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ABSTRACT

Hillary M. Heiling: Scalable Statistical Methods for Cell Type Deconvolution and Mixed Models
Applied to High Dimensional Genomic Data

(Under the direction of Naim U. Rashid and Joseph G. Ibrahim)

Utilizing genomic data in the clinical setting provides new opportunities for biomarker dis-

covery, disease characterization, and personalizing treatment, but also poses new statistical chal-

lenges. In the first part of the dissertation, we propose a new computational method, IsoDecon-

vMM, which estimates cell type fractions using isoform-level RNA-seq gene expression data

one gene at a time. The cell type composition of a tissue sample may itself be of interest and is

needed for proper analysis of differential gene expression of heterogeneous tissues. Although

a variety of existing computational methods estimate cell type proportions using gene-level ex-

pression data, isoform-level expression could be equally or more informative for determining cell

type origin.

In genomics datasets as well as many other modern biomedical datasets, the data are increas-

ingly high dimensional and exhibit complex correlation structures. Generalized linear mixed

models (GLMMs) have long been employed to account for such dependencies. In the second part

of this dissertation, we implement several statistical and computational innovations to improve

the speed of a high dimensional penalized GLMM framework for simultaneously selecting fixed

and random effects, resulting in the efficient R package glmmPen.

Although this framework extends the feasible dimensionality of GLMMs relative to exist-

ing methods, new methodology is needed to alleviate computational burden as the dimension

increases and allow scalability to hundreds of predictors. We present a novel reformulation of the

GLMM using a factor model decomposition of the random effects, enabling scalable computation

of GLMMs in higher dimensions by reducing the latent space from a large number of random

iii



effects to a smaller set of common factors. We extend our prior work to estimate model param-

eters and perform simultaneous selection of fixed and random effects using a modified version

of the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm. We show that

through this factor model decomposition, we can improve the speed and scalability of fitting high

dimensional penalized GLMMs.

Finally, we extend our framework on performing high dimensional penalized generalized

linear mixed models to survival outcome data. We approximate proportional hazards mixed

effects models using piecewise constant hazards mixed effects survival models.
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CHAPTER 1: LITERATURE REVIEW

1.1 Cell type composition

1.1.1 Introduction

RNA sequencing data derived from human tissue samples are often mixtures of several dif-

ferent cell types. It is often of interest to quantify the relative abundance of each constituent cell

type found within a tissue sample. In some cases, the relative abundances themselves contain

relevant information for the main goal of a study. For example, the relative abundance of dif-

ferent types of immune cells within tumor samples can be used to predict patients’ response to

cancer immunotherapy (Becht et al., 2016b). In other cases, abundance profiles are crucial for

proper cell type-specific differential expression analyses (Li and Wu (2019); Jin et al. (2020)).

Cell-sorting and other physical separation techniques exist to partition tissue samples into puri-

fied samples of their constituent cell populations, but such methods can be costly and may even

induce changes to the cellular environment which can impact expression profiles (Shen-Orr et al.

(2010)). As an alternative to physical separation methods, the development of statistical models

for the deconvolution of expression profiles from tissue samples has become an active area of

research.

1.1.2 Existing methods for cell type composition

Deconvolution methods can generally be categorized as reference-based or reference-free

methods. Reference-based deconvolution methods, such as CIBERSORTx (Newman et al., 2015)

and Houseman’s CP/QP (Houseman et al., 2012), require purified samples for each cell type. In

contrast, reference-free methods such as RefFreeEWAS (Houseman et al., 2014) and surrogate
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variable analysis (SVA) (Leek and Storey, 2007) do not require such purified samples. Here, we

focus on referenced-based methods because they have the benefit of allowing for the estimation

of cell type proportions at an individual sample level (Teschendorff and Zheng, 2017).

In silico expression deconvolution models can largely be separated into three main develop-

ments: ratio-based models, linear models, and infiltration scores. Ratio-based models rely upon

computing expression ratios between a mixed expression profile and a “gold standard” reference

for a single cell type. The minimum of these ratios across genes roughly approximates the pro-

portion of the referent cell type (Gosink et al. (2007); Clarke et al. (2010); Wang et al. (2014)).

These methods are often limited to study two cell types (e.g., tumor vs normal). The linear model

and infiltration score approaches can handle more than two cell types. The linear model frame-

work assumes that appropriately normalized mixture expressions can be modeled as a weighted

summation of cell-type specific gene expression in two or more cell types (Lu et al. (2003); Gong

and Szustakowski (2013); Newman et al. (2015); Zhong et al. (2013)). The infiltration scores

approach aim to estimate unitless quantities designed to reflect the abundance each constituent

cell type (Becht et al. (2016a); Li et al. (2016)).

1.1.3 Alternative splicing

Existing methods have been designed to utilize gene-level expression only. Thus, appropriate

deconvolution requires that cell types express differently at the gene level. In the case of highly

similar cell types, however, it may be the case that gene-level expression differences are minimal.

An alternative is to quantify gene expression at a more granular level: isoform expression. Each

gene in human genome is often composed by multiple exons separated by introns, and one gene

may produce multiple distinct transcripts by taking different combinations of exons. This process,

known as alternative splicing, allow a single gene to encode multiple proteins and thus greatly

increases the biodiversity of proteins that can be encoded by the genome. More than 90% of

human genes could undergo alternative splicing (Wang et al. (2008)). Because cell types are

often defined through the expression of proteins, the isoform level expression could be more
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sensitive to cell type identity than higher-level gene expression that is often the summation of

gene expression across multiple isoforms.

1.1.4 Exon sets

Later in this document, we outline the development of a statistical model named IsoDecon-

vMM for expression deconvolution in mixture tissues by exploiting isoform-level expression

differences between cell types. This method requires us to summarize read counts at an exon set

level. In this section, we define an exon set in the same way as Sun et al. (2015), and we provide

an example for illustration.

Consider a hypothetical gene composed of m non-overlapping exons that are utilized by

I isoforms, or distinct mRNA transcripts formed by unique combinations of these exons. As

specified in the gene models, the locations of these exons within the gene are known as are the

identities and compositions of all isoforms used by this gene. We define the read count at any

exon set A as the number of reads which overlap each of the exons in A and only these exons.

To visualize the setup, consider the hypothetical gene displayed in Figure 1.1. This gene is

composed of E “ 4 exons. An exon set is defined as some subset of the exons, which for this

hypothetical gene could include sets containing only a single exon, sets containing two of the

four exons, sets containing three of the four exons, or the set with all four exons combined. Each

RNA-Seq read from the gene maps to one and only one of the possible exon sets. If an RNA-Seq

read maps to each exon in some exon set A and no other exons, we say it belongs to exon set A.

The gene in Figure 1.1 is composed if I “ 3 isoforms. Suppose that isoforms 1, 2, and 3

compose the set of all isoforms used by the gene and that their structure with respect to the exons

is as given in the figure. Consider the exon set A :“ t1, 2, 3u. The read count at A is defined as

the number of RNA-Seq reads which, when mapped, overlap exons 1, 2, and 3 but do not overlap

exon 4.

Identifying the exon set to which an RNA-Seq read belongs gives us insight into the isoform

to which the read belongs. Although a gene is composed of p2E ´ 1q possible exon sets, the exon
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Figure 1.1: Hypothetical gene and isoform construction model.

sets possible for each of the isoforms can be restricted. In this hypothetical example, isoforms 1

and 2 do not contain exon 3, so none of the exon sets containing exon 3 are possible for isoforms

1 and 2. Which exon sets are theoretically possible for each of the three isoforms of this gene is

provided in Table 1.1.

In some cases, two exons of a gene overlap partially. When this happens, we handle the

situation similar to Sun et al. (2015). We split the two exons into three exons: the two non-

overlapping sections unique to a particular exon and the overlapping section belonging to both

exons. It is also possible for multiple genes to overlap one or more exons, and we consider these

overlapping genes as a transcript cluster.
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Table 1.1: The exon sets available for each of the three isoforms from the hypothetical gene in
Figure 1.1. Value of 1 indicates that a paired-end read could theoretically maps to that exon set
given that the read comes from the isoform specified; value of 0 otherwise.

Exon Set Isoform 1 Isoform 2 Isoform 3
tE1u 1 1 1
tE2u 0 1 1
tE3u 0 0 1
tE4u 1 1 1

tE1, E2u 0 1 1
tE1, E3u 0 0 1
tE1, E4u 1 1 1
tE2, E3u 0 0 1
tE2, E4u 0 1 1
tE3, E4u 0 0 1

tE1, E2, E3u 0 0 1
tE1, E2, E4u 0 1 1
tE1, E3, E4u 0 0 1
tE2, E3, E4u 0 0 1

tE1, E2, E3, E4u 0 0 1

1.2 Variable selection in generalized linear mixed models

1.2.1 Introduction to generalized linear mixed models

Generalized Linear Mixed Models (GLMMs) are widely used in scientific research, with

applications spanning the social sciences (Schmidt-Catran and Fairbrother, 2016), biomedical

sciences (Fitzmaurice et al., 2012), and public health (Szyszkowicz, 2006; Kleinman et al., 2004).

GLMMs are generalized linear models where the linear predictor contains both “fixed” and “ran-

dom” effects; the latter portion pertains to variables whose effects are presumed to vary randomly

across “groups” of observations within the data, leading to group-specific effect estimates (Fitz-

maurice et al., 2012). In practical applications, these “groups” may pertain to clusters of samples,

repeated measures within the same individual, or observations resulting from nested designs.

Multiple studies have shown that omitting important random effects leads to bias in the estimated

variance of the fixed effects, and including unnecessary random effects could lead to computa-

tional difficulties (Thompson et al., 2017; Gurka et al., 2011; Bondell et al., 2010). As a result,
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proper specification of fixed and random effects is an important and critical step in the applica-

tion of GLMMs.

1.2.2 Existing methods for variable selection in GLMMs

Although proper specification of fixed and random effects is important, it is often unknown a

priori which variables should be specified as fixed or random in the model. In higher dimensional

settings, the feature space may also be sparse with many variables unrelated to the outcome.

Therefore, variable selection approaches are employed to evaluate candidate models. R packages

such as lme4 (Bates et al., 2015), mcemGLM (Archila, 2020), and MCMCglmm (Hadfield,

2010) allow users to fit a set of pre-specified models, which can then be compared using model

selection criteria such as the profile conditional AIC (Donohue et al., 2011), the BIC-ICQ cri-

terion (Ibrahim et al., 2011), the hybrid BICh criterion (Delattre et al., 2014), or other similar

criteria (see additional details in Section 1.2.3). However, all-subsets selection or direct model

comparison strategies are not feasible even for small dimensions, as with p predictors there are

22p possible combinations of fixed and random effects to be evaluated. Packages such as glmnet

(Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and grpreg (Breheny and Huang,

2015) avoid this limitation for GLMs via coordinate-descent based penalized likelihood methods

for variable selection, and are therefore much more scalable. Unfortuntely, none of these methods

can account for random effects during their variable selection procedure. Other packages such as

glmmLASSO (Groll, 2017) and glmmixedLASSO (Schelldorfer et al., 2014) alternatively allow

the inclusion of random effects in the model while performing variable selection, but only allow

for variable selection on the fixed effects. Prior work has shown that simultaneous selection of

fixed and random effects is advantageous because improper specification of the random effects

can significantly affect the selection of the fixed effects, and vice versa (Bondell et al., 2010).

In addition, there may not be a priori knowledge of which variables may vary randomly across

groups in their effects. Therefore specification of random effects may be difficult in practical

applications, particularly as the dimension of the data grows.
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1.2.3 BIC-type model selection criteria for mixed models

As mentioned above, there are several existing model selection criteria that have been used to

select the best mixed model from candidate models. In this section, we discuss in more depth the

calculation of BIC-type model selection criteria for mixed models.

We first introduce some relevant notation. We consider the case where we want to analyze

data from K independent groups of any kind. For instance, we could be interested in analyzing

data from K different studies, or we could be interested in analyzing longitudinal data from K

individuals. For each group k “ 1, ..., K, there are nk observations for a total sample size of

N “
řK

k“1 nk. For the kth group, let yk “ pyk1, ..., yknk
qT be the vector of nk independent

responses, let xki “ pxki,1, ..., xki,pqT be the p-dimensional vector of predictors, and letXk “

pxk1, ...,xknk
qT . In GLMMs, we assume that the conditional distribution of yk givenXk belongs

to the exponential family and has the following density:

fpyk|Xk,αk; θq “

n
ź

i“1

cpykiq exp
“

τ´1
tykiηki ´ bpηkiqu

‰

, (1.1)

where cpykiq is a constant that only depends on yki, τ is the dispersion parameter, bp¨q is a known

link function, ηki is the linear predictor, and αk is a q-dimensional vector of unobservable random

effects.

The traditional BIC criterion is specified below:

BICpθλq “ ´2 ˚ ℓpθλq ` dλ ˚ logpNq,

where θλ are the coefficients of the penalization model, ℓpθλq is the marginal log-likelihood

for the model, dλ is the number of nonzero coefficients for the model, and N can be either the

total number of observations in the data (Nobs) or the total number of independent observations

(i.e. number of levels within the grouping factor, Ngrps) in the data. The marginal log-likelihood
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is as follows:

ℓpθq “

K
ÿ

k“1

ℓkpθq “
1

nk

log

ż

fpyk|Xk,αk;θqϕpαkqdαk, (1.2)

where ϕpαkq is the prior for the random effects.

The use of logpNobsq or logpNgrpsq in the BIC penalty term is related to the debate on the

definition of the sample size in mixed models: the number of total observations in the data, or the

total number of independent units (i.e. number of groups in the data). There has not traditionally

been a consensus on what version to use, with different software using different versions. For

instance, the logpNobsq penalty is used in the R package nlme (Pinheiro et al., 2017), and the

logpNgrpq penalty is used in SAS proc NLMIXED (SAS Institute Inc., 2008). In practice, the

performance of the different versions of the BIC penalty term may depend on the true underlying

model (Lorah and Womack, 2019; Delattre et al., 2014), with Delattre et al. (2014) observing that

the logpNobsq penalty performed better when the true model had very few random components,

and the logpNgrpq penalty performed better when the true model had a large number of random

components. Both Delattre et al. (2014) and Lorah and Womack (2019) suggest using some

combination of these sample size definitions.

Specifically, Delattre et al. (2014) suggested using a ‘hybrid’ BICh selection criteria to select

the best model, defined below:

BIChpθλq “ ´2 ˚ ℓpθλq ` dλ,f ˚ logpNobsq ` dλ,r ˚ logpNgrpsq, (1.3)

where dλ,f and dλ,r are the number of nonzero fixed and random effect coefficients, respectively.

The calculation of the BIC and BICh criteria require a calculation of the marginal log-likelihood

ℓpθq for each model. In mixed models, the calculation of the marginal likelihood is complicated

by the fact that the integrals within ℓpθq are generally intractable. Some methods for the estima-

tion of this marginal log-likelihood are only practical in lower dimensions, such as the Laplace

estimation used in the lme4 package (Bates et al., 2015). There have been several other proposed

marginal likelihood estimates that utilize output from Markov Chain Monte Carlo (MCMC)
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posterior samples and are more appropriate for higher dimensions. One general class of such

methods includes importance sampling methods that use MCMC samples to inform appropriate

importance sample distributions, such as the Corrected Arithmetic Mean Estimator (CAME) from

Pajor (2017) and the methods by Crooks et al. (2007) and Heavens et al. (2017). Other methods

directly use the MCMC chain results in their estimation procedure, such as the modified har-

monic mean estimator (Chan and Grant, 2015), and the Chib method (Chib and Jeliazkov, 2001).

As discussed in Fourment et al. (2020), there is a wide variation in the required calculation time

and the accuracy of the many possible marginal likelihood estimates. Here, we discuss the es-

timation of the marginal log-likelihood using the CAME estimator described by Pajor (2017),

which is relatively fast and easy to compute for our mixed model application and was shown

to be accurate when compared against the lme4 log-likelihood estimate in low dimensions (we

considered the lme4 method to be the gold standard for estimation of low-dimensional GLMMs;

log-likelihood comparison results not presented in this paper).

To calculate the CAME, we focus on a single group k and define a set Ak Ď Θ as a subset

of the parameter space of the random effects for group k, where P pAkq and P pAk|yk,Xk;θq are

nonzero probabilities. We first start with the knowledge

P pAk|yk,Xk;θq “

ż

Ak

ϕpαk|yk,Xk;θqdαk

“

ż

Θ

1

fpyk|Xk;θq
fpyk|Xk,αk;θqϕpαkqIpαk P Akqdαk,

(1.4)

where I(.) is an indicator function, fpyk|Xk;θq “
ş

fpyk|Xk,αk;θqϕpαkqdαk is the marginal

likelihood for group k, and all other terms are described earlier in this section. The above rela-

tionship allows us to obtain the result:

fpyk|Xk;θq “
1

P pAk|yk,Xk;θq

ż

Θ

fpyk|Xk,αk;θqϕpαkqIpαk P Akqdαk

“
1

P pAk|yk,Xk;θq

ż

Θ

fpyk|Xk,αk;θqϕpαkqIpαk P Akqspαkqdαk

spαkq
,

(1.5)

where sp.q is an importance sampling function.
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Suppose we obtain M samples from the posterior distribution of the random effects for

group k, α̃k “ ppα
p1q

k qT , ..., pα
pMq

k qT qT . Let us set Ak “ α̃k; this reduces P pAk|yk,Xk;θq to

1. For practical purposes, we can define the importance sampling function sp.q using the poste-

rior samples αpmq

k for m “ t1, ...,Mu. For instance, we could set sp.q to a multivariate normal

distribution with a mean vector equal to the mean of the posterior samples 1
M

řM
m“1α

pmq

k and a

covariance matrix equal to the covariance matrix of a thinned subset of the posterior samples. If

we draw M‹ samples α‹
k “ ppα

‹p1q

k qT , ..., pα
‹pM‹q

k qT qT from this importance sampling function,

then equation (1.5) indicates that we can estimate the marginal likelihood for group k as

fpyk|Xk;θq «
1

M‹

M‹
ÿ

m“1

fpyk|Xk,α
‹m
k ;θqϕpα‹m

k qIpα‹m
k P Akq

spα‹m
k q

. (1.6)

We can then repeat the estimation in (1.6) for all K groups in order to calculate the full de-

sired marginal log-likelihood ℓpθq. This final marginal log-likelihood can then be used in the

previously mentioned BIC and BICh calculations for each candidate model of interest. We refer

to this marginal log-likelihood as the Pajor log-likelihood throughout the remainder of the paper.

As an alternative to the BIC or BICh selection criteria, we could instead use the BIC-ICQ

criterion (Ibrahim et al., 2011) for model selection. This BIC-ICQ criterion is calculated by first

fitting a ‘full’ model with either no penalty or a small penalty on the coefficients. The BIC-ICQ is

expressed below:

BICqpθλq “ 2tQλpθλ|α0qu ` dλ ˚ logpNq

«

#

´
2

M

M
ÿ

m“1

K
ÿ

k“1

”

log fpyk|Xk,α
pmq

0,k ;θλq ` log ϕpα
pmq

0,k q

ı

+

` dλ ˚ logpNq,
(1.7)

where θλ are the coefficients of the penalized model, α0 are the posterior samples from a ‘full’

model with either no penalty or a minimum penalty used on the fixed and random effects, and

α
pmq

0,k is the mth posterior sample for group k from such a full model, dλ is the number of nonzero

coefficients for the model (all nonzero fixed effects parameters β plus all nonzero random effects

parameters γ), N is the total number of observations in the data (Nobs), and Qλ, the Q-function,
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is defined below and evaluated using the posterior samples from the full model:

Qλpθ|α0q “

K
ÿ

k“1

E
␣

´ logrfpyk,Xk,α0,k;θ|do;θ
psq

qs
(

(1.8)

1.3 Factor analysis as a tool in high dimensions

1.3.1 General factor analysis models

Factor analysis and the closely-related component analysis have long been employed as di-

mension reduction tools in a variety of areas. Such areas of application range from the behavioral

sciences such as psychology and education (Jacobson et al., 1996; Baynton, 1992) to economics

and finance (Chamberlain and Rothschild, 1982; Fama and French, 1992; Bai and Ng, 2002) to

genomics (Nazarov et al., 2019). In this section, we review the common factor model and the full

component model (Gorsuch, 2014) and how they can be used in dimension reduction.

To illustrate these models, we consider the case where we have observed outcomes yit for

features i “ t1, ..., Nu over situations t “ t1, ..., T u. These situations could apply to time points

in time series analysis (Fan et al., 2013; Bai and Ng, 2002) or to human subjects (Nazarov et al.,

2019). The common factor model is then defined as

yt “ Bft ` ϵt, (1.9)

where yt “ py1t, ..., yNtq
T is the vector of observed features at situation t, ft is an r-dimensional

vector of common factors (r ă N ),B is the factor loadings matrix of dimension N ˆ r, and ϵt are

idiosyncratic components (i.e. error terms) that have the distribution ϵt „ NNp0,Σϵq. In general,

ft is not required to have any particular distributional assumptions. However, we assume in this

paper that ft is normally distributed such that ft „ Nrp0,Σf q. The component model is similar

to the factor model, but without the error terms:

yt “ Bft. (1.10)
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The component model assumes that the N outcomes yt can be completely recreated from linear

combinations of the r common factors of ft such that yit “ bTi ft where bi is an r-length vector

of factor loadings (the i-th row of the loading matrixB). In comparison, the common factor

model incorporates additional sources of variation that are not attributable to the common factors

(Gorsuch, 2014). In either case, we are effectively representing the N total features of interest

with a lower dimensional set of common factors r with very little loss of total information.

There have been several publications that have compared and contrasted the use of the com-

ponent analysis and factor analysis methods. Snook and Gorsuch (1989) examined the impact

of assuming a component model when the true underlying model was the factor model. When

comparing the numeric values of the loadings, they found that the loadings estimates from the

component model were most biased compared with the factor model results when the number

of features N was relatively small and/or when the proportion of variation that can be explained

by the common factors is relatively small (i.e. the idiosyncratic error is high). Velicer and Jack-

son (1990) compared the correlations of several possible loadings estimates derived from the

two methods using results from 9 different studies, and they found that the correlations were

generally very high (ě 0.99). They concluded that when the same number of r common factors/-

components are used in the analysis, the component analysis and factor analysis give very similar

results.

In both factor analysis and component analysis, the stability of the loadings estimates im-

proves when there is a large ratio of the number of features N to the number of factors or compo-

nents r (Fava and Velicer, 1992; Guadagnoli, 1984).

1.3.2 Factor analysis to estimate high dimensional covariance matrices

Several publications (Fan et al., 2008, 2013; Tran et al., 2020) have utilized factor analysis

model assumptions to estimate high-dimensional covariance matrices. In this section, we first dis-

cuss some of the underlying assumptions of the method proposed by Fan et al. (2013), a method

that allows for the factors to be unobserved (i.e. latent). Fan et al. (2013) assumes the follow-
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ing approximate factor model (equivalent to the previously mentioned common factor model in

equation 1.9):

yt “ Bft ` ϵt, (1.11)

where yt “ py1t, ..., yNtq
T is the N -dimensional vector of observed features for time point t “

t1, ..., T u, ft is an r-dimensional vector of unobserved latent factors,B is the factor loadings

matrix, and ϵt are idiosyncratic components (i.e. error terms) that are uncorrelated with ft.

Fan et al. (2013) make a conditional sparsity assumption where given the common factors,

the outcomes are weakly correlated. The covariance matrix of the outcomes yt can then be ex-

pressed as Σ “ BcovpftqB
T ` Σϵ, a combination of a low-rank matrix (BcovpftqB

T , where

covpftq “ Σf ) and a sparse matrix (Σϵ).

Some assumptions of this method are that both N and T diverge to infinity, the number of

common factors r is fixed, and the first r eigenvalues of Σ are spiked and grow at rate OpNq. By

assuming that the first r eigenvalues are spiked, the common components and the idiosyncratic

components can be identified. They also assume without loss of generality that cov(ft) = Ir, the

identity matrix. Consequently, Σ “ BBT ` Σϵ.

Fan et al. (2013) propose that their method has wide applicability in statistical genetics.

They cite Carvalho et al. (2008), who studied breast cancer hormonal pathways using a Bayesian

sparse factor model. In their real-data results, Carvalho et al. (2008) identified two common

factors that have highly loaded genes. This would translate to the gene expression’s covariance

matrix having one or two very spiked eigenvalues. Consequently, Fan et al. (2013) argue that

their method could be applied to estimate such a covariance matrix.

Tran et al. (2020) utilize a similar factor model assumption for the parameterization of the

covariance matrix of their model’s posterior distribution, assuming that Σ “ BBT `D2, where

B is the same factor loading matrix described above andD is a diagonal N ˆ N matrix that

represents the standard deviations of the idiosyncratic noise.
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1.3.3 Estimation of number of common factors

Performing factor model analyses requires specifying the number of common factors r.

Since r is typically unknown a priori, this value needs to be estimated. There have been sev-

eral proposed methods of estimating r for the approximate factor model given in equation 1.11

assuming high dimensions of features N and time series observations T . These methods include

those developed by Bai and Ng (2002), Ahn and Horenstein (2013), Onatski (2010), and Kapetan-

ios (2010). In this section, we will describe the Bai and Ng (2002) method, henceforth denoted

BN, and the Eigenvalue Ratio (ER) and Growth Ratio (GR) methods developed by Ahn and

Horenstein (2013).

1.3.3.1 Bai and Ng (BN) method

The BN method estimates r by

pr “ arg min0ďr1ďM log

"

1

NT
||Y ´ T´1Y pFr1

pF 1
r1

||
2
F

*

` r1gpT,Nq, (1.12)

where Y is the N ˆ T matrix of the observed N features for all T time points, M is some pre-

scribed upper bound, pFr1 is a T ˆ r1 matrix whose columns are
?
T times the eigenvectors corre-

sponding to the r1 largest eigenvalues of the T ˆ T matrix Y 111Y , ||A||2F “ trpATAq, and gpT,Nq

is a penalty function. Two penalty functions suggested by Bai and Ng (2002) are:

g1pT,Nq “
N ` T

NT
log

ˆ

NT

N ` T

˙

, (1.13)

g2pT,Nq “
N ` T

NT
logpminpN, T qq. (1.14)

Bai and Ng (2002) suggestion for the prescribed upper bound M was M “ 8˚intrpminpN, T q{100q1{4s.
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1.3.3.2 Eigenvalue Ratio and Growth Ratio methods

Before we discuss the Eigenvalue Ratio (ER) and Growth Ratio (GR) methods proposed by

Ahn and Horenstein (2013), we first introduce some additional notation. Let ψkpAq be the k-th

largest eigenvalue of the positive semidefinite matrix A, and let µ̃NT,k ” ψkpY Y T {pNT qq “

ψkpY TY {pNT qq where Y is again the N ˆ T matrix of the observed N features for all T time

points.

To find the ER and GR estimators, we first order the eigenvalues of Y Y T {pNT q from largest

to smallest. The ER estimator estimates the number of factors r by taking the ratio of each pair of

two adjacent eigenvalues up to the prescribed upper bound M ,

ERpkq ”
µ̃NT,k

µ̃NT,k`1

, k “ 1, 2, ...,M (1.15)

and the estimate of r is simply the maximizer of these ratios,

prER “ max1ďkďMERpkq. (1.16)

The GR estimator estimates r by taking a ratio of the growth rates of residual variances as

one fewer principal component is used in the time series regressions. The GR estimator calcu-

lates the following ratios:

GRpkq ”
logrV pk ´ 1q{V pkqs

logrV pkq{V pk ` 1qs
“

log
`

1 ` µ̃˚
NT,k

˘

log
`

1 ` µ̃˚
NT,k`1

˘ , k “ 1, 2, ...,M (1.17)

where V pkq “
řminpN,T q

j“k`1 µ̃NT,j and µ̃˚
NT,k “ µ̃NT,k{V pkq. The estimate of r is then the maxi-

mizer of these ratios,

prGR “ max1ďkďMGRpkq (1.18)
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If there exists a priori knowledge about the maximum value of r, rmax, then Ahn and Horen-

stein (2013) recommend setting the upper bound M to M “ 2rmax. If there is no prior knowl-

edge of r, then they recommend using M “ minpM˚, 0.1minpN, T qq, where

M˚ “ #tk|µ̃NT,k ě V p0q{minpN, T q, k ě 1u.

1.4 Variable selection in models of survival data

In this section, we review existing models and methods of fitting survival data as well as

existing methods used to performing variable selection in mixed effects survival data.

1.4.1 Piecewise constant hazard approximation to Cox proportional hazards model

Modeling survival outcomes has great clinical significance in medical and public health re-

search. In particular, the Cox proportional hazards model has been widely utilized in order to

characterize the relationship between treatments, exposures, or other covariates and patients’

survival. The proportional hazards model can be approximated using the piecewise constant haz-

ard survival model. In the piecewise constant hazard model, the follow-up time of the study is

split into time intervals where the baseline hazard is assumed to be constant within these inter-

vals (Friedman, 1982; Laird and Olivier, 1981; Holford, 1980; Rodriguez, 2010). This piecewise

constant hazard model can be fit using a log-linear model which incorporates the duration of

exposure within each interval. We outline the piecewise constant hazard model and its approxima-

tion to the proportional hazards model here, and we illustrate this model assuming fixed effects

only (no random effects).

Suppose each of N subjects have the following observed data: observed times yi for i “

t1, ..., Nu, where yi “ minpTi, Ciq, Ti represents the subject’s event time, and Ci represents

their censoring time; observed event indicators δi “ IpTi ă Ciq; and observed covariates xi “

pxi,1, ..., xi,pq.
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Suppose we wish to fit the proportional hazards model

hipt|xiq “ h0ptq exp
`

xT
i β

˘

, (1.19)

where hiptq represents the i-th individual’s hazard at time t, h0ptq represents the baseline hazard

at time t, and β are the p-dimensional set of hazard ratios corresponding to the p predictors in the

model.

We can approximate (1.19) using a piecewise constant hazard model. We partition the follow-

up time of the study into J intervals with cut points 0 “ τ0 ă τ1 ă ... ă τJ “ 8, where the j-th

interval is rτj´1, τjq. For each of these j intervals, we assume that the baseline hazard is constant

within each interval such that

hij “ hj exp
`

xT
i β

˘

, (1.20)

where hij is the hazard corresponding to individual i in interval j, hj is the baseline hazard for

interval j, and exp
`

xT
i β

˘

represents the relative risk for an individual compared to baseline at

any given point.

For each interval, let us define analogous interval-specific measures of the observed times

yi and the event indicators δi, where tij is the time lived by subject i in the j-th interval rτj´1, τjq

and dij “ Ipτj´1 ď yi ă τj, δi “ 1q is the indicator of whether the subject died in interval j (1 if

true, 0 otherwise). Then, we can treat the death indicators dij as if they were independent Poisson

observations with means

µij “ tijhij, (1.21)

allowing us to fit the data using the log-linear model

log µij “ log tij ` ψj ` xT
i β, (1.22)

where ψj “ log hj is the log of the baseline hazard for time interval j and the log of the time

lived by the subject within interval j (defined as log tij) is treated as an offset in the model.
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Both the proportional hazards model and the piecewise constant hazard model can be ex-

tended to include mixed effects (Cortiñas Abrahantes and Burzykowski, 2005; Austin, 2017). In

such models, the linear predictor contains both “fixed” and “random” effects, just as in general-

ized linear mixed models. See more details in Chapter 5.

1.4.2 Existing methods for variable selection in proportional hazards mixed models

In high dimensional settings, in which the feature space is generally assumed to be sparse, it

is often unknown a priori which covariates should be specified as fixed or random in the model.

Variable selection methods such as LASSO and SCAD exist for high dimensional proportional

hazards models or frailty models (Tibshirani, 1997; Bradic et al., 2011; Simon et al., 2011; Fan

and Li, 2002), but they do not allow for the selection of random effects. Several mixed effects

model selection methods that rely on the specification of candidate models have been proposed,

including likelihood ratios, profile Akaike information criterion (AIC) (Xu et al., 2009), and

conditional AIC (Donohue et al., 2011). However, specifying all 2p possible candidate models in

high dimensions is impractical. Lee et al. (2014) developed a stochastic search variable selection

(SSVS) method that selects both fixed and random effects in proportional hazards mixed effects

models in a Bayesian framework, but their method is only computationally feasible for small or

moderate dimensions.

1.5 Proximal gradient and Majorization-Minimization algorithms

As will be discussed in Chapters 3, 4, and 5, we use a Majorization-Minimization algo-

rithm to fit the minimization step (M-step) of the Monte Carlo Expectation Conditional Mini-

mizaiton (MCECM) algorithm (Rashid et al., 2020) utilized in these chapters. The Majorization-

Minimization algorithm requires the specification of a constant that provides an upper bound

on the Hessian of the loss function (Breheny and Huang, 2015). For the Binomial and Gaussian

families, this maximum value is well recognized as 0.25 or 1, respectively (Breheny and Huang,

2015). For the Poisson family or a related family that can be fit using a log-linear model, which
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we use in Chapters 4 and 5, this maximum value cannot be easily determined. Consequently, we

utilize the proximal gradient line search algorithm described in Parikh et al. (2014) to estimate

a step size value; the inverse of this step size value approximates the upper bound constant dis-

cussed above. The proximal gradient approach and the line search algorithm described in Parikh

et al. (2014) is outlined below.

Suppose we consider optimization problems with only fixed effects. Consider the general

problem

minimize fpβq ` gpβq, (1.23)

where fpβq is the differentiable loss function, gpβq represents the penalty function of interest

(e.g. the L1 penalty LASSO, MCP, or SCAD (Breheny and Huang, 2011; Friedman et al., 2010)),

and β are the coefficients of interest. In problems with only fixed effects, this loss function is the

negative of the log-likelihood:

Lpβq “ ´
1

N

N
ÿ

i“1

ℓipβq “ ´
1

N

N
ÿ

i“1

log fpy|xi, βq. (1.24)

As will be explained later in Chapters 3, 4, and 5, the loss function we use for our mixed effects

problems will be the Q-function.

The proximal gradient method is defined as:

βps`1q :“ proxδgpβpsq
´ δ∆fpβpsq

qq (1.25)

where δ ą 0 is the step size, βpsq is the value of the coefficients of interest evaluated at a previous

iteration of the algorithm, and βpsq`1 is the updated set of coefficients.

A majorization-minimization algortihm for minimizing a function ψ : Rn ÝÑ R consists of

the iteration

βps`1q :“ argminβ ψ̂pβ, βpsq
q (1.26)
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where ψ̂pβ, βpsqq is a convex upper bound to ψ that is tight at βpsq such that ψ̂pβ, βpsqq ě ψpβq

and ψ̂pβ, βq “ ψpβq for all β.

For an upper bound of f , consider f̂δ, which is derived from taking the Taylor series expan-

sion of f about the value of βpsq:

f̂δpβ, β
psq

q “ fpβpsq
q ` ∆fpβpsq

q
J

pβ ´ βpsq
q `

1

2δ
||β ´ βpsq

||
2
2. (1.27)

The algorithm

βps`1q :“ argminβ f̂δpβ, β
psq

q (1.28)

is thus a majorization-minimzation algorithm. It then follows that the function qδ given by

qδpβ, β
psq

q “ f̂δpβ, β
psq

q ` gpβq (1.29)

is a surrogate for the f ` g function of interest (with fixed y). The majorization-minimization

algorithm

βps`1q :“ argminβ qδpβ, β
psq

q (1.30)

can be shown to be equivalent to the proximal gradient iteration in equation 1.25.

The line search algorithm to identify the step size δ is:

Given βk, δk´1, and parameter c P p0, 1q (e.g. c “ 0.95),

Let δ :“ δk´1

Repeat:

1. Let z be the β update from the Majorization-Minimization solution given the above values

2. Break if fpzq ď f̂δpz, β
kq

3. Update δ “ c ˚ δ

Return δk :“ δ, βk`1 “ z.
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In other words, suppose for a Majorization-Minimization algorithm iteration k`1 that we have

solved for a particular solution to β, which we label as z, and we have saved the previous solution

βk. We evaluate whether the loss function evaluated at z is less than or equal to the upper bound

of the loss function specified in (1.25) evaluated using the step size δ and the previous solution

βk. If this inequality does not hold, then we reduce the step size by some constant between 0 and

1. Additional details about the f̂ function used in the log-linear mixed effects models in Chapters

4 and 5 are given in the Chapter 4 Appendix C.3.
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CHAPTER 2: ESTIMATING CELL TYPE COMPOSITION USING ISOFORM
EXPRESSION ONE GENE AT A TIME

2.1 Introduction

In this chapter, we outline the development of a statistical model named IsoDeconvMM for

expression deconvolution in mixture tissues by exploiting isoform-level expression differences

between cell types. A crucial factor for the success of expression deconvolution is to identify

a good set of signature genes/isoforms whose expression has much higher variation across cell

types than within cell types. However, even for such carefully selected genes/isoforms, there

are still biological variation of cell type-specific gene/isoform expression across individuals.

IsoDeconvMM is designed to explicitly model biological variability to achieve robust perfor-

mance. We demonstrate the utility of our method using the Blueprint dataset (Chen et al. (2016)).

This dataset contains human bulk RNA-seq samples for three sorted immune cell populations

(CD4-positive, alpha-beta T cell; CD14-positive, CD16-negative classical monocyte; and mature

neutrophil) from up to 197 individuals. In an in silico data analysis, we used this data to model

the variability across individuals and test the performance of our method given this biological

variability.

The rest of the chapter is organized as follows. In Section 2.2, we present the statistical mod-

els and algorithm used to estimate cell type proportions in mixture tissues, and describe the data

and materials needed for the method. In Section 2.3, we present in silico data analyses. In these

analyses, we compare the performance of our method with the performance of CIBERSORTx

(Newman et al. (2015)). In Section 2.4, simulations are conducted to assess the performance of

the IsoDeconvMM method when different underlying data distributions are assumed. Concluding
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remarks are given in Section 2.5. Technical proofs are given in the Appendix A.2. Additional

details regarding the procedures and materials required for the analyses in Section 2.3 and 2.4 are

given in the Appendix A.1 and the Appendix A.3.

2.2 Methods

2.2.1 Required data and resources

Consider a biological tissue sample composed of K different cell types. We seek to estimate

the unknown relative abundance of each cell type k—or the proportion of cells of type k—in the

heterogeneous sample. In order to estimate these proportions, IsoDeconvMM requires a single

RNA-seq experiment performed on the mixture sample. In addition, it is assumed that there exist

RNA-seq data for Nk purified samples for cell type k. For each sample, RNA-seq read counts are

summarized at the exon level by counting the number of reads (or RNA-seq fragments for paired-

end reads) overlapping various sets of exons. The definition of an exon set and an illustrative

example were given in Chapter 1 Section 1.1.4. It is assumed that a detailed gene model on the

location of each exon and the structure of each isoform is available for each gene. Consider

a hypothetical gene composed of m non-overlapping exons that are utilized by I isoforms, or

distinct mRNA transcripts formed by unique combinations of these exons. As specified in the

gene models, the locations of these exons within the gene are known as are the identities and

compositions of all isoforms used by this gene. We define the read count at any exon set A as the

number of reads which overlap each of the exons in A and only these exons.

IsoDeconvMM also assumes that there exists a list of cell-type specific genes wherein there

are gene- and/or isoform- expression differences across the K cell types. Such a list of genes can

be found using one of a variety of expression testing methods for RNA-seq data. Furthermore,

IsoDeconvMM requires empirical knowledge of the fragment length distribution for the bulk

RNA-seq samples.
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2.2.2 The IsoDeconvMM model and algorithm

2.2.2.1 Model parameters

Within the IsoDeconvMM model, cell type proportions are estimated independently within

each gene, and these gene-specific proportion estimates are then aggregated to produce a sample

level cell-type relative abundance estimate. To simplify discussion, we outline the IsoDeconvMM

model for a single gene.

RNA-seq expression is commonly corrected for feature length. Previously, however, the

notion of feature length pertained to the length of the genes or isoforms being measured and not

to the lengths of exon sets. Sun et al. (2015) extended the definition of feature length to exon-

sets and referred to it as the effective length for exon sets. Briefly, the effective length of an exon

set is the expected number of starting locations where an RNA-seq fragment that overlaps with

all the exons of this exon set can be sampled. Such expectation is taken over the distribution of

RNA-seq fragment length. Note that the effective length of an exon set varies across isoforms.

For example, isoforms that do not contain all the exons within the set cannot produce reads in

that exon set, thus the effective length of the exon set for such isoforms will be zero. See the

supplementary materials of Sun et al. (2015) for more details.

We first consider the models and parameters used to describe the gene expression in cell

type-specific samples. In all the notation, we utilize the subscripts kj to denote the parameters

for sample j of cell type k. Let Ykj “ tYkjAu denote the vector of read counts across all E exon

sets in the given gene/transcript cluster for sample j of cell type k. Also denote YkjpOq as the total

read count outside the gene of interest in this sample. We assume that the vector
`

YkjpOq,Y
T
kj

˘T

follows a multinomial distribution

»

—

–

YkjpOq

Ykj

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

τkj,γkj „ Multinomial

¨

˚

˝

tkj,

»

—

–

1 ´ τkj

τkjXγkj

fi

ffi

fl

˛

‹

‚

, (2.1)
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where τkj is the probability that a randomly selected read maps to the gene of interest, γkj “

pγkj1, ..., γkjIq
T is the vector of I isoform expression parameters, tkj is the total read count in the

sample, andX is a matrix of effective lengths such that column i ofX is the vector of effective

lengths for all the exon sets of isoform i.

We further describe the probability τkj and the isoform parameters γkj with the following

beta and Dirichlet distributions:

τkj „ Betapβkq,

l̃ ˝ γkj „ Dirichletpαkq,

(2.2)

where l̃ “ pl̃1, ..., l̃Iq, l̃i “
ř

APisoform iXA represents the total effective lengths of isoform i for

1 ď i ď I , and ˝ represents element-wise multiplication of two vectors. It should be noted that

the γkj parameters can be interpreted as per-unit-of-effective-length conditional probabilities that

a read maps to isoform i given that it maps to the gene which utilizes isoform i. The fact that we

model gene expression for each sample j of cell type k separately in the above models allows us

to capture the biological variation across samples. The similarity of all the samples from cell type

k is modeled by the shared beta or Dirichlet distribution in equation (2.2). We next consider the

models and parameters used to describe the exon set counts in the mixture sample. Let Z “ tZAu

denote the vector of read counts across all E exon sets in the given gene for the mixture sample,

and let ZT “
ř

A ZA denote the sum of the read counts for the given gene. We assume that the

vector of counts Z follows a multinomial distribution such that

„

Z

ȷ
ˇ

ˇ

ˇ

ˇ

τ˚
k ,γ

˚
k „ Multinomial

ˆ

ZT ,

„

řK
k“1 ρkτ

˚
k Xγ˚

k
řK

k“1 ρkτ
˚
k

ȷ˙

, (2.3)

where τ˚
k represents the probability that a randomly selected read from cell type k maps to the

gene of interest in the mixture sample, γ˚
k “ pγ˚

k1, ..., γ
˚
kIq is the vector of I isoform expression

parameters unique to cells of type k found within the mixture sample, and ρk is the proportion of

cell type k in the mixture sample.
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Using the same cell type k gene expression hyperparameters βk and isoform expression

hyperparameters αk from the pure sample models in equation (2.2), we further describe the

probabilities τ˚
k and the mixture isoform parameters γ˚

k as follows:

τ˚
k „ Betapβkq,

l̃ ˝ γ˚
k „ Dirichletpαkq.

(2.4)

Given those shared parameters βk and αk, we assume independence across samples.

2.2.2.2 Model estimation

Within each gene, the model is fit using a staged estimation approach with three stages. In

stage one, the gene and isoform expression parameters are estimated separately for each purified

reference sample by maximum likelihood estimation. The likelihood used for stage one involves

only equation (2.1). Under such a framework, closed form estimates of τkj are obvious and a log-

arithmic adaptive barrier algorithm can be used to obtain estimates of the γkj subject to boundary

constraints. Once obtained for each cell type and sample, these estimates are held fixed for all

further stages.

Within stage two, the values of τkj and γkj estimated during stage one are treated as ob-

servations from equation (2.2). Estimates of αk and βk are obtained via maximum likelihood

estimation within separate Dirichlet models. Once obtained, these estimates of αk and βk are

fixed for stage three.

Finally, in stage three, the αk and βk estimates are used in Dirichlet distributions as penalty

functions in the estimation of the γ˚
k and τ˚

k . In this way, we regularize estimates of γ˚
k and τ˚

k

to be similar to those estimates obtained in the pure cell type samples. The use of an EM algo-

rithm allows separation of the full likelihood into K ` 1 independent components in the M step.

The first K components pertain to the isoform expression parameters from each of the K cell

types. Each of these components is optimized using a Newton-Raphson algorithm on the log pγ˚
k q

until convergence of isoform parameters. The last component contains information regarding
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the ρk and logpτ˚
k q values, which are optimized using a quasi-Newton’s method optimization

procedure (BFGS). Estimation is seeded at various start points to identify global maxima. The

E-step updates the posterior means of the exon set counts in the mixture sample (Z) attributable

to cell type k. The expectation has a closed form solution, provided in Appendix A.2. The EM

algorithm is iterated until convergence in the proportion estimates. Proportion estimates across

multiple genes are then aggregated using the spatial median to obtain final estimates of cell type

proportions.

Technical proofs and further details about the models and methods can be found in Appendix

A.2. Table A.2 in Appendix A.2 contains a summary of the notation presented in the above Sec-

tion 2.2. A discussion about why a staged estimation approach was used instead of a joint estima-

tion approach is included in Section A.2.6.

2.3 In Silico Blueprint data analysis

To the best of our knowledge, our IsoDeconvMM method is the first method that estimates

cell type proportions using isoform expression. Since there are already several methods for cell

type composition estimation using gene expression (instead of isoform expression) data, an im-

mediate question is what is the advantage to use isoform expression. In this section, we compare

our IsoDeconvMM method with CIBERSORTx (Newman et al. (2019)), a representative and

popular method for cell type composition estimation using gene expression, and demonstrate

that IsoDeconvMM has similar performance with CIBERSORTx when the number of genes is

relatively large and it outperforms CIBERSORTx with large margin when the number of genes

is small. To compare IsoDeconvMM and CIBERSORTx, we utilize the Blueprint data set (Chen

et al. (2016)) discussed in Section 2.1. We arbitrarily label the three cell types as follows: CT1

represents CD4-positive, alpha-beta T cell; CT2 represents CD14-positive, CD16-negative classi-

cal monocyte; and CT3 represents mature neutrophil.

In order to create mixture files from the Blueprint data, we selected 100 individuals who had

pure reference samples collected from all three cell types. For each of these individuals, we used
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their pure reference samples to create a mixture file. The 100 mixture proportions were randomly

selected from the distribution ρmix „ Dirichletp2, 2, 2q. Relatively extreme probabilities, defined

as probability vectors that assigned one or more cell types to have a probability less than 0.05,

were eliminated from consideration.

To select genes/transcript clusters to be used by the IsoDeconvMM method, we sought to

identify differential isoform usage (DU) transcript clusters that had the largest difference between

the isoform distributions in the three cell types. To this end, we identified clusters that had at least

one isoform highly expressed in one cell type and either minimally expressed or not expressed

at all in the other two cell types, collectively. The selection of transcript clusters proceeded as

follows. We selected 10 pure reference samples (not used in the mixture file creation) from each

of the three cell types present in the Blueprint data. We then used the isoDetector function

in the isoform R package (Sun et al. (2015)) to acquire isoform abundance information for tran-

script clusters present on chromosomes one through four for all of the 30 pure reference sam-

ples. Using the abundance information output, we examined both fold change magnitudes and

Wilcoxon rank sum tests comparing abundance levels for the isoforms in the cluster between a

single cell type and the other two cell types combined. Using these results, we identified isoforms

of interest. The transcript clusters that these isoforms belonged to were then selected for further

analysis. A full description of the procedure to identify DU clusters of interest can be found in

the Appendix A.1.

For the CIBERSORTx method, we aimed to select DE transcript clusters in a similar manner

to the DU transcript clusters used in the IsoDeconvMM analysis. We first quantified the total

expression per transcript cluster, restricting the transcript clusters considered to those present

on chromosomes one though four. Then we applied DESeq2 (Love et al. (2014)) to identify

transcript clusters with differential expression that were relatively overexpressed in one cell type

compared to the other two cell types combined.

In the Appendix A.3, we compared the performance of the IsoDeconvMM algorithm across

different algorithm settings. Based on results presented in the Appendix A.3 (see Figure A.1),
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we concluded that using five samples per cell type in the IsoDeconvMM analysis was sufficient.

Therefore, all further IsoDeconvMM and CIBERSORTx results utilize five pure reference sam-

ples per cell type. Since the IsoDeconvMM algorithm requires multiple initial points in order to

optimize the accuracy of the results, we also explored how many initial points were sufficient to

use. Figure A.2 in the Appendix A.3 suggests that using the 10 generic initial points specified in

Table A.1 in the Appendix A.1 is sufficient for this case of three total cell types. Therefore, all

IsoDeconvMM algorithm results presented in this section utilized these 10 initial points in the

algorithm. Recommendations of initial points for the generic case of K cell types is given in the

Appendix A.1. The IsoDeconvMM package gives automated recommendations for initial points.

In the exploratory analyses presented in the Appendix A.3, we found that the estimates of the

cell type specific isoform parameters could be unstable for a small number of transcript clusters.

This could be due to extra variance or outliers in these genes. In those clusters, the estimate of

the αk parameters of equation (2.2) (estimated in stage one of the model fit algorithm) tended

be much larger than other clusters. Therefore we performed a filtering step such that if two or

more cell type specific isoform parameter estimates for a transcript cluster were greater than

500, the cluster was excluded from further analysis. We now compare the the performance of

IsoDeconvMM and CIBERSORTx results when different numbers of transcript clusters were

used in the analysis (Figure 2.1). In each method, the best N of the available transcript clusters

were selected by first choosing the best ns clusters per cell type comparison (cell type j vs the

other two cell types collectively) and then take their union. The number ns was adjusted such that

the union gave N “ t100, 50, 25, 10u clusters.

When 100 or 50 transcript clusters are used in the analysis, both the CIBERSORTx and

IsoDeconvMM methods perform well, with CIBERSORTx performing slightly better than IsoDe-

convMM. For the 25 cluster case, both methods perform equally well. For the case when only

10 clusters are used, the CIBERSORTx method is very unstable. In contrast, the IsoDeconvMM

method is still reasonably accurate.
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Figure 2.1: Blueprint mixture proportion estimate results calculated using the CIBERSORTx and
IsoDeconvMM methods. Results separated by cell types and number of transcript clusters used in
the analysis. (a) Proportion estimates vs true proportions for CIBERSORTx method (used DE
clusters only). (b) Proportion estimates vs true proportions for IsoDeconvMM method (used DU
clusters only). (c) Correlation and (d) sum-of-square (SSE) results compared across methods.

2.4 Simulation studies

Our model assumes an underlying Dirichlet-multinomial distribution, which allows over-

dispersion beyond the variance of multinomial distribution. However, it is still possible that a

Dirichlet-multinomial distribution cannot fit the real data well. In this section, we evaluate the

performance of IsoDeconvMM when the observed data are generated from Dirichlet-negative bi-
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nomial distributions. We simulated bulk RNA-seq counts data from three sorted cell populations

given the generic labels of CT1, CT2, and CT3.

For all of the simulations, we first generated the gene-level counts from a Dirichlet-multinomial

distribution. In order to make the distribution of gene counts as realistic as possible, we used

gene count distribution from a real data set (Parikshak et al. (2016)) that contained the number

of RNA-seq reads per gene for 89 human bulk RNA-seq samples. The genes present in this data

set were filtered such that each transcript cluster was comprised of a single gene (for convenience

purposes) and genes with low expression were excluded. The genes were then limited to those

present on chromosomes one to nine in order to reduce computational burden, resulting in 5,172

total genes. A full description of the gene selection procedure is provided in the Appendix A.3.

We fit a Dirichlet distribution to these data using the R package DirichletReg (Maier (2014)).

For each simulated pure sample, the Dirichlet distribution described above generated a prob-

ability vector associated with the genes. The total read count per sample was selected from a

normal distribution with mean 7 million and standard deviation 1 million. This normal distribu-

tion was based on the distribution of the total read counts of the selected 5,172 genes in the 89

bulk RNA-seq samples (Parikshak et al. (2016)). Individual gene counts were then generated

using a multinomial distribution.

Of the total 5,172 genes, we selected 1,000 genes with relatively high expression and at

least three isoforms as possible genes to be used for the mixture sample proportion estimate in

the IsoDeconvMM analysis. For all 1,000 of these genes of interest, we calculated the effective

length design matrixX as described in Section 2.2. After additional filtering to exclude genes

with over 15 isoforms, we randomly selected 100 genes for differential isoform usage.

The Dirichlet-multinomial and the Dirichlet-negative binomial simulations diverge on the

simulation of the exon set counts. For each cell type, we gave each of the 1,000 genes of interest

a Dirichlet distribution for their isoforms. These Dirichlet distributions only differed between the

three cell types for the 100 genes specified for differential isoform usage. A probability vector
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πg “ pπg1, ..., πgIq was drawn from these Dirichlet distributions, where πgi is the proportion of

read counts in isoform i given that the read comes from gene g.

In the Dirichlet-multinomial simulation, the vector πg was set equal to the l̃ ˝ γg vector de-

scribed in Section 2.2 in equation (2.2). We then model the exon set counts for gene g by

yg „ MultinomialpTg, sg
I
ÿ

i“1

xgiγgiq, γgi ě 0 (2.5)

where xgi for 1 ď i ď p represents the vector of effective lengths of all of the exon sets for the

ith isoform for gene g, Tg is the total read count for gene g, and sg is the scaling factor such that

sg
řI

i“1 xgiγgi “ 1.

In the Dirichlet-negative binomial simulation, the probability vector πgi was used differently.

The vector of counts of the possible exon sets within the gene, yg, was given a negative binomial

distribution Ψpµg, ϕq with mean µg and dispersion parameter ϕ. We model µg by

µg “ Xgβg “

p
ÿ

i“1

xgiβgi “

p
ÿ

i“1

xgiπgirg, βgi ě 0 (2.6)

where πgi again is the proportion of read counts in isoform i given that the read comes from gene

g,Xg “ pxg1, ...,xgpq, xgi for 1 ď i ď p represents the effective lengths of all of the exon sets

for the ith isoform for gene g, and rg is a scaling factor equal to the ratio of the total read count of

the gene and the sum of the vector
řp

i“1 xgiπgi.

In the Dirichlet-negative binomial simulations, we also compared the algorithm fit results

under low and moderate overdispersion assumptions for the Negative Binomial portion of the

model. The dispersion parameter ϕ was given the range 1{90 to 1{120 for the low dispersion

set-up and the range 1{50 to 1{60 for the moderate dispersion set-up.

In order to make the isoform Dirichlet distributions for the DU genes as realistic as possible,

we modeled these distributions using the results from the Blueprint data set analysis described

in Section 2.3. The cell type specific isoform Dirichlet parameter αk (estimated by Dirichlet-

multinomial distribution) were used in the simulations. In the Dirichlet-multinomial simulations,
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these values were used directly. In the Dirichlet-negative binomial simulations, these values were

multiplied by a constant of five so that the overall variance between Dirichlet-multinomial and

Dirichlet-negative binomial are similar.

Three data sets were simulated using the three different data modeling assumptions: Dirichlet-

multinomial, Dirichlet-negative binomial with moderate overdispersion, and Dirichlet-negative

binomial with low overdispersion. We generated 15 pure reference samples per cell type for each

simulation set-up. We partitioned the pure samples such that for each cell type, 10 samples were

used to generate the mixture samples and the other 5 were used to estimate cell type-specific

gene/isoform expression. Fifty mixture proportions were randomly selected from the distribu-

tion ρmix „ Dirichletp2, 2, 2q. Relatively extreme probabilities, defined as probability vectors

that assigned one or more cell types to have a probability less than 0.05, were eliminated from

consideration.

For the fragment length distribution file, we chose to simulate paired-end read lengths from

a truncated normal distribution with mean 300 bp, standard deviation 50 bp, and truncated to the

left at 150 bp. For the initial points, we used the same 10 generic initial points used in Section

2.3, provided in the Appendix in Table A.1.

All three of the simulated data sets were then fit using the IsoDeconvMM algorithm and

we examine the performance of IsoDeconvMM when different number of transcript clusters

are used to estimate cell type proportions. In each simulation setup, we randomly selected the

desired number of transcript clusters from the 100 simulated DU clusters. The results presented

in Figures 2.2 and 2.3 suggest that the results of our IsoDeconvMM method is robust to the data

generation mechanisms. The only situation where the performance of IsoDeconvMM is slightly

worse is when the number of transcript clusters is small (i.e., only 10 clusters) and the Dirichlet-

negative binomial has moderate overdispersion.
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Figure 2.2: IsoDeconvMM proportion estimates for the following underlying data models: (a)
Dirichlet-multinomial, (b) Dirichlet-negative binomial with moderate overdispersion, and (c)
Dirichlet-negative binomial with low overdispersion. Results separated by cell types (rows) and
number of genes used in the analysis (columns).
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Figure 2.3: Correlation and sum-of-square error (SSE) results comparing the IsoDeconvMM
proportion estimates vs the true proportions for simulations assuming different underlying data
models: Dirichlet-multinomial, Dirichlet-negative binomial with moderate overdispersion, and
Dirichlet-negative binomial with low overdispersion. Results separated by cell types and number
of genes used in the analysis.
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2.5 Discussion

We have developed a new statistical method named IsoDeconvMM that estimates cell type

abundance of bulk RNA-seq samples that are mixtures of multiple cell types. This method is

unique from other deconvolution methods in that it utilizes differential isoform usage informa-

tion. We anticipate that this method will be of particular relevance in cases where differential

isoform usage is more informative than differential gene expression, or when the number of

available genes is small. Currently, application of our method is limited by the availability of

cell type-specific and isoform-specific gene expression data. Single cell RNA-seq (scRNA-seq)

is a popular approach to generate cell type-specific gene expression data across different cell

types, though most scRNA-seq pipelines cannot capture the complete information of different

isoforms. However, the emerging spatial RNA-seq data show that it is possible to capture iso-

form level gene expression for each cell or a few cells around a locus (Lebrigand et al. (2020);

Maynard et al. (2020)). We expect that the full advantage of IsoDeconvMM can be demonstrated

when combining such cell type-specific and isoform-specific expression derived from these new

pipelines.

We did not know of another deconvolution method that utilizes differential isoform usage

information with which to compare our method. Instead, we compared IsoDeconvMM with

CIBERSORTx (Newman et al. (2015)), which utilizes differential gene expression information.

We believe a key advantage of our method over existing reference-based deconvolution methods

is that we can estimate cell type fractions using the gene expression data from a single gene by

exploiting the relative expression of each isoform within a gene. We tested this theory by com-

paring our method with CIBERSORTx, which uses information across genes. We found that our

method performs similarly compared with CIBERSORTx when a moderate number of genes or

transcript clusters are used and outperforms CIBERSORTx when a small number of transcript

clusters are used. In addition to seeing this pattern in the in silico Blueprint analyses presented in

Section 2.3, we also found similar results when we performed both IsoDeconvMM and CIBER-
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SORTx on simulated Dirichlet-Multinomial data (see Appendix A.3 for details and results). This

could be very useful when it is desired to distinguish between highly similar cell types, such as

closely related neuron cells, in which case there may not be many transcript clusters that can truly

discriminate between the cell types. Additionally, this could be useful in clinical settings that

utilize a small panel of genes.

Although we could have compared our method with CIBERSORTx using isoforms instead

of genes (or transcript clusters), thereby using information across isoforms, we felt applying

CIBERSORTx on isoforms has several limitations. The estimate of isoform expression is gener-

ally more noisy and has more measurement error. Furthermore, a major limitation of approaches

that use information across genes/isoforms is that a sufficient sample size of genes or isoforms is

required. This limitation, which was illustrated in the in silico analysis results, is the same lim-

itation for either CIBERSORTx on genes or CIBERSORTx on isoforms. Consequently, using

CIBERSORTx on isoforms would not provide a benefit. In contrast to methods that use informa-

tion across genes/isoforms, IsoDeconvMM utilizes gene expression variation across exon sets.

The number of exon sets can increase quickly with the number of exons, and thus there are many

genes with enough sample size within a gene itself.

The IsoDeconvMM method has other beneficial properties. In the Appendix A.3, we have

demonstrated that our method only requires a small number of pure reference samples per cell

type. The simulations also show that the IsoDeconvMM method is robust to some model mis-

specification.

The IsoDeconvMM method has some limitations related to its computation time. Part of the

reason for this time limitation is due to the fact that it requires an input of multiple initial points.

However, this could be remedied using parallel computation techniques. Parallel computation

techniques can be easily used in conjunction with the IsoDeconvMM method because a separate

proportion estimate is calculated for each transcript cluster, and these individual estimates are

later aggregated to get the overall proportion estimate. The IsoDeconvMM package, available

for download in GitHub, allows for either serial or parallel computation. When the algorithm
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was run in serial using the UNC Longleaf computing cluster (CPU Intel processors between

2.3Ghz and 2.5GHz), it took an average of 16.55 minutes to estimate the mixture proportion for a

transcript cluster using 10 initial points.

More generally, the IsoDeconvMM procedure has the same limitations that apply to all

reference-based deconvolution methods. These methods require assumptions about the true

number and identity of cell types in the mixture samples. In many applications, this cell type

information is unknown.

We looked further into the cell type 1 bias seen in the in silico Blueprint analyses. We per-

formed 10 replicates of the in silico analyses, picking different sets of 100 individuals to create

the mixture samples, picking different sets of pure reference samples, but using the same tran-

script clusters used in Section 2.3. We found that 2 of the 10 analysis replicates resulted in sim-

ilar V shapes in the cell type 1 scatter plots seen in the paper results, but the other 8 replicates

did not. This led us to believe that this concerning V shape in the cell type 1 scatter plot results

were likely a result of unlucky randomness in the simulation set-up. See Appendix A.3 for further

details and results.

It should be noted that the IsoDeconvMM method is sensitive to the isoform distribution ef-

fect size across the different cell types. We recommend users to be conscientious about selecting

isoforms with the greatest effect sizes between the different cell types, regardless of what method

they choose to identify isoforms with differential usage across the cell types.
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CHAPTER 3: HIGH DIMENSIONAL PENALIZED GENERALIZED LINEAR
MIXED MODELS: THE GLMMPEN R PACKAGE

3.1 Introduction

In Section 1.2, we discussed the limitations of existing methods for performing variable

selection in generalized linear mixed models. In existing methods for fitting generalized linear

mixed models (GLMMs), one must specify individual candidate models in order to perform

variable selection, which can be prohibitive in high dimensions. In contrast, available variable

selection methods either do not allow for the inclusion of random effects or they only allow a

fixed pre-specification of random effects.

To address these limitations, we present the glmmPen R package, one of the first to allow

for simultaneous selection of fixed and random effects in high dimension through the use of

penalized Generalized Linear Mixed Models (pGLMMs). The package leverages a Monte Carlo

Expectation Conditional Minimization (MCECM) algorithm with several techniques to improve

the computational efficiency of the algorithm. In the MCECM E-step, glmmPen utilizes the

Stan software to acquire efficient samples of the posterior, and a Majorization-Minimization

coordinate descent algorithm in the M-step. Within the M-step, the glmmPen package reduces

the required memory usage and improves scalability by utilizing the fast looping capabilities

within Rcpp and RcppArmadillo in order to recalculate rows of large matrices pertaining to

intermediate quantities without necessitating their storage. The glmmPen package is also able to

improve the speed of the overall variable selection procedure by strategic coefficient initialization

(see Section B.1) and strategic restriction of random effects (see Section 3.4.2).
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The remainder of the chapter is organized as follows. Section 3.2 reviews the models as-

sumed for the fitting of pGLMMs, first described in Rashid et al. (2020). Section 3.3 describes

the MCECM algorithm used by glmmPen to fit pGLMM models. Section 3.4 describes the

model selection procedure of the package and the BIC-type selection criteria available for use.

Section 3.6 illustrates the use of the software through an application to a cancer subtype classi-

fication dataset. Section 3.5 provides some simulation results. Section 3.7 provides concluding

comments. The package is available from the Comprehensive R Archive Network (CRAN) at

https://cran.r-project.org/package=glmmPen.

3.2 Generalized linear mixed models

We review the notation and model formulation of our approach, first introduced in Rashid

et al. (2020). We consider the case where we want to analyze data from K independent groups

of any kind. For instance, we could be interested in analyzing data from K different studies,

or we could be interested in analyzing longitudinal data from K individuals. For each group

k “ 1, ..., K, there are nk observations for a total sample size of N “
řK

k“1 nk. For the kth group,

let yk “ pyk1, ..., yknk
qT be the vector of nk independent responses, let xki “ pxki,1, ..., xki,pqT be

the p-dimensional vector of predictors, and letXk “ pxk1, ...,xknk
qT . Although the glmmPen

package allows for different nk for the K groups, we will set tnkuKk“1 “ n for simplicity of

notation in future equations. In GLMMs, we assume that the conditional distribution of yk given

Xk belongs to the exponential family and has the following density:

fpyk|Xk,αk; θq “

n
ź

i“1

cpykiq exp
“

τ´1
tykiηki ´ bpηkiqu

‰

, (3.1)

where cpykiq is a constant that only depends on yki, τ is the dispersion parameter, bp¨q is a known

link function, and ηki is the linear predictor. The glmmPen algorithm currently allows for the

Gaussian, Binomial, and Poisson families with canonical links.
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In the GLMM, the linear predictor has the form

ηki “ xT
kiβ ` zTkiΓαk, (3.2)

where β “ pβ1, ..., βpqT is a p-dimensional vector for the fixed effects coefficients (including the

intercept), αk is a q-dimensional vector of unobservable random effects (including the random

intercept), zki is a q-dimensional subvector of xki, and Γ is a lower triangular matrix.

In Rashid et al. (2020), the random effects vector αk is assumed to follow Nqp0, Iq so that

Γαk follows Np0,ΓΓT q. In this way, the random component of the linear predictor has variance

Var(Γαk) = ΓΓT .

To simplify the procedure of estimating Γ, we consider a vector γ containing all of the

nonzero elements of Γ such that γt is a t x 1 vector consisting of nonzero elements of the tth

row of Γ and γ “ pγT
1 , ...,γ

T
q qT . We can then reparameterize the linear predictor (Chen and

Dunson, 2003; Ibrahim et al., 2011) to

ηki “ xT
kiβ ` zTkiΓαk “

`

xT
ki pαk b zkiq

TJq

˘

¨

˚

˝

β

γ

˛

‹

‚

(3.3)

where Jq is a matrix that transforms γ to vec(Γ) such that vec(Γ) = Jqγ. Jq is of dimension

q2 ˆ qpq ` 1q{2 when the random effects covariance matrix ΓΓT is unstructured; alternatively, Jq

is of dimension q2 ˆ q when the random effects covariance matrix has an independence structure

(i.e. diagonal). The vector of parameters θ “ pβT ,γT , τqT are the main parameters of interest.

We denote the true value of θ as θ˚ “ pβ˚T ,γ˚T , τ˚qT “ argminθEθr´ℓpθqs where ℓpθq is the

observed marginal log-likelihood across all K groups such that ℓpθq “
řK

k“1 ℓkpθq, ℓkpθq “

p1{nq log
ş

fpyk|Xk,αk;θqϕpαkqdαk.
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Let us consider the high dimensional case where we want to select the true nonzero fixed and

true nonzero random effects. In other words, we aim to identify the set

S “ S1 Y S2 “ tj : β˚
j ‰ 0u Y tt : ||γ˚

t ||2 ‰ 0u,

where the set S1 represents the selection of true nonzero fixed effects and the set S2 represents the

selection of true nonzero random effects. When γt “ 0, this sets row t of Γ entirely equal to 0,

indicating that effect of covariate t is fixed across the K groups.

We aim to solve the following penalized likelihood:

pθ “ argminθ ´ ℓpθq ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||γt||2q , (3.4)

where ℓpθq is the observed marginal log-likelihood for all K groups defined earlier, ρ0ptq and

ρ1ptq are general folded-concave penalty functions, and λ0 and λ1 are positive tuning parameters.

In the glmmPen package, the ρ0ptq penalty function options include the LASSO L1 penalty, the

SCAD penalty, and the MCP penalty (Friedman et al., 2010; Breheny and Huang, 2011). For the

ρ1ptq penalty, we treat the elements of γt as a group and penalize them in a groupwise manner

using the group LASSO, group MCP, or group SCAD penalties presented by Breheny and Huang

(2015). These groups of γt are then estimated to be either all zero or all nonzero. In this way, we

select covariates to have varying effects (pγt ‰ 0) or fixed effects (pγt “ 0) across the K groups.

Similar to other variable selection packages such as package ncvreg (Breheny and Huang,

2011), we standardize the fixed effects covariates matrixX “ pXT
1 , ...,X

T
KqT such that

řK
k“1

řnk

i“1 xki,j “ 0 and N´1
řK

k“1

řnk

i“1 x
2
ki,j “ 1 for j “ 1, ..., p. Although the package

grpreg (Breheny and Huang, 2015) orthogonalizes grouped effects, we have found through

simulations that first standardizing the fixed effects and then using subsets of these standardized

fixed effects for the random effects (recall: zki is a q-dimensional subvector of xki) is sufficient.

During the selection procedure, the fixed effects intercept and the random effects intercept remain

unpenalized.
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3.3 MCECM algorithm

We solve equation (3.4) for a specific pλ0, λ1q penalty parameter combination using a Monte

Carlo Expectation Conditional Minimization (MCECM) algorithm (Garcia et al., 2010). The

MCECM algorithm described in this section uses many of the steps and assumptions described

in Rashid et al. (2020), but here we provide further practical details about the E-step, M-step,

and initialization. Additionally, the implementation outlined in this chapter has several improve-

ments to the implementation used in Rashid et al. (2020). Compared to the Rashid et al. (2020)

implementation, the E-step in glmmPen allows for several possible sampling schemes, including

the fast and efficient No-U-Turn Hamiltonian Monte Carlo sampling procedure (NUTS) from

the Stan software (Carpenter et al., 2017; Hoffman and Gelman, 2014). The glmmPen package

was also able to reduce the required memory usage of the MCECM algorithm. In the M-step, we

utilized the fast looping capability of packages Rcpp and RcppArmadillo, which allowed for the

fast recalculation of rows of the large matrix (Step 3 of the M-step discussed in Section 3.3.2) so

this large matrix did not have to be stored.

During the MCECM algorithm, we aim to evaluate the expected value of (E-step) and mini-

mize (M-step) the following penalized Q-function in the sth iteration of the algorithm:

Qλpθ|θpsq
q “

K
ÿ

k“1

E
␣

´ log
`

fpyk,Xk,αk;θ|do;θ
psq

q
˘(

` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||γt||2q

“ Q1pθ|θpsq
q ` Q2pθ

psq
q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||γt||2q ,

(3.5)

where pyk,Xk,αkq gives the complete data for group k, dk,o “ pyk,Xkq gives the observed data

for group k, do represents the entirety of the observed data, and

Q1pθ|θpsq
q “ ´

K
ÿ

k“1

ż

logrfpyk|Xk,αk;θqsϕpαk|dk,o;θ
psq

qdαk, (3.6)
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Q2pθpsq
q “ ´

K
ÿ

k“1

ż

log ϕpαkqϕpαk|dk,o;θ
psq

qdαk (3.7)

3.3.1 Monte-Carlo E-step

The integrals in the Q-function do not have closed forms when fpyk|Xk,α
ps,mq

k ;θq is as-

sumed to be non-Gaussian, and become difficult to approximate as q increases. Consequently,

we approximate these integrals using a Markov Chain Monte Carlo (MCMC) sample of size M

from the posterior density ϕpαk|dk,o;θ
psqq. The glmmPen package can draw samples from this

posterior using one of several techniques: the No-U-Turn Hamiltonian Monte Carlo sampling

procedure (NUTS) implemented by the Stan software, which glmmPen calls using the rstan

package (Carpenter et al., 2017) (default, and strongly recommended for its speed and efficiency);

Metropolis-within-Gibbs with an adaptive random walk sampler (Roberts and Rosenthal, 2009);

and Metropolis-within-Gibbs with an independence sampler (Givens and Hoeting, 2012). Each

sampler type uses a standard normal candidate distribution. Let αps,mq

k be the mth simulated

value, m “ 1, ...,M , at the sth iteration of the algorithm for group k. The integral in equation

(3.6) can be approximated as

Q1pθ|θpsq
q « ´

1

M

M
ÿ

m“1

K
ÿ

k“1

log fpyk|Xk,α
ps,mq

k ;θq.

Although the optimal number of MCMC samples M psq in the E-step at EM iteration s is

not well defined, the general consensus is that a smaller sample size of the posterior is suitable

for the start of the algorithm but larger sample sizes are needed later in the algorithm (Booth

and Hobert, 1999). Then in a manner similar to the mcemGLM package (Archila, 2020), the

MCMC sample size is increased by a multiplicative factor f at each step of the algorithm such

that M psq “ f ˚ M ps´1q until either the value of M psq reaches its maximum allowed value or the

EM algorithm converges.

44



3.3.2 M-step

In the M-step of the algorithm, we aim to minimize

Q1,λpθ|θpsq
q “ Q1pθ|θpsq

q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||γt||2q (3.8)

with respect to θ “ pβT ,γT , τqT . The minimization of equation (3.8) with respect to β and γ

is performed using a Majorization-Minimization approach. For the general exponential family,

Rashid et al. (2014) suggested minimizing with respect to τ using the standard optimization algo-

rithm Newton-Raphson. In glmmPen, the only family implemented with a dispersion parameter

is the Gaussian family, and the variance σ2 can be estimated directly from a derivation of the

Q-function conditional on the most recent updates of βpsq and γpsq:

σ2
“

1

M ˚ N

M
ÿ

m“1

K
ÿ

k“1

nk
ÿ

i“1

pyki ´ η
ps,mq

ki q
2, (3.9)

where ηps,mq

ki is the linear predictor ηki evaluated with βpsq, γpsq, and sample αps,mq

k .

Let s represent the iteration of the MCECM algorithm, and f represent the iteration within

a particular M-step of the MCECM algorithm. The M-step of the sth iteration of the MCECM

algorithm proceeds as given in the steps of Algorithm 1.

The algorithm recomputes the augmented matrices z̃ki for k “ 1, ..., K and i “ 1, ..., nk in

step 3 of every M-step iteration f for several reasons. These repeat calculations prevent the algo-

rithm from having to store the augmented matrix Z̃ “ pZ̃T
1 , ..., Z̃

T
KqT where Z̃k “ pz̃Tk1, ..., z̃

T
knk

qT .

This full augmented matrix is of dimension pM ˚ Nq ˆ qpq ` 1q{2 or pM ˚ Nq ˆ q depending

on whether the random effect covariance matrix is unstructured or independent, respectively. As

the MCMC sample size increases throughout the algorithm and as q increases, saving this Z̃ be-

comes more and more memory prohibitive even when utilizing large matrix implementation tools

such as the package bigmemory (Kane et al., 2013). Through simulations not shown here, we

found that recomputing the z̃ki matrices during each M-step iteration utilizing Rcpp (Eddelbuet-
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Algorithm 1 M-step of the MCECM algorithm

1. The parameters θps,0q for M-step iteration f “ 0 are initialized using the results from the pre-
vious M-step, θps´1q.
2. Conditional on γps,f´1q and τ ps´1q, each βps,fq

j for j “ 1, ..., p is given a single update using
the Majorization-Minimization algorithm specified by Breheny and Huang (2015).
3. For each group k in k “ 1, ..., K, the augmented matrix z̃ki “ pα̃

psq

k b zkiqJq is created
for i “ 1, ..., nk where α̃psq

k “ ppα
ps,1q

k qT , ..., pα
ps,Mq

k qT qT . This augmented matrix is used in
the random effect portion of the linear predictor specified in equation (3.2). The dimension of
z̃ki is M ˆ qpq ` 1q{2 for an unstructured covariance matrix and M ˆ q for an independent
covariance matrix. This augmented matrix is used to calculate equation (2.9) in Breheny and
Huang (2015).
4. Conditional on the τ ps´1q and the recently updated βps,f`1q, each γps,fq

t for t “ 1, ..., q is
updated using the Majorization-Minimzation coordinate descent grouped variable selection
algorithm specified by Breheny and Huang (2015), except the residuals are not updated after
every γps,fq

t coefficient update.
5. Steps 2 through 4 are repeated until the M-step convergence criteria are reached or until the
M-step reaches its maximum number of iterations.
6. Conditioning on the newly updated βpsq and γpsq, τ psq is updated (generically, using the
Newton-Raphson algorithm; for Gaussian family, using equation (3.9)).

tel and François, 2011) and RcppArmadillo (Eddelbuettel and Sanderson, 2014) significantly

reduced the time and memory required to compute each M step.

In step 4 of the M-step, the residuals are not updated after every update to the random effects

coefficients γps,fq

t for t “ 1, ..., q in order to speed up computation. Otherwise, this would require

re-calculation of the augmented matrix specified in step 3 for each random effect (q) for each

M-step. When q is large, this makes the M-step prohibitively time-consuming. Simplifying step

4 with no residual updates speeds up the computation time in high dimensional settings and was

found to have negligible impact on estimation accuracy.

The full MCECM algorithm then proceeds as given in the steps of Algorithm 2.

For details about initialization of the first model in the variable selection model sequence, see

Section B.1 in the Appendix for Chapter 3. Details about the initialization of subsequent models

in the model sequence are given in Section 3.4.

This MCECM algorithm is able to handle large dimensions of p and q, where p and q are

much larger than prior methods for simultaneous fixed and random effects variable selection
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Algorithm 2 Full MCECM algorithm for single pλ0, λ1q penalty combination

1. Fixed and random effects βp0q and γp0q are initialized as discussed later in Section B.1.
2. In each E-step for EM iteration s, a burn-in sample from the posterior distribution of the
random effects is run and discarded. A sample of size M psq from the posterior is then drawn
and retained for the M-step.
3. Parameter estimates of βpsq, γpsq, and τ psq are then updated as described in the M-step
procedure given above.
4. Steps 2 and 3 are repeated until the convergence condition is met at least 2 consecutive
times (default) or until the maximum number of EM iterations is reached.
5. Using the estimates of β, γ, and τ at EM convergence, a final sample from the posterior
distribution of the random effects is drawn for use in the calculation of the marginal log-
likelihood as well as for diagnostics of the MCMC chain. The marginal log-likelihood is used
for model selection and is discussed in detail in Section 3.4.

(Rashid et al., 2020). When the number of random effect predictors is greater than or equal to 10,

we recommend approximating the random effect covariance matrix ΓΓT as a diagonal matrix. In

the mixed model setting, Fan and Li (2012) demonstrated both theoretical and empirical advan-

tages to estimating the random effects covariance matrix this way in the high-dimensional case.

This simplification also has the advantage of enabling the package to have greater computational

efficiency when fitting high-dimensional models.

The MCECM algorithm outlined above describes how the glmmPen package estimates the

model parameters for a single set of penalty parameters pλ0, λ1q. Section 3.4 discusses how the

package chooses the best model during the model selection procedure.

3.4 Model selection

This section provides details on how the glmmPen algorithm selects the optimal tuning

parameter combination. When there is no a priori knowledge of the true random effects, we rec-

ommend that the user set the random effects equal to the fixed effects (i.e. p “ q) and let the

algorithm select the fixed and random effects using the procedure outlined in Section 3.4. How-

ever, if the user has prior knowledge about restrictions on the random effects, they can restrict

the potential random effects to an appropriate subset. As discussed in the previous section, the

package requires that the random effects be a subset of the fixed effects.
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We assume in this section and the rest of the paper that p represents the number of fixed

effect predictors (not including the fixed intercept), and q represents the number of random effect

predictors (not including the random intercept).

3.4.1 Penalty sequence specification

In the selection process, the fixed effects are penalized concurrently with the random ef-

fects. By default, we set the sequence of penalty parameters λ0 “ λ1. The sequence λ0 “

pλ0,1, ..., λ0,ω0q and λ1 “ pλ1,1, ..., λ1,ω1q are calculated in a similar manner to the approach used

by the package ncvreg (Breheny and Huang, 2011). The maximum penalty parameter λmax is

calculated using the same procedure as ncvreg; this value penalizes all fixed and random effects

coefficients to 0. The minimum penalty parameter λmin is a small portion of the λmax.

3.4.2 Tuning parameter search strategy

By default, the algorithm runs a computationally efficient two-stage approach to pick the

optimal set of tuning parameters. In the first stage of this approach, the algorithm fits a sequence

of models where the fixed effect penalty is kept constant at the minimum value of λ0, λ0,min, and

the random effects penalty proceeds from the minimum value of λ1, λ1,min, to the maximum

value λ1,max. The best model from this first stage is then identified using BIC-based selection cri-

teria, described in more detail later in this section. This first stage identifies the optimal random

effect penalty value, λ1,opt. In the second stage, the algorithm fits a sequence of models where the

random effects penalty is kept fixed at λ1,opt and the fixed effects penalty λ0 proceeds from λ0,min

to λ0,max. The overall best model is chosen from the models in the second stage. In both stages,

the results from each model are used to initialize the coefficients in the subsequent model in the

sequence.

Unlike other packages that perform variable selection, such as ncvreg and grpreg, we run

the λ sequence from λmin to λmax and not the traditional progression of λmax to λmin. In this

mixed model setting, this approach provides better initialization of subsequent models in the

48



tuning parameter sequence, giving an overall better performance to the algorithm and improving

algorithm speed. The algorithm also speeds up the algorithm by strategically restricting the ran-

dom effects as the algorithm proceeds. In stage one, if a previous model penalized out random

effects from the model, the following model will automatically ignore these random effects. In

stage two, the random effects considered are restricted to the non-zero random effects from the

best model in stage one.

We have found this two-stage approach, which we also refer to as an ‘abbreviated grid

search’, to work very well in practice (see Section 3.5 for performance results).

3.4.3 Optimal tuning parameter selection

Once models have been fit for all pλ0, λ1q combinations within the first and second stages of

the tuning parameter search strategy (or over the full tuning parameter grid search), the glmmPen

package chooses the best model from one of several BIC-type selection criteria options. By

default, the package uses the BIC-ICQ criterion (Ibrahim et al., 2011), which is expressed below:

BICqpθλq “ 2tQ1pθλ|α0q ` Q2pα0qu ` dλ ˚ logpNq

«

#

´
2

M

M
ÿ

m“1

K
ÿ

k“1

”

log fpyk|Xk,α
pmq

0,k ;θλq ` log ϕpα
pmq

0,k q

ı

+

` dλ ˚ logpNq,
(3.10)

where θλ are the coefficients of the penalized model, α0 are the posterior samples from a ‘full’

model with either no penalty or a minimum penalty used on the fixed and random effects, and

α
pmq

0,k is the mth posterior sample for group k from such a full model, Q1 and Q2 were defined

in Section 3.3, dλ is the number of nonzero coefficients for the model (all nonzero fixed effects

coefficients β plus all nonzero random effects coefficients γ), and N is the total number of obser-

vations in the data (Nobs).

The package can also calculate the traditional BIC criterion, specifying N in the penalty

term as either the total number of observations in the data (Nobs) or the total number of indepen-

dent observations (i.e. number of levels within the grouping factor, Ngrps) as well as the hybrid
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BICh given by Delattre et al. (2014). These terms are defined in Section 1.2.3. We use the Cor-

rected Arithmetic Mean Estimator (CAME) defined by Pajor (2017) to calculate the marginal

log-likelihood used within the BIC and BICh calculations. See Section 1.2.3 for further details on

this calculation.

In simulations not shown here, we found that the BIC-ICQ gave the best performance in

choosing the correct fixed effects model. The BIC and BICh methods tended to underestimate the

number of true fixed effects compared to BIC-ICQ in the simulations we considered. However,

in order to calculate the BIC-ICQ, a ‘full’ model needs to be fit using either no penalty or a small

penalty on the fixed and random effects. Posterior samples from this full model are then used to

calculate the BIC-ICQ value for each model fit in the variable selection procedure. Depending on

the size of the full model, this calculation could take a lot of time. Alternatively, the calculation

of the BIC and BICh criteria require a calculation of the marginal log-likelihood ℓpθq for each

model. Since the integrals within ℓpθq are intractable, we estimate the marginal log-likelihood

using the Corrected Arithmetic Mean Estimator (CAME) described by Pajor (2017). We have

found this CAME estimator to be relatively quick and easy to calculate, as well as consistent with

the marginal log-likelihood estimate calculated by the package lme4 (Bates et al., 2015) for a

range of conditions (results not shown here).

3.5 Simulations

In this section, we present results from simulations in order to examine the performance

of our package. We use the glmmPen package to perform variable selection on logistic mixed

effects models and examine the resulting fixed effects estimates as well as the true and false

positives for the fixed and random effects. All simulations are performed using the default opti-

mization settings specified in the glmmPen package documentation.
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3.5.1 Simulation set-up

We simulated binary responses from a logistic mixed effects model with p predictors. Of p

total predictors, we assume that two predictors have truly non-zero fixed and random effects, and

the other p ´ 2 predictors have zero-valued fixed and random effects. Our aim in the simulations

was to select the true predictors.

In these simulations, we consider the following situations: predictor dimensions of p “

t10, 50u, sample size N “ 500, number of groups K “ t5, 10u, and standard deviation of the

random effects σ “ t1,
?
2u. As discussed in Section 3.2, we approximate the covariance matrix

of the random effects as a diagonal matrix for these higher dimensions. We further consider the

scenarios of moderate predictor effects, where the true fixed effects are β “ p0, 1, 1qT , and strong

predictor effects, where the true fixed effects are β “ p0, 2, 2qT .

For group k, we generated the binary response yki, i “ 1, ..., nk such that yki „ Bernoullippkiq

where pki “ P pyki “ 1|xki, zki,αk,θq “ exppxT
kiβ ` zTkiαkq{t1 ` exppxT

kiβ ` zTkiαkqu, and

αk „ N3p0, σ
2I3q. The fixed effect coefficients were set to β “ p0, 1, 1qT (moderate predictor

effects) and p0, 2, 2qT (strong predictor effects). We also simulated imbalance in sample sizes

between the groups. Of the N samples, N{3 samples were given to study k “ 1 and the remain-

ing 2N{3 samples were evenly distributed among the remaining studies. Each condition was

evaluated using 100 total simulated datasets.

For individual i in group k, the vector of predictors for the fixed effects was

xki “ p1, xki,1, ..., xki,pqT , and we set the random effects zki “ xki, where xki,j „ Np0, 1q for

j “ 1, ..., p.

Setting the input random effects equal to the fixed effects represents the worst-case scenario

where we have no idea what predictors do or do not have random effects. This is an extreme

assumption; in many real-world scenarios, users will have reason to set the input random effects

to a strict subset of the fixed effects.

In all of these simulations, we use BIC-ICQ for the selection criteria, pre-screening, and

the MCP penalty. For all simulations, we performed the abbreviated two-stage grid search as
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described in Section 3.4. The results for these simulations are presented in Tables 3.1 and 3.2.

These results include the average coefficients, true positive and false positive percentages for both

fixed and random effects, and the median time for the simulations to complete. The true positive

percentages reflect the average percent of the true predictors included in the best models chosen

by the BIC-ICQ model selection criteria, which should ideally be near 100%. Likewise, the

false positive percentages reflect the average percent of the false predictors included in the best

models, which should ideally be near 0%. All simulations were completed on the UNC Longleaf

computing cluster (CPU Intel processors between 2.3Ghz and 2.5GHz).

N p K σ β̂1 β̂2 TP %
Fixed

FP %
Fixed

TP %
Random

FP %
Random

Tmedian

(hours)

500 10 5 1 1.02 1.12 89.0 2.1 90.5 3.5 0.20
?
2 1.12 1.18 83.0 1.4 96.0 3.6 0.26

10 1 0.99 1.04 99.0 3.0 95.0 4.8 0.24
?
2 1.02 1.11 91.0 1.8 99.5 7.0 0.32

500 50 5 1 1.18 1.14 84.5 1.2 83.5 2.2 8.07
?
2 1.42 1.43 75.5 2.5 89.0 2.5 12.20

10 1 1.12 1.11 95.0 1.8 93.0 3.9 10.67
?
2 1.33 1.31 84.5 2.4 95.5 6.2 15.75

Table 3.1: Variable selection simulation results with moderate predictor effects (slopes equal to
1). Results include the estimated coefficients for true non-zero fixed effects, true positive (TP)
percentages for fixed and random effects, false positive (FP) percentages for fixed and random
effects, and the median time in hours for the algorithm to complete.

By examining the simulation results, we can observe that the performance of the variable

selection procedure in glmmPen is impacted by the underlying structure of the data. As the mag-

nitude of the random effect variance increases, the true positive percentage of the fixed effects

decreases and the true positive percentage of the random effects increases. Additionally, as the

number of groups K increases, the true positive percentage of both the fixed and random effects

increases. We see that as the dimension of the total number of predictors increases (p “ 10 to

p “ 50), the true positive percentages of both the fixed and random effects decreases. In regards
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N p K σ β̂1 β̂2 TP %
Fixed

FP %
Fixed

TP %
Random

FP %
Random

Tmedian

(hours)
500 10 5 1 1.95 2.08 100.0 1.4 76.5 2.6 0.24

?
2 1.93 2.12 99.5 3.1 90.0 3.1 0.33

10 1 2.05 2.11 100.0 0.9 87.0 5.5 0.31
?
2 2.07 2.12 100.0 2.5 94.5 5.6 0.38

500 50 5 1 2.03 2.01 100.0 2.9 70.0 1.0 13.70
?
2 2.08 2.05 99.5 1.8 82.0 1.6 16.90

10 1 2.19 2.25 100.0 2.2 77.0 4.5 17.29
?
2 2.06 2.18 100.0 1.0 91.0 4.2 23.48

Table 3.2: Variable selection simulation results with strong predictor effects (slopes equal to 2).
Results include the estimated coefficients for true non-zero fixed effects, true positive (TP)
percentages for fixed and random effects, false positive (FP) percentages for fixed and random
effects, and the median time in hours for the algorithm to complete.

to the run time, Tables 3.1 and 3.2 show that increases in the number of groups and increases in

the variance of the random effects generally increases the time for the algorithm to complete.

3.5.2 Pre-screening performance

The time it takes the package to complete the tuning parameter selection procedure de-

pends strongly on the number of random effects considered by the algorithm. Therefore, the

pre-screening procedure, which reduces the number of random effects considered within the vari-

able selection algorithm, speeds up the algorithm. Tables 3.3 and 3.4 report the average percent

of true positive and false positive random effect predictors that remain under consideration within

the variable selection procedure after the pre-screening step has completed. The random effect

penalty in the pre-screening step was 0.01λmax for p “ 10 and 0.05λmax for p “ 50.

Using this higher penalty in the p “ 50 simulations helps reduce the false positive percentage

of the random effects after pre-screening and consequently helps speed up the time of the algo-

rithm to complete. However, we can see by comparing the p “ 50 and p “ 10 simulations that

this approach can also slightly decrease the true positive percentage. In general, increasing the

random effect penalty will help decrease the number of false positive non-zero random effects
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N p K σ TP % FP %

500 10 5 1 98.0 25.8
?
2 100.0 26.1

10 1 100.0 33.0
?
2 100.0 32.2

500 50 5 1 96.0 24.6
?
2 96.5 25.7

10 1 97.5 25.9
?
2 98.5 27.3

Table 3.3: Pre-screening results for variable selection simulations with moderate predictor effects
(slopes equal to 1). Results include the true positive percentages and false positive percentages of
the random effects remaining after the pre-screening procedure.

N p K σ TP FP
500 10 5 1 93.5 26.0

?
2 97.5 25.5

10 1 96.0 30.9
?
2 98.5 26.8

500 50 5 1 85.5 21.8
?
2 94.0 21.6

10 1 90.5 24.6
?
2 97.0 24.0

Table 3.4: Pre-screening results for variable selection simulations with strong predictor effects
(slopes equal to 2). Results include the true positive percentages and false positive percentages of
the random effects remaining after the pre-screening procedure.

in the pre-screening step, but it may also decrease the number of true positive non-zero random

effects. Decreasing this penalty will generally have the opposite effect.

Looking at these pre-screening results, we can also see some general patterns in the perfor-

mance of the pre-screening step based on the magnitudes of the underlying model parameters.

When we compare the pre-screening results between the two predictor effect magnitudes, we see

that the true positive percentage of the random effects after pre-screening are lower in the strong

predictor effect simulations compared to the moderate predictor effect simulations. We also see

that the true positive percentage is generally higher when the magnitude of the true random effect

variance is higher.
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3.6 Application to real data

The main motivation for the development of these methods was to enhance replicability and

generalizability of gene signature selection and subsequent downstream prediction tasks in ge-

nomic studies. Multiple approaches have been proposed to combine gene expression data from

different studies and calculate improved prediction models (Riester et al., 2014; Ma et al., 2018;

Patil and Parmigiani, 2018). Here, we fit a GLMM that can accommodate a high number of fea-

tures in the model, where it is assumed that the effects of some of these features may randomly

vary across studies. By fitting such a model, we can account for between-study heterogeneity

and identify more accurate fixed effects estimates for prediction without knowing a priori which

features will be fixed in their effects across studies versus randomly varying.

We will use the basal dataset to demonstrate the utility of the glmmPen package. This

dataset is composed of four datasets combined from studies that contain gene expression data

from subjects with several types of cancer (Moffitt et al., 2015; Weinstein et al., 2013). Two of

these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma

(PDAC), one dataset contains data for subjects with Breast Cancer, and the fourth dataset con-

tains data for subjects with Bladder Cancer. In these datasets, tumor samples are classified as

basal-like or non-basal-like. We aim to create a prediction model to correctly classify patient

tumors into these categories, which have implications for patient survival (Moffitt et al., 2015).

The data in these studies arises from various methods to measure gene expression, which

traditionally required the use of between-sample expression normalization techniques. Due to the

complexity of performing this technique across a variety of expression platforms, Rashid et al.

(2020) integrated the data together using the data integration rank transformation technique. This

integration technique creates top scoring pairs (TSPs). To illustrate the interpretation of TSPs, let

gki,A and gki,B be the raw expression of genes A and B in subject i of group k. For each gene pair

(gki,A, gki,B), the TSP is an indicator Ipgki,A ą gki,Bq which specifies which gene of the two has

higher expression in the subject. We denote a TSP predictor as “GeneA GeneB”. We use the top
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50 TSPs as covariates in this example, as determined by Rashid et al. (2020). In order to create

our desired prediction model, we will use the glmmPen package algorithm to fit a logistic mixed

effects model with these 50 TSPs as the covariates.

Figure 3.1 shows the TSPs of the most value for predicting the basal-like subtype (the TSPs

with non-zero fixed effects coefficient estimates) and the TSPs with the greatest variation be-

tween studies. We see from the figure that there are 31 TSP predictors identified as being impor-

tant for the prediction of the basal-like subtype. For TSPs with positive fixed effects coefficients,

we can conclude that if the TSP indicator is 1 for a subject (the first gene has greater raw expres-

sion than the second gene), it increases the odds that their subtype is basal-like. Alternatively,

if the TSP has a negative fixed effects coefficient, we can conclude that if the TSP indicator is

1 for a subject, it decreases the odds that their subtype is basal-like (i.e. increases the odds that

their subtype is non-basal-like). We also see that there are 11 TSP predictors with varying ef-

fects across the studies, meaning that these 11 predictors have low replicability across the fours

studies.
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Figure 3.1: Logistic mixed effects model coefficient summaries from glmmPen applied to the
Basal dataset. Top: Value of fixed effect coefficients (log odds ratios) for all TSPs with non-zero
fixed effects across the four studies. Bottom: Value of random effect variances for all TSPs with
non-zero random effects.
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3.7 Discussion

This paper introduces the R package glmmPen for fitting penalized generalized linear mixed

models, including Binomial, Gaussian, and Poisson models. The glmmPen package’s main ad-

vantage over other packages that estimate GLMMs is that it can perform variable selection on the

fixed and random effects simultaneously. The algorithm utilizes a Monte Carlo Expectation Con-

ditional Minimization (MCECM) algorithm. Several established MCMC sampling techniques

are available for the E-step, and a Majorization-Minimization coordinate descent algorithm is

used in the M-step. The package utilizes the established methods of Stan and RcppArmadillo

to increase the computational efficiency of the E-step and M-step, respectively. As a result, the

glmmPen package can fit models with higher dimensions compared to other packages that fit

GLMMs, supporting models with 50 or more fixed and random effects.

Besides the MCECM algorithm used in the model fit, the glmmPen package utilizes several

techniques to improve the speed of the algorithm. Such techniques include initialization of sub-

sequent models with the coefficients from the previous model fit and pre-screening to remove

unnecessary random effects.

The glmmPen has several attributes that make it user-friendly. For one, the package was

designed to have an interface that is similar to the well-known lme4 package. Additionally, the

glmmPen package has several automated processes that make it user-friendly. The glmmPen

package provides automated data-dependent initialization of the random effect covariance matrix.

The package also provides automated recommendations for the penalization parameters.

A unique aspect of the package is the calculation of the marginal log-likelihood. The Cor-

rected Arithmetic Mean Estimate (CAME) calculation described by Pajor (Pajor, 2017) is rela-

tively simple and fast to calculate, and we have found that it performs well when compared with

the log-likelihood estimate used in the lme4 package (results not shown here). This marginal

log-likelihood calculation allows the algorithm to perform tuning parameter selection using tra-

ditional BIC selection criterion as well as other BIC-derived selection criteria. This gives users
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the option to forgo calculating the BIC-ICQ selection criterion, which requires the ‘full model’ fit

where a minimum penalty is applied to both the fixed and random effects.
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CHAPTER 4: EFFICIENT COMPUTATION OF HIGH-DIMENSIONAL
PENALIZED GENERALIZED LINEAR MIXED MODELS BY LATENT

FACTOR MODELING OF THE RANDOM EFFECTS

4.1 Introduction

Modern biomedical datasets are increasingly high dimensional and exhibit complex cor-

relation structures. Generalized Linear Mixed Models (GLMMs) have long been employed to

account for such dependencies. However, proper specification of the fixed and random effects

is a critical step in estimation of GLMMs. For instance, omitting important random effects can

lead to bias in the estimated variance of the fixed effects, whereas including unnecessary random

effects could increase the computational difficulty of fitting the GLMM (Thompson et al., 2017;

Gurka et al., 2011; Bondell et al., 2010).

Despite the importance of properly specifying the set of fixed and random effects in such

models, it is often unknown a priori which variables should be specified as fixed or random in the

model, particularly in high dimensional settings in which the feature space is generally assumed

to be sparse. As a solution to this problem, Rashid et al. (2020) used a Monte Carlo Expectation

Conditional Minimization (MCECM) algorithm to perform variable selection in high dimensional

GLMMs. Their method has since been incorporated into the glmmPen R package (Heiling et al.,

2023c). In this glmmPen framework, performing simultaneous variable selection on fixed and

random effects in GLMMs with input dimensions of 50 or so predictors is feasible. Although this

glmmPen framework extends the feasible dimensionality of performing variable selection within

GLMMs relative to existing methods, new methodology is needed to alleviate the computational

burden as the dimension increases even further and allow scalability to hundreds or thousands of

predictors.
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We present a novel reformulation of the GLMM, which we call glmmPen FA, using a factor

model decomposition of the random effects. This factor model is used as a dimension reduction

tool to represent a large number of latent random effects as a function of a smaller set of latent

factors. By reducing the latent space of the random effects, this new model formulation enables

us to extend the feasible dimensionality of performing variable selection in GLMMs to hundreds

of predictors. We estimate model parameters and perform simultaneous selection of fixed and

random effects using a Monte Carlo Expectation Conditional Minimization (MCECM) algorithm.

We show through simulations that through this factor model decomposition, our method can

fit high dimensional penalized GLMMs (pGLMMs) faster than comparable methods and more

easily scale to larger dimensions not previously seen in existing approaches.

The remainder of this paper is organized as follows. Section 4.2 reviews the statistical mod-

els and algorithm used to estimate pGLMMs in our new factor model decomposition framework,

termed glmmPen FA. In section 4.3, simulations are conducted to assess the performance of the

new glmmPen FA method. Section 4.4 describes a motivating case study for the prediction of

pancreatic cancer subtypes using gene expression data and provides results from the application

of our new method to the case study. We close the article with some discussion in Section 4.5.

4.2 Methods

4.2.1 Model formulation

We consider the case where we want to analyze data from K independent groups of ob-

servations. For each group k “ 1, ..., K, there are nk observations for a total sample size of

N “
řK

k“1 nk. For group k, let yk “ pyk1, ..., yknk
qT be the vector of nk independent responses,

xki “ pxki,1, ..., xki,pqT be the p-dimensional vector of predictors, andXk “ pxk1, ...,xknk
qT . For

simplification of notation, we will set n1 “ ... “ nK “ n without loss of generality. In GLMMs,

we assume that the conditional distribution of yk givenXk belongs to the exponential family and
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has the following density:

fpyk|Xk,αk; θq “

n
ź

i“1

cpykiq exp
“

τ´1
tykiηki ´ bpηkiqu

‰

, (4.1)

where cpykiq is a constant that only depends on yki, τ is the dispersion parameter, bp¨q is a known

link function, and ηki is the linear predictor.

As outlined in Rashid et al. (2020), the traditional GLMM formulation of the linear predictor

can be represented as

ηki “ xT
kiβ ` zTkiγk “ xT

kiβ ` zTkiΓδk, (4.2)

where β “ pβ1, ..., βpqT is a p-dimensional vector for the fixed effects coefficients (including the

intercept), Γ is the Cholesky decomposition of the random effects covariance matrix Σ such that

ΓΓT “ Σ, γk “ Γδk, where δk „ Nqp0, Iq, is a q-dimensional vector of unobservable random

effects (including the random intercept) for group k, and zki is a q-dimensional subvector of xki.

In its current representation, the model assumes a q-dimensional latent space. When q is

large, the estimation of the covariance matrix Σ = Var(γk), can be computationally burdensome

to compute due to both the number of parameters needed to estimate this matrix (for an unstruc-

tured covariance matrix, qpq ` 1q{2 parameters are needed) as well as the need to approximate

a q-dimensional integral (see Section 4.2.3 for details). Prior work such as Fan et al. (2013) and

Tran et al. (2020) have assumed a factor model structure in order to estimate high-dimensional

covariance matrices in other settings, such as the estimation of sample covariance matrices for

time series data and the covariance matrix in variational inference used to approximate the pos-

terior distribution, respectively. Here we introduce a novel formulation of the GLMM where we

decompose the random effects γk into a factor model with r latent common factors (r ! q) such

that γk “ Bαk, whereB is the q ˆ r loading matrix and αk represents the r latent common

factors. We assume the latent factors αk are uncorrelated and follow a Nrp0, Iq distribution. We

re-write the linear predictor as

ηki “ xT
kiβ ` zTkiBαk. (4.3)
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In this representation, the random component of the linear predictor has variance Var(Bαk) =

BBT = Σ. By assuming that Σ is low rank, we also reduce the dimension of the latent space

from q to r, which reduces the dimension of the integral in the likelihood and thereby reduces the

computational complexity of the E-step in the EM algorithm. Further details are given in Section

4.2.3.

In order to estimateB, let bt P Rr be the t-th row ofB and b “ pbT1 , ..., b
T
q qT . We can then

reparameterize the linear predictor as

ηki “ xT
kiβ ` zTkiBαk “

`

xT
ki pαk b zkiq

TJ
˘

¨

˚

˝

β

b

˛

‹

‚

(4.4)

in a manner similar to Chen and Dunson (2003) and Ibrahim et al. (2011), where J is a matrix

that transforms b to vec(B) such that vecpBq “ Jb and J is of dimension pqrq ˆ pqrq. The vector

of parameters θ “ pβT , bT , τqT are the main parameters of interest. We denote the true value of

θ as θ˚ “ pβ˚T , b˚T , τ˚qT “ argminθEθr´ℓpθqs where ℓpθq is the observed log-likelihood across

all K groups such that ℓpθq “
řK

k“1 ℓkpθq, where ℓkpθq “ p1{nq log
ş

fpyk|Xk,αk;θqϕpαkqdαk.

Our main interest lies in selecting the true nonzero fixed and random effects. In other words,

we aim to identify the set

S “ S1 Y S2 “ tj : β˚
j ‰ 0u Y tt : ||b˚

t ||2 ‰ 0u,

where S1 and S2 represent the true fixed and random effects, respectively. When bt “ 0, this

indicates that effect of covariate t is fixed across the K groups (i.e. the corresponding t-th row

and column of Σ is set to 0).

We aim to solve the following penalized likelihood problem:

pθ “ argminθ ´ ℓpθq ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q , (4.5)
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where ℓpθq is the observed log-likelihood for all K groups defined earlier, ρ0ptq and ρ1ptq are

general folded-concave penalty functions, and λ0 and λ1 are positive tuning parameters. The

ρ0ptq penalty functions could include the L1 penalty, the SCAD penalty, and the MCP penalty

(Friedman et al., 2010; Breheny and Huang, 2011). For the ρ1ptq penalty, we treat the elements

of bt as a group and penalize them in a groupwise manner using the group LASSO, group MCP,

or group SCAD penalties presented by Breheny and Huang (2015). These groups of bt are then

estimated to be either all zero or all nonzero. In this way, we select covariates to have varying

effects (pbt ‰ 0) or fixed effects (pbt “ 0) across the K groups.

We standardize the fixed effects covariates matrixX “ pXT
1 , ...,X

T
KqT such that

řK
k“1

řnk

i“1 xki,j “ 0 and N´1
řK

k“1

řnk

i“1 x
2
ki,j “ 1 for j “ 1, ..., p.

4.2.2 MCECM algorithm

We solve (4.5) for some specific pλ0, λ1q using a Monte Carlo Expectation Conditional Mini-

mization (MCECM) algorithm (Garcia et al., 2010).

In the sth iteration of the MCECM algorithm, we aim to evaluate the expectation of (E-step)

and minimize (M-step) the following penalized Q-function:

Qλpθ|θpsq
q “

K
ÿ

k“1

E
␣

´ log
`

fpyk,Xk,αk;θ|do;θ
psq

q
˘(

` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q

“ Q1pθ|θpsq
q ` Q2pθ

psq
q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q ,

(4.6)

where pyk,Xk,αkq gives the complete data for group k, dk,o “ pyk,Xkq gives the observed data

for group k, do represents the entirety of the observed data, and

Q1pθ|θpsq
q “ ´

K
ÿ

k“1

ż

logrfpyk|Xk,αk;θqsϕpαk|dk,o;θ
psq

qdαk, (4.7)
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Q2pθpsq
q “ ´

K
ÿ

k“1

ż

log ϕpαkqϕpαk|dk,o;θ
psq

qdαk (4.8)

In the E-step of the algorithm, we aim to approximate the r-dimensional integral expressed in

(4.7).

4.2.2.1 Monte-Carlo E-step

The integrals in the Q-function do not have closed forms when fpyk|Xk,α
ps,mq

k ;θq is as-

sumed to be non-Gaussian. We approximate these integrals using a Markov Chain Monte Carlo

(MCMC) sample of size M from the posterior density ϕpαk|dk,o;θ
psqq. Let αps,mq

k be the mth sim-

ulated r-dimensional vector from the posterior of the latent common factors, m “ 1, ...,M , at the

sth iteration of the algorithm for group k. The integral in (4.7) can be approximated as

Q1pθ|θpsq
q « ´

1

M

M
ÿ

m“1

K
ÿ

k“1

log fpyk|Xk,α
ps,mq

k ;θq.

We use the fast and efficient No-U-Turn Hamiltonian Monte Carlo sampling procedure (NUTS)

from the Stan software (Carpenter et al., 2017; Hoffman and Gelman, 2014) in order to perform

the E-step efficiently.

4.2.2.2 Monte-Carlo M-step

In the M-step of the algorithm, we aim to minimize

Q1,λpθ|θpsq
q “ Q1pθ|θpsq

q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q (4.9)

with respect to θ “ pβT , bT , τqT . We do this by using a Majorization-Minimization algorithm

with penalties applied to the fixed effects and the rows ofB. Let s represent the iteration of the

MCECM algorithm, and let h represent the iteration within a particular M-step of the MCECM

algorithm. The M-step of the sth iteration of the MCECM algorithm proceeds as described in

Algorithm 5 given in the Chapter 4 Appendix.
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4.2.2.3 MCECM algorithm

Algorithm 6 in the Chapter 4 Appendix describes the full MCECM algorithm for estimating

the parameters with a particular pλ0, λ1q. The process of model selection and finding optimal

tuning parameters are described further in the Chapter 4 Appendix Sections C.2.1 and C.2.2. For

further details on initialization and convergence, also see the Chapter 4 Appendix Section C.2.3.

4.2.3 Advantages of glmmPen FA model formulation

There are several advantages to our proposed factor model decomposition of the random

effects. By representing the random effects with a factor model, we reduce the latent space from

a high q-dimensional space to a low r-dimensional space. In the more traditional GLMM model

formulation, Q1pθ|θpsqq would be represented as

Q1pθ|θpsq
q “ ´

K
ÿ

k“1

ż

logrfpyk|Xk, δk;θqsϕpδk|dk,o;θ
psq

qdδk, (4.10)

where θ includes the fixed effects β, the non-zero elements of Γ given in (4.2), and τ , and the

δk are q-dimensional latent variables. However, by using the novel model formulation given in

equation (4.3), this changes the integral of interest such that now Q1pθ|θpsqq expressed in (4.7) is

of dimension r ! q. This significantly reduces the computational complexity of estimating this

integral in the E-step of the algorithm since we only have to estimate a latent space of dimension

r. Consequently, this reduces the computational time. This also enables us to scale our method to

hundreds of predictors since the practical dimension of the latent space will be much smaller than

the total possible random effects predictors.

Furthermore, this proposed formulation allows for more complex correlation structures in

higher dimensions. In Rashid et al. (2020), the authors approximated the random effect covari-

ance matrix Σ as a diagonal matrix when the dimensions are large as recommended by Fan and

Li (2012). This approximation was employed in order to reduce the computational complexity of
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the algorithm and therefore increase the speed of the model fit. However, in our new formulation,

we do not need to assume Σ is a diagonal matrix when the dimension is high.

4.2.4 Estimation of the number of latent factors

Performing our proposed glmmPen FA method requires specifying the number of latent

factors r. Since r is typically unknown a priori, this value needs to be estimated. There have

been several proposed methods of estimating r for the approximate factor model (Bai and Ng,

2002; Ahn and Horenstein, 2013; Onatski, 2010; Kapetanios, 2010). We tried the Eigenvalue

Ratio method and Growth Ratio method developed by Ahn and Horenstein (2013) as well as the

method proposed in Bai and Ng (2002). We found the Growth Ratio (GR) method gave the most

accurate estimates of r. Therefore, in this section, we will describe how we implement the GR

method to estimate r. The GR method is used in all of our numerical works.

To apply the GR method to our problem, we need a q ˆ K matrix of observed random effects.

Since we can never observe the random effects, we instead calculate pseudo random effects by

first fitting a penalized generalized linear model with a small penalty to each group individually.

We then take these group-specific estimates and center them so that all features have a mean of 0.

Let these q-dimensional group-specific estimates be denoted as γ̂k for each group k “ 1, ..., K.

We then defineG “ pγ̂1, ..., γ̂Kq as the final q ˆ K matrix of pseudo random effects.

Let ψjpAq be the j-th largest eigenvalue of the positive semidefinite matrix A, and let µ̃qK,j ”

ψjpGG
T {pqKqq “ ψjpG

TG{pqKqq.

To find the GR estimator, we first order the eigenvalues ofGGT {pqKq from largest to small-

est. Then, we calculate the following ratios:

GRpjq ”
logrV pj ´ 1q{V pjqs

logrV pjq{V pj ` 1qs
“

log
`

1 ` µ̃˚
qK,j

˘

log
`

1 ` µ̃˚
qK,j`1

˘ , j “ 1, 2, ..., U (4.11)
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where V pjq “
řminpq,Kq

l“j`1 µ̃qK,l, µ̃˚
qK,j “ µ̃qK,j{V pjq, and U is a pre-defined constant. Then, we

estimate r by

prGR “ max1ďjďUGRpjq (4.12)

4.3 Simulations

In this section, we examine the performance of the glmmPen FA algorithm in performing

variable selection under several different conditions. In all of these simulations, we use a pre-

screening step to remove some random effects at the start of the algorithm, the BIC-ICQ (Ibrahim

et al., 2011) criterion for tuning parameter selection, the MCP penalty (MCP penalty for the fixed

effects, group MCP penalty for the rows of theB matrix), and the abbreviated two-stage grid

search as described in the Chapter 4 Appendix Section C.2.1. In order to determine the robust-

ness of our variable selection procedure based on the assumed value of r, we fit models in one

of two ways: we estimated the number of common factors r using the Growth Ratio estimation

procedure discussed in Section 4.2.4, or we input the true value of r for the algorithm to use.

4.3.1 Variable selection in binomial data with 100 predictors

We examine the performance of the glmmPen FA algorithm when performing variable

selection in high dimensions of p “ 100 total predictors. We simulated binary responses from a

logistic mixed effects model with p “ 100 predictors. Of p total predictors, we assume that the

first 10 predictors have truly non-zero fixed and random effects, and the other p ´ 10 predictors

have zero-valued fixed and random effects. We specified a full model for the algorithm such the

random effect predictors equalled the fixed effect predictors ( e.g. q “ p), and our aim was to

select the set of true predictors and random effects.

To simulate the data, we set the sample size to N “ 2500 and number of groups to K “ 25,

with an equal number of subjects per group. We set up the random effects covariance matrix by

specifying aB matrix with dimensions pp ` 1q ˆ r, where p ` 1 represents the p predictors plus

the random intercept, and the number of latent common factors r “ t3, 5u. Eleven of these p` 1
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rows—corresponding to the true 10 predictors plus the intercept—had non-zero elements, while

the remaining p ´ 10 rows were set to zero. For each value of r, we consideredB matrices that

produced covariance matrices Σ “ BBT with moderate variances and eigenvalues and large

variances and eigenvalues (see the Chapter 4 Appendix for further details). In the simulation

results presented in this section, theseB matrices are referred to as the ‘moderate’ and ‘large’B

matrices, respectively. We use both moderate predictor effects and strong predictor effects, where

all 10 of the true fixed effects have coefficient values of 1 or 2, respectively.

For group k, we generated the binary response yki, i “ 1, ..., nk such that yki „ Bernoullippkiq

where pki “ P pyki “ 1|xki, zki,γk,θq “ exp
`

xT
kiβ ` zTkiγk

˘

{t1 ` exp
`

xT
kiβ ` zTkiγk

˘

u, and

γk „ N11p0,BB
T q. Each condition was evaluated using 100 total simulated datasets.

For individual i in group k, the vector of predictors for the fixed effects was xki “ p1, xki,1, ..., xki,pqT ,

and we set the random effects zki “ xki, where xki,j „ Np0, 1q for j “ 1, ..., p, and each xj was

standardized as described in Section 4.2.1.

The results for these simulations are presented in Tables 4.1 and 4.2. Table 4.1 provides

the average true and false positives for both the fixed and random effects variable selection, the

median time in hours to complete the variable selection procedure, and the average of the mean

absolute deviation between the coefficient estimates and the true coefficients across all simulation

replicates. Table 4.2 gives the Growth Ratio r estimation procedure results, including the average

estimate of r and the proportion of times that the Growth Ratio estimate of r was underestimated,

correct, or overestimated. All simulations were completed on a Longleaf computing cluster (CPU

Intel processors between 2.3Ghz and 2.5GHz).

We see from Table 4.1 that the glmmPen FA method is able to accurately select both the

fixed and random effects across a variety of conditions, which is supported by the true positives

generally being above 90% for both the fixed and random effects and the false positives generally

being small: across all conditions, less than 3.5% for fixed effects and less than 1% for random

effects.
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True r β B r Est. TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)
3 1 Moderate GR 98.50 2.00 97.20 0.22 2.05 0.26

True 99.00 2.14 98.40 0.16 2.36 0.26
Large GR 95.50 2.19 98.60 0.18 2.52 0.33

True 95.50 2.31 98.90 0.17 2.42 0.33
2 Moderate GR 100.00 2.46 89.00 0.53 1.45 0.37

True 100.00 2.78 90.10 0.50 2.07 0.31
Large GR 100.00 3.39 94.60 0.80 2.39 0.43

True 100.00 3.40 96.20 0.49 2.41 0.41
5 1 Moderate GR 96.80 2.02 96.20 0.04 3.56 0.35

True 96.70 1.86 96.80 0.03 3.60 0.35
Large GR 90.40 2.22 96.80 0.08 4.39 0.44

True 90.50 1.97 96.90 0.07 4.44 0.44
2 Moderate GR 100.00 2.11 89.00 0.18 2.29 0.52

True 100.00 2.42 88.40 0.24 2.99 0.44
Large GR 99.90 3.28 93.10 0.50 3.03 0.57

True 99.90 3.36 93.40 0.47 3.98 0.55

Table 4.1: Variable selection results for the p “ 100 logistic regression simulations, including
true positive (TP) percentages for fixed and random effects, false positive (FP) percentages for
fixed and random effects, the median time in hours for the algorithm to complete (Tmed), and the
average of the mean absolute deviation (Abs. Dev. (Mean)) between the coefficient estimates and
the true β values across all simulation replicates. ColumnB describes the general size of both
the variances and eigenvalues of the resulting Σ “ BBT random effects covariance matrix.
Column ‘r Est.’ refers to the method used to specify r in the algorithm: the Growth Ratio
estimate or the true value of r.

We can see from Table 4.2 that the Growth Ratio estimation procedure applied to the pseudo

random effect estimates described in Section 4.2.4 has varying levels of accuracy depending on

the structure of the underlying data. Generally, the Growth Ratio estimation procedure becomes

more accurate as the eigenvalues of the covariance matrix increase and the true predictor effects

are moderate. From simulations not shown, the estimation of r also generally improves when

either the sample size per group increases, or the total number of predictors used in the GR esti-

mation procedure decreases. When the eigenvalues of the covariance matrix decrease or the true

predictor effects increase, the Growth Ratio procedure underestimates r on average. However,

when we compare the true and false positives for the fixed and random effects given in Table 4.1
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True r β B Avg. r r Underestimated % r Correct % r Overestimated %
3 1 Moderate 2.79 21 79 0

Large 2.95 5 95 0
2 Moderate 2.21 80 19 1

Large 2.51 49 51 0
5 1 Moderate 4.60 26 72 2

Large 4.83 15 83 2
2 Moderate 3.83 70 28 2

Large 4.43 46 50 4

Table 4.2: Results of the Growth Ratio r estimation procedure for p “ 100 logistic mixed effects
simulation results, including the average estimate of r across simulations and percent of times
that the estimation procedure underestimated r, gave the true r, or overestimated r. ColumnB
describes the general size of both the variances and eigenvalues of the resulting Σ “ BBT

random effects covariance matrix.

for these less ideal cases, we see that using the estimated r gave very similar results to when the

true value of r was utilized by the algorithm. From the average of the mean absolute deviation

values, we see that the mis-specification of r also does not significantly impact the estimation of

the fixed effects coefficients.

4.3.2 Comparison of the glmmPen and glmmPen FA methods

As far as we are aware, the glmmPen method developed by Rashid et al. (2020) and imple-

mented in the glmmPen R package available on CRAN is the only other method that performs

simultaneous fixed and random effects variable selection in high dimensional GLMMs.

We next compare the performance of this glmmPen method and our novel glmmPen FA

method developed in this chapter. We first compared the performance of these methods in mod-

erate dimensions. We simulated binary responses from a logistic mixed effects model much like

the procedure described in Section 4.3.1, except the total number of predictors used in the anal-

yses was p “ 25 and we restricted our consideration to r “ 3 common factors for all simulation

scenarios. For the glmmPen FA method, all values of r used in the algorithm were from the

Growth Ratio estimates of r. In these moderate dimensions of p “ 25 with our given sample size

of N “ 2500, it is reasonable to use glmmPen to perform variable selection in logistic mixed
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effects models assuming an unstructured random effects covariance matrix, allowing us to use as

directly comparable model assumptions as possible for these method comparisons.

Table 4.3 gives the average true and false positives for both the fixed and random effects, the

median time in hours to complete the variable selection procedure, and the average of the mean

absolute deviation between the coefficient estimates and the true coefficients across all simulation

replicates. Table 4.4 gives the Growth Ratio r estimation procedure results for the glmmPen FA

method.

β B Method TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)
1 Moderate glmmPen FA 99.50 3.47 99.80 0.53 0.59 0.26

glmmPen 100.00 37.40 100.00 0.00 2.62 0.27
Large glmmPen FA 97.20 3.80 99.90 0.80 0.49 0.33

glmmPen 99.00 60.60 100.00 0.00 3.18 0.34
2 Moderate glmmPen FA 100.00 2.27 98.40 0.47 0.47 0.27

glmmPen 100.00 13.67 99.20 0.00 2.84 0.43
Large glmmPen FA 99.80 3.53 99.80 0.73 0.48 0.35

glmmPen 100.00 30.93 100.00 0.00 2.53 0.50

Table 4.3: Results of the variable selection procedure for the p “ 100 logistics mixed effects
simulations, including true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between the
coefficient estimates and the true β values across all simulation replicates. ColumnB describes
the general size of both the variances and eigenvalues of the resulting Σ “ BBT random effects
covariance matrix. All values of r used in the glmmPen FA method were from the Growth Ratio
estimates of r.

When comparing the glmmPen FA and glmmPen results in these p “ 25 simulations, we

see that the median time for glmmPen to complete the variable selection procedures ranged from

2.53 to 3.28 hours for all four simulation scenarios considered. On the other hand, the glmm-

Pen FA method was able to fit these variable selection procedures about 5-6 times faster, where

the median running time ranged from 0.47 to 0.59 hours.
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True r β B Avg. r r Underestimated % r Correct % r Overestimated %
3 1 Moderate 3.00 0 100 0

Large 3.00 0 100 0
2 Moderate 2.76 24 76 0

Large 2.92 8 92 0

Table 4.4: Results of the Growth Ratio r estimation procedure for glmmPen FA p “ 25 logistic
mixed effects simulation results, including the average estimate of r across simulations and
percent of times that the estimation procedure underestimated r, gave the true r, or overestimated
r. ColumnB describes the general size of both the variances and eigenvalues of the resulting
Σ “ BBT random effects covariance matrix.

Table 4.3 also shows that there is little difference in the true positives for both the fixed and

random effects between the two methods. However, glmmPen tends to have more false positives

in the fixed effects.

We also performed variable selection using glmmPen on the r “ 3, p “ 100 simulations

described in Section 4.3.1. In these larger dimensions, we simplified the glmmPen estimation

procedure by assuming an independent covariance matrix to reduce the number of random effects

covariance parameters. We let the glmmPen variable selection procedure proceed for 100 hours.

In that time, glmmPen was able to complete the following number of replicates out of the 100

total replicates: 83 for (β “ 1,B “ Moderate), 71 for (β “ 1,B “ Large), 100 for (β “ 2,B “

Moderate), and 96 for for (β “ 2,B “ Large). The minimum times needed to complete the

glmmPen variable selection procedures: 39.91, 57.60, 23.63, and 42.79 hours, respectively; in

summary, it took a day or more for the fastest simulation replicates to complete when using the

glmmPen method. In cases where we desire to select true random effects from a large number of

total predictors, it is clear that the glmmPen FA estimation procedure significantly reduces the

required time to perform variable selection.

4.3.3 Variable selection in binomial data with 500 predictors

In order to further illustrate the scalability of our method, we applied our method to binary

outcome simulations with p “ 500 covariates. We simulated the binary responses from a logistic
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mixed effects model much like the procedure described in Section 4.3.1, except the total number

of predictors used in the analyses was p “ 500 instead of p “ 100. All simulations assumed

the true number of latent factors r was 3 and the Growth Ratio method was used to estimate r.

Just as in the p “ 100 binary outcome simulations, we specified a full model for the algorithm

such the random effect predictors equalled the fixed effect predictors ( e.g. q “ p), and our aim

was to select the set of true predictors and random effects. The variable selection results to these

simulations are given in Table 4.5. The median times needed to complete these simulations took

between 10.37 and 17.57 hours.

True r β B Avg. r TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)
3 1 Moderate 2.67 97.40 0.97 93.90 0.05 10.37 0.27

Large 2.85 88.50 1.73 94.30 0.33 17.57 0.37
2 Moderate 2.37 100.00 0.06 77.40 0.00 11.44 0.48

Large 2.41 99.60 0.19 88.10 0.03 13.22 0.55

Table 4.5: Results of the variable selection procedure for p “ 500 logistic mixed effects
simulation results, including true positive (TP) percentages for fixed and random effects, false
positive (FP) percentages for fixed and random effects, the median time in hours for the algorithm
to complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between
the coefficient estimates and the true β values across all simulation replicates. Column ‘Avg. r’
gives the average Growth Ratio r estimate used within the algorithm. ColumnB describes the
general size of both the variances and eigenvalues of the resulting Σ “ BBT random effects
covariance matrix.

4.3.4 Variable selection in Poisson data with 100 predictors

While we have previously focused on binary outcome data in our simulations, our proposed

method also applies to other members of the generalized linear model family, including the Pois-

son model for count outcome data. To illustrate this, we simulated a Poisson mixed effects model

with p “ 100 predictors, 5 of which had truly non-zero fixed and random effects, and the other

p´5 predictors had zero-valued fixed and random effects. As in the previous Binomial simulations,

we set the sample size to N “ 2500 and the number of groups to K “ 25, with equal numbers
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of subjects per group. We set r to 3, assigned moderate predictor effects (β “ 1), and specified a

B matrix with 6 non-zero rows (for the 5 predictors plus an intercept) that produced a ‘moderate’

covariance matrix (see the Chapter 4 Appendix for details). Unlike in the previous Binomial sim-

ulations, we simulated xki,j „ Np0, σ “ 0.10q for j “ 1, ..., p to reduce the overall spread of the

simulated yki „ Poissonpµkiq outcome values, where µki “ exp
`

xT
kiβ ` zTkiγk

˘

.

Using the Growth Ratio estimation procedure to estimate r, the average true positive per-

centages were 83.40% for the fixed effects and for 77.20% the random effects, and the average

false positives were 5.92% for the fixed effects and 3.23% for the random effects. The average

estimate of r across the simulation replicates was 2.35.

4.4 Case study: Pancreatic Ductal Adenocarcinoma

Patients diagnosed with Pancreatic Ductal Adenocarcinoma (PDAC) generally face a very

poor prognosis, where the 5-year survival rate is 6% (Khorana et al., 2016). The study by Moffitt

et al. (2015) identified genes that are expressed exclusively in pancreatic tumor cells. Using these

tumor-specific genes, Moffitt et al. (2015) was able to identify and validate two novel tumor

subtypes, termed ‘basal-like’ and ‘classical’. It was found that patients diagnosed with basal-like

tumors had significantly worse median survival than those diagnosed with the classical tumors.

Consequently, it is of clinical interest to robustly predict this basal-like subtype in order to make

and improve tailored treatment recommendations.

A common problem observed in the application of gene signatures is the inconsistency of

gene signature selection across biomedical studies, where gene signatures identified in one study

may have little or no overlap with ones identified in other studies (Waldron et al., 2014). This

lack of replicability of gene signatures also translates to a lack of replicability of other findings,

where models based upon these different gene signatures have variable accuracy in predicting

clinical outcomes in new studies (Sotiriou and Piccart, 2007; Waldron et al., 2014) or provide

contradictory effect estimates relating genes to the outcome (Swisher et al., 2012). This lack of

replicability across studies comes from several sources, including small sample size (Sotiriou
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and Piccart, 2007), low frequencies of one or more molecular subtypes (Lusa et al., 2007), and

differences in data pre-processing steps (Lusa et al., 2007; Paquet and Hallett, 2015).

In order to improve replicability in the prediction of subtypes in PDAC, we combine PDAC

gene expression data from five different studies. The studies used in these analyses are summa-

rized in Chapter 4 Appendix Table C.3. In order to account and adjust for between-study hetero-

geneity, we apply our new method glmmPen FA to fit a penalized logistic mixed effects model to

our data to select predictors with study-replicable effects, where we assume that predictor effects

may vary between studies.

Moffitt et al. (2015) identified a 500-member gene list relevant to classifying the PDAC tu-

mor subtypes. Of these 500 genes, the five studies described in Chapter 4 Appendix Table C.3

had RNA-seq gene expression data for 432 of these genes. There were some significant correla-

tions between some of these 432 genes, as evaluated by Spearman correlations. In order to avoid

having very highly correlated covariates in the analyses, we decided to combine highly corre-

lated genes together into meta-genes. The clustering process used to create these meta-genes is

described in Chapter 4 Appendix Section C.2.6. The final dataset included 110 cluster covariates.

If clusters were composed of two or more genes, then the raw RNA-seq gene expression for these

genes was summed together to create a meta-gene. The final covariates used in the analyses were

subject-level rank transformations of the gene expression corresponding to these clusters.

Due to the presence of several pairwise Spearman correlation values greater than 0.5 in this

final dataset, we used the Elastic Net penalization procedure (Friedman et al., 2010) to balance

between ridge regression and the MCP penalty. We let π represent the balance between ridge

regression and the MCP penalty, where π “ 0 represents ridge regression and π “ 1 represents

the MCP penalty. In these analyses, we let π “ 0.7, and we estimated the number of common

factors r using the Growth Ratio procedure. The same value of π was used for both the fixed ef-

fects and random effects penalization. The sequence of λ penalties used the the variable selection

procedure was the same as those used in the Binomial variable selection simulations for p “ 100

as discussed in Chapter 4 Appendix Section C.2.2.

76



To see the general performance of glmmPen FA under different covariate correlation struc-

tures and under different values of π, see Chapter 4 Appendix Section C.2.5.

The basal or classical subtype outcome was calculated using the clustering algorithm spec-

ified in Moffitt et al. (2015). Further details are provided in Chapter 4 Appendix Section C.2.6;

the code for this procedure is provided in a GitHub repository, see Supporting Information for

more details.

In the final results, 8 of the original 110 cluster covariates had non-zero fixed effect values in

the best model, implying these covariates were important for the prediction of the basal outcome.

These 8 cluster covariates represented 33 genes in total. Table 4.6 includes the cluster label for

these 8 clusters, the sign of the associated fixed effect coefficient, and the gene symbols of the

genes that make up the cluster. Clusters with positive coefficients indicate that having greater

relative expression of these meta-genes increases the odds of a subject being in the basal subtype,

and vice versa for negative coefficients. The best model contained a random intercept (variance

value 1.57) and no other random slopes. The Growth Ratio procedure estimated r “ 2 latent

common factors to model the random effects.

Cluster
No.

Coefficient
Sign

Gene Component Symbols

21 + C16orf74, HES2, S100A2
25 + CCNG2, MBOAT2, MET, TGFB2
44 + FAM83A, MUC16, SCEL
45 + FANK1, HS3ST1, LEMD1
58 + KRT15, PAK6, PROM2, ST3GAL4, TRIM29
64 + MMP13, PMAIP1
70 + PSCA, VGLL1, WNT10A
91 - ANXA10, BTNL8, CLDN18, CYP2C18, GUCY2C, LRRC31,

MYO1A, NR1I2, PIP5K1B, REG4

Table 4.6: Covariate cluster label within the case study dataset of the clusters that had non-zero
fixed effects in the final best model, the sign of the fixed effect coefficient associated with the
cluster, and the gene symbols of the genes within the cluster.
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Sensitivity analyses were conducted, which included additional values for π in the Elastic

Net procedure and a larger value of the number of assumed latent common factors r. Details are

included in Chapter 4 Appendix Section C.2.7.

We also applied the glmmPen variable selection procedure to this data (assuming an indepen-

dent random effects covariance matrix). The 8 cluster covariates selected by glmmPen FA were

also consistently selected by glmmPen. One difference in the model results is that glmmPen also

consistently selected clusters 25 and 58 to have non-zero random effects. The main difference in

these variable selection procedures were the time to complete the variable selection procedure,

where glmmPen FA completed the procedure within 0.4 hours and glmmPen completed the

procedure within 37.8 hours. More details about glmmPen sensitivity analyses are provided in

Chapter 4 Appendix Section C.2.7.

4.5 Discussion

By representing the random effects with a factor model, we reduce the latent space from a

large number of random effects to a smaller set of latent factors. We have shown through simula-

tions that by reducing the complexity of the integral in the E-step, we can significantly improve

the overall time needed to perform variable selection in high dimensional generalized linear

mixed models.

The simulations in Section 4.3 also show how reducing the latent space increases the feasible

dimensionality of performing variable selection in generalized linear mixed models. By using

our novel formulation of the random effects, we can perform variable selection on mixed models

with hundreds of predictors within a reasonable time-frame without any a priori knowledge of

which predictors are relevant for the model, either in terms of fixed or random effects. From the

simulation results, we see that the glmmPen FA method results in accurate selection of the fixed

and random effects across several conditions.

In general, our method is limited by the need to provide an estimate for the number of latent

common factors. However, this limitation is tempered by several observations from the sim-
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ulation results. The simulation results show that our data-driven estimation of the number of

latent factors, based on the Growth Ratio estimation procedure by Ahn and Horenstein (2013),

provides reasonable estimates. Even when it was estimated incorrectly by this procedure, this

mis-specification had very little impact on the general variable selection performance or the fixed

effects coefficient estimates. Therefore, our method is not sensitive to the estimation of the num-

ber of latent factors.

Supporting Information

Chapter 4 Appendices and Tables referenced in Sections 4.3 and 4.4 are given at the end

of this document. The Chapter 4 Appendix contains addition details about the variable selec-

tion procedure, the simulations, and the case study. The glmmPen R package, which contains

the code for the original glmmPen formulation and the new glmmPen FA method, is available

for download through CRAN at https://cran.r-project.org/web/packages/

glmmPen/index.html. The GitHub repository https://github.com/hheiling/

paper_glmmPen_FA contains the following materials: the code to run the simulations, the

code to create the cleaned data for the case study, the code to analyze the case study data, the data

used in the case study, and the code to recreate the tables provided within this chapter. Please see

the README files within this repository for more details.
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CHAPTER 5: EFFICIENT COMPUTATION OF HIGH-DIMENSIONAL
PIECEWISE CONSTANT HAZARD PENALIZED RANDOM EFFECTS

SURVIVAL MODELS

5.1 Introduction

Modeling survival outcomes has great clinical significance in medical and public health

research. In particular, the Cox proportional hazards model has been widely utilized in order to

characterize the relationship between treatments, exposures, or other covariates and patient time-

to-event outcomes. However, modern biomedical datasets are increasingly high dimensional, and

groups of samples within the data can exhibit complex correlations. For example, when studying

survival outcomes with respect to multi-center clinical trials, recurrent events, and genetic studies,

proportional hazards mixed effects models are used to account for correlations among groups

within the data and model the heterogeneity of treatment and predictor effects across groups

(Vaida and Xu, 2000; Ripatti and Palmgren, 2000). These proportional hazards mixed effects

models are traditionally referred to as frailty models when the model contains a single random

effect applied to the baseline hazard.

In high dimensional settings, in which the covariate effects are generally assumed to be

sparse, it is often unknown a priori which covariates should be specified as fixed or random in

the model. Variable selection methods such as LASSO and SCAD exist for high dimensional

proportional hazards models or frailty models (Tibshirani, 1997; Bradic et al., 2011; Simon

et al., 2011; Fan and Li, 2002), but they do not allow for the selection of random effects. Several

mixed effects model selection methods that rely on the specification of candidate models have

been proposed, including likelihood ratios, profile Akaike information criterion (AIC) (Xu et al.,

2009), and conditional AIC (Donohue et al., 2011). However, specifying all 2p possible candidate
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models in high dimensions is impractical. Lee et al. (2014) developed a stochastic search vari-

able selection (SSVS) method that selects both fixed and random effects in proportional hazards

mixed effects models in a Bayesian framework, but their method is only computationally feasible

for small or moderate dimensions.

Rashid et al. (2020) developed a method that simultaneously selects both fixed and random

effects in high dimensional generalized linear mixed models (GLMMs), which has since been

developed into an R package available on CRAN (Heiling et al., 2023a,c), recall Chapter 3. This

method broadened the feasible dimensionality of performing variable selection in GLMMs to

greater dimensions than previously existing methods. This method was extended by Heiling

et al. (2023b) (recall Chapter 4), who proposed a new formulation of the GLMM using a factor

model decomposition of the random effects. As a result of this new formulation, they were able

to improve the scalability of their method and perform variable selection within GLMMs in cases

with much larger dimensions. However, these methods do not apply to survival data.

In this chapter, we propose a method that simultaneously selects fixed and random effects

within clustered survival data. We approximate the proportional hazards mixed effects model

using a piecewise constant hazard mixed effects model (Austin, 2017) and utilize the factor

model decomposition of the random effects proposed in Heiling et al. (2023b) (recall Chapter

4), allowing us to scale our method to cases with hundreds of predictors. We label our method

as phmmPen FA, which reflects our goal of estimating penalized proportional hazards mixed

effects models using factor analysis on the random effects. In order to extend the methods of

Rashid et al. (2020) and Heiling et al. (2023b) to survival data, we approximate the Cox propor-

tional hazards model using a fully parametric model. The proportional hazards model can be

approximated using the piecewise constant hazard survival model, in which the follow-up time of

the study is split into time intervals where the baseline hazard is assumed to be constant within

these intervals (Friedman, 1982; Laird and Olivier, 1981; Holford, 1980; Rodriguez, 2010). This

piecewise constant hazard survival model can be fit using a log-linear model which incorporates

the duration of exposure within each interval.
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The remainder of this paper is organized as follows. Section 5.2 reviews the statistical mod-

els and algorithm used to estimate piecewise constant hazard mixed models. In section 5.3, sim-

ulations are conducted to assess the performance of our method. Section 5.4 describes a moti-

vating case study for the prediction of survival in pancreatic ductal adenocarinoma cancer using

gene expression data from multiple trials, and provides results from the application of our new

method to the case study. We close the article with some discussion in Section 5.5.

5.2 Methods

5.2.1 Model formulation

In this section, we review the notation and model formulation of our approach. We consider

the case where we want to analyze data from K independent groups of subjects. For each group

k “ 1, ..., K, there are nk subjects for a total sample size of N “
řK

k“1 nk. For group k, let yk “

pyk1, ..., yknk
qT be the vector of nk observed times, where yki “ minpTki, Ckiq, Tki represents the

event time, and Cki represents censoring time; let δk “ pδk1, ..., δknk
q where δki “ IpTki ă Ckiq

represents the indicator that a subject’s event time was observed; and let xki “ pxki,1, ..., xki,pqT

be the p-dimensional vector of predictors, andXk “ pxk1, ...,xknk
qT .

We would like to estimate the proportional hazards mixed effects model

hpt|ηkiq “ h0ptq exppηkiq, (5.1)

where hpt|ηkiq is the subject’s individual hazard at time t, h0ptq represents the baseline hazard at

time t, and ηki represents the linear predictor containing the fixed effects log hazard ratio coeffi-

cients, the group-specific random effects, and the subject’s individual covariates. The exact form

of the linear predictor ηki assumed in our model is described later in this section.

We approximate (5.1) with the piecewise constant hazard mixed effects model (Austin, 2017).

When survival models include random effects, it is necessary to fully model the baseline hazard

function. Approximating this baseline hazard using a piecewise constant function allows for
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relatively convenient computation. We first partition the time of the study into J intervals, where

we assume that the baseline hazard within a particular time interval is constant. Let us define the

cut points 0 “ τ0 ă τ1 ă ... ă τJ “ 8, and let hj be the constant baseline hazard within interval

j, rτj´1, τjq. We then write the model as

hkij “ hj exppηkiq, (5.2)

where hj is the baseline hazard for interval j and hkij is the constant hazard corresponding to

subject i in group k within interval j.

The observed data for each subject includes their observed time yki and their event indicator

δki. We extend these to define analogous measures for each interval, where t˚kij “ maxrminpyki, τjq´

τj´1, 0s is the amount of time subject i in group k survived within interval j, and dkij “ Ipτj´1 ď

yki ă τj, δki “ 1q is the indicator of whether the subject died during interval j. To better clarify

t˚kij , this term has three possible values, determined by the relative value of their observed time

yki to the interval cut points:

t˚kij “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

τj ´ τj´1, yki ą τj;

yki ´ τj´i, τj´1 ă yki ď τj;

0, yki ď τj´1.

We can then treat the death indicators dkij as if they are independent Poisson observations with

means µkij “ t˚kijhkij , allowing us to fit the data using the log-linear model

log µkij “ log t˚kij ` ψj ` ηki, (5.3)

where ψj “ logphjq is the logarithm of the constant hazard within interval j and log
`

t˚kij
˘

, the log

of the time a subject survived within interval j, is treated as an offset to the model.
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Let us define dk “ pdk11, ..., dk1J , ..., dknk1, ..., dknkJqT as the vector of death indicator values

for all subjects in group k and all J time intervals. Then, the piecewise constant hazard likelihood

is defined as

fpdk|Xk,αk; θq “

nk
ź

i“1

J
ź

j“1

“

Ipt˚kij ą 0qµkij

‰dkij exp
“

´Ipt˚kij ą 0qµkij

‰

, (5.4)

where µkij is defined in (5.3), and Ipt˚kij ą 0q “ 1 indicates that a subject i in group k survived at

least part way through interval j, 0 if the subject died or was censored before interval j.

Now we may defined the form of the linear predictor term ηki used within this model, sim-

ilar to the one used in the traditional generalized linear mixed model (Chen and Dunson, 2003;

Ibrahim et al., 2011; Rashid et al., 2020)

ηki “ xT
kiβ ` zTkiγk “ xT

kiβ ` zTkiΓϵk, (5.5)

where β “ pβ1, ..., βpqT is a p-dimensional vector for the fixed effects coefficients (β represents

the log hazard ratio values for each predictor and excludes an intercept), Γ is the Cholesky de-

composition of the random effects covariance matrix Σ such that ΓΓT “ Σ, γk “ Γϵk, where

ϵk „ Nqp0, Iq, is a q-dimensional vector of unobservable random effects (including the random

intercept) for group k, and zki is a q-dimensional vector that includes an intercept term and a

subset of xki.

We reformulate the linear predictor as described in Heiling et al. (2023b) (recall Chapter 4)

by decomposing the random effects γk into a factor model with r latent common factors, where

we assume r ! q. As a result, we assume γk “ Bαk, whereB is the q ˆ r loading matrix and

αk represents the r latent common factors. We assume the latent factors αk are uncorrelated and

follow a Nrp0, Iq distribution. We re-write the linear predictor as

ηki “ xT
kiβ ` zTkiBαk. (5.6)

84



In the representation of (5.6), the random component of the linear predictor has variance Var(Bαk)

=BBT = Σ, which is low rank. By using this representation, we reduce the dimension of the la-

tent space from q to r; this reduces the dimension of the integral in the likelihood, which reduces

the computational complexity of the E-step in the EM algorithm described in Section 5.2. Conse-

quently, this factor decomposition reduces the computational time of the algorithm and enables

our method to scale to hundreds of predictors (Heiling et al., 2023b).

In order to estimateB, let bt P Rr be the t-th row ofB and b “ pbT1 , ..., b
T
q qT . We then

reparameterize the linear predictor as

ηki “ xT
kiβ ` zTkiBαk “

`

xT
ki pαk b zkiq

TJ
˘

¨

˚

˝

β

b

˛

‹

‚

(5.7)

in a manner similar to Chen and Dunson (2003) and Ibrahim et al. (2011), where J is a matrix

that transforms b to vec(B) such that vecpBq “ Jb and J is of dimension pqrq ˆ pqrq. The vector

of parameters θ “ pβT , bT ,ψT qT are the main parameters of interest.

We denote the true value of θ as θ˚ “ pβ˚T , b˚T ,ψ˚T qT “ argminθEθr´ℓpθqs where

ℓpθq is the observed log-likelihood across all K groups such that ℓpθq “
řK

k“1 ℓkpθq, where

ℓkpθq “ p1{nkq log
ş

fpdk|Xk,αk;θqϕpαkqdαk.

Our primary goal is to select the true nonzero fixed and random effects, i.e. identify the set

S “ S1 Y S2 “ tj : β˚
j ‰ 0u Y tt : ||b˚

t ||2 ‰ 0u,

where S1 and S2 represent the true fixed and random effects, respectively. When bt “ 0, this

indicates that the effect of covariate t is fixed across the K groups (i.e. the corresponding t-th row

and column of Σ is set to 0).

Our objective is to solve the penalized likelihood problem of (5.8):

pθ “ argminθ ´ ℓpθq ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q , (5.8)
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where ℓpθq is the observed log-likelihood for all K groups, ρ0ptq and ρ1ptq are general folded-

concave penalty functions, and λ0 and λ1 are positive tuning parameters. The penalty functions

applied to the fixed effects, represented by ρ0ptq, could include the L1 penalty (LASSO), the

SCAD penalty, and the MCP penalty (Friedman et al., 2010; Breheny and Huang, 2011). The

penalty functions applied to the random effects, represented by ρ1ptq, could include the group

LASSO, the group MCP, or the group SCAD penalties presented by Breheny and Huang (2015)

since we treat the elements of bt as a group and penalize them in a groupwise manner. As a result,

these groups of bt are estimated to be either all zero or all nonzero, which means that we select

covariates to have random effects (pbt ‰ 0) or fixed effects (pbt “ 0) across the K groups.

We standardize the fixed effects covariates matrixX “ pXT
1 , ...,X

T
KqT such that

řK
k“1

řnk

i“1 xki,j “ 0 and N´1
řK

k“1

řnk

i“1 x
2
ki,j “ 1 for j “ 1, ..., p.

5.2.2 MCECM algorithm

We solve (5.8) for some specific pλ0, λ1q using a Monte Carlo Expectation Conditional Mini-

mization (MCECM) algorithm (Garcia et al., 2010).

Our objective within the sth iteration of the MCECM algorithm is to evaluate the expectation

of (E-step) and minimize (M-step) the penalized Q-function defined in (5.9):

Qλpθ|θpsq
q “

K
ÿ

k“1

E
␣

´ log
`

fpdk,Xk,αk;θ|Do;θ
psq

q
˘(

` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q

“ Q1pθ|θpsq
q ` Q2pθpsq

q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q ,

(5.9)

where pdk,Xk,αkq gives the complete data for group k,Dk,o “ pdk,Xkq gives the observed

data for group k,Do represents the entirety of the observed data, and

Q1pθ|θpsq
q “ ´

K
ÿ

k“1

ż

logrfpdk|Xk,αk;θqsϕpαk|Dk,o;θ
psq

qdαk, (5.10)
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Q2pθ
psq

q “ ´

K
ÿ

k“1

ż

logrϕpαkqsϕpαk|Dk,o;θ
psq

qdαk (5.11)

Our goal in the E-step of the algorithm is to approximate the r-dimensional integral ex-

pressed in (5.10). We first specify J time intervals defined so that there are an approximately

equal number of events within each time interval. If a subject survived at least part-way through

j˚ intervals (i.e. t˚kij ą 0 for j “ 1, ..., j˚ ď J), the long-form dataset contains j˚ observations

for that subject. For subject i in group k that survived at least part-way through j˚ time intervals,

we define dkij “ Ipτj´1 ď yki ă τj, δki “ 1q for j “ 1, ..., j˚ ď J , the subject’s xki and

zki covariates are repeated for all j˚ observations, the log
`

t˚kij
˘

offset term is calculated for each

interval, and additional reference coded indicator values vkij for the time interval j “ 1, ..., j˚ are

specified. The first element of vkij is always 1, encoding a fixed effect intercept which represents

time interval 1. For time interval j ą 1, the j-th element of vkij is also 1. All other values of vkij

are set to 0.

Instead of estimating ψ˚ directly, we reformulate this quantity as ψ̃, where ψ˚
1 “ ψ̃1 and

ψ˚
j “ ψ̃1 ` ψ̃j . In this formulation, ψ̃1 estimates the log of the baseline hazard for time interval

rτ0, τ1q, and ψ̃1 ` ψ̃j estimates the log of the baseline hazard for time interval rτj´1, τjq for j “

2, ..., J . By estimating the log baseline hazard parameters in this way, we are including a fixed

effect intercept in our model. By including a fixed effect intercept, we ensure that the full zki

vector, which includes a random intercept, is a subset of the subject’s fixed effects.

We can re-write the log-linear model of (5.3) as

log µkij “ log t˚kij ` vTkijψ̃ ` xT
kiβ ` zTkiBαk. (5.12)

5.2.2.1 Monte-Carlo E-step

The integrals in the Q-function do not have closed forms. We approximate these integrals

using a Markov Chain Monte Carlo (MCMC) sample of size M from the posterior density
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ϕpαk|Dk,o;θ
psqq. Let αps,mq

k be the mth simulated r-dimensional vector from the posterior of

the latent common factors, m “ 1, ...,M , at the sth iteration of the algorithm for group k. The

integral in (5.10) can be approximated as

Q1pθ|θpsq
q « ´

1

M

M
ÿ

m“1

K
ÿ

k“1

log fpdk|Xk,α
ps,mq

k ;θq

“ ´
1

M

M
ÿ

m“1

K
ÿ

k“1

nk
ÿ

i“1

J
ÿ

j“1

Ipt˚kij ą 0q

”

dkij log µ
ps,mq

kij ´ µ
ps,mq

kij

ı

,

where log µ
ps,mq

kij “ log t˚kij ` vTkijψ̃ ` xT
kiβ ` zTkiBα

ps,mq

k . We use the No-U-Turn Sampler Hamil-

tonian Monte Carlo sampling procedure (NUTS HMC) from the Stan software (Carpenter et al.,

2017; Hoffman and Gelman, 2014) so that we can perform the E-step quickly and efficiently.

5.2.2.2 M-step

In the M-step of the algorithm, we aim to minimize

Q1,λpθ|θpsq
q “ Q1pθ|θpsq

q ` λ0

p
ÿ

j“1

ρ0 pβjq ` λ1

q
ÿ

t“1

ρ1 p||bt||2q (5.13)

with respect to θ “ pβT , bT , ψ̃T qT . We do this by using a Majorization-Minimization algorithm

with penalties applied to the fixed effects β and the rows ofB.

Let s represent the iteration of the MCECM algorithm, and let g represent the iteration within

a particular M-step of the MCECM algorithm. Algorithm 5 describes the M-step of the sth itera-

tion of the MCECM algorithm.

5.2.2.3 MCECM algorithm

The full MCECM algorithm for estimating the parameters with a particular pλ0, λ1q proceeds

as described in Algorithm 6. Supplementary Material Sections D.1.2 and D.1.3 outline the pro-

cess of model selection and finding optimal tuning parameters. The Supplementary Material

Section D.1.4 gives further details on initialization and convergence.
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Algorithm 3 M-step of the MCECM algorithm

1. The parameters θps,0q for M-step iteration g “ 0 are initialized using the results from the
previous M-step, θps´1q. The step size for the Majorization-Minimization algorithm c0 is also
initialized using the step size at the end of the previous M-step.
2. Conditional on βps,g´1q and bps,g´1q, each ψ˚ps,gq

j for j “ 1, ..., J is given a single update
using the Majorization-Minimization algorithm specified by Breheny and Huang (2015) with
no penalization applied.
3. Conditional on bps,g´1q and ψ˚ps´1q, each βps,gq

l for l “ 1, ..., p is given a single update using
the Majorization-Minimization algorithm specified by Breheny and Huang (2015).
4. For each group k in k “ 1, ..., K, the augmented matrix z̃ki “ pα̃

psq

k b zkiqJ is created for
i “ 1, ..., nk where α̃psq

k “ ppα
ps,1q

k qT , ..., pα
ps,Mq

k qT qT .
5. Conditional on the recently updated βps,gq and ψ˚,ps,gq, each bps,gq

t for t “ 1, ..., q is updated
using the Majorization-Minimization coordinate descent grouped variable selection algorithm
specified by Breheny and Huang (2015).
6. The step size cg`1 is updated (if necessary) using the Proximal Gradient algorithm (Parikh
et al., 2014).
7. Steps 2 through 6 are repeated until the M-step convergence criteria are reached or until the
M-step reaches its maximum number of iterations.

Algorithm 4 Full MCECM algorithm for single pλ0, λ1q penalty combination

1. Fixed effects ψ˚ and βp0q and the random effects bp0q are initialized as discussed the Web
Appendix.
2. In each E-step for EM iteration s, a burn-in sample from the posterior distribution of the
random effects is run and discarded. A sample of size M psq from the posterior is then drawn
and retained for the M-step.
3. Parameter estimates of βpsq, bpsq, and τ psq are then updated as described in the M-step
procedure given above.
4. Steps 2 and 3 are repeated until the convergence condition is met a pre-specified consecutive
number of times or until the maximum number of EM iterations is reached.

5.2.3 Estimation of the number of latent factors

Performing our proposed phmmPen FA method requires specifying the number of latent

factors r. Since r is typically unknown a priori, this value needs to be estimated. Here, we use

the Growth Ratio (GR) procedure (Ahn and Horenstein, 2013).

The GR method for our application requires a q ˆ K matrix of observed random effects. Since

these random effects cannot be directly observed, we instead calculate pseudo random effects

by first fitting a penalized piecewise constant survival model with a small penalty to each group
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individually. We then take these group-specific estimates and center them so that all features have

a mean of 0. Let these q-dimensional group-specific estimates be denoted as γ̂k for each group

k “ 1, ..., K. We then defineG “ pγ̂1, ..., γ̂Kq as the final q ˆK matrix of pseudo random effects.

Let ψjpAq be the j-th largest eigenvalue of the positive semidefinite matrix A, and let µ̃qK,j ”

ψjpGG
T {pqKqq “ ψjpG

TG{pqKqq. To find the GR estimator, we first order the eigenvalues of

GGT {pqKq from largest to smallest. Then, we calculate the following ratios:

GRpjq ”
logrV pj ´ 1q{V pjqs

logrV pjq{V pj ` 1qs
“

log
`

1 ` µ̃˚
qK,j

˘

log
`

1 ` µ̃˚
qK,j`1

˘ , j “ 1, 2, ..., U (5.14)

where V pjq “
řminpq,Kq

l“j`1 µ̃qK,l, µ̃˚
qK,j “ µ̃qK,j{V pjq, and U is a pre-defined constant. Then, we

estimate r by

prGR “ max1ďjďUGRpjq (5.15)

5.3 Simulations

In this section, we examine how well the phmmPen FA algorithm performs variable selec-

tion on the fixed and random effects covariates for piecewise constant hazard mixed effects mod-

els under several different conditions. In all of these simulations, we use the MCP penalty (MCP

penalty for the fixed effects, group MCP penalty for the rows of theB matrix) and the BIC-ICQ

(Ibrahim et al., 2011) model selection criterion with the abbreviated two-stage grid search as de-

scribed in the Supplementary Material Section D.1.2. In order to determine the robustness of our

variable selection procedure based on the assumed value of r, we fit models in one of two ways:

we estimated the number of common factors r using the Growth Ratio estimation procedure, or

we use the true value of r.

5.3.1 Variable selection in survival data with 100 predictors

We examine the performance and scalability of the phmmPen FA algorithm when perform-

ing variable selection in high dimensions of p “ 100 total predictors. We simulated survival data
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from a piecewise constant hazard mixed effect model with p predictors. Of p total predictors, we

assume that the first 5 predictors have truly non-zero fixed and random effects, and the other p ´ 5

predictors have zero-valued fixed and random effects. We specified a full model for the algorithm

such that the random effect predictors equalled the fixed effect predictors (e.g. q “ p), and our

aim was to select the set of true predictors and random effects.

To simulate the data, we set the total sample size to N “ 1000 and considered the number of

groups K to be either 5 or 10, with an equal number of subjects per group. We set up the random

effects covariance matrix by specifying aB matrix with dimensions pp ` 1q ˆ r, where p ` 1

represents the p predictors specified in theX matrix plus the random intercept, and the number

of latent common factors r was set to three. Six of these p` 1 rows—corresponding to the true 5

predictors plus the random intercept—had non-zero elements, while the remaining p ´ 5 rows were

set to zero. For each value of r, we considered aB matrix that produced Σ “ BBT with either

small or moderate variances and eigenvalues; see Section D.1.1 of the Supplementary Material

for further details. These two cases are referred to as the ‘small’ or ‘moderate’B matrices in

the simulation results presented in this section. We generate both moderate and strong predictor

effects, where all 5 of the true fixed effects have coefficient values of 0.5 or 1.0, respectively.

Each condition was evaluated using 100 total simulated datasets.

In order to sample event times T “ pT T
1 , ...,T

T
k qT where Tk “ pTk1, ..., Tknk

qT , we defined

five half-year time intervals as tr0, 0.5q, r0.5, 1.0q, r1.0, 1.5q, r1.5, 2.0q, r2.0,8qu. The correspond-

ing log baseline hazard values for these intervals were ψ˚
j “ p´1.5, 1.0, 2.7, 3.7, 6.8q.

For group k, we generated the event times Tki, i “ 1, ..., nk, using the following procedure:

We first simulated values from the exponential distribution ekij „ ExppRkijq starting with j “ 1,

where the exponential rate Rkij “ exp
`

ψj ` xT
kiβ ` zTkiγk

˘

, where γk „ N6p0,BB
T q. If the

inequality τj ă τj´1 ` ekij was true, then we simulated ekij using the j ` 1 interval parameters

until either the inequality τj ą“ τj´1 ` ekij held for a particular j˚ or the last time interval J was

reached. We then defined Tki “ ekij˚ ` τj˚´1.
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For individual i in group k, the vector of predictors for the fixed effects is given as xki “

pxki,1, ..., xki,pqT , which does not inlcude an intercept, and we define the random effects zki “

p1,xkiq, where xki,l „ Np0, 1q for l “ 1, ..., p, and each xl was standardized as described in

Section 5.2.1. We include a random intercept in the random effects predictors zki to allow for the

baseline hazard to vary across groups.

We prepared the data to be fit with a piecewise constant hazard survival model by calculating

eight time intervals—specified such that there were an approximately equal number of events

within each time interval—and then creating the long-form dataset specified in Section 5.2.2

using the survival::survSplit() function from the survival R package (Therneau, 2021;

Terry M. Therneau and Patricia M. Grambsch, 2000).

The results for these simulations are presented in Tables 5.1 and 5.2. Table 5.1 provides the

average true and false positive percentages for both the fixed and random effects variable selec-

tion, the median time in hours to complete the variable selection procedure, and the average of

the mean absolute deviation between the coefficient estimates and the true coefficients across all

simulation replicates. The true positive percentages express the average percent of the true pre-

dictors selected in the best models across simulation replicates, and the false positive percentages

express the average percent of false predictors selected in the best models. Table 5.2 gives the

Growth Ratio estimation procedure results, including the average estimate of r and the proportion

of times that the Growth Ratio estimate of r was underestimated, correct, or overestimated. All

simulations were completed on a high performance computing cluster with CPU Intel processors

between 2.3Ghz and 2.5GHz.

We see from Table 5.1 that the phmmPen FA method is able to accurately select both the

fixed and random effects within the piecewise constant hazard mixed effects model across a

variety of conditions. The true positive rates of the phmmPen FA method are generally above

90% for both fixed and random effects; the fixed effects true positives increase when the true

predictor effects are larger, and the random effects true positives increase when the number of
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β K B r Est. TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs. Dev.
(Mean)

0.5 5 Small True 91.80 2.39 93.00 0.65 3.81 0.23
GR 90.80 2.46 91.60 1.40 2.34 0.22

Moderate True 91.00 4.85 94.40 1.31 6.96 0.34
GR 91.00 4.18 92.40 2.13 3.78 0.32

10 Small True 94.60 2.18 98.60 0.99 4.81 0.17
GR 94.00 3.28 95.80 1.63 2.66 0.17

Moderate True 90.00 5.25 94.60 3.57 6.08 0.24
GR 86.20 6.42 93.40 3.83 3.02 0.23

1.0 5 Small True 99.20 1.05 96.00 0.16 6.01 0.26
GR 99.00 1.09 93.20 0.54 3.50 0.25

Moderate True 97.60 2.92 95.20 0.65 8.72 0.36
GR 95.20 2.75 94.20 1.22 3.63 0.34

10 Small True 100.00 1.02 99.60 0.15 5.14 0.20
GR 99.80 1.20 97.00 0.34 2.97 0.23

Moderate True 98.80 2.39 99.60 1.01 7.55 0.27
GR 98.20 4.22 98.80 0.66 4.02 0.33

Table 5.1: Variable selection results for the p “ 100 piecewise constant hazard mixed effects
simulations, including true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between the
coefficient estimates and the true β values across all simulation replicates. ColumnB describes
the general size of both the variances and eigenvalues of the resulting Σ “ BBT random effects
covariance matrix. Column ‘r Est.’ refers to the method used to specify r in the algorithm: the
Growth Ratio (GR) estimate or the true value of r.

groups in the data increase. The false positive rates are less than 6.5% for fixed effects and less

than 3.9% for the random effects across all conditions.

We can see from Table 5.2 that the Growth Ratio estimation procedure generally underesti-

mates the number of latent factors r for the simulated data set-ups used in this section. We expect

that this is a result of a combination of reasons, including relatively low numbers of groups K

in the data andB matrices that created Σ matrices with relatively low eigenvalues. This is sup-

ported by the results that show an improvement in the accuracy of the estimation as the number

of groups and the relative size of theB matrix increases. Additionally, the Growth Ratio utilizes

group-specific penalized piecewise constant hazard coefficient estimates, and these estimates
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β K B Avg. r r Underestimated % r Correct % r Overestimated %
0.5 5 Small 2.00 100 0 0

Moderate 2.00 100 0 0
10 Small 2.07 95 3 2

Moderate 2.20 85 10 5
1.0 5 Small 2.00 100 0 0

Moderate 2.00 100 0 0
10 Small 2.13 88 11 1

Moderate 2.19 83 15 2

Table 5.2: Results of the Growth Ratio r estimation procedure for p “ 100 piecewise constant
hazard mixed effects simulation results, including the average estimate of r across simulations
and percent of times that the estimation procedure underestimated r, gave the true r, or
overestimated r. ColumnB describes the general size of both the variances and eigenvalues of
the resulting Σ “ BBT random effects covariance matrix.

might be sensitive to the fact that for some simulated datasets, not all groups had a sufficient num-

ber of events within each time interval to get reasonable ψ˚ estimates, possibly leading to less

than stable pseudo random effect estimates.

Even though the Growth Ratio procedure consistently underestimated r, this did not strongly

impact the variable selection results nor the bias of the fixed effects estimates selected in the best

models. When the algorithm used the Growth Ratio estimate of r instead of the true estimate of

r, the true and false positive rates remained very consistent, with only slight decreases in true

positive rates for the fixed and random effects when the Growth Ratio procedure is used. The

largest impact that underestimating r had on the bias of the fixed effects estimates was when

K “ 10 and β “ 1.0.

5.3.2 Variable selection in survival data with 500 predictors

In order to further illustrate the scalability of our method, we applied our method to survival

simulations with p “ 500 covariates. We simulated the event and censoring times from a piece-

wise constant hazard mixed effects model much like the procedure described in Section 5.3.1,

except the total number of predictors used in the analyses was p “ 500 instead of p “ 100. All

simulations assumed the true number of latent factors r was 3 and the Growth Ratio method was
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used to estimate r. Just as in the p “ 100 survival simulations, we specified a full model for the

algorithm such the random effect predictors equalled the fixed effect predictors ( e.g. q “ p),

and our aim was to select the set of true predictors and random effects. The variable selection

results to these simulations are given in Table 5.3. The median times needed to complete these

simulations took between 11.9 and 21.3 hours.

β K B Avg. r TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs. Dev.
(Mean)

0.5 5 Small 2.00 86.40 1.97 77.40 0.81 14.19 0.18
Moderate 2.00 80.60 3.91 76.40 1.63 19.40 0.24

10 Small 2.01 91.40 1.79 88.00 0.53 16.21 0.16
Moderate 2.04 81.60 5.82 80.80 2.44 23.62 0.20

1.0 5 Small 2.00 99.40 0.36 91.40 0.02 18.20 0.30
Moderate 2.00 93.60 0.79 85.00 0.12 19.77 0.39

10 Small 2.06 100.00 0.56 95.40 0.04 16.78 0.30
Moderate 2.03 97.20 1.31 92.80 0.18 24.31 0.40

Table 5.3: Variable selection results for the p “ 500 piecewise constant hazard mixed effects
simulations, including true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between the
coefficient estimates and the true β values across all simulation replicates. ColumnB describes
the general size of both the variances and eigenvalues of the resulting Σ “ BBT random effects
covariance matrix. Column ‘r Est.’ refers to the method used to specify r in the algorithm: the
Growth Ratio (GR) estimate or the true value of r.

5.4 Case study: Pancreatic Ductal Adenocarcinoma

Patients diagnosed with Pancreatic Ductal Adenocarcinoma (PDAC) generally face a very

poor prognosis, where the 5-year survival rate is 6% (Khorana et al., 2016). Consequently, it is

of clinical interest to robustly identify gene signatures that are associated with overall survival to

better predict patient prognosis in the clinic.

Selecting gene signatures for the prediction of clinical outcomes, including survival out-

comes, can often be inconsistent across biomedical studies, where gene signatures identified

in one study may have little or no overlap with ones identified in other studies (Waldron et al.,
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2014). Consequences of this lack of replicability in gene signature selection include variable

accuracy in predicting clinical outcomes in new studies using these models (Sotiriou and Pic-

cart, 2007; Waldron et al., 2014) and contradictory effect estimates relating genes to the outcome

(Swisher et al., 2012). This lack of replicability across studies can come from small sample size

(Sotiriou and Piccart, 2007) and differences in data pre-processing steps (Lusa et al., 2007; Pa-

quet and Hallett, 2015), among other sources.

In order to improve replicability in the prediction of survival in PDAC, we combine PDAC

gene expression data from seven different studies. The studies used in these analyses are summa-

rized in Supplementary Material Table D.1. The seven combined studies resulted in a sample size

of 879 subjects with 539 events. In order to account and adjust for between-study heterogeneity,

we apply our new method phmmPen FA to fit a penalized piecewise constant hazard mixed ef-

fects model to our data to select predictors with study-replicable effects, where we assume that

predictor effects may vary between studies.

Moffitt et al. (2015) identified a 500-member gene list relevant to classifying two PDAC tu-

mor subtypes they identified—basal and classical—which were prognostic of survival. Therefore,

we decided to limit our initial interest to these 500 genes. Of these 500 genes, 420 of these genes

were common among all of the datasets. We removed 20% of the genes with the lowest gene

expression based on their average rank, leaving 336 genes.

We integrated gene expression data from multiple studies by first using the data integration

rank transformation technique as specified by Rashid et al. (2020), allowing us to sidestep com-

plex questions regarding how to cross-normalize data at training time. This integration technique

creates top scoring pairs (TSPs). To illustrate the interpretation of TSPs, let gki,A and gki,B be the

raw expression of genes A and B in subject i of group k. For each gene pair (gki,A, gki,B), the

TSP is an indicator Ipgki,A ą gki,Bq which specifies which of the two genes has higher expression

in the subject. We denote a TSP predictor as “GeneA GeneB”. In the dataset, we use 168 TSP

predictors. The Supplementary Material Section D.1.5 provides additional details on the data

processing and selection of the TSPs used in the analysis.
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Due to the presence of several pairwise Spearman correlation values greater than 0.5 between

the TSPs used in the analyses, we used the Elastic Net penalization procedure (Friedman et al.,

2010) to balance between ridge regression and the MCP penalty. We let π represent the balance

between ridge regression and the MCP penalty, where π “ 0 represents ridge regression and π “

1 represents the MCP penalty. In these analyses, we let π “ 0.9, and we estimated the number

of common factors r using the Growth Ratio procedure. The same value of π was used for both

the fixed effects and random effects penalization. Sensitivity analyses for different π values and

for different values of r are presented in Supplementary Material Section D.1.6, and the sequence

of λ penalties used the the variable selection procedure is described in Supplementary Material

Section D.1.3.

In the best model according to the BIC-ICQ model selection criteria, 19 of the 168 TSP

covariates were selected to have non-zero fixed effect values and were therefore considered im-

portant for the prediction of survival in PDAC subjects. The log of the hazard ratios for these 19

TSP covariates are presented in Figure 5.1. Log hazard ratios that are positive imply that having a

higher expression in the first gene of the TSP compared to the second gene increases a subject’s

risk of death, and negative hazard ratios conversely imply that having a higher expression in the

first gene of the TSP compared to the second gene decreases a subject’s risk of death. The best

model contained a random intercept and a random slope for the TSP CYP2C18 COX6B2. The

Growth Ratio procedure estimated r “ 2 latent common factors to model the random effects. The

time to complete the variable selection procedure was 2.1 hours.
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Figure 5.1: Log hazard ratios for the TSP covariates selected during the Chapter 5 case study
analysis.

5.5 Discussion

We have shown through simulations and a case study of pancreatic ductal adenocarcinoma

patients that we can extend the method to perform variable selection in high dimensional mixed

effects models to survival data. We accomplish this by approximating proportional hazards mixed

effects models using a piecewise constant hazard mixed effects model and then applying the

Monte Carlo Expectation Conditional Minimization (MCECM) algorithm to simultaneously se-

lect for fixed and random effects. We incorporate the factor model decomposition of the random

effects proposed in Heiling et al. (2023b) (recall Chapter 4) in order to scale this method to larger

dimensions, e.g. hundreds of predictors.

The simulations presented in Section 5.3 show that the phmmPen FA method can accurately

select both fixed and random effects even for small or moderate effect sizes, which reflects hazard

values and variations in typical survival data. By using the factor model decomposition of the
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random effects, this model selection procedure can be accomplished within reasonable time

frames.

Our method is limited by the need to provide an estimate for the number of latent factors

that model the random effects. The simulation results showed that the Growth Ratio procedure

tended to underestimate this value for the simulation conditions that we considered. However,

even when the number of latent factors was estimated incorrectly by the Growth Ratio procedure,

this mis-specification had very little impact on the general variable selection performance or the

fixed effects coefficient estimates. Therefore, our method is not sensitive to the estimation of the

number of latent factors.

5.6 Software

Software in the form of R code is available through the GitHub repository https://

github.com/hheiling/glmmPen. Code to run the simulations and the case study analysis

is available through the GitHub repository https://github.com/hheiling/paper_

phmmPen_FA.

5.7 Conclusion

In Chapters 3, 4, and 5, we introduced the methods glmmPen, glmmPen FA, and phmm-

Pen FA. These methods have increased the feasible dimensionality of performing variable se-

lection of both fixed and random effects within mixed models. Our variable selection of mixed

effects models can be applied to Binomial, Gaussian, and Poisson distributional families, as well

as survival data. By incorporating a factor model decomposition on the random effects, we were

able to extend our procedure to apply to cases with hundreds of covariates. We have developed

a user-friendly R package that incorporates the glmmPen, glmmPen FA, and phmmPen FA

methods; this package is available on CRAN and GitHub. Providing accessible software for our

methods helps encourage the interest in and utilization of our methods.
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We hope to someday extend our methods even further by enabling our procedure to apply to

a larger range of outcome data types, such as negative binomial and multi-categorical outcomes,

as well as allow for non-canonical links within the current distributional families of Binomial,

Gaussian, and Poisson. We are also interested in continuing to investigate methodological and

computational modifications that may allow us to perform variable selection in mixed effects

models with thousands of covariates.
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APPENDIX A: APPENDIX FOR CHAPTER 2

A.1 Chapter 2 additional simulation details

A.1.1 Transcript cluster selection: Large isoform effect sizes

This section describes the procedure used to select transcript clusters that have isoforms

highly expressed in one cell type but minimally expressed or not expressed at all in the other two

cell types. In the first part of the section, we describe the specific procedure we utilized to select

transcript clusters for use in the in silico Blueprint analysis described in Section 2.3; many of the

pure sample isoform parameter estimates from these clusters were also used in the simulations

presented in Section 2.4. Later in the section, we discuss how these steps can be generalized for

those wishing to use the IsoDeconvMM procedure.

A.1.1.1 In Silico Blueprint analysis

Ten samples per cell type were selected from the cell type specific gene expression data

generated by the Blueprint project Chen et al. (2016). These 30 samples were separate from the

samples used during the IsoDeconvMM algorithm fit and the samples used to create the mixture

files. For each of these samples, the function isoDetector from the isoform R package Sun

et al. (2015) was applied to obtain penalized estimation of isoform level expression for each

cluster.

Next we outline the procedure for cluster selection. The transcript clusters were first filtered

such that we only considered clusters on chromosomes one through four. Additionally, transcript

clusters were filtered such that every cluster had between 3 and 20 isoforms.

For each cell type, we sought to select a cluster if it has at least one isoform with high expres-

sion in one cell type, and no or minimal expression in all other cell types. The same procedure

is applied to each cell type and here we just use cell type one as an example. For each transcript

cluster, we identified isoforms that were sufficiently expressed in cell type one (e.g., it had non-
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zero abundance values in at least 9 of the 10 samples for cell type one). For each isoform that met

this criteria, we calculated the fold change of its average abundance in cell type one vs the other

two cell types combined.

In addition to fold change, we also applied hypothesis testing for cluster selection. Again,

consider cluster selection for cell type one. We again identified isoforms that were sufficiently

expressed in cell type one (e.g., it had non-zero abundance values in at least 9 of the 10 samples

for cell type one). For each isoform that was expressed in cell type one, a one-sided Wilcoxon

rank sum test was performed to test the hypothesis that this isoform has higher abundance in cell

type one than the other two cell types combined.

Isoforms that resulted in Bonferroni-adjusted p-values below the 0.05 threshold from the

Wilcoxon rank sum tests were kept for further consideration. Of the isoforms that met this crite-

ria, the 60 isoforms with the largest fold change values from each cell type were selected. The

union across all cell types of the clusters associated with these best isoforms gave 130 transcript

clusters.

Once the pure sample fit portion of the IsoDeconvMM algorithm was applied to these tran-

script clusters, some further filtration was applied. Clusters whose pure sample isoform Diriclet

parameter values resulted in NA values or extremely large and divergent values (more than two

values were greater than 500) were excluded from further consideration. In the case when five

pure samples were used to estimate the cell type specific parameters, eight clusters met this exclu-

sion criteria.

Once these clusters were excluded, ns isoforms with the greatest fold change values for each

cell type were selected. We adjusted the value of ns so that the total number of transcript clusters

selected was 100, 50, 25, and 10.

A.1.1.2 Generalization of procedure

We provide here a generalization of the above procedure. For general data with K cell types,

we recommend obtaining at least 5 pure cell type reference samples from each cell type. On each
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of the pure cell type reference samples, run the isoDetector function in order to obtain the

abundance estimates of each isoform within each transcript cluster. For a particular cell type k,

perform the following steps:

1. Identify isoforms where no more than one of the pure reference samples for cell type k

have an estimated abundance of zero for that isoform.

2. For each isoform that meets the criteria of step 1, sum up the abundance estimates of the

isoform within the samples of cell type k and sum up the abundance estimates of the iso-

form within all other cell type samples. Calculate the fold change estimate

3. For each isoform that meets the criteria of step 1, perform a one-sided Wilcoxon rank sum

test to test the hypothesis that this isoform has higher abundance in cell type one than the

other two cell types combined. Calculate Bonferroni-adjusted p-values and ignore isoforms

that give adjusted p-values above a certain cut-off (e.g., cut-off 0.05).

4. Of the isoforms that meet the criteria of step 3, examine their fold change estimates. At

this step, one could either pick the X isoforms with the highest fold change values (e.g.

X “ 50 or X “ 25) or pick the isoforms with fold change values above a particular

threshold.

5. For the isoforms picked after step 4, identify the transcript clusters to which these isoforms

belong.

Complete the above procedure for each cell type k “ 1, ..., K. Use the transcript clusters identi-

fied with this procedure in the IsoDeconvMM analysis.

A.1.1.3 Initial points used for In Silico Blueprint analysis

Table A.1 comprises a systematic approach to selecting initial points, where the following

scenarios are represented: extreme cases where one cell type dominates with a large proportion

and the other cell types split the remaining proportion; the equality case where all cell types are
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Table A.1: The 10 generic initial points used in the in silico Blueprint analysis

CT1 CT2 CT3
0.10 0.10 0.80
0.10 0.80 0.10
0.80 0.10 0.10
0.25 0.25 0.50
0.25 0.50 0.25
0.50 0.25 0.25
0.20 0.40 0.40
0.40 0.20 0.40
0.40 0.40 0.20
0.33 0.33 0.33

represented equally; and moderate cases that fall in between the extreme and equality cases. In

the more general case of K cell types, we would also recommend setting up a mix of these three

cases for the initial points. For the extreme cases, one could consider setting initial points in

the following manner: K ´ 1 cell types initialized with proportion 0.10, and the Kth cell type

initialized with the remaining proportion p1´0.1˚pK´1qq. When K ě 4, it would be sufficient to

leave out moderate cases and instead just add the equality case when each proportion is equal to

1{K, which would not be much different from any moderate cases that could be specified. In the

case of K “ 2, we recommend adding the moderate cases of cell type proportion combinations

{0.25, 0.75} and {0.33, 0.67}. The IsoDeconvMM R package automatically recommends initial

points in the above manner.

A.2 Chapter 2 supplementary methods

A.2.1 An overview

See Table A.2 for a summary of notation that will be refered to throughout Appendix A.2.
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Table A.2: Notation for defining the IsoDeconvMM Model.

Pure Sample Expressions
Value Dim. Description

Ykj “ tYkjAu E ˆ 1 Vector of read counts across all E exon sets in the given gene for pure sample j
of cell type k.

YkjpOq 1 ˆ 1 Total read count outside gene of interest in pure sample j of cell type k.
γkj I ˆ 1 Isoform expression parameters unique to pure sample j of cell type k.
τkj 1 ˆ 1 Probability that a randomly selected read maps to the gene of interest in pure

sample j of cell type k.
tkj 1 ˆ 1 The total read count for gene of interest in pure sample j of cell type k.

Mixture Sample Expressions
Value Dim. Description

Z “ tZAu E ˆ 1 Vector of read counts across E exon sets belonging to gene of interest in the
mixture sample. Denote its sum as

´

ZT “ 1TZ “
řE

e“1 ZA

¯

.
ZkA˚ 1 ˆ 1 Read count at exon set A in mixture sample attributable to cell type k.
γ˚
k I ˆ 1 Isoform expression parameters for cell type k within the mixture sample.

τ˚
k 1 ˆ 1 Probability that a randomly selected read from cell type k in the mixture sample

maps to the gene of interest.
Cell-Type Specific and Cluster Level Parameters

Value Dim. Description
X “ tXAiu E ˆ I Matrix of effective lengths for E exon sets and I isoforms.

l̃ I ˆ 1 Vector of complete effective lengths of each utilized isoform
´

l̃i “
ř

A XAi

¯

.
ρ “ tρku K ˆ 1 Proportions of cell types k “ 1, ...,K present in the mixture.

αk I ˆ 1 Hyperparameters of isoform expression levels within cell type k.
βk 2 ˆ 1 Hyperparameters governing gene expression levels within cell type k.
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A.2.2 Lemmas involving a multinomial distribution

Prior to specification of the IsoDeconv model, we develop a set of lemmas for the multino-

mial distribution which will allow easier specification in the following materials. For complete-

ness, we define a multinomially distributed vector X “ pX1, ..., XRq with size n and proportions

p “ pp1, ..., pRq. The density function of X „ Multinomial pn, pq is given by:

P

"

X1, ..., XR

ˇ

ˇ

ˇ

ˇ

n, p

*

“

¨

˚

˝

n

X1, ..., XR

˛

‹

‚

R
ź

i“1

pXi
i

Lemma 1.1: Sum over Groups

W.L.O.G. construct the sum X¨ “ X1 ` ... ` Xg and consider the grouped multinomial X 1 “

fpXq “ pX¨, Xg`1, Xg`2, ..., XRq. Let S represent the set of vectors X such that X 1 “ fpXq “ x

where x is an arbitrary pR ´ g ` 1q-dimensional non-negative vector summing to n. The density of

this random variable is given by:
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Thus, it is clear that X 1 „ Multinomial pn, p1q where p1 “ pp1 ` ... ` pg, pg`1, ..., pRq.

Lemma 1.2: Marginal of a Single Element

We extend (1.1) to the case where X¨ “ X1 ` ... ` XR´1 and consider the distribution of X 1 “

fpXq “ pX¨, XRq. Using (1.1) it is clear that X 1 „ Multinomial pn, p1 ´ pR, pRqq. Thus, it is
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obvious that:

XR „ Bin pn, pRq

Lemma 2.1: Conditional over Multiple Elements

W.L.O.G. consider conditioning on the first g elements. Thus, we seek to specify the condi-

tional density of X˚ “ pXg`1, ..., XRq given pX1, ..., Xgq. By lemma (1.1), we know that:

P tX1, ..., Xgu “

¨

˚

˝

n

X1, ..., Xg, n ´ X1 ´ ... ´ Xg

˛

‹

‚

#

g
ź

i“1

pXi
i

+

p1 ´ p1 ´ ... ´ pgq
n´X1´...´Xg

Thus, applying this to the definition of conditional densities, we have:

P

"

X˚

ˇ

ˇ

ˇ

ˇ

X1, ..., Xg

*

“
P tX˚ X pX1, ..., Xgqu
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˚

˝

n
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‹
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˚

˝
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‹

‚

␣
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Xi
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(

p1 ´ p1 ´ ... ´ pgq
n´X1´...´Xg

“

¨

˚

˝

n ´ X1 ´ ... ´ Xg

Xg`1, ..., XR

˛

‹

‚

#

R
ź

i“g`1

ˆ

pi
1 ´ p1 ´ ... ´ pg

˙Xi

+

Thus, it is clear that:

X˚
ˇ

ˇ pX1, ..., Xgq „ Multinomial pn ´ X1 ´ ... ´ Xg, p
˚
q

where p˚ “

´

pg`1

1´p1´...´pg
, ¨ ¨ ¨ , pR

1´p1´...´pg

¯

.
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Lemma 2.2: Conditional of a Single Element

We consider a specific case of lemma (2.1) where X˚ “ pX2, ¨ ¨ ¨ , XRq. Thus, it is clear that:

X˚
ˇ

ˇX1 „ Multinomial pn ´ X1, p
˚
1q where p˚

1 “

ˆ

p2
1 ´ p1

, ¨ ¨ ¨ ,
pR

1 ´ p1

˙

Lemma 3: Conditional Over Sums

Under the original framework, consider splitting the R elements of X into K distinct groups.

W.L.O.G. we specify:

Table A.3: Group specifications of R and X in Lemma 3

Group 1 Group 2 ¨ ¨ ¨ Group K
X1, ¨ ¨ ¨ , Xk1 Xk1`1, ¨ ¨ ¨ , Xk2 ¨ ¨ ¨ XkK´1

, ¨ ¨ ¨ , XR

p1, ¨ ¨ ¨ , pk1 pk1`1, ¨ ¨ ¨ , pk2 ¨ ¨ ¨ pkK´1
, ¨ ¨ ¨ , pR

For convenience, define Sj “
řkj

i“kj´1`1Xi where k0 “ 1. Additionally, define p˚
j “

řkj
i“kj´1`1 pi.

Thus, we examine the following conditional density:

P

"

X1, ..., XR

ˇ

ˇ

ˇ

ˇ

S1, ¨ ¨ ¨ , SK

*

“
P tX1, ¨ ¨ ¨ , XRu

P tS1, ¨ ¨ ¨ , SKu

“

¨

˚

˝

n

X1, ..., XR

˛

‹

‚

śR
j“1 p

Xj

j

¨

˚

˝

n

S1, ..., SK

˛

‹

‚

śK
j“1 p

˚Sj

j

“

K
ź

j“1

$

’

&

’

%

¨

˚

˝

Sj

Xkj´1
, ..., Xkj

˛

‹

‚

kj
ź

l“kj´1`1

ˆ

pl
p˚
j

˙Xl

,

/

.

/

-

The second equality holds through repeated application of Lemma 1.1. The final equality demon-

strates that the desired conditional distribution is the product of independent multinomials. Sym-
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bolically, we have:

X1, ¨ ¨ ¨ , XR

ˇ

ˇS1, ¨ ¨ ¨ , SK „

K
ź

j“1

Multinomial
`

Sj, p
1
j

˘

where p1
j “

`

pkj´1`1, ¨ ¨ ¨ , pkj
˘

{p˚
j .

A.2.3 Stage 1 estimation: Pure sample necessities

For the following, refer to Table A.2 regarding notation. Additionally, note that the following

specification is performed for a single gene (or single transcript cluster) only; subscripts related

to gene identity are omitted for clarity. The following structure holds for a single purified refer-

ence sample and gene:

»

—

–

YkjpOq

Ykj

fi

ffi

fl

„ Multinomial

¨

˚

˝

tkj,

»

—

–

1 ´ τkj

τkjXγkj

fi

ffi

fl

˛

‹

‚

Implicit in this construction are restrictions upon the τkj and γkj . As a single probability value, it

must be that 0 ď τkj ď 1. However, the γkj pose a more complicated set of restrictions. Consider

the following:

1 “ p1 ´ τkjq ` τkj1
TXγkj

“ 1TXγkj

It is clear from the above that the Xγkj are conditional probabilities and thus must be non-negative.

To ensure this, we restrict the γkj to be non-negative since the elements of Xkj are non-negative

by definition. Using our summation constraints, we have:

1 “ 1TXγkj “

I
ÿ

i“1

l̃iγkji
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This shows that the l̃iγkji are probabilities that a randomly selected read is attributable to isoform

i for reference j of cell type k. Thus, it is clear that the γkj are collections of per-unit of effective

length conditional probabilities that a read belongs to isoform i given that it maps to the gene of

interest.

Thus, the likelihood for sample j of cell type k is given by:

ℓkj “ YkjpOq log p1 ´ τkjq `

E
ÿ

e“1

Ykje log
`

τkjX
T
e γkj

˘

“ YkjpOq log p1 ´ τkjq `
`

1TYkj
˘

log pτkjq `

E
ÿ

e“1

Ykje log
`

XT
e γkj

˘

Given the gene and isoform expressions, the reference samples within and across cell types are

independent. Thus, we may estimate the τkj and γkj separately within each sample.

Estimate τkj:

The maximum likelihood estimate of τkj is given by:

τ̂kj “
1TYkj
tkj

Estimate γkj:

In order to estimate the isoform expressions for a single subject, we make some simplifying

alterations to the effective length matrix X and reparametrize the isoform expression parameters.

Consider the following, where Xcj refers to the j-th column of X.

»

—

–

Xc1 Xc2 ¨ ¨ ¨ XcI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

»

—

—

—

—

–

γkj1
...

γkjI

fi

ffi

ffi

ffi

ffi

fl

“

»

—

–

Xc1{l̃1 Xc2{l̃2 ¨ ¨ ¨ XcI{l̃I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

»

—

—

—

—

–

l̃1γkj1
...

l̃1γkjI

fi

ffi

ffi

ffi

ffi

fl

“

«

I´1
ÿ

i“1

ˆ

Xci

l̃i

˙

´

l̃iγkji

¯

ff

` p1 ´ l̃iγkj1 ´ ¨ ¨ ¨ ´ l̃I´1γkj,I´1q

ˆ

XcI

l̃I

˙

“

«

I´1
ÿ

i“1

ˆ

Xci

l̃i
´
XI

l̃I

˙

´

l̃iγkji

¯

ff

`

ˆ

XcI

l̃I

˙
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“

»

—

–

X˚
c1 X˚

c2 ¨ ¨ ¨ X˚
cI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

»

—

—

—

—

—

—

—

–

e´γkj1

...

e´γkj,I´1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where:

X˚
cs “

”

Xs ´

´

l̃s{l̃I

¯

XcI

ı

for j P t1, 2, ..., I ´ 1u

X˚
cI “

XcI

l̃I

X˚
“

„

X˚
c1 ¨ ¨ ¨ X˚

cI

ȷ

γkji “ e´γr
kji for i P t1, 2, ..., I ´ 1u

γ1
kj “ pγkj1, ..., γkj,I´1, 1q

We optimize the likelihood with respect to these isoform expression parameters using R’s

constrOptim from the alabama package. To this end, we specify the derivative to improve

efficiency of the routine.

In the following, let X˚
e refer to the e-th row of the matrix X˚ and Xe,pIq be the truncated version

of this row excluding the last column entry. :

dℓkj
dγ1

kj

“ ´

E
ÿ

e“1

˜

Ykje
X˚T

e γ1
kj

¸

“

X˚
e,pIq ˝ e´γr

kj
‰

A.2.4 Stage 2 estimation: Defining penalties

We must now incorporate the estimates from purified reference samples to guide estimation

within the mixture. We choose to accomplish this using a penalty function over the isoform ex-

pression parameters within the mixture. As we have allowed for biological variance in gene and
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expression parameters across subjects and because these parameters are probabilities, it is natural

to propose a dirichelet distribution over these parameters.

Normally, by placing a dirichelet distribution over these parameters, one would construct

a likelihood function containing both pieces simultaneously. This likelihood would then be op-

timized with respect to all parameters, including hyperparameters, at the same time. However,

we found this approach to be unstable. Thus, we separate the estimation of individual expres-

sion parameters from the hyperparameters to improve results. Fixing the individual gene and

isoform expression parameters, we construct a likelihood optimization using the dirichelet piece.

Optimization of this likelihood proceeds numerically using quasi-Newton methods and non-

negativity constraints. The following derivatives improve accuracy of the estimates obtained from

R’s nlminb.

Gene Expression Penalty:

The likelihood for this penalty is given below

ℓτk “

nk
ÿ

j“1

tlnΓ pαk1 ` αk2q ´ lnΓ pαk1q ´ lnΓ pαk2q ` pαk1 ´ 1q logpτkjq ` pαk2 ´ 1q logp1 ´ τkjqu

The necessary derivatives are provided here. Denote the digamma function by φpq and trigamma

by φ1pq for this derivatives.

∇ℓτk “ nk

»

—

–

φpαk1 ` αk2q ´ φpαk1q

φpαk1 ` αk2q ´ φpαk2q

fi

ffi

fl

`

»

—

–

řnk

j“1 logpτkjq
řnk

j“1 logp1 ´ τkjq

fi

ffi

fl

Hess pℓτkq “ nk

»

—

–

φ1pαk1 ` αk2q ´ φ1pαk1q φpαk1 ` αk2q

φpαk1 ` αk2q φpαk1 ` αk2q ´ φpαk2q

fi

ffi

fl

Isoform Expression Penalty:
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As for the gene expression penalty, we define the likelihood here. To clarify the following

terms, define βk¨ “
řI

i“1 βki and utilize the same definitions for φ and φ1.

ℓγk “

nk
ÿ

j“1

#

lnΓ

˜

βk¨ ´

I
ÿ

i“1

lnΓ pβkiq

¸

`

I
ÿ

i“1

pβki ´ 1q log
´

l̃iγkji

¯

+

The necessary derivatives are specified below:

∇ℓγk “ nk

»

—

—

—

—

–

φpβk¨q ´ φpβk1q

...

φpβk¨q ´ φpβkIq

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

řnk

j“1 log
´

l̃1γkj1

¯

...
řnk

j“1 log
´

l̃IγkjI

¯

fi

ffi

ffi

ffi

ffi

fl

Hess pℓγkq “ nk

`

11Tφ1 pβk¨q ´ diagi pφ1pβkiqq
˘

A.2.5 Stage 3 estimation: Mixture sample estimation

To structure the likelihood model within the mixture sample, consider the following under-

lying likelihood model. In this model, we assume that the number of reads mapping to each cell

type within each gene and outside of it can be observed and that tm represents the total read count

in the mixture.

»

—

—

—

—

—

—

—

–

Z1pEq˚ ¨ ¨ ¨ ZKpEq˚

Z11˚ ZK1˚

...
...

Z1E˚ ZKE˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

τ˚
k , γ

˚
k „ Multinomial

¨

˚

˝

tm,

»

—

–

ρ1p1 ´ τ˚
1 q ¨ ¨ ¨ ρKp1 ´ τ˚

Kq

ρ1τ
˚
1Xγ

˚
1 ¨ ¨ ¨ ρKτ

˚
KXγ

˚
k

fi

ffi

fl

˛

‹

‚

When allowing IsoDeconv to consider genes mapping outside of the gene of interest, initial

simulations demonstrated that these terms dominated estimation. This occurs since over 99% of

all reads map outside the gene of interest and thus drown out the information within the gene due
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to sheer abundance. Restricting to reads within the gene of interest only, estimation behavior was

seen to improve (not shown). Thus, using lemma 1.1 to combine all contributions of cell types

outside the gene and then lemma 2.2 to condition on this quantity, we have:

»

—

—

—

—

–

Z11˚ ZK1˚

...
...

Z1E˚ ZKE˚

fi

ffi

ffi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

τ˚
k , γ

˚
k „ Multinomial

ˆ

ZT ,

„

ρ1τ
˚
1 Xγ˚

1
řK

k“1 ρkτ
˚
k

¨ ¨ ¨
ρKτ˚

KXγ˚
k

řK
k“1 ρkτ

˚
k

ȷ˙

(A.1)

However, due to the properties of bulk expression datasets, we do not observe the number of

reads mapping to each cell type. Thus, we only observe the sums from all cell types at each exon

set.

Z “

»

—

—

—

—

–

Z1

...

ZE

fi

ffi

ffi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

τ˚
k , γ

˚
k „ Multinomial

ˆ

ZT ,

„

řK
k“1 ρkτ

˚
k Xγ˚

1
řK

k“1 ρkτ
˚
k

ȷ˙

The update of such a likelihood is a computationally difficult problem - we have I+2 parame-

ters being measured for each cell type and all must be optimized simultaneously. To improve the

tractability of such a numerical optimization technique, we utilize the EM algorithm.

For this problem, the missing data that we will assume is the expression from each individual

cell type. Thus, we revert to the likelihood given above in equation (A.1). The complete data

log-likelihood is given by:

ℓ “

K
ÿ

k“1

«

E
ÿ

e“1

!

Zke˚

´

logpρ1τ
˚
1 q ´ log

´

ÿ

ρrτ
˚
r

¯

` log
`

XT
e γ

˚
k

˘

¯)

`

lnΓ pαk¨q ´ lnΓ pαk1q ´ lnΓ pαk2q ` pαk1 ´ 1q logpτ˚
k q ` pαk2 ´ 1q logp1 ´ τ˚

k q

lnΓ pβk¨q ´ lnΓ pβk1q ´ ¨ ¨ ¨ ´ lnΓ pβkIq `

I
ÿ

i“1

pβki ´ 1q log
´

l̃iγ
˚
ki

¯

ff
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The EM algorithm utilized to solve this problem is composed of three separate steps.

1 E-Step: Update Posterior Means of Zke˚

2 M-Step (1): Update pρ1, ..., ρk, τ
˚
k q

2 M-Step (2): Update γ˚
k

These steps are outlined below.

E-Step: Update Posterior Means of Zke˚:

Recall that the observed expression values, the Ze, represent the sum of all counts from each

cell type. Thus, Ze “
řK

k“1 Zke˚ . By grouping elements of the multinomial according to exon set,

a simple application of lemma 3 provides:

pZ11˚ , ..., ZK1˚ , ..., Z1E˚ , ...ZKE˚q

ˇ

ˇ

ˇ
Z1, ..., Ze, τ

˚, γ˚
„

E
ź

e“1

Multinomial pZe, p
1
eq

where

p1
e “

˜

ρ1τ
˚
1Xγ

˚
1

řK
k“1 ρkτ

˚
kXγ

˚
k

, ¨ ¨ ¨ ,
ρKτ

˚
KXγ

˚
K

řK
k“1 ρkτ

˚
kXγ

˚
k

¸

Thus, it becomes clear by property of the multinomial distribution that:

E
”

Zje˚

ˇ

ˇ

ˇ
Z1, ¨ ¨ ¨ , ZE, τ

˚, γ˚
ı

“ Ze

˜

ρjτ
˚
j Xγ

˚
j

řK
k“1 ρkτ

˚
kXγ

˚
k

¸

M-Step (1): Update pρ1, ..., ρK , τ
˚
Kq:

It is clear from the complete data log-likelihood specified above that the cell type proportions

and gene expression parameters must be updated simultaneously. These terms are inextricably

linked within the log function. We do note that this set of parameters is separable from the iso-

form parameters as the likelihood can be partitioned into a sum of two independent pieces, one
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containing the gene expression parameters and cell type proportions and the other containing

the isoform parameters. Thus, we consider recasting the likelihood to include only the cell type

proportions and gene expression parameters.

ℓ pρ, τ˚
q “

K
ÿ

k“1

«

E
ÿ

e“1

!

Zke˚

´

logpρkτ
˚
k q ´ log

´

ÿ

ρrτ
˚
r

¯¯)

`

pβk1 ´ 1q logpτ˚
k q ` pβk2 ´ 1q logp1 ´ τ˚

k q

ff

“

K
ÿ

k“1

#

Zk¨˚

´

logpρkτ
˚
k q ´ log

´

ÿ

ρrτ
˚
r

¯¯

` pβk1 ´ 1q logpτ˚
k q`

pβk2 ´ 1q logp1 ´ τ˚
k q

+

“

#

K
ÿ

k“1

Zk¨˚ logpρkτ
˚
k q ` pβk1 ´ 1q logpτ˚

k q ` pβk2 ´ 1q logp1 ´ τ˚
k q

+

´

ZT log
´

ÿ

ρrτ
˚
r

¯

“

«

K
ÿ

k“1

Zk¨˚ logtρk expp´τ 1
kqu ` pβk1 ´ 1q logtexpp´τ 1

kqu`

pβk2 ´ 1q logt1 ´ expp´τ 1
kqu

ff

´ ZT log
!

ÿ

ρr expp´τ 1
rq

)

Taking the expectation of this likelihood will result in the use of quantities found in (1) to

replace the Zke˚ pieces. In the following, we leave the the Zk¨ notation for simplicity of notation,

but please note that these values have been replaced by their expectations.

Taking the derivative of ℓpρ, τ˚q with respect to the reparametrized τ˚, we have:

9ℓτ 1
r
pρ, τ˚

q “ ´Zr¨ ´ pβk1 ´ 1q `
pβk2 ´ 1q expt´τ 1

ru

1 ´ expt´τ 1
ru

` ZT

ˆ

ρr expt´τ 1
ru

ř

ρk expt´τ 1
ku

˙
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To consider the derivatives of the proportions, we consider the natural linearity constraints to

rewrite the likelihood as follows and subsequently take the derivative:

ℓpρ, τ˚
q «

«

K´1
ÿ

k“1

Zk¨ log pρkτ
˚
k q

ff

` ZK¨ log tp1 ´ ρ1 ´ ... ´ ρK´1qτ˚
Ku

´ ZT log

˜

K´1
ÿ

s“1

ρspτ
˚
s ´ τ˚

Kq ` τ˚
K

¸

9ℓρrpρ, τ˚
q “

ˆ

Zr¨

ρr

˙

´ ZK¨

ˆ

1

1 ´ ρ1 ´ ... ´ ρK´1

˙

´ ZT

«

τ˚
r ´ τ˚

K
řK

s“1 ρsτ
˚
s

ff

The update of the procedures proceeds using a joint, constrained optimization approach using

R’s constrOptim.

M-Step (2): Update γ˚
k :

As noted above, we may update the γ˚
k separately from one another and from the proportion

and gene expression parameters. The piece of the likelihood governing the update of isoform

expression parameters for cells of type k is given by:

ℓ pγ˚
k q “

˜

E
ÿ

e“1

Zke log
`

XT
e γ

˚
k

˘

¸

` lnΓ pαk¨q ´

I
ÿ

i“1

lnΓ pαkiq `

I
ÿ

i“1

pαki ´ 1q log
´

l̃iγki

¯

“

˜

E
ÿ

e“1

Zke log
`

XT
e γ

˚
k

˘

¸

` lnΓ pαk¨q ´

I
ÿ

i“1

lnΓ pαkiq `

I´1
ÿ

i“1

pαki ´ 1q log
´

l̃iγki

¯

`

pαkI ´ 1q log
´

1 ´ l̃1γ
˚
k1 ´ ¨ ¨ ¨ ´ l̃I´1γ

˚
k,I´1

¯

For simplicity of notation in the following, we suppress the notation regarding expectations

of the missing parameters. Note, however, that these values are replaced by their expectations

derived in the E-step.

Recall the special definitions of X˚, X˚
e and X˚

e,pIq
from their use in the pure sample expres-

sion materials. In addition, we define reparameterized isoform expression parameters for the
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mixture given by γ˚
ki “ exp t´γ˚r

ki u to simplify constraints. Finally, we define l̃pIq as the l̃ vector

with the I-th entry removed. Taking the derivative, we have:

9ℓγr˚
k

pγ˚
k q “

E
ÿ

e“1

´Zke

˜

X˚
e,pIq

˝ expt´γr˚
k u

X˚T
e γ˚

k

¸

´ pβk ´ 1q`

˜

βkI ´ 1

1 ´ l̃1 expt´γ˚r
k1u ´ ¨ ¨ ¨ ´ l̃I´1 expt´γ˚r

k,I´1u

¸

´

l̃pIq ˝ expt´γr˚
k u

¯

Thus, given the restrictions outlined for the pure sample case, we utilize this derivative in R’s

constrOptim to update the isoform expression parameters.

A.2.6 Explaining modeling decisions

Several facets of the model deserve illumination. First, consider the use of the Dirichlet-

Multinomial model instead of a negative binomial model. In order to incorporate the isoform

expression parameters as conditional probabilities, the model within a gene must condition on the

number of reads mapping to that gene in the purified reference samples. Supposing this condition-

ing is performed and that an independent negative binomial distribution is assumed at each exon

set, the likelihood becomes inconsistent. This arises because the independent negative binomials

could theoretically exceed the read count upon which the model is conditioned. The multinomial

model maintains its consistency despite the conditioning argument.

Secondly, the use of the described staged estimation approach became necessary after an

initial version of the model, which attempted to estimate αk and γk values simultaneously, proved

intractable. This approach led to unstable estimates of the γk and αk parameters wherein the

αk parameters became unbounded. This would suggest little to no variability in the isoform

expressions, an impossibility in the simulated data upon which the model was tested.

Finally, the incorporation of the logpτ˚
k q and logpγ˚

k q transformations was performed after

initial testing with untransformed parameters proved inaccurate. “Hill-climbing” estimation

methods such as Newton Raphson and BFGS require that the likelihood is sufficiently stable
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across the parameter space so that the crest of the “hill” is not continually overstepped. The

proposed optimization approach is more stable with respect to the log parameters since the log

scale spreads out the small parameter values. Under these reparametrizations, model accuracy

and the mobility of proportion estimates improved.

A.2.7 Staged estimation vs joint estimation

We chose to utilize a staged estimation approach instead of a joint estimation approach for

several reasons. Our method, like many other reference-based deconvolution methods, rely on a

reference. Our staged estimation procedure separates the estimation for cell-type specific refer-

ence and bulk mixture samples. (Note: This approach to make separate estimation for reference

and mixture is adopted by all other reference-based deconvolution methods). Researchers who

chose to use the IsoDeconvMM method will have their own mixture data, and they may have

their own reference (or, more likely, want to use an existing reference). In a joint estimation

procedure, the reference estimates will change given the mixture, and thus create unwanted insta-

bility in our method. In other words, two users of the method may think they are using the same

reference, but indeed the reference estimates were different if they used a joint model.

Furthermore, in most cases, the pure cell type reference data will come from different plat-

forms and different pipelines than the bulk mixture sample data. As a result of this, the variance

estimate from the reference data may not be useful or applicable for the bulk mixture data. In

addition, there is a variety of platforms and pipelines available for obtaining the reference data,

and new technology and pipelines are constantly being developed. These realities make it hard to

derive an integrated framework for which we could create a joint estimation model.

A joint estimation procedure has a great advantage when we want to perform hypothesis

testing, since the variances of parameter estimates can be more accurate. However, like many

other deconvolution methods, our objective is not to perform hypothesis testing, but to simply

obtain a point estimate. Therefore, the benefit of a joint estimation procedure is limited
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Because we are using a staged estimation approach, the final estimate is the MLE of the third

stage of the method, but it is not necessarily the MLE of the whole model.

A.3 Chapter 2 supplementary simulation and In Silico materials

A.3.1 In Silico Blueprint analysis supplement

A.3.1.1 Comparison of number pure reference samples used

We explored what number of pure samples per cell type might be optimal to use. Figure A.1

compares mixture proportion results using 5, 10, and 20 reference samples per cell type. In order

to eliminate the possibility that an inadequate selection of initial points contributed to any vari-

ation, the initial points included the true proportion for this comparison. Increasing the number

of reference samples per cell type provided minimal overall improvements in the correlations

and sum-of-squared error (SSE) results as the number of pure reference samples per cell type

increased from 5 to 10. We suspect that we didn’t observe an improvement in the method when

we added additional pure reference samples because although adding additional pure samples per

cell type may reduce the variance of the estimation for the pure cell type parameter estimates, it

may not improve the actual point estimate of the pure cell type parameters. In the IsoDeconvMM

procedure, we only use the point estimates of these pure cell type parameters in later stages. For

this reason, adding a larger number of pure samples per cell type may not improve the final cell

type proportion estimate.

We also noticed that as the number of pure samples per cell type increased, additional tran-

script clusters acquired unstable pure sample isoform parameter estimates. Based on these results,

we concluded that adding more reference samples per cell type was not worth the additional

computational cost and memory burden.
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Figure A.1: Comparison of proportion estimates vs true proportions when 5, 10, and 20 pure
samples per cell type are used in the IsoDeconvMM algorithm fit of the simulated Blueprint
mixture samples. Each mixture proportion estimate uses 100 DU transcript clusters. (a)
Proportion estimates plotted against the true proportion. Plots separated by cell types (columns)
and number of pure samples per cell type (rows). (b) Correlation results compared across number
of pure samples. (c) Sum of square error (SSE) results compared across number of pure samples.

A.3.1.2 Comparison of number initial points used

Since IsoDeconvMM algorithm requires multiple initial points in order to optimize the accu-

racy of the results, we explore how many initial points are sufficient to use. Figure A.2 compares

the proportion estimate results when the IsoDeconvMM algorithm uses the truth as the initial

point and 10 generic initial points. These 10 initial points are included in Table 1 in the Appendix.

There is little difference in the accuracy and precision of the proportion estimate results between
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using the truth as the initial point and using the 10 generic initial points. This suggests that users

of the method could consider these initial points as sufficient for exploring a variety of starting

points when there are three cell types in the mixture samples. While it is possible that increasing

the number of initial points could improve the results even more, including more initial points is

computationally burdensome. Realistically, users of the IsoDeconvMM method would restrict the

number of initial points.
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Figure A.2: Comparison of proportion estimates vs true proportions when the algorithm fit
utilizes the truth as the initial point and 10 generic initial points. Shows results for the 100
mixture samples created in the in silico Blueprint analysis, where each mixture proportion
estimate uses 100 DU transcript clusters. (a) Proportion estimates plotted against the true
proportion. Plots separated by cell types (columns) and different initial point options (rows). (b)
Correlation results compared across start points. (c) Sum of square error (SSE) results compared
across start points.

Based on the subsections A.3.1.1 and A.3.1.2, we conclude that the ‘best’ IsoDeconvMM

settings, balanced for computational efficiency and accuracy of the proportion estimates, include
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using five pure reference samples per cell type and 10 initial points. We note that as the number

of cell types increases, the ideal number of initial points may need to increase.

A.3.1.3 Paired-end vs single-end reads discrepancies

The Blueprint data set (Chen et al. (2016)) provided bulk RNA-seq data on purified cell

samples for three cell types: CD4-positive, alpha-beta T cells; CD14-positive, CD16-negative

classical monocyte; and mature neutrophil. Of the 197 available CD4-positive, alpha-beta T

cell RNA-seq samples, 194 samples used paired-end reads. However, only 3 of the 173 CD14-

positive, CD16-negative classical monocyte samples and only 9 of the 191 mature neutrophil

samples used paired-end reads; the other samples used single-end reads. In order to reduce po-

tential variability within cell types due to this discrepancy in data collection, we only used the

paired-end read samples from the CD4-positive, alpha-beta T cell samples, and we only used the

single-end read samples from the other two cell types.

A.3.1.4 Combined fragment length distribution file

Because we simulated the mixture files from the pure cell type files, the mixture files did not

have an associated fragment length distribution file. Additionally, the IsoDeconvMM algorithm

assumes paired-end read fragment distributions, which two of the three cell types used in the

analysis did not have. Consequently, a common fragment length distribution file was created by

combining the fragment length distribution files of 50 paired-end read samples from the CD4-

positive, alpha-beta T cell samples, and this combined fragment length distribution file was used

for all mixture and pure reference samples.

A.3.2 Simulation supplement

A.3.2.1 Gene selection from UCLA data

This subsection discusses the selection of the 5,172 genes used in the simulations discussed

in Section 4. In the UCLA data set Parikshak et al. (2016) described within the paper, there were
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a total of 57,821 genes. For convenience purposes, these total genes were filtered such that there

was a one-to-one correspondence between genes and transcript clusters (a transcript cluster repre-

sented only a single gene). This step filtered the genes to 38,851 genes.

Next, the genes were filtered by expression levels. If the third quartile of the counts for a

gene were less than 30, a gene was ignored from further consideration. This step left 10,414

genes. In order to limit the number of genes, only the genes on chromosomes one through nine

were considered for further analysis, resulting in 5,172 genes total.

Of the total 5,172 genes, we selected 1,000 genes with relatively high expression (the median

of the gene expression across the 89 samples was above the 25th percentile of the gene expression

medians) and at least three isoforms as possible genes to be used for the mixture sample propor-

tion estimate in the IsoDeconvMM analysis. Additional filtering of these 1,000 genes—excluding

genes with over 15 isoforms and selecting genes with relatively high expression from these 1,000

genes—was performed, and 100 genes were randomly selected for differential isoform usage

(DU).

A.3.3 Mixture file creation

For both the in silico Blueprint data analyses presented in Section 3 and the simulations

presented in Section 4, the creation of the mixture files proceeded as follows.

Among the individuals that had pure reference samples from each of the three cell types, 100

individuals were randomly selected. For each individual, all three of their pure cell type samples

were extracted, and a mixture sample was created using these pure cell type samples.

A total read count was randomly selected from a normal distribution. The normal distribu-

tions were informed by the UCLA and Blueprint data sets. The normal distribution for the total

read counts of the Blueprint mixture samples created for Section 3 had a mean of 12 million and

a standard deviation of 2.5 million. This approximated the distribution of total read counts for the

47,749 transcript clusters in the Blueprint data. The normal distribution for the total read counts

of the mixture files created for Section 4 had a mean of 7 million and a standard deviation of 1
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million, which approximated the distribution of total read counts for the 5,172 genes of interest in

the 89 UCLA samples.

The pure reference samples for both the simulations and the in silico analyses were split into

two groups. One group of pure samples was reserved for the IsoDeconvMM algorithm fit, and

the other group was reserved for the creation of mixture files. From the group reserved for the

creation of mixture files, one pure sample from each cell type was randomly selected. Ratios

of the randomly selected total read count for the mixture file and total read counts for the pure

sample files were calculated, and the counts in each pure sample were adjusted by its read count

ratio.

For each mixture file, a probability was randomly selected from the Dirichlet(2,2,2) distri-

bution (extreme probabilities where one or more cell type proportions was less than 0.05 were

excluded). The counts in each pure sample were also multiplied by the appropriate cell type pro-

portion. The exon set counts from each pure cell type reference sample, adjusted by the read

count ratio and the cell type proportion, were rounded to the nearest integer and added together to

calculate the counts of the exon sets within each mixture file.

A.3.4 Investigation into V-shape of Blueprint cell type 1 scatter plots

We performed some additional simulations to test a theory as to why IsoDeconvMM is bi-

ased in CT1 when the number of clusters is large. The bias seen in the in silico Blueprint anal-

yses could be explained by a combination of unlucky randomness in the simulation and poten-

tial systematic differences between the pure reference samples used in the algorithm fit and the

pure reference samples used to create mixture samples. As discussed in Section A.3.3, the mix-

ture files for the in silico analysis were created by mixing exon set counts from pure reference

samples of the same individual. This required that the pure reference samples used for mixture

creation came from individuals with complete pure samples from each of the three cell types.

On the other hand, the pure reference samples used for the pure sample estimation in IsoDecon-

vMM were selected from a combination of (a) individuals with a complete set of pure reference
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samples (samples from each cell type) and (b) individuals who did not have a complete set of

pure reference samples. Looking back, it is possible that individuals who did not have a com-

plete set of pure reference samples are somehow systematically different from those who had

complete sets. In order to determine if a combination of unlucky randomness and the systematic

differences discussed were to blame for the CT1 bias, we ran some simulations.

Simulation set-up: There were 113 individuals with a complete set of pure reference samples.

For each simulation replicate (of which there were 10 replicates), we randomly selected 100 indi-

viduals to create mixture samples from their pure reference samples, and we randomly selected 5

individuals from the remaining 13 to use their pure reference samples in the pure sample fit part

of the IsoDeconvMM algorithm. Each simulation replicate used a different set of 100 proportion

estimates to create the mixture files. The creation of mixture files and the running of the IsoDe-

convMM algorithm for each simulation replicate then proceeded in the same way as described in

the paper. We performed 10 simulation replicates.

Results: Figure A.3 shows that of the 10 simulation replicates, 2 simulation replicates con-

tinued to have the V shape in CT1 that we saw in the paper results (simulation replicates 1 and

9). However, the other 8 simulation replicates did not have such a V shape. When we specifically

look at the correlations and SSE of cell type 1 (Figure A.4), we see that the correlations and SSE

of simulations 1 and 9 are comparable to what was reported in the in silico analyses given in the

paper, but the other 8 simulations gave markedly better correlation and SSE results for cell type

1. Based on these results, we conclude that the unusual V shape seen in the paper results were

due to unlucky randomness within the simulation. We also conclude that the V shape was not due

to systematic biases because we still saw the V shape even when restricting the pure reference

samples to come from individuals with complete sets of pure reference samples. We added a

comment about these results in the Discussion.
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A.3.5 CIBERSORTx vs IsoDeconvMM in simulated Dirichlet-Multinomial data

We ran an additional simulation to show that the same pattern we observed in the in sil-

ico Blueprint analyses held in simulated data. We simulated the data using the same Dirichlet-

Multinomial simulation set-up described in Section 4, but we added an additional step to simulate

100 genes that were differentially expressed across cell types.

We simulated genes with differential expression using the following procedure: We selected

100 genes for differential expression in the same way that we selected 100 genes for differential

isoform usage (see Section A.1.1). Of these 100 genes designated for differential expression, 33

were designated to be up-regulated in CT1 compared to CT2 and CT3, 33 were designated to

be up-regulated in CT2 compared to CT1 and CT3, and the remaining 34 were designated to be

up-regulated in CT3 compared to CT1 and CT2. Suppose we consider gene g that is supposed

to be up-regulated in CT1 compared to the other two cell types. After the original gene counts

were simulated assuming no differential expression, the counts of gene g were multiplied by a

constant ranging between 1.24 and 1.55 in CT1, and the counts of gene g were multiplied by the

constant 0.775 in the other two cell types. Some small variation introduced to replicate samples

of each cell type, where the fold change f was adjusted as follows: f ˚ 2c, c „ Np0, σ “ 0.025q.

This resulted in an overall fold change ranging between 1.6 and 2.0 between the cell types. This

procedure was applied similarly to all genes that were designated to be up-regulated in CT2 and

CT3. When the proportion of gene counts in these 100 genes was compared before and after any

fold change adjustments, the ratio of these proportions (before/after) ranged from 0.96 to 1.05.

Twenty pure cell type samples were simulated for each cell type. Of these 20 samples per

cell type, 10 were used in the mixture sample creation, and 5 were selected to be used in the pure

sample fit part of the IsoDeconvMM algorithm. The mixture samples were created as described

in Section A.3.3. CIBERSORTx estimated the cell type proportions using all 100 genes as well

as a random subset of the CT1, CT2, and CT3 genes such that the total number of genes were

10 with approximately equal numbers of up-regulated CT1, CT2, and CT3 genes in each subset.
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IsoDeconvMM estimated the cell type proportions using all 100 genes as well as a random subset

of the CT1, CT2, and CT3 genes such that the total number of genes were 10.

The results to this simulation are in Figure A.5.
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Figure A.3: Scatter plots summarizing results for the additional replicates of the in silico
Blueprint analyses. Scatter plots show the mixture proportion estimates vs the true cell type
proportion for each estimated cell type (column). EAch row represents a simulation replicate.
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Figure A.4: Correlations (left) and sum of square error (SSE, right) of cell type 1 for each of the
additional replictates of the in silico Blueprint analyses. Red line indicates the cell type 1
correlation and cell type 1 SSE reported in the in silico analyses used in the paper.
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Figure A.5: Dirichlet-Multinomial simulation mixture proportion estimate results calculated
using the CIBERSORTx and IsoDeconvMM methods on DE and DU genes, respectively. Results
separated by cell types (columns) and number of genes used in the analysis (rows). (a) Proportion
estimates vs true proportions for CIBERSORTx method (used DE clusters only). (b) Proportion
estimates vs true proportions for IsoDeconvMM method (used DU clusters only). (c) Correlation
and (d) sum-of-square (SSE) results compared across methods.
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APPENDIX B: APPENDIX FOR CHAPTER 3

B.1 Initialization of the glmmPen algorithm

The fixed effects βp0q and random effects covariance terms γp0q are initialized at iteration

s “ 0 in one of two ways. We discuss first the initialization procedure used when the package

glmmPen is used to fit a single model or the first model in the sequence of models fit for variable

selection. In this scenario, the fixed effects βp0q are initialized by fitting a ‘naive’ model using the

coordinate descent techniques of Breheny and Huang (2011) assuming no random effects and the

random effects covariance matrix is initialized as a diagonal matrix with positive variance.

By default, the starting variance is initialized in an automated fashion. The data is fit to a

model composed of only a fixed and random intercept using a Laplace approximation. The ran-

dom intercept variance from this model is then multiplied by 2, and this value is set as the starting

variance. We use this approach so that the starting variance of the random effects is sufficiently

large. Having a sufficiently large starting variance helps improve the stability of the algorithm.

The E-step MCMC chain of the sample of the posterior density ϕpαk|dk,o;θ
psqq for groups

k “ t1, ..., Ku is initialized in iteration s “ 1 with random draws from the standard normal

distribution. For all following iterations s ą 1, the MCMC chain is initialized with the last draw

from the previous iteration s ´ 1.

When the algorithm performs variable selection, we initialize models with previous model

results. For all subsequent models after the first model fit in the variable selection procedure, the

fixed effects, random effects covariance matrix, and random effects MCMC chain are initialized

using results from a previous model fit. More details about initialization for variable selection is

discussed in Section 3.4.
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APPENDIX C: APPENDIX FOR CHAPTER 4

C.1 Chapter 4 algorithms and B matrices

C.1.1 B matrices used in simulations

The transpose of the first 11 rows of the deterministic ‘large’B matrices used in the Bi-

nomial simulations in Section 4.3 are given in equations (C.1) and (C.2), corresponding to

r “ t3, 5u, respectively. The deterministic ‘moderate’B matrices are these largeB matrices

multiplied by the constants 0.75 and 0.80 for r equal to 3 and 5, respectively. All other p´ 10 rows

of theB matrices were set to 0, where p is the total number of predictors used in the simulations.

BT
large,r“3 “

»

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1

0 ´1 ´1 ´1 ´1 ´1 1 1 1 1 1

´2 2 ´1 0 1 ´1 0 1 ´1 0 1

fi

ffi

ffi

ffi

ffi

fl

(C.1)

BT
large,r“5 “

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1

0 ´1 ´1 ´1 ´1 ´1 1 1 1 1 1

´2 2 ´1 0 1 ´1 0 1 ´1 0 1

´1 1 1 ´1 ´1 1 1 ´1 ´1 1 ´1

´1 ´1 0 1 1 ´1 ´1 0 1 1 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(C.2)

The transpose of the first 6 rows of the deterministic ‘moderate’B matrix used in the Pois-

son simulations in Section 4.3.4 are given in equation (C.3). All other p´ 5 rows of theB matrices

were set to 0, where p “ 100 in the Poisson simulations.

BT
poisson,r“3 “ 0.75 ˆ

»

—

—

—

—

–

1 1 1 1 1 1

´1 ´1 ´1 1 1 1

´1 0 1 ´1 0 1

fi

ffi

ffi

ffi

ffi

fl

(C.3)
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C.1.2 Algorithms

Algorithm 5 M-step of the MCECM algorithm

1. The parameters θps,0q for M-step iteration h “ 0 are initialized using the results from the pre-
vious M-step, θps´1q.
2. Conditional on bps,h´1q and τ ps´1q, each βps,hq

j for j “ 1, ..., p is given a single update using
the Majorization-Minimization algorithm specified by Breheny and Huang (2015).
3. For each group k in k “ 1, ..., K, the augmented matrix z̃ki “ pα̃

psq

k b zkiqJ is created for
i “ 1, ..., nk where α̃psq

k “ ppα
ps,1q

k qT , ..., pα
ps,Mq

k qT qT .
4. Conditional on the τ ps´1q and the recently updated βps,h`1q, each bps,hq

t for t “ 1, ..., q is
updated using the Majorization-Minimzation coordinate descent grouped variable selection
algorithm specified by Breheny and Huang (2015).
5. Steps 2 through 4 are repeated until the M-step convergence criteria are reached or until the
M-step reaches its maximum number of iterations.
6. Conditioning on the newly updated βpsq and bpsq, τ psq is updated (generically, using the
Newton-Raphson algorithm).

Algorithm 6 Full MCECM algorithm for single pλ0, λ1q penalty combination

1. Fixed and random effects βp0q and bp0q are initialized as discussed Appendix B.
2. In each E-step for EM iteration s, a burn-in sample from the posterior distribution of the
random effects is run and discarded. A sample of size M psq from the posterior is then drawn
and retained for the M-step.
3. Parameter estimates of βpsq, bpsq, and τ psq are then updated as described in the M-step
procedure given above.
4. Steps 2 and 3 are repeated until the convergence condition is met a pre-specified consecutive
number of times or until the maximum number of EM iterations is reached.

C.2 Chapter 4 supplementary simulation and case study materials

C.2.1 Model selection

This section provides details on how the glmmPen FA algorithm selects the optimal tuning

parameter combination. In all simulations and analyses discussed in this paper, we set the random

effects equal to the fixed effects (i.e. p “ q) and let the algorithm select the fixed and random

effects.
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The algorithm runs a computationally efficient two-stage approach to pick the optimal set

of tuning parameters. In the first stage of this approach, the algorithm fits a sequence of models

where the fixed effect penalty is kept constant at the minimum value of the fixed effects penalty

sequence, labeled here as λ0,min, and the random effects penalty proceeds from the minimum

random effect penalty, labeled λ1,min, to the maximum value λ1,max. The best model from this

first stage is then identified using the BIC-ICQ criterion (Ibrahim et al., 2011). This first stage

identifies the optimal random effect penalty value, λ1,opt. In the second stage, the algorithm fits a

sequence of models where the random effects penalty is kept fixed at λ1,opt and the fixed effects

penalty proceeds from its minimum value λ0,min to its maximum value λ0,max. The overall best

model is chosen from the models in the second stage.

We have found this two-stage model selection approach to work very well in practice (see

Section 3 for performance results).

C.2.2 Tuning parameter selection

The default maximum penalty, labeled here as λmax, was calculated as the penalty that would

penalize all of the fixed effects to 0 when no random effects are in the model. We used code from

the ncvreg R package (Breheny and Huang, 2011) to calculate this value.

For all Binomial outcome variable selection simulations and case study analyses where the

total number of predictors was 100 or less, we used the following sequence of penalties for both

the fixed effects and the rows of theB matrix: a sequence of 10 penalties from 0.05λmax to λmax,

with penalty values equidistant from each other on the log scale.

For all Binomial outcome variable selection simulations and case study analyses where the

total number of predictors was 500, we used the following sequence of penalties: a sequence

of 10 penalties from 0.15λmax to λmax for the fixed effects, and a sequence of 10 penalties from

0.10λmax to λmax for the rows of theB matrix, with penalty values equidistant from each other

on the log scale. In simulations not shown here, using a consistent sequence of 10 penalties from

0.10λmax to λmax for both sets of parameters resulted in very similar final results, but accom-
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plished in less time; using a consistent sequence of 10 penalties from 0.15λmax to λmax for both

sets of parameters decreased the random effect true positive results.

For the Poisson outcome variable selection simulations, a penalty sequence with larger val-

ues was needed for both the fixed effects and rows of theB matrix due to the nature of how

the data was simulated and fit. In these simulations, the covariate values xki,j were simulated

from a Np0, σ “ 0.10q distribution for j “ 1, ..., p and left unstandardized in the algorithm,

whereas in the binomial simulations, the covariate values were simulated from the standard nor-

mal distribution Np0, 1q and then standardized so that
řK

k“1

ř

iPnk
xki,j “ 0 and xT

j xj{N = 1 for

each j. The fixed effects penalty sequence included 0.30λmax and pδ0,1, ..., δ0,12q ˚ λmax, where

δ0,i “ 2 ` pi´ 1q. The random effect penalty sequence applied to rows of theB matrix included

0.30λmax and pδ1,1, ..., δ1,11q ˚ λmax, where δ1,i “ 0.5 ` pi ´ 1q.

C.2.3 Initialization and convergence - glmmPen FA

The fixed effects βp0q and random effects covariance terms γp0q are initialized at iteration

s “ 0 in one of two ways. We discuss first the initialization procedure used when the package

glmmPen is used to fit a single model or the first model in the sequence of models fit for variable

selection. In this scenario, the fixed effects βp0q are initialized by fitting a ‘naive’ model using the

coordinate descent techniques of Breheny and Huang (2011) assuming no random effects.

Based on the initialized fixed effects βp0q, the predictors with non-zero initialized fixed ef-

fects are also initialized to have non-zero random effects (i.e. the corresponding rows of theB

matrix are set to non-zero values), and predictors with zero-valued initialized fixed effects are

initialized to have zero-valued random effects (i.e. the corresponding rows of theB matrix are

set to zero). By default, the startingB matrix elements are initialized as
a

0.10{r, where r is the

estimated number of latent factors. The corresponding initialized covariance matrix Σ “ BBT

will have all non-zero elements equal to 0.10.

The E-step MCMC chain of the sample of the posterior density ϕpαk|dk,o;θ
psqq for groups

k “ t1, ..., Ku is initialized in iteration s “ 1 with random draws from the standard normal
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distribution. For all following iterations s ą 1, the MCMC chain is initialized with the last draw

from the previous iteration s´ 1. At iteration s “ 0, we sample M “ 100 posterior samples from

each group, and M increases to a max of 500 as the iteration number s increases.

When the algorithm performs variable selection, we initialize models with previous model

results. After the first model is fit in the variable selection procedure, the fixed effects, random

effects covariance matrix, and random effects MCMC chain are initialized using results from a

previous model fit.

The EM algorithm is considered to have converged when the following condition is met at

least 2 consecutive times (default) or until the maximum number of EM iterations (25) is reached:

||pβpsqT , bpsqT
q
T

´ pβps´tqT , bps´tqT
q
T

||
2
2{d

s´t
n ă ϵEM (C.4)

where the superscript ps ´ tq indicates t EM iterations back (default t “ 2), ||.||22 represents

the L2 norm, and ds´t
n equals the total number of non-zero pβT , bT qT coefficients in iteration

ps ´ tq. In other words, the algorithm computes the average Euclidean distance between the current

coefficient vector pβT , bT qT and the coefficient vector from t EM iterations back and compares it

with ϵEM “ 0.0015.

The M-step algorithm is considered to have converged when the following condition is met

or until the maximum number of iterations (50) is reached:

maxj|β
ps,f`1q

j ´ β
ps,fq

j | X maxt,h|b
ps,f`1q

th ´ b
ps,fq

th | ă ϵm, (C.5)

where bth is an individual element of bt, which is the t-th row of theB. The value of ϵm was set

to 0.001.

C.2.4 Initialization and convergence - glmmPen

The initialization and convergence of glmmPen in these simulations and analyses were very

similar to the initialization and convergence of glmmPen FA with the exception of the initializa-
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tion of the random effect covariance matrix. This starting variance is initialized in an automated

fashion. First, a GLMM composed of only a fixed and random intercept is fit using the lme4

package. The random intercept variance from this model is then multiplied by 2, and this value

is set as the starting values of the diagonal of the random effects covariance matrix. Similar to

the glmmPen FA random effect intialization, the predictors are initialized to have non-zero ran-

dom effects if they are also initialized to have nonzero fixed effects; otherwise, predictors are

initialized to have no random effects.

C.2.5 Elastic Net penalty

We extended our simulations on variable selection in Binomial data by adding correlations

between the simulated covariates and adjusting for this correlation using the Elastic Net penaliza-

tion approach. Elastic Net penalization balances the MCP, SCAD, or LASSO penalties with ridge

regression. This balance between ridge regression and the other penalty is dictated by a value we

label as π, where π “ 1.0 represents the MCP penalty and π “ 0 represents ridge regression.

In these simulations, we set the sample size to N “ 2500 and number of groups to K “ 25,

with an equal number of subjects per group. There were p “ 100 total predictors and 10 true

predictors with non-zero fixed and random effects. We considered four types of correlations be-

tween the predictors. In three of the four correlation types, the correlation between all covariates

was set to a common value of 0.2, 0.4, or 0.6, and the variance of the covariates was set to 1.0.

In the fourth correlation type, we randomly selected 100 of the 110 covariates used in the case

study (see Web Appendix Section C.2.6 for details) and calculated the Spearman correlation of

these 100 covariates. In all four correlation cases, we simulated the covariates from a multivariate

normal distribution with mean 0 and covariance matrix set to the correlation matrices described

above.

We simulated the random effects covariance matrix using r “ 3 and the corresponding mod-

erateB matrix described in the main manuscript. The 10 true fixed effects β coefficients were
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set to 1. The generation of the binary responses from a logistic mixed effects model proceeded as

described in Section 3.1.

We performed variable selection on these simulated data using Elastic Net α values of 0.1,

0.3, 0.5, 0.8, and 1.0, and we estimated the number of common factors r using the default Growth

Ratio procedure described in Section 2.4.

A summary of the variable selection results—true positive percentages, false positive per-

centages, median time in hours to complete the procedure, and average absolute deviation for the

fixed effects coefficients—is given in Chapter 4 Appendix Table C.1. A summary of the perfor-

mance of the Growth Ratio estimation procedure is given in Chapter 4 Appendix Table C.2.

In general, increasing the correlation among the predictors decreases the average true posi-

tive percentage. Within a particular correlation set-up, decreasing the value of the Elastic Net π

tends to increase both the true positives and the false positives.

The Growth Ratio procedure tends to underestimate the number of common factors r as the

correlation between the covariates increases. However, when the correlation between the covari-

ates is high at a value of 0.6 and there is no adjustment for ridge regression (i.e. π “ 1.0, equiva-

lent to the MCP penalty), there are more instances of the Growth Ratio procedure overestimating

r.

For low values of π and/or high correlation, some simulation replicates had model fit issues.

Specifically, in certain situations, the random effect variances diverged to excessively large values.

As a result, the BIC-ICQ model selection criteria could not be calculated for the model, and

the model selection procedure was suspended. When π “ 0.1 and the correlation among the

predictors was 0.4 or 0.6, this phenomena happened 25% or 26% of the time, respectively. When

π “ 0.1 and the correlation was 0.2, this happened 2% of the time; when π “ 0.3 and the

correlation was 0.4 or 0.6, this happened 1% or 3% of the time, respectively; when π “ 1.0 and

the correlation was 0.6, this happened 1% of the time. The simulations summarized in Chapter 4

Appendix Table C.1 do not include results from these problematic simulation replicates.
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Corr π TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)
0.2 0.1 97.55 27.39 85.10 12.40 23.34 0.50

0.3 91.70 13.32 61.90 4.46 22.06 0.54
0.5 93.30 7.79 65.80 2.64 8.63 0.51
0.8 94.10 1.08 90.00 0.63 2.58 0.40
1.0 94.70 4.28 94.40 0.53 1.46 0.31

0.4 0.1 86.53 22.79 74.53 14.33 14.37 0.56
0.3 87.98 11.93 59.49 1.99 15.10 0.58
0.5 85.70 4.64 72.70 1.07 4.71 0.53
0.8 80.30 1.61 83.30 0.37 2.54 0.44
1.0 80.40 1.98 82.60 0.21 1.17 0.39

0.6 0.1 80.14 17.16 53.24 7.03 13.08 0.63
0.3 76.39 10.63 55.26 3.13 10.31 0.61
0.5 75.00 4.20 58.50 0.86 4.10 0.55
0.8 76.70 1.28 64.20 0.61 2.47 0.45
1.0 71.31 0.85 56.26 0.24 1.40 0.41

CS 0.1 93.10 45.41 92.00 29.90 28.90 0.49
0.3 93.80 28.63 74.30 16.32 24.74 0.46
0.5 87.90 19.19 66.60 11.71 12.78 0.44
0.8 91.70 3.99 75.00 2.94 3.12 0.40
1.0 95.90 2.04 86.20 1.38 1.36 0.30

Table C.1: Variable selection results for the Elastic Net simulations, including true positive (TP)
percentages for fixed and random effects, false positive (FP) percentages for fixed and random
effects, the median time in hours for the algorithm to complete (Tmed), and the average of the
mean absolute deviation (Abs. Dev. (Mean)) between the coefficient estimates and the true β
values across all simulation replicates. Column “Corr” describes the correlation between the
covariates (equal correlation of values 0.2, 0.4, or 0.6, or correlation based on data from the case
study data, labeled as ‘CS’). Column π represents the Elastic Net balance between ridge
regression (π “ 0) and the MCP penalty (π “ 1).

C.2.6 Case study: Study information and data processing

In this section, we provide more information about the individual studies contained within

the dataset and describe how we set up the data for the case study analyses in Section 4. More

complete coding details are provided in the GitHub repository https://github.com/

hheiling/paper_glmmPen_FA.
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Corr π Avg. r r Underestimated % r Correct % r Overestimated %
0.2 0.1 2.67 35 63 2

0.3 2.65 35 65 0
0.5 2.63 37 63 0
0.8 2.54 46 54 0
1.0 2.62 39 60 1

0.4 0.1 2.24 76 24 0
0.3 2.35 67 32 1
0.5 2.38 68 28 4
0.8 2.47 69 26 5
1.0 2.35 73 24 3

0.6 0.1 2.05 95 5 0
0.3 2.30 82 12 5
0.5 2.30 81 12 7
0.8 2.38 84 8 8
1.0 2.99 72 13 15

CS 0.1 2.47 53 47 0
0.3 2.45 55 45 0
0.5 2.42 58 42 0
0.8 2.44 56 44 0
1.0 2.43 57 43 0

Table C.2: Results of the Growth Ratio r estimation procedure for the Elastic Net p “ 100
logistic mixed effects simulation results, including the average estimate of r across simulations
and percent of times that the estimation procedure underestimated r, gave the true r, or
overestimated r. Column “Corr” describes the correlation between the covariates (equal
correlation of values 0.2, 0.4, or 0.6, or correlation based on data from the case study data).
Column π represents the Elastic Net balance between ridge regression (π “ 0) and the MCP
penalty (π “ 1).

The studies used in these analyses are summarized in Chapter 4 Appendix Table C.3, which

contains the gene expression platform information (all RNA-seq), the sample sizes, and the per-

cent of the samples that were classified into the basal subgroup.

Chapter 4 Appendix Table C.3 provides the dataset abbreviations, their respective citations,

their sample sizes, and the percent of the subjects within each study that were classified into the

basal subtype. The sample sizes listed in the table—and used in the analyses—were smaller than

the studies’ total sample size as we removed subjects with missing tumor grade information,

normal tissue samples, and those who did not have primary tumor samples of sufficient quality.
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Dataset Platform Sample Size % Basal Citation
Aguirre RNA-seq 28 29 Aguirre et al. (2018)
CPTAC RNA-seq 99 22 Cao et al. (2021)

Dijk RNA-seq 61 39 Dijk et al. (2020)
Hayashi RNA-seq 75 53 Hayashi et al. (2020)
TCGA RNA-seq 97 20 Raphael et al. (2017)

Table C.3: Summaries of PDAC gene expression datasets. Used in case study prediction model
of basal subtype.

All five datasets had RNA-seq data for 60,230 total gene symbols for each subject. Of those,

432 were also part of the 500 member gene list that Moffitt et al. (2015) specified as relevant for

classifying subjects into the basal vs classical subtypes (this gene list is also provided within the

aforementioned GitHub repository).

There were some significant correlations between some of these 432 genes, as evaluated by

Spearman correlations. In order to avoid having very highly correlated covariates in the analyses,

we decided to combine highly correlated genes together into meta-genes. We accomplished this

by applying a hierarchical clustering algorithm to the the genes using the pheatmap::pheatmap()

R function (Kolde, 2019) to the absolute values of the Spearman correlation matrix. We then cut

the tree using the stats::cutree() R function (R Core Team, 2021) at a height of 2. This

produced a total of 119 clusters. For clusters that represented two or more genes, we added the

raw RNA-seq gene expression of all participating genes to get the new cluster covariate values.

We further removed 9 of the 119 of these clusters so that all pairwise Spearman correlations were

below 0.9. The remaining 110 clusters were rank-transformed on the subject level, and these

rank-transformed covariates were used in the case study analyses.

The cancer subtype outcome—basal or classical—was calculated using the clustering algo-

rithm specified in Moffitt et al. (2015). For each study individually, this clustering algorithm was

applied to the RNA-seq gene expression for the 432 genes described above, where the distance

matrix was the Euclidean distance and the assumed number of clusters was set to two.
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C.2.7 Case study: Sensitivity analyses

We performed sensitivity analyses on our case study by running the Elastic Net variable se-

lection procedure with alternative values of π—the value that represents the balance between

ridge regression and the MCP penalty (π “ 0 represents ridge regression, pi “ 1 represents the

MCP penalty)—and alternative values for the number of latent common factors r (for the glmm-

Pen FA procedure). Based on the results in Chapter 4 Appendix Table C.1, π values between 0.5

and 1.0 were likely to have good selection results for the correlation structure of the covariates

in the dataset. We fit the variable selection procedure using π “ t0.6, 0.7, 0.8, 0.9, 1.0u. The

glmmPen procedure assumed an independent random effects covariance matrix.

We first discuss the glmmPen FA sensitivity results. In addition to estimating the number

of latent common factors using the Growth Ratio procedure, which estimated a value of r “ 2,

we also fit the model assuming r “ 3 because the simulations given in Web Appendix Section

C.2.5 indicated that the Growth Ratio method may underestimate r. Regardless of whether r was

estimated as 2 using the Growth Ratio procedure or set to 3 manually, the coefficient values and

selection results were very consistent for each value of π. The single exception was when the

π “ 0.9 selection procedure included another cluster covariate in the best model for r “ 3 but

not r “ 2; even in this case, the fixed effect coefficient for the additional covariate was relatively

small.

In terms of fixed effects, the values π between 0.6 and 1.0 gave very consistent results within

the glmmPen FA procedure. The 8 covariate clusters described in the main paper Table 4.6 were

consistently chosen across the different values of π, with the exception of cluster 45, which was

excluded from the best model when π “ t0.6, 0.8u. A 9-th cluster, cluster 75 (genes SERPINB3

and SERPINB4) was included when π “ 0.9 and r was set to 3; the fixed effect coefficient for

this covariate was relatively small in comparison with the other fixed effect coefficients.

For random effects, values of π ď 0.8 consistently selected 0 random effect slopes (random

intercept only for random effects) within the glmmPen FA procedure. For π “ t0.9, 1.0u, clus-

ters 25, 58, and 91 had non-zero random effects. However, when π “ 1.0, the variances of these
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random effects became suspiciously large (variance values approximately between 9 and 30), in-

dicating a poor model fit for π “ 1.0. The variances of these same random effects when π “ 0.9

were instead approximately between 1 and 2.

We chose to report the glmmPen FA results of π “ 0.7 in the main manuscript for several

reasons. Based on the fact that we had a range of correlations among the covariates in the dataset,

including some pairwise correlations greater than 0.6, we felt it was appropriate to fit the variable

selection procedure with π ă 1.0; furthermore, based on the best model results, the π “ 1.0

showed poor model fit results for the random effects. When choosing between the other values of

π, the π “ 0.7 results contained the consistently selected 8 cluster covariates, and these results

did not contain any random slopes, which was also consistent across most of the values of π “

t0.6, 0.7, 0.8, 0.9u.

The times to complete the glmmPen FA variable selection procedure was between 0.4 and

1.0 hours for π “ t0.6, 0.7, 0.8, 0.9u (this range includes r either 2 or 3). When π “ 1.0, the time

to complete the procedure was 1.3 and 2.1 hours for r equal to 2 or 3, respectively.

The glmmPen procedure also consistently selected the 8 covariate clusters described in the

main paper Table 4.6 to have non-zero fixed effects with the the following exceptions: procedure

that used π “ 0.7 penalized out clusters 25 and 45, and the procedure that used π “ 1.0 penalized

out cluster 75. With the exception of π “ 0.6, glmmPen consistently selected clusters 25 and 58

to have non-zero random effects. The values of these slopes changed depending on the value of π:

variances of approximately 0.5 when π “ t0.7, 0.8u, and variances greater than 1.0 when π “ 0.9,

and divergent values greater than 9 when π “ 1.0.

The times in hours to complete the glmmPen variable selection procedure was 32.4, 37.8,

37.7, 51.2, and 68.2 for π equal to 0.6, 0.7, 0.8, 0.9, and 1.0, respectively.
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C.3 Chapter 4 proximal gradient line algorithm

As was discussed in Section 1.5, we use a proximal gradient line search algorithm to estimate

the appropriate step size to utilize in the Majorization-Minimization algorithm. In this section, we

provide more details about specific quantities needed to analyze this line search algorithm.

We want to define an upper bound of our loss function f , labeled as f̂δ, which is derived

from taking the Taylor series expansion of f about the value of βpsq:

f̂δpβ, β
psq

q “ fpβpsq
q ` ∆fpβpsq

q
J

pβ ´ βpsq
q `

1

2δ
||β ´ βpsq

||
2
2. (C.6)

Let θ represent all coefficients (both fixed and random effects), let l represent the previous

EM iteration, and let s represent the previous M-step iteration. We define our loss function as the

Q-function defined in (C.7) for a generic value of θ, and we also consider this same expression

evaluated at the most recently accepted coefficient vector θpsq:

fpθq “ ´
1

M

M
ÿ

m“1

K
ÿ

k“1

ÿ

iPnk

log fpyki|xki, α
pl,mq; θq (C.7)

fpθpsq
q “ ´

1

M

M
ÿ

m“1

K
ÿ

k“1

ÿ

iPnk

log fpyki|xki, α
pl,mq; θpsq

q (C.8)

We further define the following terms for a particular subject i in group k evaluated at the

m-th MCMC draw of the E-step:

fkimpθq “ ´ log fpyki|xki, α
pl,mq; θq

x̃J
kim “

´

xJ
ki pα

pl,mq

k b zkiq
JJ

¯

ηkim “ x̃J
kimθ

µkim “ gpηkimq
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where gp.q is a link function and the rest of the notation for these terms are specified in Chapter 4.

We consider the contribution to the loss function provided by a particular subject i in group k

evaluated at the m-th MCMC draw from the E-step. We define the Taylor series expansion of this

contribution to the loss function about the most recently accepted coefficient update θpsq as

f̂kimpθ, θpsq
q “ fkimpθpsq

q ` ∆fkimpθpsq
q

J
pθ ´ θpsq

q `
1

2δ
||θ ´ θpsq

||
2
2

“ fkimpθpsq
q ´ pyki ´ µ

psq

kimqx̃J
kimpθ ´ θpsq

q `
1

2δ
||θ ´ θpsq

||
2
2

“ fkimpθpsq
q ´ pyki ´ µ

psq

kimqpηkim ´ η
psq

kimq `
1

2δ
||θ ´ θpsq

||
2
2

(C.9)

The upper bound of the Q-function is defined as the Taylor series expansion of the Q-function

about the most recently accepted coefficient update θpsq. To calculate this, we add the quantity

f̂kimpθ, θpsqq over all subjects and all MCMC draws and divide by M :

f̂pθ, θpsq
q “

1

M

M
ÿ

m“1

K
ÿ

k“1

ÿ

iPnk

f̂kimpθ, θpsq
q

“ fpθpsq
q ´

1

M

M
ÿ

m“1

K
ÿ

k“1

ÿ

iPnk

pyki ´ µ
psq

kimqpηkim ´ η
psq

kimq `
N

2δ
||θ ´ θpsq

||
2
2

(C.10)

We then use this quantity within our line search algorithm to determine if we need to adjust

the step size within the Majorization-Minimization algorithm. See the line search algorithm

described in Section 1.5 for details.
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APPENDIX C: APPENDIX FOR CHAPTER 5

D.1 Chapter 5 additional simulation and case study details

D.1.1 B matrices used in simulations

The transpose of the first 6 rows of the deterministic ‘small’ and ‘moderate’B matrix used

in the piecewise exponential simulations in Section 3 are given in (D.2) and (D.1). All other p ´ 5

rows of theB matrices were set to 0, where p P t100, 500u in the piecewise exponential mixed

effects simulations.

BT
moderate “ 0.75 ˆ

»

—

—

—

—

–

1 1 1 1 1 1

´1 ´1 ´1 1 1 1

´1 0 1 ´1 0 1

fi

ffi

ffi

ffi

ffi

fl

(D.1)

BT
small “ 0.50 ˆ

»

—

—

—

—

–

1 1 1 1 1 1

´1 ´1 ´1 1 1 1

´1 0 1 ´1 0 1

fi

ffi

ffi

ffi

ffi

fl

(D.2)

D.1.2 Model selection

This section provides details on how the phmmPen FA algorithm selects the optimal tuning

parameter combination. In all simulations and analyses discussed in this paper, we set the random

effects equal to the fixed effects (i.e. p “ q) and let the algorithm select the fixed and random

effects.

The algorithm runs a computationally efficient two-stage approach to pick the optimal set

of tuning parameters. In the first stage of this approach, the algorithm fits a sequence of models

where the fixed effect penalty is kept constant at the minimum value of the fixed effects penalty

sequence, labeled here as λ0,min, and the random effects penalty proceeds from the minimum

random effect penalty, labeled λ1,min, to the maximum value λ1,max. The best model from this
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first stage is then identified using the BIC-ICQ criterion (Ibrahim et al., 2011). This first stage

identifies the optimal random effect penalty value, λ1,opt. In the second stage, the algorithm fits a

sequence of models where the random effects penalty is kept fixed at λ1,opt and the fixed effects

penalty proceeds from its minimum value λ0,min to its maximum value λ0,max. The overall best

model is chosen from the models in the second stage.

We have found this two-stage model selection approach to work very well in practice (see

Section 3 for performance results).

D.1.3 Tuning parameter selection

The default maximum penalty, labeled here as λmax, was calculated as the penalty that would

penalize all of the fixed effects to 0 when no random effects are in the model. We used code from

the ncvreg R package (Breheny and Huang, 2011) to calculate this value.

For all piecewise exponential mixed effect variable selection simulations and case study anal-

yses where the total number of predictors was 100, we used the following sequence of penalties

for both the fixed effects and the rows of theB matrix: a sequence of 10 penalties from 0.05λmax

to λmax, with penalty values equidistant from each other on the log scale.

For all piecewise exponential outcome variable selection simulations and case study analyses

where the total number of predictors was 500, we used the following sequence of penalties: a

sequence of 10 penalties from 0.25λmax to λmax for the fixed effects, and a sequence of 10 penal-

ties from 0.10λmax to λmax for the rows of theB matrix, with penalty values equidistant from

each other on the log scale.

For the case study that performed variable selection on a piecewise exponential mixed effects

model with p “ 168 TSP covariates, we used a sequence of 10 penalties from 0.10λmax to λmax

for both the fixed effects and the rows of theB matrix, with penalty values equidistant from each

other on the log scale.
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D.1.4 Initialization and convergence for phmmPen FA

The fixed effects ψ̃p0q and βp0q and random effects covariance terms bp0q are initialized at

MCECM iteration s “ 0 in one of two ways. We discuss first the initialization procedure used

when phmmPen FA is used to fit a single model or the first model in the sequence of models

fit for variable selection. In this scenario, the fixed effects ψ̃p0q and βp0q are initialized by fitting

a ‘naive’ piecewise exponential model using the coordinate descent techniques of Breheny and

Huang (2011) assuming no random effects.

Based on the initialized fixed effects βp0q, the predictors with non-zero initialized fixed ef-

fects are also initialized to have non-zero random effects (i.e. the corresponding rows of theB

matrix are set to non-zero values), and predictors with zero-valued initialized fixed effects are

initialized to have zero-valued random effects (i.e. the corresponding rows of theB matrix are

set to zero). By default, the startingB matrix elements are initialized as
a

0.02{r, where r is the

estimated number of latent factors. The corresponding initialized covariance matrix Σ “ BBT

will have all non-zero elements equal to 0.02. We found that increasing these initial covariance

element values tended to increase the false positives of the fixed and random effects of the algo-

rithm.

The E-step MCMC chain of the sample of the posterior density ϕpαk|ωk,o;θ
psqq for groups

k “ 1, ..., K is initialized in iteration s “ 1 with random draws from the standard normal

distribution. For all following iterations s ą 1, the MCMC chain is initialized with the last draw

from the previous iteration s´ 1. At iteration s “ 0, we sample M “ 100 posterior samples from

each group, and M increases to a max of 500 as the iteration number s increases.

When the algorithm performs variable selection, we initialize models with previous model

results. After the first model is fit in the variable selection procedure, the fixed effects, random

effects covariance matrix, and random effects MCMC chain are initialized using results from a

previous model fit.
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The EM algorithm is considered to have converged when the following condition is met at

least 2 consecutive times (default) or until the maximum number of EM iterations (25) is reached:

||pψ̃psqT ,βpsqT , bpsqT
q
T

´ pψ̃ps´tqT ,βps´tqT , bps´tqT
q
T

||
2
2{ds´t

n ă ϵEM (D.3)

where the superscript ps ´ tq indicates t EM iterations back (default t “ 2), ||.||22 represents the

L2 norm, and ds´t
n equals the total number of non-zero pψ̃T ,βT , bT qT coefficients in iteration

ps ´ tq. In other words, the algorithm computes the average Euclidean distance between the

current coefficient vector pψ̃T ,βT , bT qT and the coefficient vector from t EM iterations back and

compares it with ϵEM “ 0.0015.

The M-step algorithm is considered to have converged when the following condition is met

or until the maximum number of iterations (50) is reached:

maxtmaxj|ψ̃
ps,g`1q

j ´ ψ̃
ps,gq

j |,maxl|β
ps,g`1q

l ´ β
ps,gq

l |,maxt,h|b
ps,g`1q

th ´ b
ps,gq

th |u ă ϵm, (D.4)

where bth is an individual element of bt, which is the t-th row of theB. The value of ϵm was set

to 0.001.

D.1.5 Case study: Study information and data processing

In this section, we provide more information about the individual studies contained within

the dataset and describe how we set up the data for the case study analyses in Section 4. More

complete coding details are provided in the GitHub repository https://github.com/

hheiling/paper_phmmPen_FA.

The studies used in these analyses are summarized in Supplementary Material Table D.1,

which contains the gene expression platform information (RNA-seq vs microarray), the gene

set sizes, the sample sizes, the number of events, and the corresponding citations for each of the

studies.
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Dataset Platform Gene Set
Size

Sample
Size

# Events Citation

Aguirre RNA-seq 52576 47 35 Aguirre et al. (2018)
CPTAC RNA-seq 28057 124 46 Cao et al. (2021)

Dijk RNA-seq 49677 90 81 Dijk et al. (2020)
Moffitt Microarray 19749 123 83 Moffitt et al. (2015)

PACA AU Microarray 47265 63 38 Bailey et al. (2016)
Puleo Microarray 20087 288 181 Puleo et al. (2018)
TCGA RNA-seq 20531 144 75 Raphael et al. (2017)

Table D.1: Summaries of PDAC gene expression datasets. Used in case study prediction model
of survival.

The subjects used in the analyses were restricted to those with primary pancreatic ductal

adenocarinoma samples. Of the total genes listed, 420 of these genes were both part of the 500

member gene list that Moffitt et al. (2015) specified as relevant for classifying subjects into the

basal vs classical subtypes and common among all of the datasets. (The 500 member gene list

is also provided within the aforementioned GitHub repository). We removed the bottom 20% of

these 420 genes by rank-transforming the genes and then removing the genes with the lowest

average rank.

Because the datasets are a mix of RNA-seq and microarray datasets, we integrated the data

together using the data integration rank transformation technique as specified by Rashid et al.

(2020). This integration technique creates top scoring pairs (TSPs). To illustrate the interpretation

of TSPs, let gki,A and gki,B be the raw expression of genes A and B in subject i of group k. For

each gene pair (gki,A, gki,B), the TSP is an indicator Ipgki,A ą gki,Bq which specifies which of the

two genes has higher expression in the subject. We denote a TSP predictor as “GeneA GeneB”.

To pick the TSPs used in our analyses, we first removed TSPs that had low variation across

the samples. If the average value of the TSP was less than 0.10 or greater than 0.90, they were

not included in later analyses. Next, we fit single covariate proportional hazard mixed effects

models using the coxme R package (?), where the models contained the TSP, a random intercept,

and a random slope for the TSP. From these models, we extracted the estimated log-likelihoods

and sorted the TSPs based on these log-likelihoods (highest to lowest).
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After sorting the TSPs by their log-likelihoods, we removed TSPs with high correlation.

Starting with the TSP with the maximum log-likelihood, we removed all other TSPs with lower

(i.e. more negative) log-likelihood values that shared one of the genes in the first TSP. Then we

moved to the next TSP with the second highest log-likelihood and repeated this process, contin-

uing in this way for all downstream TSPs. At the end of this procedure, we were left with 168

TSPs.

D.1.6 Case study: Sensitivity analyses

We performed sensitivity analyses on our case study by running the Elastic Net variable

selection procedure with alternative values of π—the value that represents the balance between

ridge regression and the MCP penalty (π “ 0 represents ridge regression, π “ 1 represents

the MCP penalty)—and alternative values for the number of latent common factors r (for the

phmmPen FA procedure). We considered values of π “ 0.7, 0.8, 0.9, 1.0.

In addition to estimating the number of latent common factors using the Growth Ratio pro-

cedure, which estimated a value of r “ 2, we also fit the model assuming r “ 3 because the

simulations given in the main paper indicated that the Growth Ratio method may underestimate

r.

When we set π “ 0.9, which were the main results reported in the paper, the coefficient

values and selection results were very consistent for the different values of r used in the analyses.

Of the 19 TSPs selected when π “ 0.9 and r “ 2, 17 were also selected when r was set to 3,

and the coefficient values reported were very similar between the two sets of results. When r was

set to 3, the algorithm did not select the following TSP covariates: SMPD3 RHOD (log hazard

ratio of -0.55) and ZNF165 BMP4 (log hazard ratio of -0.38). Additionally, SMPD3 RHOD was

selected to have a random effect across the studies when r “ 3 instead of CYP2C18 COX6B2 for

r “ 2.

When we set π “ 0.8 and set r to the Growth Ratio estimate of 2, the fixed effects shown in

the main paper Figure 1 were also selected, and they reported very similar coefficient values to
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those presented in Figure 1. The random effect CYP2C18 COX6B2 was selected just as in the

main reported results.

If we set π “ 0.7 and again set r to the Growth Ratio estimate of 2, 8 of the 19 TSPs selected

in the π “ 0.9 scenario were no longer selected in the π “ 0.7 scenario (see output from code

in the GitHub repository https://github.com/hheiling/paper_phmmPen_FA for

details). The coefficient values for these 8 TSPs were relatively small compared to the 11 TSPs

selected in all π “ t0.7, 0.8, 0.9u scenarios, so the results still seemed fairly consistent across the

conditions. The π “ 0.7 also selected CYP2C18 COX6B2 as a random effect.

The times to complete the phmmPen FA variable selection procedure for π “ t0.7, 0.8, 0.9, 1.0u

was between 2.1 and 2.4 hours when r “ 2 and between 2.7 and 5.1 hours when r “ 3.

D.1.7 Software

Software in the form of R code is available through the GitHub repository https://

github.com/hheiling/glmmPen. Code to run the simulations and the case study analysis

is available through the GitHub repository https://github.com/hheiling/paper_

phmmPen_FA
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Lebrigand, K., Bergenstråhle, J., Thrane, K., Mollbrink, A., Barbry, P., Waldmann, R., and Lunde-
berg, J. (2020). The spatial landscape of gene expression isoforms in tissue sections. bioRxiv.

Lee, K. E., Kim, Y., and Xu, R. (2014). Bayesian variable selection under the proportional hazards
mixed-effects model. Computational statistics & data analysis, 75, 53–65.

Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surro-
gate variable analysis. PLoS genetics, 3(9), e161.

Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J. C.,
Rodig, S., et al. (2016). Comprehensive analyses of tumor immunity: implications for cancer
immunotherapy. Genome Biology, 17(1), 174.

Li, Z. and Wu, H. (2019). Toast: improving reference-free cell composition estimation by cross-
cell type differential analysis. Genome biology, 20(1), 190.

158



Lorah, J. and Womack, A. (2019). Value of sample size for computation of the bayesian informa-
tion criterion (bic) in multilevel modeling. Behavior research methods, 51(1), 440–450.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
for rna-seq data with deseq2. Genome biology, 15(12), 550.

Lu, P., Nakorchevskiy, A., and Marcotte, E. M. (2003). Expression deconvolution: A reinterpreta-
tion of dna microarray data reveals dynamic changes in cell populations. Proceedings of the
National Academy of Sciences, 100(18), 1037010375.

Lusa, L., McShane, L. M., Reid, J. F., De Cecco, L., Ambrogi, F., Biganzoli, E., Gariboldi, M.,
and Pierotti, M. A. (2007). Challenges in projecting clustering results across gene expression–
profiling datasets. JNCI: Journal of the National Cancer Institute, 99(22), 1715–1723.

Ma, S., Ogino, S., Parsana, P., Nishihara, R., Qian, Z., Shen, J., Mima, K., Masugi, Y., Cao, Y.,
Nowak, J. A., et al. (2018). Continuity of transcriptomes among colorectal cancer subtypes
based on meta-analysis. Genome biology, 19(1), 142.

Maier, M. J. (2014). Dirichletreg: Dirichlet regression for compositional data in r. Research Report
Series / Department of Statistics and Mathematics, 125.

Maynard, K. R., Collado-Torres, L., Weber, L. M., Uytingco, C., Barry, B. K., Williams, S. R.,
Catallini, J. L., Tran, M. N., Besich, Z., Tippani, M., Chew, J., Yin, Y., Kleinman, J. E.,
Hyde, T. M., Rao, N., Hicks, S. C., Martinowich, K., and Jaffe, A. E. (2020). Transcriptome-
scale spatial gene expression in the human dorsolateral prefrontal cortex. bioRxiv.

Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G. H., Hoadley, K. A., Rashid,
N. U., Williams, L. A., Eaton, S. C., Chung, A. H., et al. (2015). Virtual microdissection
identifies distinct tumor-and stroma-specific subtypes of pancreatic ductal adenocarcinoma.
Nature genetics, 47(10), 1168.

Nazarov, P. V., Wienecke-Baldacchino, A. K., Zinovyev, A., Czerwińska, U., Muller, A., Nashan,
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