aforementioned

properties. Ibrahim, Chu, & Chen (2010) detail a SRM of a cancer treatment trial that jointly

estimated the Functional Assessment of Cancer Therapy–Breast Cancer (FACT-B) quality of

life scale (Brady et al., 1997) and overall survival time. The treatment compared doxorubicin,

paclitaxel, and a combination of the two jointly on the FACT-B quality of life score, where a

higher score indicated greater quality of life, and the total survival time after the beginning of

treatment administration. The SRM estimated the overall treatment hazard ratio of 0.76 whereas

the hazard ratios for a Cox model without the trajectory estimate and a two-stage model were 0.78

and 0.77, respectively. These results corroborated with Prentice (1982) that two-stage models

attenuate treatment effect sizes. Further, these results indicated that a joint model provided

a less biased estimate of the treatment effect compared with the simple Cox model. Long &

Mills (2018) used a SRM to jointly model a multivariate longitudinal outcome comprising

cytosine-adenine-guanine (CAG) trinucleotide mutation in the HTT gene of chromosome 2,

a total motor score (TMS), and a symbol digit modalities test score (SDMT) along with the

time-to-Huntington’s Disease onset. These models were used to estimate individual-specific

predictions of time-to-Huntington’s Disease probabilities. This model was compared across

four different studies. The authors found that the SRM had better predictive ability and external

validity than traditional Cox models for estimating the time-to-event. Similar results were found

for TMS score prediction across the four studies and mixed results were found among the SDMT

results.

The implicit assumption of η within a SRM is that it is homogeneous within the sample.

That is, the latent variable follows a single distribution of which all participants deviate from a

single mean. This assumption highlights a limitation with the SRM. As noted by Ibrahim, Chu,

& Chen (2010), a common trajectory structure is assumed for treatment groups. For example, if

one group has an effect that is linear in time whereas another group has an effect that is quadratic

in time, the SRM would not suitably model the data. More succinctly, heterogeneity in η poses

problems for the traditional SRM.
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1.4 The Joint Latent Class Mixed Model

While receiving less attention than the SRM in the current literature (Proust-Lima et al.,

2014), the Joint Latent Class Mixed Model (JLCMM) provides an alternative method of joint

modeling that is able to handle some of the limitations imposed on the SRM. The popularity

of the JLCMM derives from its ability to handle heterogeneity in η, which is accomplished by

estimating k latent classes that compose a mixture distribution for η. The methods for estimating

the longitudinal and time-to-event outcomes are the same as those used in a SRM, excepting the

estimation of a parameter that relates these two outcomes to one another, and the determination

of latent classes is estimated with multinomial logistic regression. Further, the longitudinal and

survival models in a JLCMM may include class-specific estimates. Details about the JLCMM

are provided in chapter 3.

The JLCMM distinguishes itself from the SRM in several ways. The primary distinction

is how the relationship between the longitudinal outcome Y and time-to-event outcome T is

modeled. The SRM uses random effects to model within-subjects covariance as well as the

dependence between Y and T whereas the JLCMM uses random effects only to model within-

subjects covariance. The JLCMM accounts for dependence between Y and T by assuming that

determination of the joint outcome [Y, T ] depends on the membership of a latent class. That

is, once latent class k is known, [Y, T ] can be estimated. This distinction between the SRM

and JLCMM illustrates another distinction: the SRM requires variance in the population to be

homogeneous (i.e., from a single distribution) whereas the JLCMM assumes that the variance

is heterogeneous (i.e., from a mixture of several distributions). The homogeneity of the SRM,

while a simpler assumption, is also stricter. The trajectory of the longitudinal outcome and its

functional form in the time-to-event model are typically chosen a priori (Proust-Lima et al.,

2014), and such a decision affects the parameter estimation and model fit. Further, the functional

form assumptions can be too strict when the goal is predictive ability. The JLCMM instead has

less strict assumptions with its latent class characterization of η by not assuming any functional

dependence between Y and T . This characterization provides more flexibility by allowing
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class-specific estimates of parameters from both the longitudinal and survival models. However,

this method also has a cost of increasing the total number of parameters to be estimated in the

joint model (Proust-Lima et al., 2014). One final, technical difference between the two methods

relates to the numerical estimation of the log-likelihood function. The SRM requires numerical

integration over the distribution of random effects. The JLCMM replaces numerical integration

with summing over the latent classes. This latter operation is less computationally intensive

than the former (Proust-Lima et al., 2014).

One of the earliest uses of the JLCMM was estimating the utility of prostate-specific antigen

(PSA) as a biomarker for onset of prostate cancer (Lin et al., 2002b). Lin et al. (2002b)

were motivated by early detection of prostate cancer as its survival probability increases the

earlier prostate cancer is detected. The evaluation of blood PSA levels had been a promising

diagnostic tool for prostate cancer due to prostate cancer having few early stage symptoms

(Catalona, Smith, & Ornstein, 1997). The decision to use a JLCMM rather than a SRM for this

hypothesis stems from the heterogeneous expression of normal blood PSA and its divergent

outcomes. While 3 - 4 nanograms per milliliter of blood PSA is normal, approximately 20%

of men diagnosed with prostate cancer had PSA levels within that range (Catalona, Smith, &

Ornstein, 1997). Further, high blood PSA levels can indicate other more likely diseases such as

benign prostatic hyperplasia or prostatitis (Lin et al., 2002b). Prostate cancer also has different

disease patterns where its onset either follows a slow progression or a much more aggressive

one (Morell et al., 1995), perhaps due to genetic factors (Padilla-Nash et al., 2001). Unlike the

T4+ counts from the HIV-to-AIDS analyses from §1.1, blood PSA levels have heterogeneous

η where the joint outcomes [Y, T ] follow different patterns based on unobserved factors. By

using the JLCMM, Lin et al. (2002b) estimated four latent classes corresponding to those with

very low levels of PSA, low levels of PSA, medium levels of PSA, and high levels of PSA in

their blood. Within these classes, age was positively associated with prostate cancer onset and

selenium levels were negatively associated with prostate cancer onset. As a comparison, Lin

et al. calculated four separate longitudinal and survival trajectories based on baseline blood
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PSA levels that paralleled the four latent classes. The latent classes tracked these four pairs of

observed curves very well, but the JLCMM discriminated among these curves better than the

empirical model (Lin et al., 2002b). That is, the JLCMM determined the four classes without

prior assumptions and better modeled the data than a model that would make such assumptions.

Garre et al. (2008) jointly modeled reciprocal serum creatinine concentration (RC) and

time-to-kidney graft failure using a JLCMM. The primary scientific distinction between this

model and the one developed by Lin et al. (2002b) was that the number of latent classes was

known a priori. RC patterns typically follow two patterns: a stable pattern typically precedes no

observed graft failure and a sudden drop in RC values typically precedes observed graft failure.

However, this timing in RC drop is not easily predictable, hence the utility in using a JLCMM

to help predict RC trajectory and renal graft failure time (Garre et al., 2008). Given a set of risk

factors as class-specific covariates, the JLCMM predicted failure within each 2-year interval of

the study much better than a SRM that assumed linear random effects (Garre et al., 2008). In

certain cases where some prior knowledge of the population is known, a JLCMM may still be

preferable for joint modeling than a SRM.

Proust-Lima et al. (2014) describe two advantages for a JLCMM over a SRM. First, a

JLCMM should be used when developing a predictive joint model. Additionally, a JLCMM

should be used when investigating the link between a longitudinal marker and time-to-event

without specific assumptions, particularly in cases where η is heterogeneous. These scenarios

have largely been confirmed in the biomedical literature, particularly with disease prognosis.

However, heterogeneity occurs often in other scientific fields where such joint models may

prove useful. Psychology and neuroscience are both rich in longitudinal and time series

data where the participants being tracked over time likely follow heterogeneous patterns of

η. Therefore, JLCMMs have substantial promise in the modeling of these data and testing of

complex hypotheses.
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1.5 Heterogeneity in Psychology

The heterogeneity of variance in psychology, and by extension in neuroscience and neu-

roimaging, has long been recognized as inherent to the data and in need of careful statistical

attention (Bryk & Raudenbush, 1988; Grissom, 2000; Lubke & Muthén, 2005; Masyn, 2013).

No single source causes this heterogeneity, and it can derive from design factors within the study

protocol (Hanselman et al., 2017), unidentified moderators or third variables (Aguinis & Pierce,

1998), or a genuine characteristic of the study population, for example. One common source of

heterogeneity in the behavioral assessment of those with neurogenetic disorders is comorbidity.

For example, those with Williams syndrome have increased risk for anxiety (Dykens, 2003),

and people with Down syndrome have an elevated likelihood of being diagnosed with autism

spectrum disorder (Oxelgren et al., 2017). Many researchers of neurodevelopmental disorders

highlight the necessities and advantages of examining the heterogeneity within their study

populations (Grzadzinski, Huerta, & Lord, 2013) with particular focus on latent profile analysis

(Fider et al., 2022; Prince & Fidler 2021), latent class analysis (Adjacic-Gross et al., 2018),

and finite mixture modeling (Masyn, 2013). Fidler et al. (2022) highlight the need to use

“person-centered and data-driven approach[es]” in order to identify latent profiles of children

with Down syndrome without the use of a priori knowledge.

The data-driven motivation applies largely to mixture modeling and latent class determina-

tion. By design, latent classes or profiles are constructed with few if any assumptions (Masyn,

2013). This construction is apparent in a JLCMM when estimating the latent class membership

of each participant. The survival model of a JLCMM can be semiparametric, which aligns

with having few assumptions about the data’s distribution. However, even semiparametric

models–such as the Cox proportional hazards model–have some assumptions that conflict with

a latent class model. For example, the proportional hazards assumption (more details in Chapter

2) requires the hazard function to be proportionate among groups, which is unlikely given the

nature of heterogeneity. A data-driven/adaptive method would likely better suit the survival

model of a JLCMM.
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1.6 An Aside on Adaptive Methods

From the 1950s to the 1990s, the U.S. federal government provided relatively vast amounts

of funding for survey research in order to monitor the effects of infrastructural and systemic

investsments that it made within the U.S. population (Groves, 2011). Morgan and Sonquist

(1963) recognized several analytical issues that arose from the sudden availability of “rich data

from cross section survey[s]”. These issues encompassed various concepts well-known in the

modern literature, including concerns about the vast amount of information for each participant

(an Ur form of big data, perhaps), the representation of continuous variables as categorical,

the inherent measurement error in all variables, the sophisticated sampling structures, the

collinearity among many of the surveyed variables, and the temporal absence of cross-sectional

data. Without providing a comprehensive delineation of how many of these concerns have been

addressed since the inception of this paper, the measurement and collinearity issues are typically

handled with latent variable methods such as structural equation modeling (Bollen, 1989)

and temporality has been addressed with longitudinal data analysis (Diggle, Liang, & Zeger,

1994). Morgan and Sonquist (1963) in their paper focused on one particular issue which either

predicates or relates to the others: a problem of “interaction effects”. Specifically, their concern

was that in the social sciences two effects are typically not additive, but rather have a stronger

effect in tandem than as independent components. Statisticians often use interaction terms in

their regression models to account for this. Many social scientists have particular interest in

these effects with respect to concepts of mediation and moderation (Baron & Kenny, 1986).

Further, Morgan and Sonquist note that these interactions may be inherent to the theoretical

construct itself. A family life cycle, for example, can be considered an interaction between age,

marital status, presence, and the age of children. That is, the family cycle is a latent variable

expressed by these observations provided in survey data.

Morgan and Sonquist do not use the term “latent variable” to describe this construct, but it

largely fits their description of the theoretical construct. To overcome many of the shortcomings

of ordinary least squares regression for analyzing these types of data, they established a method

13



to identify subgroups that compose a latent variable that existed in the data. As they noted,

“Perhaps the most important thing to keep in mind about survey data in the social sciences is that

the theoretical constructs in most theory are not identical with the factors we can measure in the

survey” (Morgan & Sonquist, 1963). This method was an adaptive one with ‘adaptive’ meaning

adapting with the data or data-driven. While using the whole of the data of interest, their analysis

would split the data using a dichotomous variable into two groups that explained the largest sum

of squares. From the two groups, two more groups would be produced similarly. This method

continued until any further subdivision failed to explain an additional 1% or more of the residual

sum of squares. The branching paths from these variables would compose the subgroups of

interest, aiding in understanding the relationship between a dependent variable and several

interactions of independent variables. Morgan and Sonquist’s method was generalized into

Classification and Regression Trees (CART) by Breiman, Friedman, Olshen, and Stone (1984).

CART uses an adaptive method to make decision rules that split independent variables X into

intervals that best predict a dependent variable Y . CART uses different objective functions

from Morgan and Sonquist’s method, such as entropy or the Gini index, to evaluate the fit of

the decision rule. However, the goal is ultimately the same: produce a set of homogeneous

subgroups to explain the heterogeneity in the dependent variable.

CART influenced several other adaptive methods including additive modeling (Friedman

& Silverman, 1989), multivariate adaptive regression splines (Friedman, 1991), and hazard

regression (Kooperberg, Stone, & Truong, 1995a). Chapters 2 & 3 will contain more details

about hazard regression. To summarize, both multivariate adaptive regression splines and hazard

regression are regression methods that make minimal assumptions between the dependent and

independent variables. In a stepwise fashion, the model adds knots along a range of values for

the independent variables and adaptively chooses knot location based on various objectives such

as minimizing the residual sum of squares. The final model is chosen based on maximum fit

to the data. The important detail from these methods is that they are estimated with respect
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to how the data are distributed rather than by assuming the data follow a specific probability

distribution.

The JLCMM estimates several homogeneous subgroups from a heterogeneous sample. As

such, it can be difficult to make assumptions about what latent classes exist and how their [Y, T ]

are distributed. Therefore, any method that can construct a component model of the JLCMM

solely from data-driven methods has advantages to methods that require functional or parametric

assumptions. Latent classes will typically have functionally different joint trajectories of [Y, T ],

and these different trajectories motivate the estimation of class-specific parameters using data-

driven methods. The goal of this manuscript is to illustrate the use of such an adaptive method,

hazard regression, to estimate the hazard function of a JLCMM. This hazard function will be

used to estimate T in the JLCMM. Further, the class-specific hazard functions will be estimated

adaptively helping to account for heterogeneity within the data. This method will have utility in

psychology and neuroscience research, which is rich with such heterogeneity.

15



CHAPTER 2: INTRODUCTION TO METHODS AND CONCEPTS

2.1 Overview

The following chapter provides introductions to several methods and concepts that compose

the two primary topics of this manuscript: joint latent class mixed models (JLCMMs) and hazard

regression (HARE). The following methods and concepts are not described exhaustively. Rather,

each section provides a sufficient summary to allow for understanding how each topic relates to

JLCMMs, HARE, or the analyses completed to justify the method proposed in this manuscript.

This chapter is structured in the following order: summaries of statistical models (§2.2 - §2.4)

are followed by summaries of adaptive methods (§2.5 - §2.8) which are followed by summaries

of the substantive topics discussed in the manuscript (§2.9 - §2.10). Each section is mostly

self-contained with clear references made to other sections when necessary. This chapter is a

reference for other chapters. Therefore, the reader may choose only to read sections of interest

or of necessity. Sections not of interest may be skipped without hindering the comprehension of

the rest of the manuscript.

2.2 Latent Class Analysis

Conditional Probability and Bayes’ Theorem

It is often useful to calculate the probability of event X while assuming some other event

Y . This probability, P (X|Y ), is denoted as the conditional probability of X given Y . Formally

this probability is defined as

P (X|Y ) =
P (X ∩ Y )

P (Y )
(2.1)
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where ∩ is the intersection symbol, effectively meaning “and”. Finding the probability of

X while assuming Y is described as finding the probability of X and Y concurrently while

considering only cases where Y is true. Unless X and Y are independent, then knowing

something about event Y improves the determination of the probability of event X . Bayes’

Theorem uses conditional probability centrally, often considering the calculated probability as

a “posterior probability” based on updating a prior belief with new evidence. Formally Bayes’

Theorem is defined as

P (Y |X) =
P (Y )P (X|Y )

P (X)
. (2.2)

Bayes’ Theorem is used often in evaluating diagnostic tests. For example, if X is the event of

a positive test result and Y is the event of having a disease, then the probability of having a

disease given a positive test result is then seen as the probability of having a positive test given

having said disease (P (X|Y )) times the probability of having said disease at all (P (Y )) among

all cases of having a positive test result (P (X)). The conditional probability of P (Y |X) is an

improvement over the simple probability of having the disease P (Y ) since the positive test

gives more information about disease status.

Estimating Latent Classes

Given a statistical model, assume that some parameters within the model vary between

unobserved groups. The identification of these unobserved groups based on the values of these

parameters forms the basis of latent class analysis. Let C represent one of these unobserved

groups–a latent class–and let X represent an observed variable in the data. Further, let there

be k = 1, . . . , K latent classes and all participants in the study i = 1, . . . , n belong to a latent

class. For example, ci = 3 implies that person i belongs to class 3. The goal of latent class

analysis (LCA) is to determine ci for all i given the responses to each variable in X . To illustrate

this point, consider Table 2.1.1 which displays simulated data. X1, X2, X3 are all dichotomous

variables taking values of 0 or 1. These variables can be seen as survey responses of “No” or

“Yes” corresponding to 0 and 1, respectively.
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Table 2.2.1 Fictional LCA Data

X1 X2 X3 N P (C = 1|X = x) P (C = 2|X = x) P (C = 3|X = x)

0 0 0 500 0.995 0.003 0.002
0 0 1 77 0.821 0.178 0.001
0 1 0 212 0.876 0.113 0.011
0 1 1 16 0.432 0.157 0.411
1 0 0 107 0.710 0.187 0.103
1 0 1 439 0.357 0.120 0.523
1 1 0 62 0.106 0.811 0.083
1 1 1 403 0.001 0.001 0.998

Different response patterns correspond to different latent classifications. For example, a

response of all 0s implies a 99.5% probability of being a member of latent class 1. Endorsing 0

only for X2 implies a probability of 12% of being a member of latent class 2, and so forth. The

law of total probability indicates that over m partitions,

P (X) =
∑
m

P (X ∩ Ym)

=
∑
m

P (X|Ym)P (Ym)

where ∩ is the intersection between event spaces. In this example, the probability of a given

response pattern for X is a weighted sum of the probability of being in latent class C times the

conditional probability of responding to the X values in a specific way given being a member

of latent class C. That is,

P (X = x) =
K∑
k=1

P (C = k)P (X = x|C = k) (2.3)

In equation (2.3), the probability P (C = k) is simply the proportion of individuals who belong

to latent class k. One of LCA’s assumptions is that responses to X are independent within each
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latent class. In other words,

P (X = x|C = k) =
L∏
l=1

P (Xl = xl|C = k). (2.4)

Combining equations (2.3) and (2.4) implies

P (X = x) =
K∑
k=1

P (C = k)
L∏
l=1

P (Xl = xl|C = k). (2.5)

Table 2.2.2 provides probabilities for responses to each item conditioned on the latent class.

These values have been calculated directly from Table 2.2.1. For example, to find the probability

(or proportion) of being a member of latent class 1:

P (Member of latent class 1) =

P (Member of latent class 1 & responded X1 = 0, X2 = 0, X3 = 0) OR

P (Member of latent class 1 & responded X1 = 0, X2 = 0, X3 = 1) OR

. . . OR P (Member of latent class 1 & responded X1 = 1, X2 = 1, X3 = 1)

= P (C = 1) =

X1,X2,X3∑
P (C = 1|X = x)× P (X = x)

=
1

1816
(500× 0.995 + 77× 0.821 + 212× 0.876

+ 16× 0.432 + 107× 0.710

+ 439× 0.357 + 62× 0.106 + 403× 0.001)

= 0.55.
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Further the probability of responding 0 to X2 given someone is a member of latent class 3

(C = 3) is:

P (X2 = 0|C = 3) =
P (X2 = 0 ∩ C = 3)

P (C = 3)

=
1

0.36

(500× 0.002 + 77× 0.001 + 107× 0.103 + 439× 0.523)

1816

= 0.3697 ≈ 0.37

Table 2.2.2 Response Probabilties of Fictional LCA Data

C = 1 C = 2 C = 3

P (C = k) 0.55 0.09 0.36
P (X1 = 0|C = k) 0.76 0.25 0.02
P (X2 = 0|C = k) 0.80 0.53 0.37
P (X3 = 0|C = k) 0.77 0.58 0.03

If the probabilities of response profiles conditioned on latent classes is known (i.e. P (X =

x|C = k)), then the probability of latent class membership can be determined using Bayes’

Theorem (2.2).

A Loglinear Formulation of LCA

Haberman (1979) and Vermunt & Magidson (2004) illustrated that a latent class model

could be specified as a log-linear model. That is,

lnP (C = k,X = x) = ξ + ξCk +
L∑
l=1

ξXlxl +
L∑
l=1

ξC,Xlk,xl
(2.6)

where the ξ are the ANOVA terms of the model for the main effect, latent class effect, response

profile effect, and interaction between the two. The effects including the observed response

profiles are summed over the levels of the responses and their sums total to 0 (i.e.
∑L

l=1 ξ
Xl
xl

=∑L
l=1 ξ

C,Xl
k,xl

= 0) for purposes of identifiability.
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This formulation becomes important for a few reasons. Primarily, the log-odds of one

response profile compared to another is additive using this formulation. For a two-by-two

contingency table, where µij is the count in cell with row i and column j, the log-odds is

calculated by

ln(θ) = ln
µ11µ22

µ12µ21

= lnµ11 + lnµ22 − lnµ12 − lnµ21

= (ξ + ξA1 + ξB1 + ξAB11 ) + (ξ + ξA2 + ξB2 + ξAB22 )

− (ξ + ξA1 + ξB2 + ξAB12 )− (ξ + ξA2 + ξB1 + ξAB21 )

= (ξ + ξ − ξ − ξ) + (ξA1 − ξA1 + ξA2 − ξA2 )

+ (ξB1 − ξB1 + ξB2 − ξB2 ) + (ξAB11 + ξAB22 − ξAB12 − ξAB21 )

= 0 + 0 + 0 + ξAB11 + ξAB22 − ξAB12 − ξAB21

= ξAB11 + ξAB22 − ξAB12 − ξAB21 .

Therefore, a change in the probability of latent class membership can be simply estimated from

a change in the response profile. Further, this formulation can be constructed into a multinomial

logit model where latent class membership can be estimated from a set of Z factors, where Z can

be either a response profile for a set of items, covariates of interest, or both. More specifically,

the latent class membership probability is

P (C = k|Z) =
exp (ξ0k + ZT ξ1k)∑K
g=1 exp (ξ0g + ZT ξ1g)

. (2.7)

Each latent class k has its own estimates, an intercept ξ0k and set of coefficients ξ1k for the

design matrix Z. Equation (2.7) is ultimately used to estimate latent class membership in the

JLCMM.
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Estimation of Latent Classes

One implicit assumption made throughout §2.2 was that latent class membership was known

a priori to data collection, thus allowing for estimating its association with response profiles. In

practice, this is not the case. Rather, latent classes are undetermined or missing, and the goal of

a LCA is to estimate how many latent classes there are from the data. Therefore, an analytic

solution to this question is unfeasible, and a numerical solution is required. Many numerical

methods can be used for LCA, and the primary algorithm used throughout this manuscript is the

Levenberg-Marquardt algorithm (§2.8). However, the EM algorithm will be discussed here for

simplicity.

Assume a normal mixture model composed of multiple normal distributions, Nj ∼ (µj, σ
2
j )

for j = 1, . . . , J total clusters of normal distributions. Suppose that X = (X1, . . . , Xn) are the

data from the sample. Assume X are independently and identically distributed random variables

with a probability density function following

fx(x) =
J∑
j=1

pj
1√
2πσj

e−(x−µj)2/2σ2
j

The familiar part is the normal probability density function with parameters µj, σ2
j . The “new”

part is the probability parameter pj , where pj ≥ 0 for all j clusters, and
∑J

j pj = 1. The goal is

to determine the total number of clusters/latent classes J by estimating pj, µj, σ2
j .

The EM algorithm works by assuming some data are missing from the sample. This method

is useful for determining the number of latent classes because the latent class is treated as

missing data, which makes sense considering it is unobserved. The method comprises two

steps: (i) a step that find the expected value of the log-likelihood with respect to the missing

data (E-step), (ii) a step that maximizes this expectation over the current parameter estimates

(M-step). After each M-step, the most recent parameter estimates are put into the E-step to start

the process again. This process works iteratively until the old estimate and new estimate are

negligibly different.
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For this problem, let C represent the variable corresponding to the latent class. Then

P (C = j) = pj and a member m belonging to class j will be noted as coming from a normal

distribution with mean µj and variance σ2
j . Let (C1, . . . , CJ) := C. Then the conditional

probability density of the data X given membership in class C is

fx|C(xi|ci = j, pj, µj, σ
2
j ) =

1√
2πσj

e−(x−µj)2/2σ2
j

with given likelihood function

L(pj, µj, σ
2
j ,X,C) =

n∏
i=1

pci
1√

2πσci
e−(x−µci )

2/2σ2
ci .

Let θ = (p, µ, σ2) represent the set of parameters in the model that need to be estimated by

the EM algorithm. Further, let θ(k) be the current estimates and θ(k+1) be the new estimates. In

practice, the first estimate of θ(k) is guessed, where a good guess can help with convergence.

Then the EM algorithm for this problem proceeds as such:

E-Step: Define Q(θ(k+1); θ(k)) := E[`(θ;C,X)|X, θ(k)]. That is, Q is the function

that finds the expected value of the log-likelihood function given the data

and the current estimates of the parameters. Since Q is an expectation, its

calculation is straightfoward.

Q(θ(k+1); θ(k)) =
n∑
i=1

J∑
j=1

P (Ci = j|xi, θ(k))`(fx|C(xi|ci = j, θ(k))

× P (Ci = j|θ(k))).
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Using Bayes’ Theorem and algebra, P (Ci = j|xi, θ(k)) can be calculated (the

other parts of Q(.) are found directly from the initial parameter guess):

P (Ci = j|xi, θ(k)) =
P (Ci = j ∩Xi = xi|θ(k))

P (Xi = xi|θ(k))

=
fx|C(xi|ci = j, θ(k))P (Ci = j|θ(k))∑J
l=1 fx|C(xi|ci = l, θ(k))P (Ci = l|θ(k))

,

which can be computed similarly to how the fictional data from Table 2.2.1

was calculated.

M-Step: Maximize Q(θ(k+1), θ(k)) by solving the partial derivatives with respect to

each parameter and set them equal to 0.

µ
(k+1)
j =

∑n
i=1 xiP (Ci = j|xi, θ(k))∑n
i=1 P (Ci = j|xi, θ(k))

σ
(k+1)
j =

∑n
i=1(xi − µj)2P (Ci = j|xi, θ(k))∑n

i=1 P (Ci = j|xi, θ(k))

p
(k+1)
j =

1

n

n∑
i=1

P (Ci = j|xi, θ(k))

Set θ(k) = θ(k+1) and go through the E-step and M-step iteratively. A stopping rule,

such as the absolute difference |θ(k+1) − θ(k)| < ε, indicates when the algorithm

ends.

2.3 Linear Mixed Effects Models

The Model

It is common to extend the ordinary least squares (OLS) regression model to include

the estimation of “random effects” b in conjunction with the typical “fixed effects” β. The

mainstream distinctions of fixed and random effects are somewhat nebulous. Gelman (2005)

details five different definitions of these terms from various statistical literature, and they are
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only loosely related. Rather than try to provide a definition for each effect type, this section will

justify the utility of estimating a linear model composed of fixed and random effects. From this

justification some distinction between the two sets of estimates can be given.

Assume Y is a vector of random variables of interest for i = 1, . . . , N participants. Let yi

represent these variables for participant i, where each participant can have a different number of

variables, ni. For example, if Y represents IQ scores over four time periods, ni can be 0, 1, 2, 3,

or 4 observations. The linear mixed effects model (LMM) is estimated as:

Y = Xβ + Zb+ ε (2.8)

where X is a design matrix of variables for the fixed effects, Z is a design matrix of variables

for the random effects, β are the coefficients of the fixed effects, b are the coefficients of the

random effects, and ε is a vector of residuals. Variables in X and Z may overlap if desired. The

LMM can equivalently be represented as a participant-level model:

yi = Xiβ + Zibi + εi.

The novelty of this formulation is that it makes clear that not all participants are required to

have the same set of measurements for each row of yi.

The fixed and random effects are assumed to have a multivariate normal joint density

b
ε

 ∼ N (

0
0

 ,
G 0

0 R

σ2) (2.9)

where G and R are positive definite matrices and σ2 is a positive constant. Note that both the

random effects b and the residuals ε have mean 0. This specification is commonplace for ε in

OLS regression as the residuals “deviate” from the regression estimate for each participant.

The random effects b can be seen similarly. The individual estimates of a random effect are
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deviations from a centered normal distribution where the centering occurs on the fixed effect

estimate. Using the IQ example from above, if the average baseline level of IQ for the model is

100, then a random effect estimate of 0 indicates the participant has an IQ of 100 (plus ε). A

random effect estimate of 10 indicates the participant has an IQ of 110 (plus ε).

Estimation of the Model Parameters

To find the estimates of β and b, the log likelihood from the joint density (2.9) needs to be

maximized. Redefining ε as y −Xβ − Zb, the joint density of y, b is given by

(2πσ2)−
1
2
n− 1

2
q

(
det

[
G 0
0 R

])− 1
2

exp

{
− 1

2σ2

(
b

y −Xβ − Zb

)T [
G 0
0 R

]−1(
b

y −Xβ − Zb

)}
and the log-likelihood (ignoring the additive constant) is

`(β, σ, b) =
1

2
|R|+ 1

2
|G|+ (y −Xβ − Zb)TR−1(y −Xβ − Zb) + bTG−1b.

As per usual, take the partial derivatives of the log-likelihood function with respect to β and b,

set them equal to 0, and solve:

∂`

∂β
= XTR−1(y −Xβ − Zb)

∂`

∂b
= ZTR−1(y −Xβ − Zb)−G−1b

XTR−1(y −Xβ − Zb) = 0

XTR−1Xβ +XTR−1Zb = XTR−1y (a)

ZTR−1(y −Xβ − Zb)−G−1b = 0

ZTR−1Xβ + ZTR−1Zb+G−1b = ZTR−1y

ZTR−1Xβ + (ZTR−1Z +G−1)b = ZTR−1y (b)

where (a) and (b) are known as the Henderson equations (Henderson, 1963):
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XTR−1X XTR−1Z

ZTR−1X (ZTR−1Z +G−1)


β̂
b̂

 =

XTR−1y

ZTR−1y

 . (2.10)

Notice that the solutions for β and b, respectively β̂ and b̂, contain a “mixture” of the

variance of b, σ2G, and the variance of ε, σ2R. This mixture is why these models are called

mixed models. There are two, separate sources of variance being incorporated into parameter

estimation. The variance of the random effects, σ2G, provides information of interest to the

estimation of Y. Further, b̂ is estimated using partial pooling according to G−1. This pooling of

the estimates for the random-effects variables follows from the assumption that b are sampled

from a normal distribution. Partial pooling shrinks the estimates of smaller groups, such as those

in the tails of a distribution, closer to the mean. Fixed-effects are estimated without any pooling.

The implication for the mixed-effects model when contrasted with the OLS regression model is

that estimates from a mixed-effects model place greater weight on data highly represented in

the sample whereas the estimates from an OLS regression model place equal weight on all data.

An Example of the Utility of LMMs

To demonstrate how this contrast affects estimates in practice, consider this example selected

and altered from Robinson (1991).

Example. Nine mice were used in an experiment assessing a pairwise visual discrimination

task. After several training sessions, mice were presented with two stimuli representing a

reward (S+) and nothing (S-) on a touch screen. Stimuli were randomly presented on either

the left or right side of the touch screen over 15 trials with 20 second inter-trial intervals. Each

mouse was given between five and seven sessions of 15 trials to learn the task. A successful

selection (S+) was rewarded with food whereas an unsuccessful selection (S-) was given a 5

second time-out signal accompanied by house light illumination. After mice had successfully

learned the task (deemed by ≥ 80% correct selections on two consecutive sessions), they were

placed in a reversal learning condition. This condition reversed such that the successful stimulus

was S- whereas the unsuccessful stimulus was S+. The average latency time to respond (in
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milliseconds) to each trial during the reversal learning condition was the primary outcome of

interest. Table 2.3.1 provides data on each mouse’s reaction time.

Table 2.3.1 Reaction Time Latency of 9 mice

Genetic Cohort Laboratory Mean Reaction Time (ms)

Syngap1 1 1100
Syngap1 2 1000
Shank2 3 1100
Shank2 2 1000
Shank2 2 1000
Dlgap2 4 1100
Dlgap2 4 1100
Dlgap2 2 1000
Dlgap2 2 1000

The researcher wanted to control for each breed’s laboratory as well as the genetic cohort.

She decided to use a mixed-effects model assuming R was the identity matrix (i.e., 1s in the

diagonal entries and 0s elsewhere to indicate standard normal, uncorrelated distributions) and G

was one-tenth that size (i.e. 0.1I). She treated laboratory as a random-effect and genetic cohort

as a fixed-effect. Note that the size of G indicates that she believes the variance of reaction

times between laboratories was smaller than between genetic cohorts. Then the parameters of

interest are

y =
(
1100, 1000, 1100, 1000, 1000, 1100, 1100, 1000, 1000

)T
β =

(
β̂syngap, β̂shank, β̂dlgap

)T
b =

(
b̂1, b̂2, b̂3, b̂4

)T
.

The design matrices for the fixed effects (genetic cohort) X and random effects (laboratory) Z

were then be set up as
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X =



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


, Z =



1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


.

Applying equations (2.10) results in

2 0 0 1 0 0 1
0 3 0 0 1 0 2
0 0 4 0 0 2 2
1 0 0 11 0 0 0
0 1 0 0 11 0 0
0 0 2 0 0 12 0
1 2 2 0 0 0 15





β̂syngap
β̂shank
β̂dlgap
b̂1

b̂2

b̂3

b̂4


=



2100
3100
4200
1100
1100
2200
5000


which has solution β̂ = (1056.39, 1042.76, 1054.58)T and b̂ = (3.96, 5.20, 7.57,−16.74)T .

From these results, the researcher may conclude that mutations to Shank2 is associated with

shorter reaction time latency. Further, on the scale of milliseconds, the different laboratories were

not much different from one another. If the random effects were treated as fixed effects in this

analysis and OLS regression were used (assume laboratory 4 is the referent group for estimabil-

ity), then the OLS estimates (XTX)−1XTy would be β̂ols = (1000, 1000, 1000, 100, 100, 100)T .

Note the clear discrepancy between the two models.

Longitudinal Data Analysis

LMMs are used commonly in longitudinal analyses because the underlying premise of

them is that some subset of the regression parameters, the random effects, vary randomly from

one individual to another. That is, individuals in the population are assumed to have randomly

varying subject-specific trajectories over time (Fitzmaurice, Laird, & Ware, 2011). In this

context, the variance components G and R can be seen as between-subject and within-subject

variance components, respectively. Since subjects have model- and subject-specific estimates
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determined through fixed- and random-effects, the LMM provides a useful tool for prediction.

That is, conditional on the fixed effects, a participant’s individual outcome trajectory can be

estimated from that individual’s random effects. Longitudinal analyses pose problems for the

more standard OLS regression because OLS regression fails to incorporate the appropriate

within-subject covariance. Given that repeated measures are typically correlated over time, this

results in OLS regression producing biased estimates of the variance (Liang & Zeger, 1993).

Therefore, preference should be given to the LMM in the context of longitudinal data analysis.

2.4 Survival Analysis

Censoring

Survival analysis estimates the time from a specified origin until the occurrence of an

event. This time is a nonnegative random variable (T ∈ [0,∞)). However, what separates

survival analysis from other statistical methods is the presence of censoring. Censoring occurs

when the event of interest and its time are not observed. In these cases, a censored observation

contains only partial information about the random variable of interest. Therefore, censored

observations need to be accounted in the analysis of the time-to-event. Censoring is defined

based on the interval of time not observed. In general, there is left censoring, interval censoring,

and right censoring. Left censoring is defined by the event of interest occurring prior to the

first observation (e.g., enrollment into a study). Interval censoring is defined by the event of

interest occurring between two observations. Right censoring is defined by the event of interest

not occurring during the period of observation (i.e., the event of interest occurs after the study

period). Figure 2.4.1 provides examples of the different types of censoring.

In this illustration, ID 1 was fully observed until failure where ‘failure’ refers to the event

transpiring within survival analysis literature. ID 2 was observed during the whole period of

the study, but the event occurred prior to enrollment. Therefore, ID 2 was left censored. ID

3 was observed from years 0 to 3 and from 7 to 10. However, the event occurred during an

unobserved period of time. ID 3 has interval censoring. ID 4 was observed until 9 years into
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Figure 2.4.1 Examples of Left, Right, and Interval Censoring

31



the study without the event of interest occurring. ID 5 was observed until the end of the study

without the event occurring. Therefore, both ID 4 and 5 were right censored. The censoring

time for ID 4 was 9 years whereas the censoring time for ID 5 was 6 years since this participant

was enrolled in year 4.

Out of all forms of censoring, right censoring occurs most often in practice and as such

receives the most focus within texts on survival analysis. Common reasons for right censoring

are loss to follow up, drop out, and the termination of a study prior to event occurrence. Left

censoring is not uncommon in observational studies and certain clinical studies, but often

participants who have some left censoring may be excluded (i.e., left truncated) from the study

design. Left censoring was found among many participants in the T4+ and AIDS development

studies from Chapter 1, where several participants in the ZDT trials had been infected with HIV

for an unknown amount of time prior to enrollment. In theory, interval censoring is often treated

as the general case of censoring where left and right censoring are considered special cases

(Zhang & Sun, 2010). In practice, interval censoring is more likely when observation periods are

farther apart. One consideration with interval censoring is whether the most recent observation

should be treated as the observed time. In observational or clinical studies, almost certainly the

exact timing of an event will not occur during the study’s measurement periods, and there will

be some measurement error in participant recall. However, this does not necessitate treating all

observations as interval censored. Rather, this can depend on the hypothesis being tested.

These three types of censoring are sometimes called random censoring. In this manuscript,

all censoring is considered random. For the sake of posterity, nonrandom censoring comprises

what Miller (1981) designates “Type I” and “Type II” censoring. Type I censoring occurs when

some fixed value of time is assigned as the fixed censoring time. All observations that do not fail

within that time period are considered censored. This type of censoring occurs in engineering

applications where a series of products, such as light bulbs, are used until burn out. These

experiments typically have a predetermined time period established from the expected value

of burnouts among the product. Type II censoring occurs when some fixed number of failures
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occur. After r number of failures occur, all other observations are considered censored. Using

the bulb example, an experiment that observes bulb burn out until 50% of the sample fails will

result in the other 50% of the bulbs having Type II censoring.

Ignoring censoring produces bias in survival probability estimation, hence why this topic

receives special attention. This bias can either be an overestimation or underestimation of the

survival probability, so a post-hoc naive correction likely would not resolve the issues posed by

ignoring the censoring. Further, mishandling the censoring of data can lead to biased estimates.

Censoring is assumed to be noninformative or random. That is, the time to failure and the time

to censoring are independent. Censoring that is not noninformative is described as informative

or nonrandom censoring, where time to censoring and time to failure are correlated. Informative

censoring may occur in a randomized clinical trial where a disproportionate number of treatment

group participants are censored. The treatment may be very effective, leading the treatment group

to be loss to followup due to no longer needing treatment. The treatment may also be iatrogenic

causing early death. Both of these scenarios would cause bias in the survival probability as the

true failure time is masked by the dependent censoring time. Informative censoring requires

specialized methods, directly related to the censoring or missingness mechanism. A discussion

on this topic can be found in Diggle and Kenward (1994).

The Functions of Survival Analysis

Routine summary statistics, such as the mean and standard deviation, are likely biased in

the presence of censored data. Therefore, survival data are estimated with a set of distribution

functions, from which modified summary statistics may be estimated. The two primary functions

in survival analysis are the survival function S(t) and the hazard function λ(t). However, first

consider two distributions that are ubiquitous throughout statistics: the cumulative distribution

function, F (t), and the probability density function, f(t).
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In the context of survival probabilities, F (t) is defined as the probability of failure up to

some nonnegative value of time T . That is,

F (t) = P (T ≤ t), t ≥ 0.

By definition, it is assumed F (0) = 0 and F (∞) = 1. Since F (t) is a probability, it will always

be bound between 0 and 1. As is the case in all of statistics, the probability density function is

just the derivative of the cumulative distribution function:

f(t) =
dF (t)

dt
,

F (t) =

∫ t

0

f(u)du

The value f(t) can be interpreted as a probability of failure “at” some time t, so the probability

of failure up to time t, F (t), is the sum of these individual probabilities from the beginning

of the study t = 0 until t. To prevent the belaboring of certain technical points, consider this

aforementioned description of f(t) as a heuristic one.

The survival probability, S(t), is the inverse of the failure probability.

S(t) = P (T ≥ t) = 1− F (t)

This definition naturally implies

f(t) = −dS(t)

dt
,

S(t) =

∫ ∞
t

f(u)du

where these formulas can be determined by substituting 1− S(t) into the equations for F (t).

From this definition of the survival probability, both the mean and median survival times
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are respectively estimated by E(T ) = µ =
∫∞

0
S(t)dt and finding the smallest t such that

S(t) ≤ 0.5.

The hazard function defines the rate of failure “at” time t given the individual has not

failed up to time t. Once again, consider this a heuristic explanation in order to minimize the

discussion of technical details. This definition can be akin to a conditional probability as in

§2.2:

λ(t) =
f(t)

S(t)
.

Using previous definitions and formula, λ(t) can be determined in many different ways.

λ(t) =
f(t)

S(t)

= −S
′(t)

S(t)

= −d logS(t)

S(t)

In practice, the log hazard function instead is estimated α(t) = log λ(t). As with the probability

density function, the cumulative hazard function–the total hazard up to time t–can be estimated

by integrating from t = 0 to t:

Λ(t) =

∫ t

0

λ(u)du = − logS(t),

S(t) = exp{−Λ(t)} = exp{−
∫ t

0

λ(u)du}
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In summary, the survival probability equations (2.11) are provided below.

F (t) =

∫ t

0

f(u)du = 1− S(t),

S(t) = 1− F (t) =

∫ ∞
t

f(u)du = exp{−Λ(t)} = exp{−
∫ t

0

λ(u)du},

λ(t) =
f(t)

S(t)
= −d logS(t)

dt
, (2.11)

Λ(t) =

∫ t

0

λ(u)du = − logS(t),

f(t) =
dF (t)

dt
= −dS(t)

dt
= λ(t)S(t).

Parametric, Nonparametric, and Semiparametric Estimation

Statistical models fall into one of three categories based on the assumptions made for

estimation: parametric models, nonparametric models, and semiparametric models. Parametric

models assume that the distribution of the random variable is determined by a set of parameters.

Once these parameters are known or estimated, the entire model is known. For example, a

normal distribution is determined by two parameters, its mean µ and variance σ2. Ordinary

least squares regression assumes a linear relationship between the β vector of regression

coefficients and the normally distributed outcome. Statistical models that do not make any

assumptions are nonparametric models. In a sense, nonparametric models are entirely data-

driven. Rather than make assumptions about the distribution of the data, a nonparametric model

lets the data dictate how they are distributed. A prime example of a nonparametric model is

k-means clustering, which clusters data around an adaptively determined number of centroids

(Lloyd, 1982). Semiparametric models lie somewhere in between these two extremes. Some

assumptions are made about the distribution of the data whereas some properties are data-driven.

The Gaussian mixture model in §2.2 is semiparametric, as it assumes normal parameters to

describe the comprising distributions but also lets the data decide the proportion of members

who belong to one distribution versus another.
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The power of the generalized linear model resulted in parametric models dominating the

other two categories in most regression settings. However, survival analysis commonly employs

all three categories. Their use in survival analysis is so ubiquitous that survival models are the

common examples of nonparametric and semiparametric methods used in introductory papers

on the topics (Dudley, Wickham, & Coombs, 2016; Kosorok, 2009). Some discussion on all

three methods is provided here.

Table 2.4.1 lists common parametric models of survival analysis. Note that Γ(·) refers

to the gamma function where Γ(x) =
∫∞

0
ux−1e−udu and Φ(·) refers to the standard normal

cumulative distribution function. The exponential distribution is the simplest of these functions

in part because λ(t) is constant. This property of the exponential distribution’s constant hazard

is the memoryless property–the value of the hazard is not contingent on time, and past failure

does not influence current or future failure. The Weibull distribution is the rough equivalent

Table 2.4.1 Common Parametric Models in Survival Analysis

Distribution f(t) S(t) λ(t) E(T )

Exponential λe−λt e−λt λ 1
λ

Weibull ψλtψ−1e−λt
ψ

e−λt
ψ

ψλtψ−1 Γ(1+ 1
ψ

)

λ1/ψ

Log-normal 1√
2πσt

e−
(log t−µ)2

2σ2 1− Φ( 1
σ
{log t− µ}) f(t)

S(t)
eµ+σ2

2

of the normal distribution in survival analysis. Its survival and hazard functions change with

respect to a scaling parameter ψ. Note that if ψ = 1, then the Weibull distribution reduces to the

exponential distribution. A positive ψ produces an increasing hazard, and a negative ψ produces

a decreasing hazard. The log-normal distribution is the most complex of these distributions. Its

advantage over the previous two distributions lies in the hump shape of its hazard function. That

is, the hazard increases for a period of time and then decreases after reaching its peak. Figure

2.4.2 illustrates various hazard functions for these three distributions.

Suppose a sample of n individuals have random survival times T1, T2, . . . , Tn. Not all

of these times may be observed due to censoring, so further suppose these individuals also

have random censoring times C1, C2, . . . , Cn. Then each participant has a pair of random
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variables (T1, C1), (T2, C2), . . . , (Tn, Cn). In cases where survival times are observed, consider

the censoring time as “potential” censoring time. For example, if the first participant had a

survival time of 3 years and was not censored, then T1 = 3. In this case, C1 could potentially

be 4 years, 5.7 years, or some other value greater than 3. Therefore, while (Ti, Ci) are the

random variables of interest, they are not directly observed. Rather, a time to event Xi and

the censoring status ∆i of that event are both observed. Therefore, the data collected are

(X1,∆1), (X2,∆2), . . . , (Xn,∆n). Formally, the observed data are defined

Xi = min(Ti, Ci) (time to observed event)

∆i = I(Ti ≤ Ci) =


1 if Ti ≤ Ci (failure time observed)

0 if Ti > Ci (censoring time observed).

Since the inference is made on (Ti, Ci), the likelihood function for right censored parametric

survival functions will incorporate parameters θ for Ti and φ for Ci. Let xi be the observed time

to event and δi = {1, 0} depending on whether the observed time to event was failure ( = 1)

or censoring ( = 0). The likelihood function for θ and φ needs to include the density function

f(t) and survival function S(t) for θ as they represent the probability of failure at a given

time t and the probability of survival beyond time t (or the probability of being “potentially”

censored). Equivalent functions need to be incorporated for φ, which will be called g(t) and

H(t), respectively. Therefore, the likelihood function is

L(θ, φ|xi, δi) =
n∏
i=1

{[f(xi|θ)]δi [S(xi|θ)]1−δi}{[g(xi|φ)]1−δi [H(xi|φ)]δi}. (2.12)
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Let ν represent the number of participants where failures were observed. Note what happens

in equation (2.12) when times Xi are observed failures (i.e. δi = 1):

L(θ, φ|xi, δi = 1) =
ν∏
i=1

{[f(xi|θ)]1[S(xi|θ)]1−1}{[g(xi|φ)]1−1[H(xi|φ)]1}

L(θ, φ|xi, δi = 1) =
ν∏
i=1

{[f(xi|θ)]1[S(xi|θ)]0}{[g(xi|φ)]0[H(xi|φ)]1}

L(θ, φ|xi, δi = 1) =
ν∏
i=1

{[f(xi|θ)]× [1]}{[1]× [H(xi|φ)]}

L(θ, φ|xi, δi = 1) =
ν∏
i=1

[f(xi|θ)][H(xi|φ)].

The observed failures contribute to the probabilities of failing at time xi and “potentially”

failing from time xi onward. Under noninformative censoring where Ti is independent from

Ci, then the parameters refering to Ci can be ignored. Therefore, equation (2.12) becomes

L(θ|xi, δi) =
∏n

i=1{[f(xi|θ)]δi [S(xi|θ)]1−δi}. Using the definition of λ(t) from equation (2.11),

λ(t) = f(t)
S(t)
↔ f(t) = λ(t)S(t). This substitution for f(t) simplifies (2.12) further:

L(θ|xi, δi) =
n∏
i=1

[f(xi|θ)]δi [S(xi|θ)]1−δi

L(θ|xi, δi) =
n∏
i=1

[λ(xi|θ)S(xi|θ)]δi [S(xi|θ)]1−δi

L(θ|xi, δi) =
n∏
i=1

[λ(xi|θ)]δi [S(xi|θ)]δi+1−δi

L(θ|xi, δi) =
n∏
i=1

[λ(xi|θ)]δi [S(xi|θ)]1

L(θ|xi, δi) =
n∏
i=1

[λ(xi|θ)]δi [S(xi|θ)] (2.13)

indicating that for the parametric case, the likelihood function can be constructed from the

observed data (Xi,∆i), the hazard function λ(xi), and the survival function S(xi).
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The primary nonparametric methods used in survival analysis are the Kaplan-Meier esti-

mator of the survival function (Kaplan & Meier, 1958) and the Nelson-Aalen estimator of the

cumulative hazard function (Nelson, 1969; Aalen, 1976). Since nonparametric methods make

no assumptions about the distribution of (Ti, Ci), the likelihood function given in (2.13) cannot

be used to estimate the time to event. Rather than a likelihood approach, these two estimators

use a product limit method to estimate the survival function and cumulative hazard function.

Consider the whole interval of time where ν1 < ν2 < . . . νJ are the ordered observed times.

Let all Xi fall into an interval [νj, νj+1]. Therefore, the observed times x1, x2, . . . , xn are now

represented as intervals [νj, νj+1]. Let d(x) be the total number of deaths within any interval

[νj, νj+1] and let n(x) represent the number of individuals still at risk in that interval. Then,

ŜKM =
J∏
j=1

(1− d(xj)

n(xj)
)

Λ̂NA =
∑
xj≤x

d(xj)

n(xj)
,

where ŜKM is the Kaplan-Meier estimator and Λ̂NA is the Nelson-Aalen estimator. These

estimators produce step functions of the survival and hazard functions, respectively, and are

useful for illustrating life table estimates of survival data. Consider Table 2.4.2 and Figure 2.4.3.

Table 2.4.2 Life Table of Simulated Survival Data

Time Failures Censors ŜKM Λ̂NA

0 0 0 1.00 0.00
9 1 0 0.917 0.08

17 1 0 0.833 0.174
22 0 1 0.833 0.174
30 1 1 0.741 0.285
41 2 0 0.529 0.571
60 1 0 0.423 0.771
77 0 1 0.423 0.771
80 0 1 0.423 0.771
106 1 0 0.212 1.271
150 1 0 0 2.271
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Figure 2.4.3 (a) Kaplan-Meier Survival Estimate (b) Nelson-Aalen Cumulative Hazard
Estimate

The most common semiparametric method within survival analysis, and perhaps the most

commonly used model in survival analysis, is the Cox proportional hazards model (Cox, 1972).

The central idea of this model is that the hazard function λ(t) can be estimated using a data-

driven approach. Let Z represent covariates. Recall that λ(t) = f(t)
S(t)

. The hazard function in

a Cox proportional hazard function is defined by λ(t|z) = f(t|z)
S(t|z) = λ0(t)eZ

T β, where β are

regression coefficients of Z and λ0(t) is some baseline hazard function. The baseline hazard

function is arbitrary, and the focus is on estimation of the change in the hazard relative to

the change in the covariates. The unit eZT β is treated as a separate hazard function that is

factored out of the baseline hazard in that eZT β := λ(ZTβ). The central assumption for the Cox

proportional hazards model is that the data-driven hazard function λ(t|z) is proportional to a

common baseline hazard λ0(t) and an effect on the covariates Z. Note that the effect of time is

separable from the effects of the covariates, where t only affects the hazard function through

the baseline hazard itself. This separability is called the proportional hazards assumption. Let

the covariate of interest be a dichotomous variable, Z, where Z = {1, 0}. The hazard ratio
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comparing participants with Z = 1 to those with Z = 0 is estimated as

HR =
λ0(t)eβ0+β1(Z=1)

λ0(t)eβ0+β1(Z=0)

= eβ1(1−0)

= eβ1 .

The change in λ(t|z) is simply a result of a change in Z.

The construction of the likelihood function for this method requires some nuance as the

method uses some parametric assumptions and nonparametric ones. Consider the pair of random

variables (Ti, Ci) as detailed in the parametric section. The random variable Ti is the primary

interest of survival analysis, and Ci must be accounted for due to its presence in estimating Ti.

In general, Ci is considered a nuisance parameter, which means exactly how it sounds: there is

little interest in inference about Ci, but it has to be dealt with to provide inference for Ti. Order

the data into intervals similarly to the nonparametric product-limit estimation methods. Then

the likelihood function is given by

L(T,C|β) =
m∏
i=1

p(Ti, Ci|(T1, C1), (T2, C2), . . . , (Ti−1, Ci−1), β)

=
m∏
i=1

p(Ci|(T1, C1), (T2, C2), . . . , (Ti−1, Ci−1), β)

×
m∏
i=1

p(Ti|(T1, C1), (T2, C2), . . . , (Ti−1, Ci−1), β). (2.14)

Cox (1975) defines the second factor (2.14) as the partial likelihood and proves that most of

the information about β in a Cox proportional hazard model is found in this factor. There-

fore, the first factor can be safely ignored given a large enough sample size. Miller (1981)

demonstrates that given observed values (Xi,∆i), this partial likelihood is L(β|xi, δi) =
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∏n
i=1[λ(xi|zi, β)]δi [S(xi|zi, β)]. Note the parallel between this partial likelihood and the likeli-

hood given in equation (2.13).

2.5 B-splines

In mathematics, splines are functions defined by piecewise polynomial functions typi-

cally intended for the interpolation of points. If a function is unknown, splines provide an

approximation of that function using polynomials. Since there are many ways to approximate

functions using piecewise polynomial functions, B-splines offer a unique, piecewise polynomial

representation of a function given a set of specified continuity conditions. While there are

many ways to formulate B-splines, this manuscript uses the recursive definition specified in de

Boor (1986) and Kincaid & Cheney (1992). A B-spline is uniquely identified by its continuity

conditions: its knot sequence and its degree. The knot sequence t := (t1, t2, . . . , tn) form the

partitions or continuity points of the B-spline. Essentially, these are the locations where the

points are “connected”. The degree specifies the degree of the piecewise polynomials. For

example, degree k = 3 indicates the B-spline will be a cubic function (i.e., the biggest term will

be some function of t3).

All B-splines will have a degree = 0 component where

B0
j (x) =


1 if tj ≤ x < tj+1

0 otherwise.

This B-spline behaves similarly to an indicator function that determines whether a point lies

within a knot sequence. Then, all other B-splines are defined recursively where

B
(k)
j (x) = ω

(k)
j B

(k−1)
j (x) + (1− ωj+1)(k)B

(k−1)
j+1 (x)

=

(
x− tj
tj+k − tj

)
B

(k−1)
j (x) +

(
tj+k+1 − x
tj+k+1 − tj+1

)
B

(k−1)
j+1 (x).
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B-splines are restricted to sum to 1 within any degree (e.g.,
∑
B2
j = 1) and each B-spline must

be nonnegative.

Example. Define a knot sequence t := (1, 2, 4, 6, 8). A B-spline of degree k = 2 is

constructed as:

B0
j =


1 if tj ≤ x < tj+1

0 otherwise.

indicating B0
1 = 1 when x ∈ [1, 2), B0

2 = 1 when x ∈ [2, 4), B0
3 = 1 when x ∈ [4, 6), B0

4 = 1

when x ∈ [6, 8), and 0 otherwise. Next,

B1
j =

(
x− tj
tj+1 − tj

)
B0
j (x) +

(
tj+2 − x
tj+2 − tj+1

)
B0
j+1(x)
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Figure 2.5.1 B-Splines for Degree 0 with knot sequence (1, 2, 4, 6, 8)
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which implies

→ B1
1 =


x− 1 if 1 ≤ x < 2

2− 1
2
x if 2 ≤ x < 4

0 otherwise

→ B1
2 =



1
2
x− 1 if 2 ≤ x < 4

3− 1
2
x if 4 ≤ x < 6

0 otherwise

→ B1
3 =



1
2
x− 2 if 4 ≤ x < 6

4− 1
2
x if 6 ≤ x < 8

0 otherwise

because, for example, B1
1 =

(
x−t2
t3−t2

)
I[x ∈ [1, 2)] +

(
t3−x
t3−t2

)
I[x ∈ [2, 4)] =

(
x−1
2−1

)
I[x ∈

[1, 2)] +
(

4−x
4−2

)
I[x ∈ [2, 4)] = (x− 1)I[x ∈ [1, 2)] + (2− 1

2
x)I[x ∈ [2, 4)]. Finally, for degree

k = 2,
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Figure 2.5.2 B-Splines for Degree 1 with knot sequence (1, 2, 4, 6, 8)
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→ B2
1 =



1
3
(x− 1)2 if 1 ≤ x < 2

− 7
24
x2 + x− 13

6
if 2 ≤ x < 4

1
2
x2 − 6x+ 9

2
if 4 ≤ x < 6

0 otherwise

→ B2
2 =



1
6
(x2 − 5

2
x+ 1) if 2 ≤ x < 4

− 7
24
x2 = 9

2
x− 10 if 4 ≤ x < 6

−1
8
x2 − 2x+ 8 if 6 ≤ x < 8

0 otherwise
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Figure 2.5.3 B-Splines for Degree 2 with knot sequence (1, 2, 4, 6, 8)

Notice how the number of knots needed for each B-spline increases as the degree increases.

Therefore, consideration is needed when determining the knot sequence with respect to the

degree of the B-spline.

2.6 Tensor Products

Given matrices v and w, and assuming the matrices are conformable, the tensor product or

outer product is defined as v⊗w = vwT . Let v =


1

2

3

 and w =

4

5

, then the tensor product
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is


1

2

3


[
4 5

]
=


1× 4 1× 5

2× 4 2× 5

3× 4 3× 5

 =


4 5

8 10

12 15

. The tensor product effectively produces extra

dimensions from lower dimensional spaces based on the permutations of each matrix.

Figure 2.6.1 Tensor Product Visualization

In additive models (Friedman & Silverman, 1989) the tensor product can be used to model

interactions of the form y = f(x, t) + ε by decomposing the function into two-dimensional

basis spaces f(x, t) = fx(x)ft(t) and finding the tensor products of these two spaces. This

approach has been used in generalized additive models (Hastie & Tibshirani, 1987) and hazard
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regression (Kooperberg, Stone, & Truong, 1995a). Figure 2.6.1 illustrates the tensor product

between two variables in (a) and (b).

2.7 Stepwise Models and Recursive Partitioning

Stepwise regression is an automated variable selection method used in generalized linear

models with particular occurrence in ordinary least squares (OLS) regression model building.

This method typically has three components: (1) an inclusion/exclusion rule, (2) an assessment

method, and (3) a stopping rule. The inclusion/exclusion rule determines whether a variable

should be included in the model based on some statistic. The assessment method calculates

the inclusion statistic. The stopping rule determines when the selection process should stop.

Stepwise procedures have forward processes (variables are added individually from a null model

until the “best” model is determined), a backward process (variables are removed from the

saturated model individually until the “best” model is determined), or both. Inclusion/exclusion

rules typically used include partial-F tests or p-values, where inclusion in the model could be

set to the threshold of having a p-value < 0.15. However, information-based methods such as

minimizing AIC (Aikake, 1974) has also been used in these methods. Given two variables, X1

and X2, an OLS regression with forward-backward selection algorithm could look like this:

Setup : Let αp = 0.15. Stop when all 2k − 1 = 22 − 1 = 3 models tested.

Step 1 : Add X1 to the null OLS model.

Step 2 : Test p-value for X1.

Step 3 : Is p-value for X1 < αp?

Step3a : If yes, include.

Step3b : If no, exclude.

Step 4 : Add X2 to the OLS model.

Step 5 : Test p-value for X2 and X1.

Step 6 : Is p-value for X2 < αp? Is p-value for X1 < αp?
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Step 6a : If yes, include.

Step 6b : If no, exclude.

Step 7 : Is p-value for X1 < αp?

Step7a : If yes, keep in model.

Step7b : If no, exclude.

Step 8 : Is p-value for X2 < αp?

Step8a : If yes, keep in model.

Step8b : If no, exclude.

Finalize : End algorithm.

If the number of independent variables is large, then this procedure becomes computationally

inefficient and costly. If only forward- or backward- selection is included, then this method

becomes incomplete. Harrell (2015) notes that if this procedure had been proposed as a

statistical technique, it would have been criticized because “it violates every principle of

statistical estimation and hypothesis testing”.

Recursive partitioning improves on stepwise methods by performing a stepwise method on

variable spaces rather than variables. This method can be viewed as a geometrical method that

splits the regions of space occupied by variables into “important” subregions where importance

is calculated by some statistic. This process is done through the use of basis functions that

compose the variable space. Formally, a basis of a space is a linearly independent set of vectors

that span a vector space. Less formally, a basis is a set of vectors where all points in a specified

space can be uniquely composed as a linear combination of these vectors. In simple OLS

regression with one independent variable, x, and one dependent variable, y, the vector space of

interest can be the whole xy-plane. A basis of this vector space is the x-axis and the y-axis.

Let Bj(x) be a basis function. Then the goal is to approximate some function of x by

f̂(x) =
∑J

j=1 ajBj(x) , where Bj(x) can be an indicator function, a spline, or some other

representation and aj is a coefficient akin to a regression coefficient. Recursive partitioning
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takes the whole variable space and finds split points t∗ for each independent variable xi ∈ x

that minimize a lack-of-fit function (such as residual sums of squares). Note that if the basis

functions are splines such as B-splines, the set of t∗ would represent a knot sequence. Basis

functions are added or subtracted for the space until a stopping rule is met. The aim of recursive

partitioning is not only to find the appropriate basis functions to approximate the variable space,

but also to estimate the coefficients that best fit the data. While the quality of the recursive

partioning estimator depends on the specifications made (e.g., whether indicator functions or

B-splines are used), these methods are typically found to have superior qualities to traditional

stepwise regression methods. Friedman (1991) and Kooperberg, Stone, & Truong (1995b)

prove asymptotic properties of certain recursive partitioning methods. Examples of recursive

partioning in statistics occur in classification and regression trees (Breiman, Friedman, Olshen,

& Stone, 1984), multivariate adaptive regression splines (Friedman, 1991), and hazard regression

(Kooperberg, Stone, & Truong, 1995a).

2.8 Levenberg-Marquardt Algorithm

The weighted residual sum of squares is a common objective function to minimize in curve-

fitting problems. Given a dependent variable y dependent on a set of independent variables x,

the weighted residual sum of squares is defined as

RSSσ =
k∑
i=1

[
y(xi)− ŷ(xi)

σyi

]2

= (y − ŷ)TW(y − ŷ)

= yTWy − 2yTWŷ + ŷTWŷ (2.15)

where σ is the weight and typically refers to the standard error, and ŷ is the estimated value of

y. Note that if this were unweighted (i.e. σ = 1), then equation (2.15) reduces to the typical

residual sum of squares. Any choice of weight could be used. If the function of ŷ(x) is nonlinear,

then the curve fitting procedure must be done iteratively.
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The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) minimizes RSSσ

by combining two other minimization algorithms: the gradient descent method and the Gauss-

Newton method. Levenberg-Marquardt adaptively switches between these two methods depend-

ing on a damping parameter λ. Prior to deriving λ, consider these two minimization methods

separately.

The derivative of equation (2.15) provides the slope of the tangent line of RSSσ. RSSσ is

minimized when this derivative is 0. Let β represent the parameter that associates x to y. Then,

∂

∂β
SSEσ = 2(y − ŷ(β))TW

∂

∂β
(y − ŷ(β))

= −2(y − ŷ(β))TW
∂ŷ(β)

∂β

= −2(y − ŷ(β))TWJ

where J = ∂ŷ(β)
∂β

is the Jacobian, which essentially reflects how much the estimated value ŷ

changes with respect to how much the parameter β changes. Setting this equation to 0 and

solving for β is equivalent to solving for β under (y − ŷ(β))TWJ = 0. The primary issue

is that the equation cannot be solved analytically. Therefore, rather than solving for β, set

h = (y − ŷ(β))TWJ and iteratively change β until h ≈ 0. The gradient descent method

determines h by updating the parameter in the “steepest” direction to 0 through a step parameter

α : hgd = αJTW(y − ŷ(β)).

The Gauss-Newton method can be derived from a somewhat different approach. Using a

first-order Taylor series expansion, where h represents the perturbation, then

ŷ(β + h) ≈ ŷ(β) +
∂ŷ(β)

∂β
h = ŷ(β) + Jh.

Using equation (2.15) again with ŷ(β) + Jh substituted for ŷ gives

yTWy + ŷTWŷ − 2yTWŷ − 2(y − ŷ)TWJh + hTJTWJh.
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Now, rather than minimizing with respect to β, this function can be minimized with respect to

h:
∂

∂h
SSEσ(β + h) ≈ −2(y − ŷ(β))TWJ + 2hTJTWJ,

giving

[JTWJ]hgn = JTW(y − ŷ(β)).

Note the similarities between the Gauss-Newton and gradient descent method.

The Levenberg-Marquardt method updates the damping parameter λ such that each step

alternates between a Gauss-Newton solution and a gradient descent solution:

[JTWJ + λI]hlm = JTW(y − ŷ(β)). (2.16)

In cases where λ is small, the algorithm tends towards Gauss-Newton. When λ is large, the

algorithm tends towards gradient descent. The purpose of these alternations stems from gradient

descent algorithm working well when the current estimates are far from their optimal values

and the Gauss-Newton algorithm working well when current estimates are close to their optimal

values. In practice, λ is intialized as a large value and decreases over the course of optimization

with parameter estimate changes becoming more granular the closer they are to reaching

optimality.

2.9 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by

patterns of various behaviors including deficits in social communication, presence of restricted

and repetitive behaviors, and delays in cognitive or learning skills (American Psychiatric

Association, 2013). ASD exhibits heterogeneous behavioral and etiologic profiles among those

diagnosed (Betancur, 2011), and the development of ASD is nonlinear and dynamic (Girault

& Piven, 2020). The causes of ASD are largely unknown as the etiology stems from multiple

connected sources rather than one or two discriminant ones. ASD prevalence among school
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children is currently estimated to be 1 in 54 (Shaw, et al., 2020), but this estimated proportion

changes as the understanding of the disorder improves.

The difficulties that arise from ASD can be mitigated from early diagnosis and treatment

(Eikeseth, et al., 2012; Eldevik, et al., 2012; Towle, et al., 2020), and it is possible to diagnose

children using behavioral assessments within 24 months of age. Because early intervention and

treatment of ASD have been shown to lead to these improvements, considerable effort into early

identification, particularly in the pre-symptomatic period, has been made (Grazdzinski, et al.,

2021). The motivation to identify ASD early coupled with the evidence of heterogeneity within

the population has lead to longitudinal research studies that track infants through adolescence

with neuroimaging (Hazlett, et al., 2012), genetic (Losh, et al., 2017), behavioral (Pugliese, et

al., 2016), and hormonal (Geier & Geier, 2021) data being collected.

While the causes of ASD are largely unknown, evidence suggests a strong heritability

component with a 9-fold increase in the odds of a full sibling or co-twin having ASD given

the observed child has ASD (Sandin, et al., 2014). Further, ASD heritability ranged from 50%

to 85% among large cohorts from five different countries (Bai, et al, 2019). Modern research

design of ASD studies has reflected these discoveries with infant and childhood samples

consisting primarily of three groups: high likelihood with ASD diagnosis, high likelihood

without ASD diagnosis, and low likelihood. Those qualified as “high likelihood” come from

families with a history of ASD diagnosis, particularly who have a sibling with ASD. Historically,

“high likelihood” participants have been referred to “high risk” and may now be designated

as having “elevated likelihood” or as having a “familial history” of ASD (Bottema-Beutel, et

al., 2021). In addition to heritability, ASD has been shown to be comorbid with intellectual

disabilities (Tonnsen, et al., 2016), Angelman syndrome (Veltman, et al., 2005), Down syndrome

(Grzadzinski, et al., 2013), and Fragile X syndrome (Niu, et al., 2017).

There have been some key results found demonstrating an association between neuroanatom-

ical features and ASD status (Girault & Piven, 2020). Individuals with ASD have been found to

have brain overgrowth relative to their non-ASD counterparts, and this result has been found

57



among children (Xiao, et al., 2014), adolescents (Piven, et al., 1996), and adults (Piven, et al.,

1992). This overgrowth has been found to be associated with the severity of social deficits in

autistic children (Hazlett, et al., 2017). Accelerated expansion of the cortical surface area in

the first year precede brain overgrowth in children with ASD (Hazlett, et al., 2017). While

evidence exists demonstrating the association between amygdala volume and ASD status, the

exact relationship has been conflicting (Girault & Piven, 2020) with some studies demonstrating

an association between ASD and total amygdala volume (Schumann, et al., 2009), between

severe cases of ASD and total amygdala volume (Sparks, et al., 2002), between ASD and right

amygdala volume (Munson, et al., 2006), and between cases of ASD with greater joint attention

and total amygdala volume (Mosconi, et al., 2009). Greater volumes of extra-axial cerebrospinal

fluid have been found to be associated with ASD diagnosis and severity as early as 6-months

(Shen, et al., 2013; Shen, et al., 2017).

2.10 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a commonly used noninvasive imaging modality

that produces three-dimensional anatomical images based on the nuclear magnetic resonance

(NMR) phenomenon (Lauterbur, 1973). The NMR phenomenon cannot be explained exactly

using classical physics (Suetens, 2009), so the following explanation is approximate to the

technical details for MRI techniques. MRI measures a magnetic property of tissue. In an

external magnetic field, there will be an assortment of atoms with each atom having its own

angular momentum and magnetic moment. Further, each subatomic particle within each atom

(i.e., the electron, proton, and neutron) has its own angular momentum. These angular momenta

have associated spins, roughly equivalent to how planets spin on their axes in space. NMR

evaluates the behavior of atomic nuclei with spin angular moments and associated magnetic

moments in an external magnetic field.

The atomic nucleus of various isotopes have unique pairs of spin values and magnetic

moments. For example, hydrogen has a spin of 1
2

with associated magnetic moment of 42.6.,
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nitrogen has a spin of 1 and magnetic moment of 3.1, and calcium has a spin of 7
2

and magnetic

moment of -2.9. Note that carbon-12 and oxygen-16, isotopes common in organic matter, have

0 spin. Half spins indicate that the nuclei have two possible states, the “spin up” state and

the “spin down” state. The sum of these individual spins is called the net magnetization of the

external magnetic field. In a typical, undisturbed field, the net magnetization of these spins

is 0 because the spins of each atomic nucleus is randomly distributed in any given direction.

However, when an external magnetic field is produced, these nuclei align either with the field

(parallel alignment) or against the field (anti-parallel alignment).

The magnetic vector of spinning nuclei comprises two orthogonal spin components. One

component is the longitudinal component (z-axis) and the other component is the transverse

component (xy-plane). The rotation of the transverse component in the presence of a large

external magnetic field is called precession, and its spin resembles a wobbling motion. In the

presence of an external magnetic field, more spins align parallel to the field than anti-parallel.

This alignment derives from the low energy state exhibited during parallel alignment. As such,

the net magnetization is positive along the longitudinal component.

Radiofrequency (RF) pulses of the same frequency, or resonance, as these spins will excite

the atomic nuclei from mostly parallel to mostly anti-parallel alignment (a high energy state),

which rotates the longitudinal component to its antipode (i.e. spin inversion). After the excitation

period, the atomic nuclei return to parallel alignments and reach equilibrium. The recovery rate

of the longitudinal component of the spin is dependent on tissue characteristics. As the MRI

rotates its external magnetic field around the tissue, a quadrature detector determines the time

and strength of the inversion process of each voxel, which is a pixel with volume. The signal

from the inversion recovery process produces the three-dimensional images within an MRI.

MRI of brain tissue comes primarily in two forms: structural and functional MRI. Structural

MRI examines the anatomical characteristics of the brain whereas functional MRI examines

brain activity. The principal measure determined by structural MRI is volume, but from volume

other anatomical features can be determined such as surface area or curvature. Structural
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MRI has many clinical uses such as the identification of tumors (Kucharczyk, et al., 1985)

or the diagnosis of Alzheimer’s disease (Wattjes, 2011). Functional MRI takes advantage of

the relationship between blood oxygenation and the inversion relaxation signal to determine

spatial regions of brain activity. This relationship is denoted as BOLD (blood oxygenation-level

dependent) effects. When neurons activate, blood flow needs to increase to the area of activation

to accommodate the need for oxygen. Therefore, changes in BOLD can be used to measure

changes in neural activity (Logothetis, Guggenberger, Peled, & Pauls, 1999). In a clinical

setting, fMRI can be used to assess strokes or clots (Crofts, Kelly, & Gibson, 2020), but much

of the value of fMRI has come from its impact on cognitive neuroscience (Matthews, Honey, &

Bullmore, 2006).

60



CHAPTER 3: THE JOINT LATENT CLASS MIXED MODEL WITH HAZARD RE-
GRESSION

3.1 Hazard Regression

In survival analysis, the proportional hazards model is a commonly used semiparametric

method whose advantages include the linear interpretability of effects and the minimal assump-

tions needed to model the hazard function. Proportional hazards models have the ability to

estimate the effects of the covariates irrespective of knowledge of the baseline hazard. While the

baseline hazard does not need to be known in a proportional hazards model, proportional hazards

models do require the proportionality assumption. Hazard regression (HARE) uses an adaptive

regression technique to estimate the conditional log hazard function from right-censored survival

data with multiple covariates (Kooperberg, Stone, & Truong, 1995). The conditional log-hazard

function is estimated by an adaptive method similar to Friedman’s (1991) multivariate adaptive

regression spline method. Given a p-dimensional linear space of positive functions and a set

of basis function B1, . . . , Bp, HARE estimates the conditional log-hazard function α(t|x) by

maximizing the partial likelihood under β = (β1, . . . , βp) such that

α(t|x, β) =

p∑
j=1

βjBj(t|x), t ≥ 0. (3.17)

The allowable basis functions are B-spline bases in the covariates, B-spline bases in time t,

and their tensor products Bi ⊗ Bj . Both the basis space and its dimension, p, are determined

adaptively using recursive partitioning. HARE has two advantages for modeling the log-hazard

function: (i) the estimation is entirely data-driven with no parametric assumptions about the

distribution of α(t|x) and (ii) the proportionality assumption is relaxed. The latter advantage is
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implemented by allowing the log-hazard function to include interactions between time and the

covariates.

Let Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Ti is the time to failure for individual i, Ci is

the time to censoring for individual i, and δi is the censoring indicator for individual i. The

censoring indicator δi = 1 if failure is observed and δi = 0 if censoring is observed. The

partial likelihood (Miller, 1981) for the observed time to event yi given covariates x and under

parameters β is
∏n

i=1[f(yi|xi, β)]δi [1− F (yi|xi, β)]1−δi . This implies the log-likelihood is

φ(yi, δi|xi, β) = log

[
n∏
i=1

[f(yi|xi, β)]δi [1− F (yi|xi, β)]1−δi

]

=
n∑
i=1

log
[
[f(yi|xi, β)]δi

]
+ log

[
[1− F (yi|xi, β)]1−δi

]
=

n∑
i=1

δi log f(yi|xi, β) + (1− δi) log(1− F (yi|xi, β))

=
n∑
i=1

δi log f(yi|xi, β)− δi log(1− F (yi|xi, β)) + log(1− F (yi|xi, β))

=
n∑
i=1

δi [log f(yi|xi, β)− log(1− F (yi|xi, β))] + log(1− F (yi|xi, β))

=
n∑
i=1

δi

[
log

f(yi|xi, β)

(1− F (yi|xi, β))

]
+ log(1− F (yi|xi, β))

=
n∑
i=1

δi log λ(yi|xi, β) + log(1− F (yi|xi, β))

=
n∑
i=1

δiα(yi|xi, β) + log exp(−
∫ yi

0

(exp(α(ui|xi, β))))du

=
n∑
i=1

δiα(yi|xi, β)−
∫ yi

0

exp(α(ui|xi, β))du, y ≥ 0, δi ∈ {0, 1} (3.18)

where the derivation of equation (3.2) is determined by the relationships between survival

functions

eα(t|x) = λ(t|x) =
f(t|x)

1− F (t|x)
, 1− F (t|x) = e−

∫ t
0 λ(u|x)du = e−

∫ t
0 e

α(u|x)
du,
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f(t|x) = eα(u|x)e−
∫ t
0 e

α(u|x)
du.

Maximizing this partial log-likelihood resolves to solving for β in equation (3.1). The corre-

sponding score function S(β) and Hessian matrix H(β) are respectively determined by the first

derivative of the partial log-likelihood function with respect to βj and the p× p matrix of second

derivatives of the log-likelihood function with respect to βj, βk.

S(β) =
∂

∂βj
φ(y, δ|x, β)

= δBj(y|x)−
∫ y

0

Bj(u|x) exp(α(u|x, β))du, 1 ≤ j ≤ p, y ≥ 0, δ ∈ {0, 1}

H(β) =
∂2

∂βj∂βk
φ(y, δ|x, β)

= −
∫ y

0

Bj(u|x)Bk(u|x) exp(α(u|x, β))du, 1 ≤ j, k ≤ p, y ≥ 0, δ ∈ {0, 1}.

The Newton-Raphson method is used to estimate β̂ with an initial guess for β̂(0) and β̂(m+1) =

β̂(m) − 2−ν [H(β̂(m))]−1S(β̂(m)) where ν is a step-halving constant. The iterations stop when

the difference between repeated log-likelihood calculations is < 10−6. The goal, then, is to

determine the allowable basis functions with attention to knot placement to estimate α(t|x).

The allowable spaces of basis functions for HARE, G, are linear in order to minimize numer-

ical integrations over the knot sequence of t := (t1, t2, . . . , tk) (Kooperberg, Stone, & Truong,

1995a) and because an approximated function composed of appropriately chosen allowable

linear spaces converges in mean to a generalized linear model (Stone, 1994; Kooperberg, Stone,

& Truong, 1995b). Formally, the allowable spaces G ∈ G in HARE are defined as follows:

• There is only one G ∈ G with minimal dimension pmin,

• Each G ∈ G is a linear space having dimension p ≥ pmin,

• If G ∈ G has dimension p > pmin, then there is at least one subspace G0 ∈ G of G with

dimension p− 1,
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• If G0 ∈ G has dimension p, then there is at least one space G ∈ G with dimension p+ 1

whose subspace is G0.

Less formally, this means that HARE determines Bj and estimates its corresponding βj in a

stepwise fashion where tensor products of spaces require each individual space. Let k represent a

knot along a knot sequence. Then HARE has basis functions of the form 1, (tk−t)+, xm, (xmk−

xm)+, xmxn, (tk− t)+xm, (tk− t)+(xmk−xm)+, xm(xnk−xn)+, (xmk−xm)+xn, and (xmk−

xm)+(xnk − xn)+, where xm, xn are separate covariates, tk is a knot in time, x·k is a knot in a

covariate, and (·)+ represents the positive part of the function. The tensor products xmxn, (tk −

t)+xm, (tk−t)+(xmk−xm)+, xm(xnk−xn)+, (xmk−xm)+xn, and (xmk−xm)+(xnk−xn)+ are

allowable only if the individual basis functions are included. For example, if x1, x2, and (7− t)+

are included in the estimate of α(t|x), but x3 is not, then x1x2, x1(7− t)+, and x2(7− t)+ are

allowable, but x3(7− t)+ is not.

HARE begins the partitioning procedure of determining the allowable spaces from G

with the minimal space Gmin = 1 (the constant space). That is, HARE always initializes its

estimation of α(t|x) = β1(1) = β1. HARE then proceeds with adding new spaces G ∈ G where

each (p− 1)-dimensional space G0 is replaced by a p-dimensional space G that includes G0 as

a subspace. When determining the new G allowable space, candidate basis functions Bj include

linear covariates, a new knot in time, a new knot in a covariate, and a tensor product of two

existing basis functions from G0. Note from the list of basis function forms above that Bj = t is

not allowed. This exclusion stems from the need of a constant tail for the cumulative hazard (i.e.

Λ(t|x) =∞ when t→∞) and conversely the need for a constant tail for the survival function

(i.e. S(t|x) = 0 when t→∞). Details on this constraint can be found in Kooperberg, Stone, &

Truong (1995a) and Stone, et al. (1997). Example 1 provides an illustration of the addition of

basis functions for G.

G is determined from finding the candidate basis function that maximizes the Rao statistic.

Let β̂(0) be the maximum likelihood estimate of β corresponding to space G, and let βp be

defined as the coefficient for the basis function needed to go from subspace G0 to space G.
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The Rao statistic is a score statistic calculated by R = S(β̂
(0)
p )/

√
I−1(β̂(0))pp, where S(β̂

(0)
p )

is the score function evaluated at the maximum likelihood estimate in p-dimensional space,

and I−1(β̂(0)) is the observed Fisher information matrix observed at the maximum likelihood

estimate of β. The addition of new G allowable spaces follows this algorithm:

• Calculate Rao statistic for all spaces obtained from G0 by adding a basis function

Bl0(xl) = xl to G0

• Calculate Rao for all allowable spaces obtained from G0 by adding a basis function to G0

comprising a tensor product of two tensor functions in G0

• Calculate Rao statistic for a space obtained fromG0 by adding a basis function constructed

by adding a new knot in t

• Calculate Rao statistic for a space obtained fromG0 by adding a basis function constructed

by adding a new knot in covariate m

• Select space G that maximizes the absolute value of the Rao statistic.

After each space G is determined, the BIC (Schwarz, 1978) is stored for model selection

procedures. Candidate basis functions are no longer added when either (a) the number of

basis functions included is min(6n1/5, n/4, 50), (b) the change in the maximized log-likelihood

function is < 1
2
(P −p)− 1

2
where P is the number of basis functions and p is the dimensionality

of G, or (c) the algorithm yields no possible new basis function (Kooperberg, Stone, & Truong,

1995a).

Example 1. Consider a log hazard function with candidate basis functions x1 and t, where x1

is a continuous covariate. The addition phase of the estimation of α(t|x) would begin with

Gmin = 1. The following G could add either x1 or (tk1 − t)+ for knot tk1. After determining G

that maximizes the Rao statistic, this G is set to G0 and the following G could add x1, (tk2− t)+,

(x1 − x1k1)+, or x1(tk1 − t)+ depending on what basis functions exist in G0.
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Knot selection for candidate basis functions requires special attention. The knot sequence

for t or for a covariate x is determined adaptively through the minimization of the BIC, which is

defined by BIC = n log RSS
n

+p log n where RSS is the residual sum of squares
∑n

i=1(yi− ŷi)2

and p is the number of parameters in the model. Knots are added sequentially within one basis

function until a minimal RSS is determined. Figure 3.1.1 illustrates the process of knot addition

for an arbitrary length of time. Note that the BIC is saved for each knot addition. After the

addition phase has concluded, knots are deleted from the basis function until the minimum

model size has been reached. BIC is calculated at each step during the deletion phase as well.

The optimal basis function with knot sequence tk is the one with the minimum BIC value. BIC

is used in lieu of RSS since RSS increases arbitrarily with each additional variable. Figure 3.1.2

illustrates the BIC selection procedure for adaptive knot selection.

Following the addition phase of G ∈ G is the deletion phase, which carries out the candidate

basis function algorithm above with two features changed: (i) the deletion phase goes from space

G to space G0, and (ii) Wald statistic β̂p/SE(β̂p) is used instead of the Rao statistic. This latter

modification derives from the fact that the Rao statistic is based on the maximum likelihood

estimate in G0 whereas Wald is based on G space (Kooperberg, Stone, & Truong; 1995a).

After each model has been estimated through the iterative addition and deletion phases of G

construction, the model that minimizes BIC is the final estimate of the conditional log-hazard

function α(t|x, β).

3.2 The Joint Latent Class Mixed Model

Maximum Likelihood Estimation

The joint latent class mixed model (JLCMM) is composed of three component models: a

latent class membership model estimated from multinomial logistic regression, a longitudinal

trajectory model estimated from a linear mixed-effects model, and a time-to-event model

estimated by a hazard function. Let the sample comprise i = 1, . . . , N total participants. The

JLCMM is estimated by maximizing the log-likelihood `(θK) of the data for a fixed number
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Figure 3.1.1 RSS Calculation During Knot Addition Phase. Dashed lines show mini-
mized RSS based on each knot location tk.
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Figure 3.1.2 Knot Determination from BIC Calculations during Addition and Deletion
Phases of Adaptive Knot Placement. The optimal model is shown with a diamond, where the
total number of knots within this space is 4.
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of classes k = 1, . . . , K over the entire set of parameters for the K latent classes, θK . This

log-likelihood is defined in equation (3.3):

`(θK) =
N∑
i=1

log
K∑
k=1

πikf(Yi|ci = k, θK)λi(Ti|ci = k, θK)δiSi(Ti|ci = k, θK). (3.19)

πik represents the latent class membership probability, f(·) represents the longitudinal trajectory

density function, and λi(·) and S(·) represent the time-to-event hazard and survival functions,

respectively. Note that these latter two functions correspond to the determination of φi(·) in

equation (3.2). The density f(·) ∼ N(Xβk + Zbk,ZGkZ
T + R) for each latent class k. Each

model has sample-wide and class-specific estimates for each latent class k.

The log-likelihood `(θK) is estimated iteratively using the Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963) with strict convergence under three criteria: parameter sta-

bility (
∑p

j=1(θK(j)(l)− θK(j)(l−1))2 ≤ εa), `(θK) stability (`(θ)(l)− `(θ)(l−1) ≤ εb), and partial

derivative size (∇(`(θ
(l)
K ))TH(l)−1∇(`(θ

(l)
K ))T

p
≤ εc) where each threshold ε = 10−4. (Proust-Lima, et

al., 2017). This estimation procedure has been validated for the purposes of identifiability in

finite mixture models by Proust-Lima et al (2009) using simulation studies. After assessing a

predetermined number of latent classes, such as 1 - 5, the optimal number of latent classes is

selected as the model which minimizes the BIC (Schwarz, 1978).

Latent Class Membership Probability

Let the sample of i = 1, . . . , N participants be divided into k = 1, . . . , K homogeneous

latent subgroups called latent classes. Latent class membership for participant i, ci, is determined

from a mulitnomial logistic regression model conditioned on a set of X(c) that may be unique

to the latent class membership model or common to other components of the JLCMM. Let πik

denote the probability that participant i belongs to latent class k. Then, this model is estimated

by

πik = P (ci = k|X(c)) =
eξ0k+XT

(c)
ξ1k∑K

l=1 e
ξ0l+X

T
(c)
ξ1l

(3.20)
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where ξ represents the coefficients associated with latent class k. For identifiability, the largest

latent class is the referent class (i.e. ξ0K = 0, ξ1K = 0). An assumption of the JLCMM is that

given knowledge about latent class membership, the longitudinal outcome and time-to-event are

independent. That is, a participant’s longitudinal trajectory and event hazard are class-specific

where knowledge of class membership dictates these two outcomes.

Class-Specific Longitudinal Outcome

Conditional on the latent class k, the longitudinal outcome described at measurement times

tij for participant i and measurement j is estimated using a linear mixed-effects model

Yi(tij)|ci=k = Xβk + Zbik + εi(tij) (3.21)

where X = Xli(tij) is a vector of potentially time-dependent fixed effects covariates associated

with the coefficients for latent class k, βk. Similarly, Z = Zi(tij) is a vector of potentially

time-dependent random effects covariates associated with the coefficients for latent class k,

bk. G and R can follow any typical covariance structures, but typically G is unstructured and

R = σ2Ini (j = 1, . . . , ni) in order to reduce the number of estimated parameters and for

helping identifiability. εi(tij) can represent independent errors at each time tij or represent a

correlation process such as autoregressive correlation. Covariates X and Z may overlap but do

not necessarily have to.

Class-Specific Hazard Function using HARE

From equation (3.2),

φi(Ti, δi) = log λi(Ti, δi)Si(Ti, δi)

= δiα(T̃i|X(s), β)−
∫ T̃i

0

exp(α(ui|X(s), β))du, y ≥ 0, δi ∈ {0, 1}

where T̃i is the observed time, X(s) are the covariates associated with the time-to-event model,

and α(t|X(s)) =
∑p

j=1 βjBj(t|X(s)) is the log-hazard function as estimated by HARE. Con-
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ditioned on the latent class k, the proportional hazards model estimated within a JLCMM

is

λi(t|ci = k, θ̃k) = λ0k(t)e
XT

(s)
θ̃k . (3.22)

where θ̃k are the class-specific parameters associated with X(s). With HARE, equation (3.6)

becomes

λi(t|ci = k, θ̃k) = exp{α(t|ci = k, θ̃k)}

= exp{
K∑
k=1

p∑
j=1

βjkBj}.

Conditional Independence

A central assumption for the JLCMM is that all of the information about the longitudinal

trajectory and time-to-event outcome are contained within a latent class, which indicates that

these two outcomes are conditionally independent once latent class assignment is determined

from the model. This assumption allows the terms in equation (3.3) to be separable. Therefore,

it is important to establish this assumption when estimating JLCMMs in order to justify the

latent class assignments. Jacqmin-Gadda et al. (2010) offered a score test to test whether

residual independence between the two outcomes was present after latent class assignment

was determined. The alternative hypothesis for this score testH1 assumes a random effect in

equation (3.6)

λi(t|ci = k,X(s), θ̃k) = λ0k(t)e
XT

(s)
θ̃k+bTikη

whose parameter η is a p−dimensional vector of random effects from the longitudinal model

for latent class k, bik. The hypothesis test assessesH0 : η = 0 vs. H1 : η 6= 0 using a score test

U =
∑N

i=1

∑K
k=1 π̂ik(Ei − Λik(Ti))b̂ik, where Ei is an indicator function determining whether

the observed event time is less than censoring time for individual i (i.e., Ti ≤ Ci) and Λik is

the k−specific cumulative hazard function. UnderH0, UTV ar(U)−1U ∼ χ2
p where rejection
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ofH0 implies a residual relationship between the longitudinal outcome and time-to-event exist

within a latent class. This η 6= 0 conclusion indicates that conditional independence has been

violated making the JLCMM suspect of inference. This score test has been shown to be a more

powerful method of detecting departure from conditional independence than other existing

methods (Jacqmin-Gadda, et al., 2010; Proust-Lima, et al., 2014).

Posterior Classification of Latent Class Membership

One of the motivations for using JLCMMs, or any latent class model in general, is the

ability to estimate probabilities of latent class membership within the sample. JLCMMs

estimate this probability using Bayes’ Theorem to calculate the posterior probability of latent

class membership conditioned on the joint outcomes of the model. Letting Yi be the longitudinal

outcome, (T̃i, δi) be the time-to-event outcome, and θ̂K be the estimates of all the parameters,

then the posterior probability of latent class membership for individual i in class k is

π̂
(Y,T̃ )
ik = P (ci = k|Yi, (T̃i, δi), θ̂k)

=
π̂ikf(Yi|ci = k, θ̂K)λi(T̃i|ci = k, θ̂K)δiSi(T̃i|ci = k, θ̂K)∑K
l=1 π̂ilf(Yi|ci = l, θ̂K)λi(T̃i|ci = l, θ̂K)δiSi(T̃i|ci = l, θ̂K)

. (3.23)

Note that these posterior probabilities are estimated after estimates for πik, f(Yi), λi(T̃i), Si(T̃i)

are determined.

Latent class membership is determined modally, where ĉ(Y,T̃ )
i = argmax

k
(π̂

(Y,T̃ )
ik ). Modal

assignment provides utility in inference, but it is not technically necessary, and some situations

may exist when dimensional assignment to classes may prove more useful (Vermunt, 2010). If

modal assignment is the intention, then a more discriminatory posterior classification indicates

a better fitting model. This discrimination can be determined in a few ways such as through

using proportional thresholds or through a posterior classification table.

Proportional thresholds gauge discrimination by determining the proportion of individuals

assigned to a latent class who have a posterior probability greater than some threshold value.

For example, if the threshold is 0.7, then a proportion P (ĉ
(Y,T̃ )
i1 ≥ 0.7) = 0.6563 indicates that
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almost 66% of the sample assigned to latent class 1 had a posterior probability of assignment to

LC 1 greater than 0.7. Greater proportions indicate greater discrimination between the latent

class assignments. Higher thresholds indicate stricter guidelines for determining discrimination.

Thresholds typically used include 0.7, 0.8, and 0.9 (Proust-Lima, et al., 2014).

Similarly, a posterior classification table of assignment in each latent class may be used

to assess discrimination. This K × K table provides the mean probability of assignment in

each latent class (along the columns) given modal assignment (along the rows). For example,

cell (1,1) would indicate the mean posterior probability of assignment into LC 1 given modal

assignment to LC 1 and cell (2,3) would indicate the mean posterior probability of assignment

into LC 3 given modal assignment to LC 2. A highly discriminatory assignment would have its

diagonal terms close to 1 and its off-diagonal terms close to 0.

Fitted Values

The linear-mixed effects model within the JLCMM provides subject-specific, sample-

specific, and class-specific predicted values. The former two predictions can be compared

with observed data to determine model fitness. The latter can be used for model inference, but

obviously not for comparison with some observed classes. Consider participant i with time j

assigned to class k. Then the marginal, class-specific prediction for Y is

Ŷijk = Zi(tij)
T b̂k + X(tij)

T β̂k

and the subject-specific prediction for individual i in LC k is

Ŷijk = Zi(tij)
T (b̂k + ĜkZ

T
i V̂
−1
ik (Yi −Xβ̂k − Zib̂k)) + X(tij)

T β̂k.

Individual-level or class-level predictions can be averaged by taking the weighted mean of

these outcomes with weights being equal to probabilities of latent class assignments. The

subject-specific and sample-specific residuals can be computed by subtracting the predicted
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values (Ŷij) from the observed values (Yij) to help assess model fit. Model fitness can also be

assessed from the survival functions Ŝk(t) =
∑N

i=1 π̂ikSi(t|ci = k, θ̂K).

Individual Dynamic Prediction

With joint models having been developed under a clinical framework, much research has

been dedicated to developing predictive tools that allow for dynamic prognostic decision making

(Proust-Lima & Taylor, 2009; Taylor, Yu, & Sandler, 2005; Rizopolous, 2011). One such

tool for individual-level dynamic prediction incorporates covariates and longitudinal outcomes

measured until time s to predict the probability of an event occurring within a time window

[s, s+ t]. These non-negative parameters are often denoted as the time at prediction (s) and the

horizon (t) (Proust-Lima, et al., 2014). While t is chosen by the investigator, it should reflect a

reasonable margin in time that reflects the rate of event occurrence. An horizon too large where

many events occur or too small where very few occur may prove useless for prediction. Let

Y
(←S)
i denote the longitudinal outcome until the time at prediction. X is the design matrix of

covariates, Ti is the time-to-event, and θ is the vector of parameters for the JLCMM. Then these

predicted probabilities are (Proust-Lima, et al., 2014)

P (Ti ≤ s+ t|Ti ≥ s, Y
(←S)
i ,X, θ) =

K∑
k=1

P (Ti ≤ s+ t|Ti ≥ s, ci = k,X, θ)× P (ci = k|Ti ≥ s, Y
(←S)
i ,X, θ)

=

∑K
k=1 πikf(Y

(←S)
i |ci = k,Xθ)(Si(s|ci = k,Xθ)− Si(s+ t|ci = k,Xθ))∑K

k=1 f(Y
(←S)
i |ci = k,Xθ)Si(s|ci = k,Xθ)

(3.24)

As expected, these predictions can be made using estimates θ̂ in place of θ. The variance of these

predictions are not analytic (Proust-Lima & Taylor, 2009; Rizopolous, 2011), so confidence

bands need to be estimated numerically using a method such as Monte Carlo or bootstrapping.

The draws for θ̂ are assumed to be asymptotically normal (Proust-Lima, et al., 2014).
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Predictive Accuracy using Expected Prognostic Observed Cross-Entropy

Given a conditional density fT̃ |Y where T̃ is the observed time-to-event, the expected prog-

nostic observed cross-entropy (EPOCE) is defined as E(− log fT̃ |Y,Y (←S) |T ≥ s) (Commenges,

Liquet, Proust-Lima; 2012). The EPOCE is an information theory-based predictive fit estimate

that estimates the expected risk (in a loss function sense) of assuming the form of fT̃ |Y to predict

time-to-event as an estimate for fT̃ |Y , similar to other cross-entropy functions. EPOCE can be

calculated using leave-one-out cross validation using equation (3.9):

CVPOLa(s) = − 1

Ns

Ns∑
i=1

Fi(θ̂, s) +N Trace(H−1Qs), (3.25)

where Ns are the number of participants still at risk at time s, H is the Hessian matrix of

equation (3.3), and Qs = 1
Ns(N−1)

∑N
i=1 I(T̃i ≥ s)v̂i(s)d̂

T
i for some gradients of the conditional

log-likelihood, v and d. Fi is determined as the log-probability of equation (3.8). EPOCE

has been shown in simulations (Proust-Lima, et al., 2014; Commenges, Liquet, Proust-Lima,

2012) to be advantageous over other methods such as quadratic error of prediction as it can be

estimated directly from the data through a cross-validation procedure and because it has fewer

assumptions regarding the distribution of horizon t and censoring indicator δi.
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CHAPTER 4: ANALYSES

4.1 Simulations

The hazard regression (HARE) methodology within a joint latent class mixed model

(JLCMM) framework was initially tested on simulated data. Data were constructed using

a shared random-effects joint model with a Weibull parameterization. Survival times were

estimated using the cumulative hazard inversion method (Bender, Augustin, & Blettner, 2005)

where survival times are estimated using the equation S−1
i (u) = H−1

0 (− log(u) exp(−XT
i β))

with definitions u ∼ Unif(0, 1), X is a vector of covariates, β are the corresponding parameter

coefficients for X , and H0 is the cumulative baseline hazard function. For a Weibull distribution,

the survival times are estimated by

S−1
i (ui) =

(
− log(ui)

ψ exp(XT
i β)

)1/ω

where ψ > 0 is the scale parameter and ω > 0 is the shape parameter. In order to simulate

the latent classes, three different Weibull parameterizations were used to construct three latent

classes of different sizes and survival distributions. These three classes were assimilated

into a single simulated data set where the joint distribution of the longitudinal outcome and

time-to-event outcome followed a mixture distribution of Weibull distributions.

The longitudinal model was simulated for individual i at visit s as

yi(s) = (β̃0k + bi0) + (β̃1k + bi1)s+ β̃2kxi1 + β̃3xi2 + β̃4xi3 + εi(s),
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and the time-to-event model was simulated as

λi(t) = λ0k(t) exp{θ̃1kxi1 + θ̃2kxi2 + θ̃3kxi3}

where yi(s) is the longitudinal outcome, β̃k̃βk̃βk = (β̃0k, β̃1k, β̃2k) is the vector of class-specific

fixed-effects parameters, β̃̃β̃β = (β̃3, β̃4) is the vector of sample-level fixed-effects, b = (b0, b1) is

the vector of random-effects parameters, θ̃̃θ̃θ = (θ̃1k, θ̃2k, θ̃3k) is the vector of survival parameters,

and ε ∼ N (0, 0.1) is the random error. Variable x1 is a mixture of uniformly distributed random

variables where 25% of the sample is simulated from a range of 30 to 65, 35% of the sample is

simulated from a range of 65 to 75, and 40% of the sample is simulated from a range of 75 to

85. After simulation, the x1 values were scaled by centering at 70 and dividing by 10. Variable

x2 was simulated as a Bernoulli random variable (x2 ∈ {0, 1}) with p = 1
2
. Variable x3 was also

a Bernoulli random variable (x3 ∈ {0, 1}) with p = 1
2
. For the sake of simplicity, consider x1 as

a scaled age variable, x2 as a treatment variable, and x3 as a sex variable.

The random effects were simulated as bivariate normal with bi ∼ N2(0,Σ) where

Σ =

 σ2
11 ρσ11σ22

ρσ11σ22 σ2
22


and σ11 = 0.4, σ22 = 0.2, ρ = 0.4. Survival time ti was simulated using the aforementioned

cumulative hazard inversion method

ti = Si(ui)
−1 =

(
− log(ui)

ψk exp(θ̃1kxi1 + θ̃2kxi2 + θ̃3kxi3 + αµi(s))

)1/ωk

,

where µi(s) = yi(s)− εi(s), and α is an association parameter that establishes the relationship

between the longitudinal and survival outcomes. For all simulations, α = 0.05. Variable

ui ∼ Unif(0, 1), and ψk, ωk are the scale and shape parameters for the Weibull distribution of

latent class k. Times ranged from 0 to 2 for the survival model where any value over 2 was set to

77



Table 4.1.1 Details of the Simulation

Parameters Latent Class 1 Latent Class 2 Latent Class 3

n 200 150 50
β̃0 1.500 0.500 3.000
β̃1 0.500 -0.500 1.000
β̃2 0.250 -0.250 0.125
β̃3 0.350 0.350 0.350
β̃4 0.500 0.500 0.500
θ̃1 0.250 0.550 -0.350
θ̃2 1.125 -0.050 0.350
θ̃3 0 0 0

Weibull shape (ω) 0.500 1.500 3.000
Weibull scale (ψ) 1.000 0.900 1.100

2.1. The longitudinal outcome was estimated within this time range with intervals of 0.5 between

observations. These longitudinal times are listed in figures as visits 1 through 5. Individuals had

different numbers of repeated measures corresponding to censoring time. Individuals who were

observed for all five visits without experiencing the event were considered censored at time 2.1.

To assess potential model mispecification and overfitting from HARE’s algorithm, θ̃3 = 0 for

all three latent classes, effectively making the hazard function uninfluenced by sex. β̃3 and β̃4

were held constant across classes. The total sample comprised N = 400 with n = 200 for latent

class 1, n = 150 for latent class 2, and n = 50 for latent class 3. Table 4.1.1 provides details

about the simulated joint outcomes for each latent class. Figure 4.1.1 illustrates the distribution

of times-to-event and longitudinal trajectories for each latent class.

HARE was used to estimate the survival time knots and any potential covariates with poten-

tial covariate knots for the time-to-event model for the entire sample of N = 400 observations.

This estimation used the hare() function from the polspline package (version 1.1.19) in R

v4.1.0 (Kooperberg, 2020). Survival times and event indicators where 0 represented censoring

and 1 represented event occurrence were provided to the hare() function while controlling

for age, treatment, and sex. HARE returned a survival function that consisted of knots for

times 0.001761498, 0.00462919, 0.01013831, 0.3350078, and 0.7397903 as well as for linear
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estimates of age and treatment. HARE did not indicate that sex was important an important

covariate for the survival model, which followed from the θ̃3 = 0 coefficient specified in the

simulation. From this output, the survival model for the JLCMM was determined to incorporate

age, treatment, and the aforementioned knots in time.

The JLCMM was estimated using the Jointlcmm() function from the lcmm package

(version 1.9.3) in R v4.1.0 (Proust-Lima, et al., 2017). Both Weibull and HARE-specified

survival models were tested and compared. The presupposition made for these comparisons was

that a three-class Weibull model would provide the best fit. The assessment would determine

whether the three-class HARE model was the best fitting among all HARE models and whether

this model provided comparable results to the three-class Weibull model.

The class-specific fixed- and random- longitudinal effects were held constant between the

two sets of models.

yi(s) = (β̃0k + bi0) + (β̃1k + bi1)(visit) + β̃2k(age) + β̃3(treatment) + β̃4(sex) + εi(s)

The primary distinction between these two sets of models was the time-to-event specification.

For the Weibull models, the hazard model controlled for age, treatment, and sex.

λik(t) = λ0k(t) exp{θ̃1k(age) + θ̃2k(treatment) + θ̃3k(sex)}

λ0k(t) ∼ Weib(ωk, ψk)

For the HARE models, the hazard model controlled for age and treatment, but not sex as it was

not considered important for the survival model. Additionally, the hazard knots were included

as part of the class-specific baseline hazard.

λik(t) = λ0k(t) exp{θ̃1k(age) + θ̃2k(treatment)}

λ0k(t) = exp{
p∑
j=1

βjkBj}
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Note that β in the λ0k(t) for the HARE model are different from the β̃̃β̃β vector in the longitudinal

model. A total number of 1 through 4 classes were tested for the Weibull and HARE models.

In Jointlcmm() the hazard option was specified as “Weibull” for the Weibull models

and “7-manual-splines” for the HARE models with hazardnodes equal to the knots in time

determined from HARE. The logscale option was kept ‘FALSE’ for the Weibull models

to help with convergence but kept ‘TRUE’ for the HARE models to exponentiate the log-

hazard α(t|x) determined by HARE. The 1-class solution for the Weibull parameterization

was used to initialize all multiple class Weibull models, and the 1-class solution for the HARE

parameterization was used to initialize all multiple class HARE models. Sets of parameters for

the multiple class models (i.e., k = 2, 3, 4) were randomly generated from the 1-class solutions

using the gridsearch() function with 30 repetitions for each estimation and maximum of 15

iterations for each repetition. This gridsearch() method provides the ability to use multiple

sets of initial parameters to ensure that convergence of the Levenberg-Marquardt algorithm

reaches a global maximum (Proust-Lima, et al., 2017).

Model summaries and fit statistics are provided in Table 4.1.2. These summaries provide

the log-likelihood value, BIC (Schwarz, 1978), number of parameters estimated, and proportion

of the sample assigned to each latent class. BIC was used as the decision criterion for best

fitting model, where the smallest BIC indicated the best fit. The JLCMM results from this

simulation are presented in Table 4.1.3. Since the class-specific B-spline coefficient estimates

are incomparable with the class-specific Weibull coefficient estimates, median survival times

(T.50) and mean survival times (E(T )) were estimated for the two models. Because latent

classification suffers from label switching, latent class assignment was matched to the true latent

class using a proportion method. This assignment method assumed that latent class assignment

of at least 85% indicated the label of the corresponding true latent class. For example, if at

least 170 individuals from true latent class 1 were assigned to latent class 2, it was assumed that

“assigned” class 2 referred to true latent class 1. Table 4.1.3 labels latent classes by their true

simulated latent class. All subsequent results tables follow this convention.
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Table 4.1.2 Summary Table of Fit Statistics for the Eight JLCMM Models

Model # parameters `` BIC % LC 1 % LC 2 % LC 3 % LC 4

Weibull 1 14 -547.6 1179.1 100% – – –
HARE 1 20 -518.8 1157.5 100% – – –
Weibull 2 23 -397.7 933.2 63.00% 37.00% – –
HARE 2 35 -384.3 978.2 63.00% 37.00% – –
Weibull 3 32 -249.6 691.0 37.50% 50.75% 11.75% –
HARE 3 50 -240.4 780.3 37.50% 50.50% 12.00% –
Weibull 4 41 -246.5 738.7 37.50% 31.25% 19.00% 12.25%
HARE 4 65 -233.5 856.5 12.25% 37.75% 37.50 % 12.50%

We can see from the results in Table 4.1.2 that, unsurprisingly, the three class Weibull

model has the best fit (BIC = 691.0) among all tested models. Among all HARE models, the 3

latent class solution also has the best fit (BIC = 780.3). While the three class Weibull model

ought to have the best fit, note that the number of parameters in the three class HARE model

(50 parameters) is much greater than that in the Weibull model (32 parameters), so some of the

difference in BIC likely derives from some penalization in the number of parameters used in

the HARE model. The proportions of each latent class for both three-class solutions were very

similar (different by 0.25% at most), and both were very close to the true proportions (different

by 0.75% at most). Both Weibull and HARE results overestimated the number of members in

latent class 1 (LC 1) and underestimated the number of members in latent class 3 (LC 3). Both

models correctly identified the number of members in latent class 2 (LC 2).

Table 4.1.3 summarizes the parameter estimates for the three-class Weibull and three-class

HARE JLCMMs. Both the Weibull and HARE methods had minor bias for the longitudinal

model estimates β̃̃β̃βk and β̃̃β̃β. In fact, the longitudinal model estimates for both Weibull and HARE

methods were nearly identical in both the coefficient estimates and in the measurements of

uncertainty. The bias in the survival models varied. The estimates for θ1k were off by about

10-20% for both Weibull and HARE methods excepting for LC 3 where estimates were off by

70-80% with HARE having a slightly less biased estimate. Weibull and HARE estimated the

intercept terms β̃0k relatively similarly, with β̃02 being overestimated in both models. Similar

levels of bias occurred for the θ2k estimates for LC 1 and LC 3, but the estimate for LC 2 was
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close to the simulated value. By default, the HARE method did not account for sex in the

survival model. The Weibull method had somewhat large, yet non-significant estimates of the

effect of sex θ̃3k with LC 3 having the largest bias of 0.305.

Since survival times were simulated from Weibull distributions, E(T ) can be calculated

directly from E(T )k = ψkΓ(1 + 1
ωk

) where Γ is the gamma function Γ(z) =
∫∞

0
tz−1e−tdt.

Using this equation and the parameters from 4.1.1, E(T )1 = 2.0, E(T )2 = 0.8125, E(T )3 =

0.9822. The estimated T.50 for each latent class was estimated by finding the minimum time at

which S(T ) ≥ 0.50 within the latent class. The estimated E(T ) was estimated by finding the

area under the curve using the AUC() function from the DescTools package in R (Signorell

et al., 2021). Note that these estimates were biased due to the presence of right censoring, so

comparisons between models provided a better indication of the performance of HARE than

comparison to the true values. While both methods produced incorrect estimates of mean and

median survival time, the two methods had similar estimates to one another.

Table 4.1.3 Results of the Simulation

Weibull HARE
Parameters LC 1 LC 2 LC 3 LC 1 LC 2 LC 3

n 203 150 47 202 150 48
β̃0 1.533 (0.042) 0.507 (0.047) 3.087 (0.071) 1.532 (0.042) 0.505 (0.047) 3.082 (0.071)
β̃1 0.466 (0.018) -0.526 (0.022) 1.028 (0.037) 0.466 (0.018) -0.526 (0.022) 1.027 (0.037)
β̃2 0.236 (0.021) -0.199 (0.023) 0.112 (0.046) 0.235 (0.021) -0.199 (0.024) 0.112 (0.046)
β̃3 0.292 (0.042) 0.292 (0.042) 0.292 (0.042) 0.293 (0.042) 0.293 (0.042) 0.293 (0.042)
β̃4 0.456 (0.041) 0.456 (0.041) 0.456 (0.041) 0.457 (0.042) 0.457 (0.042) 0.457 (0.042)
θ̃1 0.298 (0.072) 0.488 (0.082) -0.641 (0.141) 0.301 (0.072) 0.487 (0.083) -0.596 (0.133)
θ̃2 0.881 (0.160) -0.034 (0.182) 0.691 (0.321) 0.879 (0.161) -0.020 (0.181) 0.633 (0.313)
θ̃3 -0.196 (0.156) 0.207 (0.182) 0.305 (0.322) 0* 0* 0*
T.50 0.298 0.848 0.912 0.318 0.827 0.848
E(T ) 0.674 0.938 0.898 0.715 0.883 0.851

* = Parameter not estimated

Figure 4.1.2 shows the predicted longitudinal outcome, predicted hazard curve, and pre-

dicted survival curve for the three latent classes of the Weibull model (top) and HARE model

(bottom). The predicted longitudinal outcomes between the two methods are practically iden-

tical, as expected from the results in Table 4.1.3. The shapes of the hazard curves for both

methods match with HARE having higher maximum predicted hazards at the boundaries of
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the survival times for LC 1 and LC 3. The smoothness of the Weibull hazard curve for LC 1

is greater than it is for HARE LC 1. Survival curves between the two methods also matched

fairly well with some slight over estimation of survival probability among early time (0.5 - 0.7)

within LC 2. Mean and median computation time for the JLCMM analyses were calculated

using microbenchmark() from the R package microbenchmark (Mersmann, 2023). Mean

computation time over 100 iterations for the JLCMM using a Weibull parameterization was 11.6

seconds (median = 11.4 seconds). Mean computation time over 100 iterations for the JLCMM

using HARE was 738.6 seconds (median = 727.1).

Table 4.1.4 provides results from an analysis using simulated data of a sample of N = 800

where each latent class increased two-fold (n1 = 400, n2 = 300, n3 = 100). Likewise, Table

4.1.5 uses simulated data from a sample of N = 1200 where each latent class increased three-

fold from the original (n1 = 600, n2 = 450, n3 = 150). For N = 800, estimates were overall

less biased than for N = 400 with the exception of the estimates for LC 2. Both methods

underestimated the effect of β̃02, but these estimates also had lower standard errors than the

simulation using N = 400. The longitudinal model tended to be less biased than the survival

model for both methods, and that likely arises from the presence of censoring. Notably, both

the Weibull and HARE have similar estimates for the survival parameters when the data were

simulated according to a three-class Weibull mixture distribution. The Weibull model still

erroneously estimated an effect for sex in the survival model, though these estimates were also

closer to 0. The HARE model did not consider sex to be an important variable in the survival

model for a sample of N = 800. Standard errors decreased for each estimate, indicating some

asymptotically efficient behavior. ForN = 1200, the HARE model in general produced the least

biased results along with the smallest standard errors among all other HARE simulations. The

HARE and Weibull models shared many similarities in the longitudinal and survival parameter

estimates for these simulated data. Note that sex once again was not considered important by

HARE even with a much alrger sample size, whereas the Weibull model estimated one non-zero
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sex effect in LC 3 (albeit non-significant). These series of simulations indicated that HARE has

some asymptotically favorable properties when used in JLCMM.

Table 4.1.4 Results of the Simulation for N = 800

Weibull HARE
Parameters LC 1 LC 2 LC 3 LC 1 LC 2 LC 3

n 392 307 101 393 306 101
β̃0 1.494 (0.031) 0.482 (0.032) 3.007 (0.048) 1.493 (0.031) 0.481 (0.032) 3.006 (0.048)
β̃1 0.508 (0.014) -0.498 (0.016) 1.002 (0.027) 0.507 (0.013) -0.499 (0.016) 1.002 (0.027)
β̃2 0.245 (0.017) -0.255 (0.019) 0.110 (0.033) 0.245 (0.017) -0.225 (0.019) 0.110 (0.033)
β̃3 0.338 (0.030) 0.338 (0.030) 0.338 (0.030) 0.339 (0.030) 0.339 (0.030) 0.339 (0.030)
β̃4 0.568 (0.031) 0.568 (0.031) 0.568 (0.031) 0.569 (0.030) 0.569 (0.030) 0.569 (0.030)
θ̃1 0.285 (0.047) 0.555 (0.067) -0.564 (0.101) 0.285 (0.048) 0.570 (0.068) -0.571 (0.095)
θ̃2 1.119 (0.118) -0.206 (0.127) 0.500 (0.209) 1.132 (0.122) -0.223 (0.128) 0.479 (0.210)
θ̃3 -0.105 (0.109) -0.047 (0.126) -0.054 (0.228) 0* 0* 0*
T.50 0.339 0.827 0.785 0.361 0.848 0.806
E(T ) 0.715 0.914 0.790 0.775 0.932 0.795

* = Parameter not estimated

Table 4.1.5 Results of the Simulation for N = 1200

Weibull HARE
Parameters LC 1 LC 2 LC 3 LC 1 LC 2 LC 3

n 596 457 147 596 454 150
β̃0 1.519 (0.025) 0.531 (0.026) 2.987 (0.041) 1.517 (0.025) 0.531 (0.026) 2.979 (0.041)
β̃1 0.513 (0.012) -0.492 (0.013) 1.022 (0.024) 0.513 (0.012) -0.492 (0.013) 1.018 (0.024)
β̃2 0.243 (0.021) -0.237 (0.015) 0.122 (0.027) 0.243 (0.013) -0.236 (0.015) 0.121 (0.026)
β̃3 0.359 (0.024) 0.359 (0.024) 0.359 (0.024) 0.357 (0.024) 0.357 (0.024) 0.357 (0.024)
β̃4 0.495 (0.024) 0.495 (0.024) 0.495 (0.024) 0.498 (0.024) 0.498 (0.024) 0.498 (0.024)
θ̃1 0.283 (0.039) 0.566 (0.054) -0.318 (0.067) 0.279 (0.039) 0.573 (0.056) -0.316 (0.068)
θ̃2 1.066 (0.098) -0.018 (0.104) 0.490 (0.183) 1.066 (0.098) -0.018 (0.104) 0.489 (0.183)
θ̃3 0.091 (0.091) -0.040 (0.104) 0.214 (0.172) 0* 0* 0*
T.50 0.424 0.827 0.870 0.806 0.848 0.361
E(T ) 0.777 0.906 0.852 0.795 0.932 0.774

* = Parameter not estimated

One hundred replications were done for the N = 400 case using m = 100 different

simulated data sets. The focus of these replications was to determine estimation properties of the

HARE method for a three-class model, so model fit statistics were not computed, and Weibull

models were not used as comparisons. Table 4.1.6 provides a summary of these replicates.

Bias, empirical standard error (EmpSE), mean squared error (MSE), and coverage probability

were provided in the table for all model parameter estimates. Most of these estimates show a
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coverage of the true parameter value close to 95%. The primary exception was for the estimate

of θ̃2k, which consistently had a 92% coverage probability for the three latent classes. This

lower coverage probability may have arisen due to the estimate for LC 2 being so close to 0. A

statistically significant estimate of a parameter close to 0 requires a larger sample size than one

whose distance from 0 is large. Bias for certain estimates are greater than others, with estimates

for the survival model typically larger than for the longitudinal model. Similarly, the MSE for

the survival parameters were greater than for the longitudinal parameters in part due to greater

empirical standard error and greater bias.

Table 4.1.6 One Hundred Replicates of JLCMM of Simulated Data Using HARE

LC 1 LC 2 LC 3

Parameters Truth Bias EmpSE MSE Coverage
Probability Truth Bias EmpSE MSE Coverage

Probability Truth Bias EmpSE MSE Coverage
Probability

β̃0 1.500 -0.0045 0.0463 0.0022 0.95 0.500 -0.0014 0.0451 0.0020 0.98 3.000 -0.0075 0.0746 0.0056 0.93
β̃1 0.500 0.0023 0.0196 0.0004 0.94 -0.500 0.0002 0.0216 0.0005 0.95 1.000 -0.0039 0.0414 0.0017 0.95
β̃2 0.250 -2.67 ×10−6 0.0218 0.0005 0.97 -0.250 -0.0001 0.0266 0.0007 0.94 0.125 0.0006 0.0507 0.0026 0.96
β̃3 0.350 0.0040 0.0449 0.0020 0.95 0.350 0.0040 0.0449 0.0020 0.95 0.350 0.0040 0.0449 0.0020 0.95
β̃4 0.500 0.0006 0.0391 0.0015 0.94 0.500 0.0006 0.0391 0.0015 0.94 0.500 0.0006 0.0391 0.0015 0.94
θ̃1 0.250 0.0144 0.0704 0.0052 0.93 0.550 0.0024 0.0991 0.0098 0.96 -0.350 -0.0051 0.1266 0.0161 0.95
θ̃2 1.125 0.0063 0.1905 0.0402 0.92 -0.050 0.0132 0.1712 0.0295 0.92 0.350 0.0926 0.3088 0.1040 0.92

Simulation results indicated that HARE provides a reasonable estimate of the survival

model within a JLCMM without having any parametric assumptions about the survival func-

tions. The true number of latent classes was accurately determined with minimal membership

misclassification. Parameter estimates converged with true values as evidenced with similarities

between the Weibull and HARE JLCMM estimates. Further, the HARE method accurately

excluded sex from the survival model whereas the Weibull model estimated the parameter as

being non-trivial in certain simulations. The ability for HARE to use data-driven methods

to estimate the survival model provides support for its use when parametric assumptions are

dubious, particularly in heterogeneous cases. If a joint model is homogeneous and parametric in

nature, HARE provides comparable estimates to the true values. However, a parametric method

would be unlikely to provide comparable estimates to HARE in a heterogeneous sample.

One potential limitation from using HARE is its overestimation of the hazard for boundary

cases. The hazards for LC 1 early in time and LC 3 late in time were overestimated around the

support of the knots. However, this overestimation did not affect the survival estimates for these
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classes. Future work should be done such that knot selection may account for class-specific data

support. Specifically, latent classes with fewer data around knots could have weighted estimates

that mitigate overfitting.

4.2 A Joint Model of Mini-Mental State Examination Response and Time-to-Dementia
Diagnosis

Data Description

The Paquid research data comprises a representative random sample of people aged 65

and older living in two regions of southwestern France, Gironde and Dordogne (Letenneur, et

al., 1994). The goal of the Paquid study was to estimate the incidence of dementia, vascular

dementia, and Alzheimer’s disease among older adults living in France. The data were collected

as a prospective cohort with random sampling stratified by age, sex, and size of the geographical

sampling unit (based on electoral rolls of 37 parishes). Each stratum contains participants who

belonged to one of three age groups (65 - 74 years, 75 - 84 years, and ≥ 85 years), either male

or female sex, and one of five geographic units (< 2000 inhabitants, 2000 - 9999 inhabitants,

10000 - 49999 inhabitants, 50000 - 99999 inhabitants, and ≥ 100000 inhabitants). The final

sample included n = 4050 at baseline. More details about the Paquid data sample can be read

in Letenneur, et al. (1994).

The lcmm package for R (Proust-Lima, et al., 2017) contains a subset of these data

comprising 2250 observations of 500 participants and 12 variables from the Paquid cohort. Data

include repeated measures of cognitive assessments such as the Mini-Mental State Examination

(MMSE) (Folstein, et al.; 1975), an indicator of dementia (1 = dementia, 0 = censored), and time

to dementia (or time to censoring). Covariates of interest included age, sex, and an education

variable (binary with 1 = graduated from primary school and 0 = otherwise), where sex and

education were time-invariant. Data were collected from baseline over a period of a maximum of

20 years. The MMSE is a test of global cognitive functioning with integer scores ranging from
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0 to 30, where a higher score indicates higher global cognitive function. Folstein, et al. (1975)

developed the MMSE to assess participants quickly (typically in the span of 5 - 10 minutes) to

accommodate participants with delerium or dementia. However, this instrument was normed

using a sample including participants with dementia, affective disorders such as depression or

depression with cognitive impairment, schizophrenia, mania, neurosis, and personality disorders

with drug abuse. The participants with dementia on average scored the lowest (x̄ = 12.2)

of all cognitive impairment disorders, and scores of 20 were found only in participants with

dementia or some functional psychosis. Folstein, et al. (1975) report that the instrument is

valid and reliable (including test-retest reliability) as a measure of cognitive impairment. As

such, the MMSE can provide insight into the development of dementia and may have value as a

longitudinal marker of cognitive functioning for this sample.

Methods

The Paquid study data were used to determine the feasibility of using the HARE approach

to estimate the conditional log-hazard of the time-to-onset of dementia within a JLCMM. This

model also estimated the change in MMSE scores as a joint measure of cognitive functioning.

This score change was estimated using a linear mixed-effects model where random-effects

accounted for the within-subject variance produced by the longitudinal nature of the data. This

JLCMM accounted for the potential heterogeneity of these joint outcomes by estimating latent

classes. This method was compared to the JLCMMs detailed in the Jointlcmm() function

vignette of the lcmm package documentation (Proust-Lima, et al., 2017). Model specifications

were kept nearly identical for the purposes of comparison. The distribution of the MMSE scores

is non-normal, so a normed version of the MMSE derived from the NormPsy (Phillips, et al.,

2014) package was used for the JLCMMs. Further, age was centered at 65-years-old and divided

by 10 to mitigate estimation issues of using a quadratic term with large ages. Education and

sex were not transformed. The longitudinal mixed-effects model estimating change in normed

MMSE was specified as
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Yij = (β0 + b0) + (βj1 + bj1)xij1 + (βj2 + bj2)x2
ij1 + βj3xi2 + εij

where Yij is the normed MMSE score for participant i at time j, xij1 is the normed age for

participant i at time j, xi2 is the education status for participant i, β are the fixed-effects

parameters, b are the random-effects parameters, and εij are the error terms for each participant i

at time j. The polynomials for the normed age variable were orthogonal and calculated using R’s

poly() function in R v 4.1.0 (R Core Team, 2021). Class-specific estimates were determined

for the age polynomials, but class membership was estimated as an intercept-only model. The

class-specific proportional hazards model was estimated as

λi(t)

∣∣∣∣
ci=k

= λ0k(t)e
θi1xi2+θi2xi3

for k = 1, . . . , K classes, θi∗ fixed-effects parameters in the survival model, xi2 as education

status, xi3 as sex (female referent), and λ0k as the class-specific baseline hazard function. Models

with 1 to 4 potential latent classes were estimated.

The distinction between the Proust-Lima, et al. (2017) specification of the model and the

HARE specification entails the estimation of λi(t) where the former specifies a two-parameter

Weibull distribution to estimate the log-hazard function and the latter estimates the log-hazard

using the adaptive HARE technique. Spline-based specification of the log-hazard function

was given in the hazard option of the jlcmm() function and its knots were specified using

the hazardnodes option. Two HARE models were estimated: one where class-specific

estimates were unrelated (hazardtype = ‘‘Specific’’) and one where class-specific

estimates were proportional (hazardtype = ‘‘Proportional’’). The proportional

method assumed that all class-specific estimates of the baseline hazard function were propor-

tional, which allowed for the estimation of fewer parameters than the ‘specific’ specification.

These two specifications were tested in the HARE model based on observations made from the

simulation study. Since HARE models estimated a larger number of parameters compared to
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a parametric survival models, it was of interest to determine whether some specifications to

reduce the parameter space could improve model fit. Model comparisons were made with fit

indices using the lcmm::summarytable() function. While log-likelihood and AIC were

examined, decisions of class structure were made with minimizing the BIC while accounting

for substantive reasoning for the latent class structure. After determining the best Weibull and

HARE models, class-specific predicted trajectories of normed MMSE were compared between

the methods. Cross-entropy was calculated to assess the predictive ability of latent classification

across several ages (i.e., 70, 72, 75, 77, 80, 82, 85, 87, and 90) using the epoce() function

from the lcmm package with profiles of cross-entropy plotted for comparison.

Results

Figure 4.2.1 provides an illustration of the empirical hazard rate and survival function over

a nearly 20-year period (ages 65 to 85) for the Paquid study data. These empirical estimates

were determined by treating the survival functions as counting processes. The survival function

was calculated as S(t) = I(T ≥ t) where I(.) is the indicator function, and the hazard rate

was caculated as λ(t)dt = P (t ≤ T < t + dt, C = 1|T ≥ t) where dt is set as an interval of

2 years and C = 1 refers to experiencing the event (i.e. dementia onset). While the hazard

rate primarily increases over the study period, as reflected in the survival curve, there are a few

intervals where this hazard rate peaks. These peaks occur within the first few years of study,

around 10 years into the study, and between 15 and 20 years into the study. This latter interval

refers to ages of 80 to 85, and its hazard rate is expectedly the largest during the study period.

Table 4.2.1 summarizes the empirical hazard rates and survival probabilities of this sample.

Column N indicates the number not censored or with dementia at the beginning of the interval,

column Cases indicate the number of participants who were diagnosed with dementia within

that interval, the hazard rate calculates the number of dementia cases divided by N by the end

of an interval, and the left-interval survival probability estimates the number of participants who

91



Fi
gu

re
4.

2.
1

(A
)E

m
pi

ri
ca

lB
as

el
in

e
H

az
ar

d
Fu

nc
tio

n
of

Pa
qu

id
D

at
a

(B
)E

m
pi

ri
ca

lS
ur

vi
va

lF
un

ct
io

n
of

Pa
qu

id
D

at
a

92



are dementia-free or been censored at the beginning of an interval. All recorded events after 20

years were right-censored.

Table 4.2.1 Empirical Survival Estimates of Paquid Data

Interval Ages N Cases Hazard Rate Left-Interval
Survival Probability

[0, 2) 65 - 67 490 3 0.006 1.000
[2, 4) 67 - 69 429 20 0.047 0.876
[4, 6) 69 - 71 359 7 0.019 0.733
[6, 8) 71 - 73 302 13 0.043 0.616
[8, 10) 73 - 75 255 17 0.067 0.520
[10, 12) 75 - 77 214 19 0.089 0.437
[12, 14) 77 - 79 176 15 0.085 0.359
[14, 16) 79 - 81 136 4 0.029 0.278
[16, 18) 81 - 83 116 12 0.103 0.237
[18, 20) 83 - 85 78 18 0.231 0.159
[20,∞) 85+ 56 0 0.000 0.114

Figure 4.2.2 illustrates a comparison of the estimated hazard function and survival curve

from Jointlcmm() when using a one-class Weibull parameterization versus using HARE to

estimate the baseline hazard. For clarity, the Weibull parameterization from lcmm differs from

that specified in §4.2.1 by defining λ0(t) = ζ1ζ2t
ζ2−1, where ζ1 is the scale parameter and ζ2 is

the shape parameter. The B-spline knots for the hazard function were estimated by HARE as

18.57, 18.90, and 19.7, which corresponded to ages 83.57, 83.9, and 84.7

Both the HARE and the Weibull models estimate an increasing hazard function (and,

conversely, a decreasing survival). The primary difference, however, is that a Weibull param-

eterization estimates the hazard as a strictly increasing function whereas HARE estimates a

peak around the 18-year followup mark. This distinction is also clear in the survival functions

as the HARE estimated survival function contains an “elbow” near the 18-year mark where

a sharp increase of dementia cases occur. The HARE-estimated hazard function reflects the

maximum hazard around the 18-to-20 year follow-up as seen in Table 4.2.1 (λ(t) = 0.231) that

the Weibull parameterization does not. This provides some evidence that data-driven methods

for estimating the baseline hazard function such as done with HARE provides a more robust
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estimate of the hazard function than a parametric estimate. The utility of B-splines to adapt to

the data may lead to estimate heterogeneity within the sample better than a parametric method.

Table 4.2.2 Joint Latent Class Mixed Model Summaries of Standard Weibull & HARE models

Model K LL npm BIC % Class 1 % Class 2 % Class 3 % Class 4

Weibull 1 -7747.9 15 15588.7 100%
HARE 1 -7746.3 20 15616.5 100%
Weibull 2 -7696.9 21 15553.9 70% 30%
HARE PH1 2 -7690.9 25 15536.7 17.1% 82.9%
HARE SH2 2 -7693.3 31 15578.7 78.0% 22.0%
Weibull 3 -7681.4 27 15530.1 55.1% 21.8% 23.1%
HARE PH 3 -7675.3 30 15536.4 21.0% 62.3% 16.7%
HARE SH 3 -7680.6 43 15627.5 22.6% 59.8% 17.6%
Weibull 4 -7678.4 33 15521.2 37.6% 27.8% 5.1% 29.6%
HARE PH 4 -7661.7 35 15540.1 16.5% 2.2% 62.0% 19.2%
HARE SH 4 -7677.9 55 15696.7 9.4% 33.9% 36.9% 19.8%

1 = “PH” is Proportional Hazards
2 = “SH” is Specific Hazards

Table 4.2.2 summarizes the model fit results assessing the single class model (as depicted in

Figure 4.2.2) as well as for models with 2, 3, and 4 latent classes. The algorithm for estimating

the two-, three-, and four-latent class models used starting values from the one-latent class model

to estimate the parameters. Both Weibull parameterization and HARE estimation methods are

listed. The negative log-likelihood and BIC are provided as fit statistics with model selection

focused on BIC. The number of parameters estimated is listed under the “npm” column. The

proportion of the sample classified in each latent class is given in the latter four columns.

Different estimation methods were used for the models to ensure finding the global maximum

of solutions. For the Weibull models, starting values were initialized with the B option in

Jointlcmm() following the best fitting results found in Proust-Lima, et al. (2017). For

the HARE models, best fits were found using the gridsearch() function within lcmm

specifying 30 repetitions, 15 maximum iterations, and the one-class HARE model as the model

from which initial values are generated. This function randomly generates a number of initial

values based on the initial model equal to the number of repetitions specified (i.e., 30). The
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function then finds the set of values which reaches the maximum likelihood over the specified

number of iterations (i.e., 15). The log-likelihood is saved from these repetitions, and the

algorithm then uses the best of all of these log-likelihoods to begin the final iteration. These

parameters are used to find a solution for the Levenberg-Marquardt algorithm. If the convergence

criteria are met, these estimates are the solution to the parameter estimation algorithm.

The best fitting model among those tested is the four-class Weibull model (BIC = 15521.2).

The best fitting HARE model was the three-class PH model (BIC = 15536.4). While the

four-class Weibull model did provide the best fit to the data, it is worth noting two points: (i)

the Weibull model only provided best fit when providing a predetermined set of initial values

that had been validated in previous literature, and (ii) the difference in BIC is 15.2, which is

relatively negligible. The former point becomes more apparent when detailing that standard

estimation and gridsearch() methods of estimating the global maximum provided worse

fits than what was determined by HARE. It is possible that HARE could have a lower BIC if a

set of optimal parameters were set with the B option. Since the PH models provided better fit

over the SH models, and the proportion of latent class assignment was very similar between

PH and SH models, only the three-class HARE PH model was compared with the four-class

Weibull solution. For the three-class HARE PH solution, LC 2 comprises the majority of the

sample with 62.3% belonging to this class. LCs 1 & 3 have comparable sizes (21% and 16.7%,

respectively). For the four-class Weibull solution, most members were assigned to LCs 1, 2, and

4 (37.6%, 27.8%, and 29.6%, respectively) and 5.1% for latent class 3.

Tables 4.2.3, 4.2.4, 4.2.5, and 4.2.6 summarize the latent classification through posterior

probability for the four-class Weibull model. Table 4.2.3 gives information that parallels the

information given in Table 4.2.2. Table 4.2.6 summarizes the same latent class assignment if

only the longitudinal normalized MMSE model were used to estimate the posterior probability

of being a member of a latent class. Comparing tables 4.2.3 and 4.2.6 can provide insight

to how the joint model (i.e., including time-to-event) affects latent class assignment. If the

time-to-dementia onset were ignored from this model, then class 3 would be much smaller
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comprising < 1% of the whole sample, and latent class 4 would be much larger. Table 4.2.4

provides the mean class assignment probabilities within each class. Since class membership

is assigned modally, each participant has a posterior probability of being in any of the four

classes. A participant becomes assigned to a specific latent class if that participant’s probability

of being a member in that class was the highest. As an example, for ci = 2, the mean posterior

probability of being assigned to class 2 is 0.598 or around 60%. This table provides some insight

into counterfactual inference. For participants assigned to class 1, the second most likely class

membership is class 2 where P (ci = 2) = 0.205. However, participants assigned to class 1 have

a low probability, on average, of being assigned to classes 3 or 4 with probabilities around 6%.

Table 4.2.5 illustrates how strong these posterior probabilities are within each class assignment.

The least uncertain class assignments were in latent classes 1 & 4, who had around half of their

posterior probabilities ≥ 0.70. Further, over 40% of the posterior probabilities of those assigned

to class 4 were ≥ 0.90. Assignment to classes 2 or 3 contained much more uncertainty, with

less than 40% of their respective members having posterior probabilities ≥ 0.70. Class 3 had

only 8% of its posterior probabilities ≥ 0.90.

Table 4.2.3 Posterior Probability of Class Assignment for Best Fitting Weibull Model

Class 1 Class 2 Class 3 Class 4

N 184 136 25 145
% 37.6 27.8 5.1 29.6

Table 4.2.4 Mean of Posterior Probabilities for Best Fitting Weibull Model

k P (ci = 1) P (ci = 2) P (ci = 3) P (ci = 4)

1 0.669 0.205 0.063 0.064
2 0.172 0.598 0.121 0.109
3 0.145 0.159 0.652 0.044
4 0.087 0.159 0.069 0.685
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Table 4.2.5 Proportion of Posterior Probabilities above Thresholds for Best Fitting Weibull
Model

k = 1 k = 2 k = 3 k = 4

P (ci = k) ≥ 0.7 49.5% 31.6% 36.0% 53.8%
P (ci = k) ≥ 0.8 34.8% 29.4% 24.0% 47.6%
P (ci = k) ≥ 0.9 25.5% 23.5% 8.0% 40.7%

Table 4.2.6 Posterior Probability of Class Assignment for Best Fitting Weibull Model using
only longitudinal model

Class 1 Class 2 Class 3 Class 4

N 186 125 4 175
% 38.0 25.5 0.8 35.7

Tables 4.2.7, 4.2.8, 4.2.9, and 4.2.10 summarize the latent classification through posterior

probability for the three-class HARE model. Table 4.2.7 gives information that parallels the

information given in table 4.2.3. Table 4.2.10 summarizes the same latent class assignment if

only the longitudinal normalized MMSE model were used to estimate the posterior probability

of being a member of a latent class. Like with the Weibull model, we can compare tables 4.2.7

and 4.2.10 to provide insight to how the joint model (i.e., including time-to-event) affects latent

class assignment. If the time-to-dementia onset were ignored from this model, then class 3 and

class 1 would have fewer and more assignments than otherwise, respectively. Class 2 would

largely be unchanged. Table 4.2.8 provides the mean class assignment probabilities within

each class. With fewer total classes in this model than the previous Weibull model, a direct

comparison is inappropriate. However, the mean posterior probabilities of these three classes

are higher overall indicating less uncertainty with class assignment. Class 1 has the largest

mean posterior probability, and two-thirds of its members have posterior probabilities ≥ 0.90

(Table 4.2.9). Classes 2 and 3 had converse rank-order. That is, the most probable assignment

for class 2 was class 2 and the second-most probable assignment was class 3. Conversely, the

most probable assignment for class 3 was class 3, and the second most probable was class 2.

Neither class 2 nor 3 had a high mean posterior probability of assignment to class 1.

98



Posterior probabilities and class assignments for the three-class HARE model were overall

higher and more modal than the four-class Weibull model. Part of this distinction derives from

the HARE model estimating fewer latent classes than the Weibull model. However, there is still

clearer discrimination between classes in the HARE model than the Weibull model as can be

seen comparing tables 4.2.4 & 4.2.5 with tables 4.2.8 & 4.2.9. A greater proportion of class

assignments reach the 0.7, 0.8, and 0.9 thresholds in the HARE model than the Weibull model

with only the fourth latent class in the Weibull model having comparable posterior probabilities

to the ones estimated in the HARE model.

Table 4.2.7 Posterior Probability of Class Assignment for Best Fitting HARE Model

Class 1 Class 2 Class 3

N 103 305 82
% 21.0 62.3 16.7

Table 4.2.8 Mean of Posterior Probabilities for Best Fitting HARE Model

k P (ci = 1) P (ci = 2) P (ci = 3)

1 0.831 0.067 0.102
2 0.101 0.712 0.187
3 0.080 0.203 0.712

Table 4.2.9 Proportion of Posterior Probabilities above Thresholds for Best Fitting HARE
Model

k = 1 k = 2 k = 3

P (ci = k) ≥ 0.7 74.8% 51.2% 50.0%
P (ci = k) ≥ 0.8 70.9% 40.3% 42.7%
P (ci = k) ≥ 0.9 66.0% 30.5% 34.2%

Table 4.2.10 Posterior Probability of Class Assignment for Best Fitting HARE Model using
only longitudinal model

Class 1 Class 2 Class 3

N 120 300 70
% 24.5 61.2 14.3
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Figure 4.2.3 illustrates the trajectory of outcomes for each class within the four-class

Weibull model and three-class HARE model. The left figures illustrate the mean scores within

each latent class over the study period. The right figures illustrate the probability of being

dementia-free within each latent class over the study period. The Weibull model has distinct

MMSE mean trajectories and dementia-free probabilities for the first (solid black line) and

fourth (dotted blue line) latent classes. Cognitive functioning was consistently high for the

first latent class, which reflects a high probability of being dementia-free with only some drop

occurring in the patients’ early-90s. Cognitive functioning for the fourth latent class was almost

equal to the first class at baseline, but it decreased by approximately 20 points within 2 decades.

Likewise, the probability of remaining dementia-free for this latent class diminished, with a

decrease in probability occurring shortly after baseline and reducing to 0 by age 87. Latent

class 2 (red dotted line) has a cognitive functioning score that decreases roughly twenty points,

but its rate of decline occurs at a slower rate than latent class 4–a twenty point decrease over

almost 3 decades. Its dementia-free probability decreases at a rate between that of classes

1 and 4. Overall, these three classes behave like a gradient with latent class 1 having better

outcomes than latent class 2, which has better outcomes than latent class 4. The standout latent

class is latent class 3, which has poor MMSE outcomes and good dementia-free probability

outcomes. The third latent class starts with the highest mean cognitive functioning level, but it

decreases almost 40 points within 3 decades. However, its probability of the onset of dementia

is comparable to latent class 4. This latent class appears to have an elongated outcome of time

spent dementia-free in spite of cognitive decline. One consideration is that this latent class is

the smallest of the four (n = 25), which could account for the high MMSE average at baseline.

The HARE model illustrates mean MMSE trajectories and dementia-free probabilities

that parallel the latent class outcomes for the Weibull model. Latent class comparisons can

be seen in Table 4.2.11. Specifically, HARE latent class 1 (solid black line) is composed of

members entirely from Weibull latent class 4. HARE latent class 2 (dotted red line) is primarily

composed of members from Weibull latent class 1, but also has members from latent classes 2 -
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4. The HARE latent class 3 (green dotted line) comprises mostly members of Weibull latent

classes 2 with a few from the other latent classes. This blending of latent classes naturally

raises the question whether the Weibull model erroneously separated one class into two or if

the HARE model neglected to separate a naturally occurring group of people who decline in

cognitive function without onset of dementia. The answer to this question likely depends on the

substantive question itself (Bauer, 2022). For example, it may be integral to identify a latent

class of people who do not qualify for a diagnosis of dementia in spite of decrease in cognitive

function. In this case, the Weibull model may have superior qualities compared to this HARE

model, especially since latent class 2 for HARE appears to contain members who identify as

having a positive prognosis of dementia and cognitive functioning. However, considering latent

class 3 in the Weibull model comprises a total of 25 people, the Weibull model may also be

biased by a few outliers. This conjecture has some evidence by virtue of Weibull class 3 being

primarily members of HARE class 2 with only a few members (n = 6) in HARE class 3. One

conclusion from these figures is that the HARE model does not estimate the joint outcomes for

its latent classes much different from the published model in Proust-Lima, et al. (2017).

Table 4.2.11 Latent Class Assignment Between the Two Models

Weibull LC 1 LC 2 LC 3 LC 4
HARE

LC 1 0 0 0 103
LC 2 181 65 19 40
LC 3 3 71 6 2

Figure 4.2.4 illustrates the predicted normed MMSE scores for each latent class within

the Weibull model (top) and HARE model (bottom). These figures parallel figure 4.2.3 in that

Weibull latent class 1 and HARE latent class 2 have better cognitive functioning scores over the

study period compared to their respective other latent classes. The one distinction worth noting

is that the Weibull model produces less discrimination between the predicted MMSE scores of
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Figure 4.2.3 (A) Mean Trajectory of Normed MMSE for four-class solution (Weibull)
(B) Class-specific Probabilities of Being Dementia-Free (Weibull)
(C) Mean Trajectory of Normed MMSE for three-class solution (HARE) (D) Class-specific
Probabilities of Being Dementia-Free (HARE)
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classes 2-4 later in the study period than the HARE model does between latent classes 1 and 3.

Table 4.2.12 provides more details about this discrimination at later study periods.

Table 4.2.12 summarizes the expected prognostic observed cross-entropy (EPOCE) of the

joint models (Commenges, et al., 2012). Specifically, the cross-validated prognostic observed

log-likelihood (CVPOL) is calculated for each model and compared at the different ages. The

CVPOL is a risk function that assess the predictive accuracy of the two outcomes in a joint

model by calculating the expected cross-entropy under a leave-one-out cross-validation method

and taking the average of these estimates. Lower CVPOL indicates a better prediction of the

‘prognosis’ of the joint model: the estimated normed MMSE and onset of dementia at each

prediction time.

Table 4.2.12 EPOCE of The Weibull and HARE models

Age N at risk N events CVPOL Weibull CVPOL HARE
70 477 128 1.114 1.191
72 456 126 1.133 1.301
75 433 125 1.170 1.284
77 405 122 1.195 1.365
80 347 107 1.173 1.318
82 305 96 1.171 1.313
85 237 73 1.131 1.173
87 181 51 1.142 1.000
90 91 28 1.305 0.824

Overall, the four-class Weibull model has a lower CVPOL value for predictions at earlier

ages. However, the three-class HARE model has a much lower CVPOL value at the 87-year-old

and 90-year-old prediction times. These cross-entropy values reflect what is seen in Figures 4.2.2

and 4.2.4: the precise estimation of the hazard function from HARE’s B-spline procedure allows

for better prediction around the knots. This result should be no surprise as it is a semi-parametric

approach. The jump in the hazard function, as seen in Figure 4.2.1, is not easily estimated using

a parameterization such as the Weibull model–even when the Weibull parameters fit the data

very well. One improvement here would allow for HARE to be more flexible within latent
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classes, but first an examination of the model results is needed. Tables 4.2.13 & 4.2.14 provide

the joint model estimates for the Weibull and HARE models, respectively.

The results of Tables 4.2.13 & 4.2.14 provide summaries for the four parts of a joint LCMM:

class-membership estimates, the survival model estimates, the fixed-effects estimates of the

longitudinal model, and the random-effects estimates of the longitudinal model (denoted Σ in

the table). The class-membership estimates calculate the prior probabilities of class membership

using a multinomial logistic regression. By default, the largest latent class is the referent group.

For example, the prior probability of belonging to latent class 3 for the Weibull model is:

exp(−1.0676)

exp(−1.0676) + exp(0.0317) + exp(−0.0503) + exp(0)
= 0.1033 = 10.3%

These probabilities are used to estimate the posterior probability of class assignment using

Bayes Theorem, where π̂i,k = P (ci = k|Xi, Yi, θ̂) where θ̂ is the vector of parameters estimated

in the K latent class models. The estimates for the survival model include the covariates

of interest in the model (education status and sex) as well as the baseline hazard parameters

such as the class-specific shape and scale parameters for the Weibull model, the class-specific

proportional hazards estimates for the HARE model, and the log-splines of the hazard function

for the HARE model. The longitudinal results provide estimates of education, class-specific

intercepts, class-specific age estimates, and class-specific age2 estimates of the change in normed

MMSE score over the study period. The random-effects estimates for the longitudinal model

provide a lower diagonal matrix of the variance-covariance matrix of the class-specific covariates.

This matrix is typically labeled the G matrix in mixed-effects models literature.

The class-specific survival parameters are statistically significant for both the Weibull and

HARE models. Certain log-spline estimates for the hazard function from the HARE model

are not statistically significant. This lack of statistical significance is of minimal importance to

this model as the determination of the hazard knots are based on BIC values of tensor spaces,
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Table 4.2.13 Joint LCMM Model Estimates for 4-Class Solution (Weibull)

Class-Membership

Variable β SE† Wald Statistic p-value

Intercept (Class 1) 0.0317 0.247 0.128 0.898
Intercept (Class 2) -0.0503 0.245 -0.205 0.838
Intercept (Class 3) -1.0676 0.456 -2.343 0.019

Survival Model

Variable β SE† Wald Statistic p-value
±
√
ζ1 (Class 1) 0.101 0.001 153.224 < 0.001

±
√
ζ2 (Class 1) 7.075 2.132 3.319 < 0.001

±
√
ζ1 (Class 2) 0.105 0.001 366.569 < 0.001

±
√
ζ2 (Class 2) 7.030 0.598 11.763 < 0.001

±
√
ζ1 (Class 3) 0.101 0.001 270.157 < 0.001

±
√
ζ2 (Class 3) 10.219 4.021 2.542 0.011

±
√
ζ1 (Class 4) 0.110 0.001 222.203 < 0.001

±
√
ζ2 (Class 4) 5.092 0.3192 15.751 < 0.001

Education -0.673 0.263 -2.560 0.010
Male 0.171 0.319 0.535 0.593

Longitudinal Fixed Effects

Variable β SE† Wald Statistic p-value

Intercept (Class 1) 62.13 3.84 16.19 < 0.001
Intercept (Class 2) 65.05 5.85 11.12 < 0.001
Intercept (Class 3) 76.95 12.18 6.32 < 0.001
Intercept (Class 4) 64.28 3.78 16.70 < 0.001
Centered-Age (Class 1) 10.79 3.97 2.72 0.007
Centered-Age (Class 2) 4.20 6.54 0.64 0.520
Centered-Age (Class 3) -17.77 14.84 -1.20 0.231
Centered-Age (Class 4) 2.96 5.78 0.51 0.609
Centered-Age2 (Class 1) -4.28 1.16 -3.69 < 0.001
Centered-Age2 (Class 2) -4.72 1.81 -2.60 0.009
Centered-Age2 (Class 3) 1.74 3.97 0.44 0.662
Centered-Age2 (Class 4) -7.91 2.20 -3.59 < 0.001
Education 13.31 1.22 10.91 < 0.001

Σ Intercept Centered-Age Centered-Age2

Intercept 147.04
Centered-Age -44.05 34.51
Centered-Age2 6.96 -10.60 3.73

Score Test for Conditional Independence: 7.919 (p-value = 0.048)
† = Some SE < 0.001 rounded up to 0.001
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Table 4.2.14 Joint LCMM Model Estimates for 3-Class Solution (HARE)

Class-Membership

Variable β SE† Wald Statistic p-value

Intercept (Class 1) 0.1786 0.283 0.630 0.528
Intercept (Class 2) 0.6175 0.275 2.238 0.025

Survival Model

Variable β SE† Wald Statistic p-value

log(spline 1) -10.338 318.5 -0.032 0.974
log(spline 2) -7.459 15.63 -0.477 0.633
log(spline 3) -16.139 393.3 -0.041 0.967
log(spline 4) -3.262 0.802 -4.068 < 0.001
log(spline 5) -1.016 0.902 -1.126 0.260
log(spline 6) -0.784 6.170 -0.127 0.899
log(spline 7) 3.824 0.642 5.952 < 0.001
PH estimate (Class 1) 4.075 0.748 5.445 < 0.001
PH estimate (Class 2) -3.450 0.540 -6.413 < 0.001
Education -0.653 0.252 -2.592 0.010
Male 0.415 0.395 1.051 0.293

Longitudinal Fixed Effects

Variable β SE† Wald Statistic p-value

Intercept (Class 1) 63.04 3.91 16.13 < 0.001
Intercept (Class 2) 60.32 2.97 20.34 < 0.001
Intercept (Class 3) 73.91 5.13 14.40 < 0.001
Centered-Age (Class 1) 5.33 6.15 0.87 0.386
Centered-Age (Class 2) 9.79 3.33 2.94 0.003
Centered-Age (Class 3) -6.58 6.25 -1.05 0.292
Centered-Age2 (Class 1) -9.07 2.43 -3.74 < 0.001
Centered-Age2 (Class 2) -4.38 0.97 -4.53 < 0.001
Centered-Age2 (Class 3) -2.12 1.85 -1.15 0.252
Education 13.54 1.20 11.25 < 0.001

Σ Intercept Centered-Age Centered-Age2

Intercept 143.55
Centered-Age -50.80 65.66
Centered-Age2 14.26 -23.67 8.69

Score Test for Conditional Independence: 5.664 (p-value = 0.129)
† = Some SE < 0.001 rounded up to 0.001
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but this may provide motivation for class-specific estimates of these hazard knots. Primary

school education is a statistically significant covariate in both models with relatively equal

estimates (β = −0.673 in the Weibull model and β = −0.653 in the HARE model). Male

sex has a larger association in the HARE model (β = 0.415) relative to the Weibull model

(β = 0.171), but neither effect is statistically significant. Both estimates have roughly the same

standard error. Age and age2 were statistically significantly associated with normed MMSE

scores for the high-performing class in the Weibull model (latent class 1) and its equivalent

class in the HARE model (latent class 2). Further, these estimates are close in value (Weibull

βage,1 = 10.79, βage2,1 = −4.28; HARE βage,2 = 9.79, βage2,2 = −4.38). Similar parallels can

be seen comparing the poor-performing latent classes in both models (Weibull LC 4 and HARE

LC 1). Age itself is not statistically significant in either model, but the quadratic effect of age

is. The one distinction here is that the estimate of β for the age2 effect in Weibull is somewhat

larger (-7.91) than the estimate provided by HARE (-9.07). Education is likewise similar in

both models, both in magnitude (β ≈ 13 in both models) and in its statistical significance. The

variance of age in the random effects of the HARE model are roughly twice as large as in the

Weibull model. This could possibly result from the Weibull model having more class-specific

estimates, meaning that the HARE model has more unaccounted variance in age. While the

magnitudes differ, the covariance between intercept levels of normed MMSE (i.e. the baseline

level) and the age variables are negative for both models. This result is unsurprising seeing the

negative association between cognitive functioning and age in this sample overall.

The final comparison of note is for the score test for conditional independence (Jacqmin-

Gadda, et al., 2010) in both models. One assumption for estimating the likelihood of the

JLCMM is that the time-to-event and the longitudinal outcome (i.e. the time to dementia onset

and normed MMSE in this sample) should be independent once the latent class is known.

That is, estimates within latent classes are homogeneous and provide sufficient information for

estimating both outcomes. For this hypothesis test, the assumption is that the models are jointly

independent (more specifically, H0 : η = 0, where η assesses variance not explained by the
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covariates within the joint model). Rejecting this null hypothesis provides for the alternative

hypothesis that there is no conditional independence/there is joint dependence between the

outcomes not explained by the model. This hypothesis test is rejected for the Weibull model

(p = 0.048), but not for the HARE model (p = 0.129). Therefore, the latent classes as defined

by the Weibull model do not fully explain the joint outcomes, whereas they do for the HARE

model. This would make inference trickier for the class-specific estimates in the Weibull model

than for the HARE model.

4.3 Pupil Diameter and Time-to-Fixation on Social Regions of Face among Infants with
Elevated- and Low-likelihood of Autism Spectrum Disorder

Data Description

The identification of symptoms of Autism Spectrum Disorder (ASD) typically occur towards

the latter part of the first year or life or later, and diagnosis of ASD usually occurs at ages 24-

to 36-months-old at earliest (Grzadzinski, et al., 2017). However, neurobiological indicators

such as differences in the cortical surface area of children with an elevated likelihood (EL)

of developing ASD can be detected as early as 6-months of age through the use of structural

MRI (Hazlett, et al., 2017). While MRI or other imaging techniques could be used to identify

prospective cases of ASD during a pre-symptomatic period of age, these technologies are

expensive (Grzadzinski, et al., 2017) and difficult to implement in infants (Raschle, et al., 2012).

Therefore, research has been done to find biological and behavioral markers of ASD during the

pre-symptomatic period that do not rely on the use of imaging technology.

The SESAMI (Stimuli for Early Social Arousal and Motivation in Infants) paradigm was

developed to assess social arousal responses in the form of pupillary, cardiac, and respiratory

responses during social stimuli among EL-ASD children and a comparative group of children

with a low likelihood (LL) of developing ASD. This paradigm establishes an experiment of

the presentation of a series of videos to infants. A total of nine videos alternating between

control and stimulus trials are presented in this series, and multiple wearable devices measure
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the arousal biometrics of these infants. The stimulus trials depict videos of faces as they look

forward towards the viewer and speak some social phrase to the infant. Social phrases included,

“Hey baby!” or “I hope you’re having a good day.” These faces are placed in front of a black,

neutral background. The videos are formatted into two sections–a static portion and a dynamic

portion. The static portion comprises a five-second sequence of a neutral, unmoving face with

no sound. The dynamic portion comprises a five-to-eight second sequence of the moving face

with accompanying social audio.

Control trials operated similarly to stimulus trials with videos comprising a static portion and

dynamic portion. However, to ensure that the control trials were absent of social stimuli, various

alterations were made to the stimulus videos. The faces used in these videos were inverted

upside-down and pixelated. Audio was filtered through a musical harmonization program that

changed verbalization to lilts. (One might describe this process as “pixelating” a voice). Control

trials, therefore, presented a static, pixelated image of an inverted face for five seconds followed

by a dynamic pixelated face that lilted for five-to-eight seconds. Constant luminance was

maintained throughout all control and stimulus trials to avoid differential pupillary response to

light. The goal of this experiment was to determine what levels biometric responses of arousal

were produced by social cues in the presence of other typical arousal responses.

Pupillary response data, which included gaze location on a standardized XY-coordinate

system of the screen and pupil diameter for each eye, was collected with Tobii Pro Lab (v1.181)

using the Tobii Pro Fusion eye tracking device (Tobii Pro AB, 2014). Data were collected at

1000 Hz. The standardized coordinate system was a media coordinate system norm with the

X- and Y- coordinates ranging from 0 to 1. The origin of this screen is at the top-left position

making the x-axis range from 0 to 1 in a left-to-right direction and the y-axis range from 0 to 1

in an up-to-down direction. Pupil diameter was measured in centimeters.

From these data, a total of N = 64 infants were included in these analyses with 17 EL

infants and 47 LL infants. Down syndrome infants and their respective controls were excluded

from the analyses due to low proportions of infants with non-missing pupil data. There were 32
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males (11 in EL group and 21 in LL group) and 32 females (6 in EL group and 26 in LL group).

The average age was 11.9 months (SD = 5.62, range = 5.9 to 25.1). For EL infants, the average

age was 10.8 months (SD = 7.49, range = 5.9 to 25.1), and the average age for LL infants was

12.1 months (SD = 5.2, range = 6.23 to 23.6).

Methods

The goal of these analyses was to determine whether latent class structure could be estimated

from joint outcomes of pupil diameter size and the time taken to fixate on a social region of

the face. These arousal profiles may be heterogeneous during the pre-symptomatic period

(Grzadzinski, et al, 2017), so a JLCMM would provide a sound method of estimating the joint

model. Further, HARE would likely be preferable over a parametric model because of its looser

set of assumptions for this heterogeneous population. The change in pupil size was estimated

using a linear mixed-effects model, and the time-to-fixation on a social region was estimated

using HARE with class-specific baseline hazards.

Since pupil diameter data were time series and infinite-dimensional, these data were trans-

formed and down-sampled to be appropriate for a linear mixed-effects model. Over the sequence

of nine video trials, some seasonality effects occurred with a number of participants where

the pupil size sustained some increase over the period of the trials. In a few cases, pupil sizes

sustained decrease over this period. Further, some gaps existed where the infant’s eye data were

not registered by Tobii, presumably due to looking away from the screen. These gaps of missing

data were filled in using a last observation carried forward method. This method provided a

conservative estimate of pupil size change as missing data typically occurred in troughs and

occassionally at crests. After missing data were imputed, pupil diameter data were detrended

using the detrend() function in astsa in R v1.4.0 (Stoffer & Poison, 2023). This detrending

scaled the pupil diameters such that they had a mean of 0 and standard deviation of 0.5. Left

and right pupil diameters were largely concordant at a lag of 0 milliseconds (CCF = 0.611), so

the left pupil diameter was arbitrarily chosen as the longitudinal outcome. These data were then

downsampled to every 2500 milliseconds (ms) to accommodate the mixed-effects model.
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Time-to-fixation was defined as the time in ms taken to look at any social region or regions

for a total of 2000 ms (2 seconds). Social regions included the eyes (x-range from 0.35 to

0.65, y-range from 0.4 to 0.47), nose (x-range from 0.45 to 0.60, y-range from 0.47 to 0.55), or

mouth (x-range from 0.40 to 0.62, y-range from 0.62 to 0.75). The 2000 ms time threshold was

determined using a few criteria. Analyses for the SESAMI validation paper (paper forthcoming)

indicated that mean fixation time for any social region of interest was approximately 4000 ms.

However, any one social region had, on average, a total fixation time of 1500 ms. Therefore

2000 ms offered a time that likely indicated a participant had fixated on multiple social regions.

Further, as shown in Figures 4.3.1 and 4.3.2, a 2000 ms fixation period offered an excellent

amount of variation compared to other amounts of time. A 1000 ms total was too low a threshold

for the participants and 4000 ms onward had too few observed outcomes. This latter issue would

be especially difficult in trials where participants began to fixate on a social region towards the

latter half of the dynamic section of the video. Some dynamic portions of the video only lasted

5 seconds.

Only stimulus trials were used in the analyses, providing nine trials for each participant.

This decision was made because there was too little variability in the time-to-fixation in the

control tirals. In many of these trials, several participants did not fixate on any social region. On

average, fixation on any social region of the “face” during the control trial lasted slightly over

one second. This fixation time was less than 500 milliseconds on average for any individual

social region.

The longitudinal model for this analysis was

yi(t) = β0k + β1kxi1 + β2kx
2
i1 + β3kx

3
i1 + β4xi2 + β5xi3 + β6xi4 + β7xi5 + ωi(t) + εi(t),

where yi(t) is the detrended left pupil diameter for participant i at time t,βββk = (β0k, β1k, β2k, β3k)

is the vector of class-specific fixed-effects estimates for latent class k, βββ = (β4, β5, β6, β7) is the

vector of marginal fixed-effects estimates, ωi(t) is afirst-order autoregressive stationary process
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such that cov(ωi(t), ωi(s)) = σ2
ω exp{(−ρ|t− s|)}, and εi(t) is the random error for participant

i at time t. Due to the periodic nature of the pupil diameter change, ωi(t) accounted for the

within-subject variance in lieu of random effects. The independent variables xi2, xi3, xi4, xi5

were estimated marginally rather than by each class k. Variable xi2 was age of the participant in

months, xi3 was sex with female as the referent category, xi4 was the order of the video (ordinal

ranging 1 to 9), and xi5 was the likelihood group with LL as the referent category. The inde-

pendent variable xi1 represented the cumulative time in the trial measured in milliseconds. To

approximate the periodic nature of the pupil diameter over this time period, a cubic orthogonal

polynomial for xi1 was estimated using the poly() function in base R (R Core Team, 2021).

The survival model was estimated as

λi(t) = λ0k(t) exp{θ1kxi1 + θ2k(xi1 − 19.6)+ + θ3k(xi1 − 23.13)+ + θ4kxi5}.

Both xi1 and xi5 are the same as in the longitudinal model. The parameter θ4k is a class-specific

estimate of the effect of likelihood group on time-to-fixation. The age variable xi1 was split into

a linear B-spline with class-specific estimates for each knot. θ1k is the class-specific estimate

for age, θ2k is the class-specific estimate for age after the first knot of 19.6 months, and θ3k is

the class-specific estimate for age after the second knot of 23.13 months. The survival model

was determined by using HARE and including age, sex, likelihood group, and video order

as potential independent variables. HARE was performed using the hare() function in the

polspline package in R v4.1.0 (Kooperberg, 2020). HARE determined age with knots at 19.6

months and 23.13 months were influential to the survival model as was likelihood group. Further,

HARE determined knots in time should be indicated at 3482 ms and 6958 ms. Latent class

membership was modeled as intercept-only.

Models with 1 - 3 latent classes were tested. For the two- and three-class models, a second

model was tested where likelihood group was included in the latent class membership model.

The JLCMMs were estimated using the Jointlcmm() function from the lcmm package

113



in R v4.1.0 (Proust-Lima, et al., 2017). All models used the hazard = ‘‘Specific’’

option and hazardnodes = c(3482, 6958) option to correspond to the knots in time.

Parameters were estimated using the gridsearch() function with the one-class solution as

the initialization model, 30 repetitions used for each iteration, and a maximum of 15 iterations

specified. During the estimation process, convergence issues occurred with the Levenberg-

Marquardt algorithm such that the second derivative of the Hessian threshold could not be

met. This problem often occurs when the solutions to estimates are on the boundary of support

(Proust-Lima, et al., 2017). The specific convergence issue indicated that the variance estimate

for some coefficients was 0 (i.e. on the boundary of support for variance estimates). Checking

the Vmatrix from the Jointlcmm() output verified this problem for some variables estimating

the class-specific baseline hazard functions over time. For these variables, fixing their position

with the posfix option prompted convergence of the Levenberg-Marquardt algorithm. These

variables are noted in Table 4.3.6 with an asterisk.

JLCMM predicted outcomes for yk(t), λk(t), and S(t)k were made after the optimal

number of latent classes was determined. To illustrate the advantages of a JLCMM, a Cox

proportional hazards model was estimated using the detrended pupil diameter as a time-varying

covariate. Since pupil diameter was time-varying, using an interaction with the latent classes

as a separate covariate could have violated the proportionality assumption. As such, the data

were decomposed into separate datasets for each separate latent class. Then a Cox proportional

hazards model was run on the separate data sets. The Cox model was estimated using coxph()

from the survival package in R (Therneau, 2021).

Results

Figure 4.3.1 shows the distribution of times-to-event using different durations of fixation

on social regions for “Heather Good Day” video. Figure 4.3.2 shows these distributions for

“Jaclyn Smile” videos. The primary variability existed with a 1000 and 2000 ms threshold. Some

variability existed for 3000 ms with “Jaclyn Smile” and a few other videos, but many looked

more similar to the “Heather Good Day” distribution. Since 1000 ms was considered too low
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a threshold, and because of the results from the validation paper, 2000 ms was selected as the

duration needed to be considered fixated on a social region.

Table 4.3.1 provides a summary of the fit statistics for the five models tested: a one-class

solution, two two-class solutions, and two three-class solutions. The models labeled with “CM”

included an additional parameter in the model that estimated the multinomial logistic regression

latent class membership model with an independent variable for likelihood group. Minimal BIC

was used to determine the model with the best fit. The optimally fiting model had three classes

with 26 members in LC 1 (40.6%), 18 members in LC 2 (28.1%), and 20 members in LC 3

(31.3%). A few of these models have BIC values close together indicating that any of these

models may be suitable. Part of the decision to select the three-class model, aside from its BIC,

is the fact that it improved more compared to the CM model than the two-class solution did.

That is, the two-class and two-class CM models were relatively similar in fit, but the three-class

model was much better than the three-class model with CM. Table 4.3.2 provides a summary of

the mean posterior probability of assignment for each latent class. Discrimination between LC

2 and LC 3 was reasonable, with the mean probabilities of assignment into these classes being

greater than 0.7. The mean probability of assignment to LC 3 among those who were assigned

to LC 1 was about 22%, indicating some similarities in the joint outcomes of these two latent

classes.

Table 4.3.1 Joint Latent Class Mixed Model Fit Summaries

Model K LL npm BIC % Class 1 % Class 2 % Class 3

One Class 1 -1304.1 21 2750.6 100%
Two Class 2 -1293.5 36 2736.8 35.9% 64.1%
Two Class with CM1 2 -1291.5 37 2737.0 26.6% 73.4%
Three Class 3 -1283.0 422 2732.4 40.6% 28.1% 31.3%
Three Class with CM 3 -1293.3 53 2807.1 25.0% 53.1% 21.9%

1 = CM refers to “Class Membership” variable added (Likelihood Group)
2 = Some parameters fixed to allow for convergence

Table 4.3.3 provides further assessment of the discriminatory power of these three latent

class assignments. The proportion of posterior probabilities above three thresholds, 0.7, 0.8,
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and 0.9, are provided in the table. LC 2 has great discriminatory power, with at least 60% of LC

2’s posterior probabilities of assignment into class 2 being above 0.8. Similarly, LC 3 has great

discriminatory power with 45% of its posterior probabilities of assignment into class 3 being

above 0.9. Contrarily, LC 1 has lower power in its discrimination with only 46% of its posterior

probabilities being above 0.7 and slightly more than 10% above 0.9 probability. These results

for LC 1 indicate that some characteristics are shared between LC 1 members with LC 2 and

LC 3.

Table 4.3.2 Mean of Posterior Probabilities for Three-Class HARE Model

P (ci = 1) P (ci = 2) P (ci = 3)

1 0.685 0.098 0.218
2 0.114 0.821 0.065
3 0.137 0.082 0.781

Table 4.3.3 Proportion of Posterior Probabilities above Various Thresholds

k = 1 k = 2 k = 3

P (ci = k) ≥ 0.7 46.2% 77.8% 65.0%
P (ci = k) ≥ 0.8 23.1% 61.1% 50.0%
P (ci = k) ≥ 0.9 11.5% 38.9% 45.0%

Figures 4.3.3, 4.3.4, and 4.3.5 show the predicted longitudinal outcomes, the predicted

hazard functions, and the predicted survival functions for each latent class, respectively. LC 1

and LC 2 had periodic trajectories of pupil diameter chage with LC 1 having a more dynamic

change than LC 2. LC 3 had a muted pupillary response over time beginning with higher levels

than either other LC and having the lowest overall pupil size by the end of the trial. Figure 4.3.6

illustrates a more thorough examination of pupil size over the trial time, with observations from

each trial aggregated on the figure. Note that the points are jittered for decipherability.

LC 2 had a higher hazard of social fixation over the course of the trials than either other

group. This hazard was mostly increasing, leading to a low probability of this LC not having

fixated on social regions by the end of each trial. LC 3 had a hazard of fixating on social regions

that peaked around 7000 ms leading to a roughly 50% probability of going through any trial
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without having fixated on social regions. LC 1 had a very low hazard of every fixating on

social regions with few participants reaching the 2000 ms threshold. Table 4.3.4 shows the

contingency table of event versus censoring over the course of the nine trials. As indicated by

the hazard and survival plots, LC 1 had fewer observed social fixations than either LC 2 or LC 3

relative to class size with 59% of the total observations being censoring. For comparison, 33%

of LC 2 had censored observations, and 47% of LC 3 had censored observations. Assuming

trials are independent, which is unlikely, the χ2 test indicates that latent class membership

is not independent of censoring (χ2 = 23.9, df = 2, p < 0.001). This association between

latent class membership and censoring was more apparent by the final trial (Table 4.3.5),

where the χ2 test indicates an association between latent class membership and censoring

(χ2 = 18.6, df = 2, p < 0.001) with LC 1 being much more likely to have censored data

compared to either LC 2 (OR = 14.7) or LC 3 (OR = 9.8).

Table 4.3.4 Observed Event For Social Fixation over Nine Trials

K Observed Censored

1 90 129
2 104 52
3 89 79

χ2 = 23.9

Table 4.3.5 Observed Event For Social Fixation over Final Trial

K Observed Censored

1 5 21
2 14 4
3 14 6

χ2 = 18.6

The predicted outcomes provide some details about the characteristics of the latent classes.

LC 1 largely comprises kids who do not fixate on social regions. The periodic nature of their

pupil diameter change may be a natural pupillary cycle or a remnant of arousal due to auditory

cues. LC 1 appeared to lose attention over the course of the trials with fewer members fixating
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on social regions by trial 9. LC 2 had the highest hazard of fixating on social regions and had a

sustained positive pupillary response over the course of the trial. The probability of not fixating

on social regions by the end of the trial was small (S(t)2 = 0.106)) for this latent class, and this

behavior persisted throughout the trials. LC 3 had a muted pupillary response to these trials, but

also had a non-zero probability of fixating on social regions. For LC 3, the probability of not

fixating on social regions by the end of a trial was roughly 50% (S(t)3 = 0.488). However, their

attention was similar to LC 2 in that fixation was more observed by the final trial than censoring.

Table 4.3.6 provides β coefficient estimates for the linear mixed-effects model and θ

coefficient estimates for the log-hazard model results from the JLCMM. Some estimates,

provided with an asterisk, had to be fixed in order to ensure convergence of the Levenberg-

Marquardt algorithm to the maximum likelihood estimate. The variance of these estimates

were exactly 0, indicating the conjectured boundary estimation problem was correct. The

zero variance of these spline estimates indicated potential limitations of the HARE method

indentifying knots in splines where not all log-hazard functions between classes were similar.

These limitations are discussed in Chapter 5. Otherwise, the log-hazard estimates of these

splines follow what was shown in Figures 4.3.4 and 4.3.5. ASD likelihood was not statistically

significantly different in estimating the log-hazard with the exception of LC 2, where those with

EL of ASD diagnosis had a much higher log-hazard estimate of social region fixation than their

LL counterparts (θ42 = 4.31, SE = 1.46, p = 0.003). Age in months also had some different

effects between the latent classes. Older participants had the highest log-hazard of social region

fixation except within the interval between 19.6 and 23.13 months, which saw no real change.

Note the differences in effects from the knots in age for different latent classes. LC 2 shows a

strong, statistically significant effect for the knot at 19.6 months. LC 3 shows a strong, but not

statistically significant, effect for the knot at 23.13 months. These knots were determined by

HARE in a data-driven fashion and would not have been noticed unless specifically tested in

either a parametric model or a non-parametric model without a priori determination of these

knots.
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Table 4.3.6 Estimates of Coefficients for the Survival Model and Linear Mixed-Effects Model
of the JLCMM

Survival Model

Parameter θ SE t-value p-value

(spline 1)1/2 LC 1∗ -0.00004 X X X
(spline 2)1/2 LC 1∗ -0.00002 X X X
(spline 3)1/2 LC 1 0.633 0.218 2.90 0.004
(spline 4)1/2 LC 1∗ 0.0001 X X X
(spline 5)1/2 LC 1∗ 0.0011 X X X
(spline 6)1/2 LC 1 0.0001 0.212 0.00 0.999
(spline 1)1/2 LC 2∗ 0.0003 X X X
(spline 2)1/2 LC 2∗ 0.0003 X X X
(spline 3)1/2 LC 2∗ 0.0235 X X X
(spline 4)1/2 LC 2∗ 1.1578 X X X
(spline 5)1/2 LC 2 -0.7906 1.759 -0.449 0.653
(spline 6)1/2 LC 2 4.001 2.395 1.670 0.095
(spline 1)1/2 LC 3∗ -0.0001 X X X
(spline 2)1/2 LC 3 0.0003 0.024 0.00 0.999
(spline 3)1/2 LC 3 0.0001 0.052 0.00 0.999
(spline 4)1/2 LC 3 0.1539 0.269 0.573 0.567
(spline 5)1/2 LC 3 0.7089 0.284 2.498 0.013
(spline 6)1/2 LC 3∗ 0.003 X X X
Age LC 1 0.917 1.132 0.810 0.419
Age LC 2 4.245 1.721 2.466 0.014
Age LC 3 7.814 4.334 1.803 0.071
(Age - 19.60)+ LC 1 1.720 1.985 0.866 0.386
(Age - 19.60)+ LC 2 5.726 1.693 3.381 < 0.001
(Age - 19.60)+ LC 3 -0.944 15.086 -0.00 0.999
(Age - 23.13)+ LC 1 -1.745 99.521 -0.00 0.999
(Age - 23.13)+ LC 2 -0.962 2.004 -0.480 0.631
(Age - 23.13)+ LC 3 6.024 4.785 1.259 0.208
Elevated Likelihood ASD LC 1 0.052 0.855 0.061 0.952
Elevated Likelihood ASD LC 2 4.308 1.458 2.954 0.003
Elevated Likelihood ASD LC 3 0.807 1.420 0.568 0.570

Mixed-Effects Model

Parameter β SE t-value p-value

Intercept LC 1 -0.064 0.028 -2.163 0.031
Intercept LC 2 0.021 0.0374 0.561 0.576
Intercept LC 3 -0.099 0.034 -2.936 0.003
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Parameter (cont’d) β SE t-value p-value

Time LC 1 -2.189 0.607 -3.607 < 0.001
Time LC 2 0.528 0.779 0.677 0.498
Time LC 3 -4.793 1.045 -4.587 < 0.001
Time2 LC 1 0.777 0.597 1.303 0.193
Time2 LC 2 2.395 0.794 3.015 < 0.001
Time2 LC 3 3.374 1.164 2.898 < 0.001
Time3 LC 1 -1.675 0.574 -2.921 0.003
Time3 LC 2 -1.457 0.763 -1.912 0.056
Time3 LC 3 -0.859 1.176 -0.730 0.465
Age 0.008 0.002 0.491 0.624
Male 0.016 0.018 0.916 0.359
Video Order 0.007 0.003 2.410 0.016
Elevated Likelihood ASD -0.0104 0.020 0.510 0.609
ω∗ 0.0009 X X X
σ†ω 0.000 0.025 – –
Residual σ†ω 0.3683 0.006 – –

∗ = Estimate fixed to ensure convergence of Hessian matrix
† = Measurements of uncertainty not calculated for these values

The linear mixed-effects model also indicates some differences between the latent classes

when estimating pupil diameter change. LC 1 and LC 2 show some similarities in pupil diameter

change with time with the exception of LC 2 having a more profound and sustaining increase

over time (indicated by positive linear and quadratic effects of time). The trajectory seen for

LC 3 appears to largely have linear and quadratic effects, but not cubic effects (β33 = −0.859,

SE = 1.176), which corresponds to its shape not resembling a periodic function. None of age,

sex, or ASD likelihood had any association with pupil diameter once latent class and time were

accounted for, but video order had a slight positive association (β4 = 0.007, SE = 0.003, p-value

= 0.016). Since this value was small relative to the residual standard error, even if change is

entirely linear over the course of the nine trials (9× 0.007 = 0.063), this effect may be either

spurious or an artifact of the detrending process.

Table 4.3.7 shows the distribution of latent classes across likelihood groups, sex, and age

groups. A few characteristics stand out that invite discussion. While EL ASD participants

compose roughly 30% of LC 1 and LC 3, they compose only 17% of LC 2. LC 2 was defined
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by its sustained, larger pupillary response pattern with high probability of social fixation. The

dominance of LL ASD kids in this latent class provides some evidence that EL ASD kids have

atypical pupilary response in conjunction with aversive social fixation. The second characteristic

to note is the inverted ratio of male to female participants in LC 1 compared to LC 2 or LC

3. Boys are more likely to be members of LC 1 than girls are, and boys are more likely to be

assigned to LC 1 than they are to LC 2 or LC 3. Girls are equally likely to be assigned to any

LC. Furthermore, of the 8 EL ASD kids in LC 1, 6 are male and 2 are female. In fact, the female

participants maintain an almost identical ratio of EL-to-LL ASD groups within each class (Table

4.3.8). Lastly, members of LC 1 are approximately 2 months younger on average than for either

LC 2 or LC 3. LC 1 also has the largest range of ages, but this is not necessarily unusual since it

is also the largest of the latent classes.

Table 4.3.7 Characteristics of the Latent Classes Determined by the JLCMM

Characteristic LC 1 (n = 26) LC 2 (n = 18) LC 3 (n = 20)

EL ASD 8 3 6
LL ASD 18 15 14

Male 15 8 9
Female 11 10 11

Mean Age (months) 10.6 12.5 12.9
SE Age (months) 4.8 6.4 5.7
Range Age (months) 5.9 - 25.1 6.7 - 24.8 6.2 - 23.6

Table 4.3.8 ASD Likelihood Group Characteristics of the Latent Classes Determined by the
JLCMM

Characteristic LC 1 (n = 26) LC 2 (n = 18) LC 3 (n = 20)

Male

EL ASD 6 1 4
LL ASD 9 7 5

Female

EL ASD 2 2 2
LL ASD 9 8 9
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A Cox proportional hazards model (Cox, 1972) was used to estimate the hazard of social

fixation for 2000 ms while controlling for change in pupil diameter as a time-varying covariate.

Figure 4.3.7 shows the survival curve estimates of not fixating on a social region for the three

latent classes. Survival estimates are underestimated for LC 1 and LC 3, which show a lower

survival probability of not fixating on a social region than found in the JLCMM. The opposite is

true for LC 2, which overestimated the survival probability. More members of LC 2 had fixated

on a social region by the end of the stimulus trial than is shown in 4.3.7.B. The corresponding

Cox PH regression coefficients (Table 4.3.9) demonstrate the root of these issues: the effect

of the pupil diameter tends towards 0 for all three latent classes. This corroborates the work

of Prentice (1982) and justifies the use of joint models in general (De Gruttola, et al., 1991;

Pawitan & Self, 1993). A further deficit for this Cox proportional hazards model is that the knot

at age 19.6 months could not be estimated for LC 1, likely missing an important transition in

the hazard function due to age.
Discussion

The analyses indicated that three latent classes may exist in the sample, and some examina-

tion of the characteristics have supported that. The three latent classes distinguish themselves

from each other based on joint trajectories of pupil diameter change and fixation on social

regions during a social arousal task. These latent classes can briefly be defined as a class that

has early fixation and high pupil response, a class that has delayed fixation and a muted pupil

response, and a class that has practically no social fixation and average pupil size change. The

latter class comprises several boys who have elevated likelihood of developing ASD. The latent

class with early fixation and high pupil response comprises children with low likelihood of

developing ASD with an even ratio of boys and girls. The hazard model results indicated that

times of interest occurred near the hazard knots for certain latent classes, and the knots in

age also demonstrated to be of interest in distinguishing the latent classes and describing the

association between age and social fixation. Class-specific estimates of the time variables were

distinct in their predicted trajectories of pupil diameter change over the course of a stimulus trial
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Table 4.3.9 Cox Proportional Hazards Models of Pupil Diameter on Social Fixation for the
Three Latent Classes

Latent Class 1

Parameter β SE t-value p-value

Pupil Diameter (detrended) -0.0494 0.0234 -2.11 0.035
Age 1.635 0.480 3.40 0.0007
(Age - 19.60)+ – – – –
(Age - 23.13)+ -0.017 2604.0 -0.00 0.994
Elevated Likelihood ASD 0.028 0.270 1.05 0.294

Latent Class 2

Parameter β SE t-value p-value

Pupil Diameter (detrended) 0.037 0.229 0.161 0.872
Age 1.314 0.369 3.56 0.0004
(Age - 19.60)+ 0.960 0.328 2.92 0.003
(Age - 23.13)+ 0.624 0.429 1.45 0.146
Elevated Likelihood ASD 0.710 0.319 2.22 0.026

Latent Class 3

Parameter β SE t-value p-value

Pupil Diameter (detrended) -0.0632 0.0245 -2.58 0.009
Age 1.42 0.044 3.189 0.001
(Age - 19.60)+ 1.092 0.055 1.972 0.049
(Age - 23.13)+ -16.56 217.4 -0.008 0.994
Elevated Likelihood ASD 0.033 0.326 1.02 0.307
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for the three classes. HARE provided the class-specific estimates and appropriate knots for the

hazard model without using any assumptions about the data. The proportionality assumption

was relaxed, which likely aided in the estimation process as these three latent classes did not

appear proportional in hazard trajectories. To the contrary, a Cox proportional hazards model

using pupil diameter change as a time-dependent covariate incorrectly estimated the survival

probabilities of no social fixation in a trial. These results make sense in the presence of previous

literature on joint models in general. Further, this model required knowledge of latent class

membership and knot location for age a priori, which is an optimistic assumption.

One deficit of HARE for this process was the difficulty in converging on a global maximum

likelihood estimate of the vector of parameters for the JLCMM. Some spline estimates had to

be fixed on estimates in order to estimate the Hessian matrix solely because the Levenberg-

Marquardt algorithm could not estimate along the boundary of variance estimation. While some

trial-and-error resolved this issue, a step HARE implementation should take in the future to

overcome this limitation is to find a way to weight or determine knots within latent classes

such that areas of sparsity can influence knot location (i.e., by avoiding these areas). Certain

nonparametric methods for determining medioids, such as the k-nearest neighbor algorithm

(Lloyd, 1982), could motivate such a way to choose knot locations where a large enough

neighborhood is required for any latent class in order to be considered for inclusion in the hazard

model.

The assessment of arousal could also be improved by incorporating other biometric measures

into the longitudinal model. Pupil diameter change was used to estimate social arousal because

it was the primary outcome of interest for diagnostic purposes. However, heart rate variability

and respiratory rate could also lend themselves to the task of constructing an arousal metric.

Such an outcome could be estimated using a state-space model (Kalman, 1960) or principal

components regression (Massy, 1965).
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4.4 The Cascading Effects of Reaching Major Motor Milestones on Social Behavior for
Infants with Autism Spectrum Disorder

Data Description

Infants reach several developmental milestones known as “watershed moments” (Bradshaw,

Schwichtenberg, & Iverson, 2022) that alter a child’s interaction and behavior with his or

her environment. These watershed moments include sitting upright, crawling, exhibiting

selective attention, babbling, speaking, and walking, among others. These moments are not

only important because of their indication of latent developmental advancements, but also

because the occurrence of these watershed moments influence the occurrence of others. For

example, the advancement to upright sitting leads to several new behavioral interactions, such

as having more engaged shared play with a caregiver, having a larger field of vision for selective

attention, and having a richer experience of interaction with objects (Bradshaw, Schwichtenberg,

& Iverson, 2022). These new behaviors cascade into new watershed moments. Engaged shared

play with a caregiver motivates the development of crawling, which leads to new behaviors,

which in turn lead to new watershed moments and so forth. The significance of these wathershed

moments and their cascading effects to developmental psychologists, particularly those who

study neurodevelopmental disorders, involves understanding how a delay in these moments may

compound the delay of other moments. Among children with Autism Spectrum Disorder (ASD),

the heterogeneous profiles may be influenced by these delayed developmental trajectories. For

example, an infant with ASD whose profile exhibits primarily restricted and repetitive behaviors

may have a different developmental trajectory of motor watershed moments from another infant

with ASD whose profile exhibits primarily joint attention issues.

Data were acquired from an NIH-funded Autism Centers of Excellence (ACE) network

study commonly referred to as the “Infant Brain Imaging Study” (IBIS) (Hazlett, et al., 2017).

This network includes four clinical data sites from across the United States (UNC-Chapel Hill,

University of Washington, Washington University in St. Louis, and the Children’s Hospital

of Philadelphia), two image processing sites (UNC-Chapel Hill and University of Utah), and

a data coordinating center (McGill University). Infants with an elevated-likelihood (EL) and
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low-likelihood (LL) of developing ASD were enrolled at 6-months of age and followed through

school age. Data collected at each visit include functional and structural MRI scans, behavioral

assessments, and biological assays. More information about the IBIS data can be found in

Hazlett, et al. (2017).

The primary wathershed moment of interest was the initiation of walking and its influence

on the development of social behavior. The general hypothesis tested was that the timing to

walking initiation would impact social behavior scores differently among EL-ASD infants from

either EL-nonASD infants and LL-nonASD infants. Data from IBIS at the 6-, 12-, and 24-month

visits were used to test this hypothesis. Sex and ASD likelihood group were required for a

participant to be included in the analyses. The Vineland Adaptive Behavior Scale (VABS) was

used to determine social behavior scores, and the standard socialization score was used in the

analyses (Sparrow & Cicchetti, 1989). Fractional anisotropy (FA) values of fiber tracts from the

MRI scans were used to measure development of occipital tracts. Specifically, the left and right

inferior fronto-occipital fasciculus (IFOF) and left and right inferior longitudinal fasciculus

(ILF) were examined. Initiation of walking was determined from the revised Autism Diagnostic

Interview (ADI-R) age of first walking question, which asked parents to recall the age at which

their infant first walked (in months).

The MRI scan data were during natural sleep using identical 3-T Siemens TIM Trio scanners

equipped with 12-channel head coils at the four clinical sites. The diffusion tensor imaging

sequence was acquired with a field of view of 190 mm (6 and 12 months) or 209 mm (24

months). Scan times ran 5 to 6 minutes. A total of 75–81 transversal slices with a slice thickness

of 2 mm were collected using a 2×2×2-mm3 voxel resolution, a repetition time of 12,800–13,300

ms, an echo time of 102 ms, and 25 gradient directions. Data from diffusion-weighted imaging

were screened by using DTIprep software (Liu, et al., 2010). Label maps for the fiber tracts

were generated in 3D Slicer (www.slicer.org; Kikinis, Pieper, & Vosburgh, 2014). FA values

(range from 0, isotropic diffusion in fluid, to 1, strong directional diffusitivity) were generated
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for each fiber tract. See Wolff, et al. (2012) and Girault, et al. (2022) for more information

about the IBIS MRI and FA data collection processes.

Methods

The goal of these analyses was to determine whether the initiation of walking in an infant

had cascading effects on social behavior and whether that downstream effect differentiated

between ASD likelihood groups. As these ASD likelihood groups likely have heterogeneous

profiles (Prince & Fidler, 2021; Bradshaw, Schwichtenberg, & Iverson, 2022), the hypothesis

tests motivated the use of a JLCMM with a HARE determined hazards model. The VABS

standard socialization score (VABS SS) was used to represent a measure of social behavior.

Change in the VABS SS was estimated using a linear mixed effects model. The time-to-event

was estimated using the ADI-R age of first walking question, where age is measured in months.

The question was asked during the 24-month visit as part of the behavioral assessment. The

time-to-event model was estimated using HARE, where potential covariates of interest included

sex, ASD likelihood group, an indicator of whether the child had been crawling by 6-months of

age, and the left IFOF FA value.

The VABS SS covers play and leisure time, interpersonal relationships, and coping skills

of the child, and the domain has been demonstrated to have various positive qualities such as

validity, reliability, and concordance with other socialization measures (Farmer, et al., 2020).

It has an average score of 100 with a standard deviation of 15 points. Lower scores indicate a

more problematic behavior, so a higher score indicates better socialization skills.

Time-to-initiation of walking was defined as the time in months reported by parents that

the child first began to walk for the ADI-R walking initiation question (Lord, Rutter, & Le

Couteur, 1994). Because of the IBIS sampling structure, the ADI-R is not given equally to the

three ASD likelihood groups with notably fewer LL-nonASD infants receiving this question. As

such, this item was censored for a number of LL-nonASD participants. However, the degree of

walking was established by a VABS motor domain question asking the degree to which a child

walks (“sometimes” or “usually”) at the 12-month and 24-month visits. Therefore, walking
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status for LL-nonASD infants at specific visits. Figure 4.4.1 illustrates Kaplan-Meier curves

demonstrating the survival probability of not walking for these three groups. Because of the

measurement non-invariance of this walking measure, LL-nonASD kids have a larger survival

probability than either EL groups. This non-invariance posed an interesting justification for the

use of a JLCMM. The effect of likelihood group could be estimated within latent classes in

order to mitigate the measurement non-invariance posed by the time-to-event outcome. Table

4.4.1 shows summary statistics for the independent and dependent variables used in the JLCMM

broken down by ASD likelihood group.

The longitudinal model for this analysis was

yi(t) = β0k + bi0 + β1kxi1 + β2kxi2 + β3kxi3 + (β4 + bi1)xi4 + β5xi5 + εi(t),

where yi(t) is the VABS SS for participant i at visit t, βββk = (β0k, β1k, β2k, β3k) is the vector of

class-specific fixed-effects estimates for latent class k, βββ = (β4, β5) is the vector of marginal

fixed-effects estimates, b = (bi0, bi1) is a vector of random-effects, and εi(t) is the random

error for participant i at visit t. The independent variables xi1, xi2, and xi3 were estimated

as class-specific effects. Variable xi1 was the ASD likelihood group with three categories

(EL-ASD, EL-Neg, LL-Neg) where EL-ASD infants were the referent group. Variable xi2 was a

sex variable with female being the referent group. Variable xi3 was a binary indicator of whether

the infant was crawling by 6-months of age with ‘No’ as the referent group. The variables xi4

and xi5 were estimated marginally rather than by each class k. Variable xi4 was the visit in

months, and xi5 was was the FA value for the left IFOF. Left IFOF was selected to represent the

FA tractography of the occipital lobe since the four tracts were highly collinear (ρmin > 0.75).

The random-effect bi0 was a random intercept for each participant i, and bi1 was a random slope

for visit. The survival model was estimated as

λi(t) = λ0k(t) exp{θ1kxi1 + θ2kxi2 + θ3kxi3 + θ4xi5}.
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The independent variables in the survival model are identical to the ones in the survival model,

with the exception of no visit variable xi4 in the survival model. The vector θθθ = (θ1k, θ2k, θ3k is

a vector of class-specific estimates in the survival model. θ4 is a marginal effect in the survival

model. The survival model determined by HARE included knots at 6-months and 8-months-post

first visit of (12-to-14-months of age) in addition to these independent variables as influential in

the survival model. HARE was performed using the hare() function in the polspline package

in R v4.1.0 (Kooperberg, 2020). Latent class membership was modeled as

P (ci = k|xi1) =
exp (ξ0k + ξ1kxi1)∑K
g=1 exp (ξ0g + ξ1gxi1)

where ξ0k is an intercept term and ξ1k is the coefficient for ASD likelihood group.

Models with 1 - 4 latent classes were tested. The JLCMMs were estimated using the

Jointlcmm() function from the lcmm package in R v4.1.0 (Proust-Lima, et al., 2017).

All models used the hazard = ‘‘Specific’’ option and hazardnodes = c(6,8)

option to correspond to the knots in time. Parameters were estimated using the gridsearch()

function with the one-class solution as the initialization model, 30 repetitions used for each

iteration, and a maximum of 15 iterations specified.

Results

Figure 4.4.1 illustrates that the censoring imposed measurement noninvariance in estimation

of the initiation to walking outcome. It is unlikely that most LL-nonASD infants had not initiated

walking by the 8-month time point, so this measurement error justifies looking within class-

specific estimates of ASD likelihood group to see whether any likelihood group differences

exist within a latent class. While this comparison will also likely be biased, it will give a
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better indication about the differences in hazard among latent class members who match a

heterogeneous profile of motor and social development.

Figure 4.4.1 Kaplan-Meier Curves of Estimated Survival Probability of Not Walking
for the Three ASD Likelihood Groups

Table 4.4.1 shows the characteristics of the sample divided into ASD likelihood group.

The EL-ASD group is predominantly male, has a lower VABS SS score, and a smaller left

IFOF at 6-months (compared to the LL-nonASD group). EL-nonASD infants have similar

demographics to the EL-ASD infants, but their socialization scores are normal on average

and are more evenly divided between boys and girls. The LL-nonASD group has the most

developmentally advanced characteristics with larger left IFOF values, earlier walking initiation

ages (despite the measurement error issues), and higher VABS socialization scores. This group

also has a larger ratio of boys to girls, but not as dramatic a difference as the EL-ASD group.

Table 4.4.2 provides fit statistics and distributions of members for the one-to-four latent

class JLCMMs. Both the two- and three-latent class solutions had reasonable fit with a BIC

difference of around 6. While an argument could be made for selecting the model with two

latent classes (Bauer, 2022), the model with three latent classes met the decision criterion
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Table 4.4.1 Characteristics of the Sample by ASD Likelihood Group

Characteristic EL-ASD
(n = 63)

EL-Neg
(n = 229)

LL-Neg
(n = 147)

Sex
Male 53 125 87
Female 10 104 60

Crawling
Yes 7 30 30
No 56 199 117

Left IFOF (6 months)
Mean 0.369 0.369 0.373
SD 0.024 0.024 0.021
Range 0.325 - 0.424 0.308 - 0.425 0.320 - 0.455

Walking Initiation Age
Mean 12.5 12.2 11.6
SD 2.28 2.25 1.59
Range 8 - 22 8 - 21 9 - 14

VABS SS (6 months)
Mean 96.8 99.8 102
SD 12.1 10.5 10.5
Range 62 - 123 70 - 132 76 - 132
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and was selected as the optimal model. The four class solution would not converge onto a

maximum likelihood with four separate classes. Tables 4.4.3 and 4.4.4 provide details about the

discriminatory power of the posterior probabilities used in the latent class assignment. The mean

posterior probabilities for assignment into each latent class was over 85% with LC 2 having

a mean posterior probability of assignment close to 100%. LC 3 had a small mean posterior

probability of assignment to LC 1 (0.118), and LC 1 had an even smaller mean posterior

probability of assignment to LC 3 (0.073). The proportion of posterior probability assignments

≥ 0.9 were all above 60% for each latent class with LC 2 having 100% of its probabilities over

0.9. These results indicated a very discriminatory assignment of the latent classes with each

group being distinct from the other. Figure 4.4.2 illustrates the predicted VABS SS score for

each of the three latent classes overlayed with individual trajectories. The consistency of the

VABS SS over time can be seen, and two groups from these trajectories are apparent. One group

of participants score around average throughout the study, and the other group score below

average. This below-average group comprises mostly LC 1 and LC 3 with a few members

from LC 2. Among the whole sample, mean VABS SS for LC 2 is the highest followed by

LC 1 and LC 3, respectively. Figure 4.4.3 illustrates the hazard function of walking initiation

over age in months for these three latent classes. All three latent classes have similar hazards

for the first five months until LC 3 begins to increase its hazard of walking initiation. Around

10-months of age LC 1 has an exponential hazard increase in the initiation of walking. LC 2 has

a small (but non-zero) hazard from 5-months of age and onward. Figure 4.4.4 illustrates the

survival probability of not walking over age in months for the three latent classes. These curves

parallel the results from the hazard function. LC 3 has the smallest curve of the three latent

classes with its members initiating walking earliest and nearly all members having initiated this

watershed moment by 10-months of age. LC 1 has a similar, but later trajectory compared to

LC 3 where most members initiate walking by 12-months of age. LC 2 has the largest survival
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curve indicating non-walking of members well beyond the ages of those from LC 1 or LC 3

(likely due to censoring).

Table 4.4.2 Joint Latent Class Mixed Model Summaries of Cascading Effects Models

K LL npm BIC % Class 1 % Class 2 % Class 3 % Class 4

1 -4055.1 22 8241.7 100%
2 -3961.5 28 8162.2 60.4% 39.6%
3 -3994.5 40 8156.5 74.2% 16.7% 9.1%
4 -3979.2 52 8269.4 10.9% 34.6% 0% 54.5%

Table 4.4.3 Mean of Posterior Probabilities for the Three Latent Class Model

P (ci = 1) P (ci = 2) P (ci = 3)

1 (n = 294) 0.927 0.000 0.073
2 (n = 66) 0.000 0.999 0.000
3 (n = 36) 0.118 0.000 0.882

Table 4.4.4 Proportion of Posterior Probabilities above Various Thresholds

k = 1 (n = 294) k = 2 (n = 66) k = 3 (n = 36)

P (ci = k) ≥ 0.7 96.3% 100% 86.1%
P (ci = k) ≥ 0.8 87.1% 100% 72.2%
P (ci = k) ≥ 0.9 77.2% 100% 61.1%

Characteristics of the three latent classes are given in Table 4.4.5. There did not appear to

be any latent class that favored one sex over the other, perhaps excepting LC 1 having 1.6 times

as many boys as girls, whereas for LC 2 and LC 3 these ratios are 1.2 and 1.4, respectively.

LC 3 favored assignment from those who were not crawling by 6-months of age, which was

also the group with the lowest mean VABS SS trajectories. LC 2 was primarily composed of
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LL-negative kids, and in particular had a large proportion of those kids with censored walking

initiation data as reflected from Figure 4.4.1.

Table 4.4.5 Characteristics of the Latent Classes by ASD Likelihood Group

Characteristic LC 1 (n = 294) LC 2 (n = 66) LC 3 (n = 36)

Sex
Male 180 36 21
Female 114 30 15

Crawling
Yes 45 13 3
No 249 53 33

ASD Likelihood Group
EL-ASD 44 3 9
EL-Neg 180 0 27
LL-Neg 70 63 0

Censored at last visit?
Yes

EL-ASD 0 1 0
EL-Neg 0 0 3
LL-Neg 0 33 0

No
EL-ASD 44 2 9
EL-Neg 180 0 24
LL-Neg 70 30 0

Results from the three-class JLCMM model are presented in Table 4.4.6. Class-specific

estimates of the baseline hazard function were excluded from this table to focus on hypothesis

testing. Recall that the largest latent class (k = 3) is the referent group for the latent class

membership model. Within LC 1, the average performing latent class, EL-nonASD participants

had a higher hazard of initiating walking compared to their EL-ASD counterparts (HR = e0.806 =

2.24, p-value = 0.0001) as did LL-nonASD participants (HR = e0.747 = 2.11, p-value = 0.0005).

However, among LC 1–the early-watershed/low socialization group–EL-nonASD participants

had a lower hazard compared to their EL-ASD counterparts of initiating walking (e−2.461 =

0.085, p-value < 0.0001). LL-nonASD participants did not have any statistically significant

differences from EL-ASD participants in any LC other than LC 1. Note that the standard errors

for EL-nonASD in LC 2 and LL-nonASD participants in LC 3 are exaggeratedly high in the
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survival model. This problem occurs due to the absence of these members within the respective

latent classes. Crawling at 6-months indicated a higher hazard of initiating walking in LC 1

(e0.818 = 2.27, p-value < 0.0001). No other survival model results were statistically significant.

Among the results for the linear mixed-effects model, there were statistically significantly higher

VABS socialization scores for EL-nonASD participants (β = 10.23, p-value < 0.0001) and

LL-nonASD participants (β = 11.79, p-value < 0.0001) compared to EL-ASD participants

in LC 1. Positive differences occurred in LC 2 and LC 3 among these comparisons, but none

were statistically significantly different. These differences indicate that EL-nonASD and LL-

nonASD participants had better social behavior compared to EL-ASD participants in the average

performing latent class. The only other result of note was that boys within LC 1 had lower

VABS socialization scores compared to girls (β = −2.516, p-value < 0.0001).

The three-class JLCMM results indicated that social behavior and initiation to walking

were inversely related: earlier initiation of walking, as measured by the month at which children

began walking, was associated with worse social behavior outcomes. However, EL-nonASD

and LL-nonASD participants had better social behavior outcomes and earlier walking initiations

compared to their EL-ASD counterparts. Therefore, these results have one minor problem:

they make absolutely no sense. From a substantive standpoint, evidence already exists in the

literature that indicate earlier initiation of movement and walking lead to higher levels of social

behavior (Smith, et al., 2018). From a statistical standpoint, a situation where the association

within a cluster behaves antithetically to the overall trend reeks of Simpson’s paradox (Simpson,

1951). While the measurement noninvariance of walking initiation may have been the sole issue,

model misspecification could have exacerbated the issue. One natural modification to the model

was to estimate class-specific estimates for the left IFOF value in the survival and longitudinal

models (i.e., β5 → β5k and θ4 → θ4k). Latent class models with 1 - 4 latent classes were rerun.

In order to reach convergence, the maximum number of iterations had to be raised to maxiter

= 50. Tables 4.4.7 - 4.4.11 provide identical results as 4.4.2 - 4.4.6 using the modified model.

Figures 4.4.5 - 4.4.7 provide identical results as 4.4.2 - 4.4.4 using the modified model.
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Table 4.4.6 Estimates of Coefficients from the JLCMM

Class Membership Model

Parameter ξ SE t-value p-value

Intercept LC 1 1.133 0.875 1.294 0.196
Intercept LC 2 -1.444 0.889 -1.623 0.105
EL-Negative LC 1 0.289 0.927 0.311 0.755
EL-Negative LC 2 -13.702 594.7 -0.023 0.982
LL-Negative LC 1 9.109 48.27 0.189 0.850
LL-Negative LC 2 11.581 48.26 0.240 0.810

Survival Model

Parameter θ SE t-value p-value

EL-Negative LC 1 0.806 0.208 3.866 0.0001
EL-Negative LC 2 1.550 274.4 0.006 0.995
EL-Negative LC 3 -2.461 0.313 -7.867 < 0.0001
LL-Negative LC 1 0.747 0.216 3.460 0.0005
LL-Negative LC 2 -0.358 0.377 -0.950 0.342
LL-Negative LC 3 -7.267 460.9 -0.016 0.987
Male LC 1 -0.016 0.139 -0.120 0.905
Male LC 2 0.652 0.356 1.829 0.067
Male LC 3 0.275 0.314 0.876 0.381
Crawling at 6-months LC 1 0.818 0.181 4.526 < 0.0001
Crawling at 6-months LC 2 0.207 0.476 0.435 0.664
Crawling at 6-months LC 3 -1.152 0.639 -1.803 0.0714
Left IFOF 0.263 0.551 0.478 0.633

Mixed-Effects Model

Parameter β SE t-value p-value

Intercept LC 1 97.23 5.63 17.29 < 0.0001
Intercept LC 2 99.08 7.48 13.25 < 0.0001
Intercept LC 3 102.76 7.13 14.42 < 0.0001
Visit 0.041 0.077 0.535 0.592
EL-Negative LC 1 10.23 1.824 5.610 < 0.0001
EL-Negative LC 2 5.99 511.50 0.012 0.991
EL-Negative LC 3 0.219 4.531 0.048 0.961
LL-Negative LC 1 11.79 1.948 6.050 < 0.0001
LL-Negative LC 2 7.520 4.818 0.020 0.984
LL-Negative LC 3 0.034 1.711 0.020 0.119
Male LC 1 -2.516 1.063 -2.367 0.018
Male LC 2 -1.467 2.178 -0.673 0.501
Male LC 3 0.929 2.952 0.315 0.753
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Parameter (cont’d) θ SE t-value p-value

Crawling at 6-months LC 1 -0.696 1.324 -0.525 0.599
Crawling at 6-months LC 2 1.941 2.756 0.704 0.481
Crawling at 6-months LC 3 0.666 4.379 0.152 0.879
Left IFOF -16.08 15.05 -1.069 0.285

Σ Intercept Visit

Intercept 45.06
Visit -1.593 0.093

Fit statistics for the modified model resulted in the selection of a three-class model (BIC =

8120.4). The BIC for this model was better than for the initial three-class model. This class

consolidates more individuals into one latent class (LC 2) than assigned in the original model.

Discrimination of these latent classes were also fairly high with large assignment posterior

probabilities for all three latent classes (Tables 4.4.8 and 4.4.9).

Table 4.4.7 Joint Latent Class Mixed Model Summaries of Modified Cascading Effects Models

K LL npm BIC % Class 1 % Class 2 % Class 3 % Class 4

1 -4055.1 22 8241.7 100%
2 -3948.1 30 8159.4 79.8% 20.2%
3 -3970.3 44 8120.4 19.7% 75.5% 4.8%
4 -3953.4 58 8253.6 10.9% 34.6% 0% 54.5%

Table 4.4.8 Mean of Posterior Probabilities for the Modified Three Latent Class Model

P (ci = 1) P (ci = 2) P (ci = 3)

1 (n = 78) 0.998 0.002 0.000
2 (n = 299) 0.008 0.911 0.082
3 (n = 19) 0.000 0.155 0.845

Table 4.4.9 Proportion of Posterior Probabilities above Various Thresholds for Modified
JLCMM

k = 1 (n = 78) k = 2 (n = 299) k = 3 (n = 19)

P (ci = k) ≥ 0.7 100% 93.0% 84.2%
P (ci = k) ≥ 0.8 100% 80.6% 68.4%
P (ci = k) ≥ 0.9 100% 65.2% 47.4%
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Table 4.4.10 Characteristics of the Modified Latent Classes by ASD Likelihood Group

Characteristic LC 1 (n = 78) LC 2 (n = 299) LC 3 (n = 19)

Sex
Male 42 180 15
Female 36 119 4

Crawling
Yes 16 42 3
No 62 257 16

ASD Likelihood Group
EL-ASD 3 46 7
EL-Neg 12 184 11
LL-Neg 63 69 1

Censored at last visit?
Yes

EL-ASD 1 0 0
EL-Neg 3 0 0
LL-Neg 33 0 0

No
EL-ASD 2 46 7
EL-Neg 9 184 11
LL-Neg 30 69 1

The predicted trajectories, hazard functions, and survival plots are illustrated in Figures 4.4.5

- 4.4.7. The patterns of the joint outcomes indicate three groups: LC 1 has an above-average

socialization score over time with a later initiation to walking, LC 2 has an average socialization

score over time with an initiation to walking that occurs primarily between 6-to-12-months

of age, and LC 3 has a below average socialization score that improves over time with a later

initiation to walking that eventually catches up to LC 2. LC 1 still has an issue of inversely

related outcomes, likely related to the proportion of LL-nonASD members in this class, but

the LC behaves more realistically than LC 2 in the first model. Further, there is better mixing

between latent classes and ASD likelihood groups with the modified model. LC 1, the high

socialization and slow initiation class, did have a preponderance of LL-nonASD members who
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were censored at the last visit in the class. This likely affected the measurement of walking

initiation even in the modified model.

Results from the modified three-class JLCMM model are presented in Table 4.4.11. Class-

specific estimates of the baseline hazard function were excluded from this table to focus on

hypothesis testing. Recall that the largest latent class (k = 3) is the referent group for the

latent class membership model. Within LC 2, the average performing latent class, though

not statistically significant, EL-nonASD participants had a higher hazard of initiating walking

compared to their EL-ASD counterparts (HR = e0.361 = 1.43, p-value = 0.068) as did LL-nonASD

participants (HR = e0.679 = 1.97, p-value = 0.001). No other statistically significant differences

of hazard between ASD likelihood groups were found among the classes. Crawling at 6-months

indicated a higher hazard of initiating walking in LC 2 (e0.881 = 2.41, p-value < 0.0001) and

LC 3 (e2.01 = 7.46, p-value= 0.006). Further, the left IFOF values were negatively associated

with initiation to walking in LC 1, but positively associated in LC 3. This conflict likely occurs

because of the larger average left IFOF value among LL-nonASD participants (Table 4.4.1)

coupled with the fact that LC 1 comprised mostly LL-nonASD kids, half of whom were censored

from walking initiation. No other survival model results were statistically significant. Among

the results for the linear mixed-effects model, there were statistically significantly higher VABS

socialization scores for EL-nonASD participants and LL-nonASD participants compared to

EL-ASD participants in all three latent classes, excepting EL-nonASD in LC 1. Boys had worse

socialization outcomes than girls in LC 2, but not in LC 3. However, only 4 girls were assigned

to LC 3. Crawling at 6-months was positively associated with VABS SS (β = 22.05, p-value =

0.0001). This result, while statistically significant, only affects three participants of the 19 in

LC 3. No other longitudinal model results were statistically significant.
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Table 4.4.11 Estimates of Coefficients from the Modified JLCMM

Class Membership Model

Parameter ξ SE t-value p-value

Intercept LC 1 -1.186 0.762 -1.557 0.120
Intercept LC 2 1.460 0.590 2.474 0.013
EL-Negative LC 1 0.477 0.907 0.526 0.599
EL-Negative LC 2 0.279 0.732 0.381 0.703
LL-Negative LC 1 4.825 1.311 3.680 0.0002
LL-Negative LC 2 2.260 1.228 1.840 0.066

Survival Model

Parameter θ SE t-value p-value

EL-Negative LC 1 0.461 0.751 0.615 0.539
EL-Negative LC 2 0.361 0.198 1.823 0.068
EL-Negative LC 3 -0.283 0.488 -0.579 0.562
LL-Negative LC 1 -0.347 0.709 -0.490 0.624
LL-Negative LC 2 0.679 0.206 3.288 0.001
LL-Negative LC 3 -0.342 0.872 -0.392 0.695
Male LC 1 0.361 0.332 1.087 0.277
Male LC 2 0.098 0.139 0.700 0.483
Male LC 3 0.197 0.487 0.404 0.686
Crawling at 6-months LC 1 -0.156 0.413 -0.378 0.705
Crawling at 6-months LC 2 0.881 0.183 4.815 < 0.0001
Crawling at 6-months LC 3 2.01 0.727 2.765 0.006
Left IFOF LC 1 -8.913 1.948 -4.576 < 0.0001
Left IFOF LC 2 -0.533 0.544 -0.979 0.327
Left IFOF LC 3 3.561 1.496 2.381 0.017

Mixed-Effects Model

Parameter β SE t-value p-value

Intercept LC 1 97.39 9.21 10.57 < 0.0001
Intercept LC 2 102.66 6.57 15.62 < 0.0001
Intercept LC 3 68.52 16.15 4.24 < 0.0001
Visit 0.045 0.074 0.611 0.541
EL-Negative LC 1 5.74 4.46 1.288 0.541
EL-Negative LC 2 8.79 1.43 6.151 < 0.0001
EL-Negative LC 3 9.26 3.85 2.404 0.016
LL-Negative LC 1 8.10 4.13 1.962 0.050
LL-Negative LC 2 11.33 1.57 7.209 < 0.0001
LL-Negative LC 3 24.21 7.28 3.327 0.0009
Male LC 1 -0.774 1.668 -0.464 0.643
Male LC 2 -3.216 1.022 -3.147 0.002
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Parameter (cont’d) θ SE t-value p-value

Male LC 3 9.589 4.210 2.278 0.023
Crawling at 6-months LC 1 1.964 2.079 0.945 0.345
Crawling at 6-months LC 2 -1.174 1.204 -0.975 0.329
Crawling at 6-months LC 3 22.05 5.678 3.885 0.0001
Left IFOF LC 1 -14.64 20.97 -0.698 0.485
Left IFOF LC 2 -28.72 17.04 -1.685 0.092
Left IFOF LC 3 52.17 39.53 1.320 0.187

Σ Intercept Visit

Intercept 41.17
Visit -1.892 0.087

Discussion

While some measurement noninvariance of the walking initiation variable still posed

some identification issues, the modified JLCMM improved the results of the original model.

Performing hypothesis tests between the ASD likelihood groups became feasible after the

modification because the ASD likelihood groups were not strictly divided within different latent

classes. However, it was still important to produce these latent classes in order to separate those

who had noninvariant walking initiation ages from participants who had more reliable estimates.

HARE determined two knots in time for the hazard model at 6-months and 8-months after study

initiation, roughly equating to 12-months and 14-months of age. While a twelve month knot

could likely have been determined not using a data-driven method, the 14-month determination

would not have been immediately apparent either from using quantiles or cursory data summary

methods. Using only 12-months of age/a 6-month time knot produced poorly fitting results (not

shown). HARE was able to determine important parts of the sequence of walking initiation

months to estimate the hazard function that helped in distinguishing these latent classes. Future

analyses ought to be conducted, however, with more complete walking initiation data.

The model improved in both fit and substantive validation after left IFOF values were

allowed to vary by class. The regression results for these values were not statistically significant,

but it appeared as if this tract mediated or affected the relationship between the two outcomes in

some way. Further analyses need to be completed in order to understand the appropriate method
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of incorporating tractography data into these analyses. The analyses conducted illustrated

an apparent issue with latent class identification, where slight model misspecification and

measurement error posed results incongruent with known phenomena. These problems become

exacerbated since the JLCMM can fail to converge using spline-based baseline hazard functions,

with HARE being no exception. These issues highlight the need for external validation of latent

classification, even outside of the joint modeling and HARE framework.
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CHAPTER 5: CONCLUSIONS

The analyses indicated that hazard regression (HARE) provided a novel method of estimat-

ing class-specific hazard functions within a joint latent class mixed model (JLCMM) framework

because of its ability to adapt to heterogeneous profiles of survival. The novelty transititons into

utility when one considers that HARE does not have the proportionality assumption inherent to

Cox proportional hazards models. While some proportionality between hazards may exist, such

as demonstrated in the Paquid data analysis, a notable amount of social science data indicate

non-proportional hazards of experiencing times-to-event whether through the inherent nature of

the problem, through a confluence of related factors, or due to some measurement error. Looser

assumptions that provide comparable or more realistic inferences become necessary as data stop

conforming to probability theorems.

Results from the simulation study indicated that when the model is well-specified, such

as being simulated from a parametric distribution, HARE provided comparable estimates to a

survival model that assumed a mixture of these parametric distributions. Further, the estimated

effects had favorable asymptotic properties for larger datasets. The ability for the JLCMM

to converge on the true global maximum likelihood did suffer using HARE unless effort was

made to use optimal starting values. However, this limitation exists within many JLCMMs

(Proust-Lima, et al., 2017) and is not more prevalent with HARE than any other spline-based

method of knot determination. A more pressing concern was the larger bias in the hazard

model estimates than the longitudinal outcome estimates. While these larger biases did parallel

the ones from the Weibull model, one would hope that a flexible hazard function estimation

method would produce less bias at the expense of more error. More research needs to be done

to ascertain the reason for this issue.
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The analysis of the social fixation arousal experiment data revealed the justification of

both JLCMM use and the HARE method of hazard estimation within it. As shown by the

post-hoc Cox models, using joint outcomes to estimate latent classes among a heterogeneous

sample provided better estimates of the association between the two vision tasks than using

a single model with a time-varying covariate. Further, since the hazard functions were not

proportional between the three latent classes, a data-driven method of estimating those hazards

likely improved the process. The key limitation from these analyses was the convergence issue.

Having nonproportional hazard functions implies that some knots either in time or a covariate

will have little, if any, variation within a latent class. This issue led to the Levenberg-Marquardt

algorithm to maximize the likelihood function along a boundary space. Fixing the estimates

around these boundary cases did solve the convergence problem, but it could have also biased

estimates in an unforseeable way. The latent classes have some external validity, but resolving

this optimization method would be preferable for future research.

The identification issues of any latent class analysis, including with JLCMMs, became

apparent in the cascading effects analyses. Any model that assumes an uknown mixture

of random distributions will contend with the issue of identification (Masyn, 2013). This

conundrum exemplified the justification of substantive and external validation of latent class

assignment. Since the latent classes contradicted established science, it was likely that they were

valid despite the high discrimination of the classes themselves. Further model building improved

the classification of the model. Although the modified model still contended with measurement

error, the within-class hypothesis tests converged with prior theory and research about the

relationship between development watershed moments among those with neurodevelopmental

disorders. The point of concern with using HARE in this scenario derives from the knot

determination. These knots were determined at 6-months and 8-months after first visit onset

(accordingly 12-months and 14-months of age). Both ages are reasonable knot locations, but the

determination for these locations is unknown outside of understanding the pattern of recursive

partitioning performed by HARE. HARE, just like many model-fitting methods, did not provide
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substantive reasoning for these two knot locations. It was very likely that a knot at 12-months

of age was determined because it was the earliest time determined for many infants with a low

likelihood of developing Autism Spectrum Disorder (ASD). While no statistical method can

provide such detail, this kind of adaptive method can easily lead to erroneous latent classification

if the model is not examined with care.

While HARE provided novelty and utility to the estimation of the survival model within

a JLCMM, improvements could be made to this methodology that would overcome some

limitations. Primarily, knot selection needs to account for ample data support within each latent

class. Currently, the method assumes suitable variance in the neighborhood of each knot equally

among latent classes. However, this assumption is unrealistic, especially in cases where hazard

functions are not proportional. A sequence of time in which hazard increases greatly for one

latent class may have no change in the data for another. This discordance has led to certain

knots within a specific class having no variance, which has led to the majority of convergence

issues (from Hessian singularity) with the analyses in this manuscript. Various options currently

exist that may be implemented to help with this task. K-nearest neighbor methods (Lloyd, 1982)

have been used to locate dense areas of data. Stone (1977) used this method to produce weight

functions for regression in a consistent, nonparametric fashion. This method or one similar

could be used within HARE to determine class-specific weights for knot determination.

A secondary improvement would be to find an alternative method for estimating the

maximum likelihood estimates of the parameters. The Levenberg-Marquardt method appears

to have issues when working with splines (Proust-Lima, et al., 2017), and a nonparametric

method of estimation could minimize the troubleshooting associated with this process. An

adaptive method similar to multivariate adaptive regression splines (Friedman, 1991) could

be implemented for the longitudinal outcome of JLCMM so that both outcomes are estimated

adaptively and nonparametrically. One obstacle to this implementation would be standard error

estimation that needs to account for the randomness of knot selection. As noted in Kooperberg,

Stone, and Truong (1995a), the standard errors estimated by HARE are ‘merely suggestive’.
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However, other nonparametric methods have been successfully developed to estimate a JLCMM

(Wong, Zeng, & Lin, 2022), so this potential method may not be intractable.
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