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Abstract

Background: Ureteral injury (UI) is a rare but devastating complication during colorectal surgery. Ureteral stents may
reduce UI but carry risks themselves. Risk predictors for UI could help target the use of stents, but previous efforts have
relied on logistic regression (LR), shown moderate accuracy, and used intraoperative variables. We sought to use an
emerging approach in predictive analytics, machine learning, to create a model for UI.

Methods: Patients who underwent colorectal surgery were identified in the National Surgical Quality Improvement
Program (NSQIP) database. Patients were split into training, validation, and test sets. The primary outcomewas UI. Three
machine learning approaches were tested including random forest (RF), gradient boosting (XGB), and neural networks
(NN), and compared with traditional LR. Model performance was assessed using area under the curve (AUROC).

Results: The data set included 262,923 patients, of whom 1519 (.578%) experienced UI. Of the modeling techniques,
XGB performed the best, with an AUROC score of .774 (95% CI .742-.807) compared with .698 (95% CI .664-.733) for
LR. Random forest and NN performed similarly with scores of .738 and .763, respectively. Type of procedure, work
RVUs, indication for surgery, and mechanical bowel prep showed the strongest influence on model predictions.

Conclusions: Machine learning-based models significantly outperformed LR and previous models and showed high
accuracy in predicting UI during colorectal surgery. With proper validation, they could be used to support decision
making regarding the placement of ureteral stents preoperatively.
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Key Takeaways
· Machine learning-based models significantly out-

performed logistic regression in the prediction of
ureteral injury during colorectal surgery.

· With proper validation, these machine learning
models could augment surgeon judgment by
identifying patients at highest risk of UI for con-
sideration of ureteral stent placement.

Introduction

Ureteral injury (UI) is a rare but devastating complication
of colorectal surgery, occurring in .3-.6% of cases.1,2 In
addition to the injury, UI is associated with higher mor-
bidity, mortality, length of stay, and hospital charges.1

Identifying the ureter is a key step in most colorectal
operations, and ureteral stents may help surgeons rapidly

and safely identify the ureter in cases of increased
complexity. Ureteral stent placement may be associated
with a decreased rate of UI, but stent placement itself
carries risks, including hematuria, urinary tract infection,
acute kidney injury, and stent migration.3,4
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A predictive model to identify patients at highest risk
of UI would be helpful in selecting patients who would
benefit most from ureteral stents. Previous efforts have
created a predictive model based on logistic regression
(LR) for this outcome, but they showed limited accuracy
and required intraoperative information.1 This limits the
usefulness of these models, as ureteral stent placement
occurs prior to surgery and intraoperative information is
not yet known. Machine learning is an emerging tech-
nique within data science that uses computational
methods to find nonlinear patterns in large data sets. It has
been successfully applied to the prediction of procedure-
specific outcomes, such as pancreatic fistula and com-
plexity of abdominal wall reconstruction.5-7

We sought to use machine learning to predict UI during
colorectal surgery and create a tool which could be used to
guide ureteral stent placement. Our hypothesis was that
machine learning methods applied to multi-institutional
data from the National Surgical Quality Improvement
Program (NSQIP) database would outperform previous
approaches and result in a more accurate model.

Methods

Data

Study exemption and waiver of informed consent were
obtained from the University of North Carolina In-
stitutional Review Board. We used data from the NSQIP
database, including the proctectomy and colectomy
procedure-targeted data sets. NSQIP collects data from
more than 700 participating hospitals using trained sur-
gical reviewers, with reliability ensured through rigorous
training and reliability audits.8 We used all available
years, which included 2012 to 2019 for colectomy and
2016 to 2019 for proctectomy. Data from 2019 were held
out as an external test set, as it was the most recent year
available and would most closely resemble current pa-
tients. Data from 2012 to 2018 were split into training and
validation sets in an 80/20 ratio with 5-fold cross-
validation. These data were used for model training,
adjusting model settings (hyperparameters), and ensuring
model generalizability prior to evaluation on the test. This
work is reported in accordance with the Transparent
Reporting of a multivariable prediction model for In-
dividual Prognosis or Diagnosis (TRIPOD) checklist.

Outcomes and Variables

Using methods described by Coakley et al, we identified
UI by searching the CPT codes for concurrent procedures
for codes indicating repair of ureters.2 These included
CPT codes 50740, 50750, 50760, 50770, 50780, 50783,
50785, 50800, 50810, 50815, 50820, 50825, 50840,
50845, 50860, 50900, 50947, 50948, 50949, 52334, and

50040. We also searched these CPT codes for “return to
OR” and ICD codes for “indications for return to OR”
indicating UI (ICD9: 867.2, 867.3; ICD10: S37). For
model development, we excluded cases where pro-
phylactic ureteral stents were placed (CPT code 52005).4

Other variables were preprocessed in accordance with
prior work, with missing categorical variables imputed as
a unique “missing” class and numerical variables imputed
as the median.9 All available preoperative variables were
included in the models, with a full list available in Table 1.

Modeling

We applied various machine learning approaches in-
cluding random forest (RF), gradient boosting (XGB), and
deep neural networks (NNs). We compared these tech-
niques with LR. Random forest and XGB are based on
combining decision trees, while NN processes data
through nonlinear functions that are adjusted with train-
ing.9 Hyperparameters were tuned for each algorithm
using Bayesian optimization from the scikit-optimize li-
brary. This algorithm explores a wide range of hyper-
parameters and uses previous results to guide a targeted
search for the highest performing set. For RF and XGB,
hyperparameters included the number of trees, the max-
imum tree depth, the minimum samples per split, the
number of features considered per split, and the subsample
of features considered. For NN, hyperparameters included
the number of neurons, the number of layers, the per-
centage of dropout used per layer, and the learning rate.

Evaluation

We evaluated each model using area under the receiver
operating characteristic curve (AUROC) and area under
the precision-recall curve (AUPRC). Area under the re-
ceiver operating characteristic curve is based on a plot of
sensitivity vs 1 – specificity and represents a model’s
ability to distinguish positive from negative cases. Area
under the receiver operating characteristic curve ranges
from .5 to 1, with .5 representing random guessing and 1
representing perfect classification. The DeLong test was
used to compare AUROC, with significance set at P <
.05.10 Area under the precision-recall curve is based on
a plot of sensitivity vs positive predictive value and
represents a model’s ability to identify all positive cases
without identifying negative cases. Area under the
precision-recall curve ranges from the rate of the positive
class (ie, the rate of UI) to 1 (representing perfect sen-
sitivity). We also calculated sensitivity, specificity, posi-
tive predictive value, and negative predictive value.
Model performance was also analyzed among patients
who had ureteral stents placed. We used Shapley additive
explanations to identify which variables had the strongest
impact on model predictions.11 LR, RF, and XGB were
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Table 1. Included Variables for the Prediction of Ureteral Injury.

Variable Category Missing No Injury, n (%)
Ureter Injury

n (%)
P-

Value

Age, mean (SD) 0 61.6 (15.5) 60.0 (13.8) <.001
Sex Female 0 136502 (52.2) 697 (45.9) 0.334

Male 124899 (47.8) 822 (54.1)
Non-binary 3 (0.0) 0 (0.0)

Height (m), mean (SD) 5162 1.7 (.1) 1.7 (.1) .050
Weight 3071 80.0 (21.5) 80.3 (22.2) .617
BMI 5478 28.4 (6.7) 28.7 (7.0) .105
Race/ethnicity Non-Hispanic White 0 183274 (70.1) 1024 (67.4) .027

Non-Hispanic Black 23208 (8.9) 154 (10.1)
Hispanic 13159 (5.0) 97 (6.4)
Asian 8050 (3.1) 53 (3.5)
American Indian or Alaskan native 948 (.4) 4 (.3)
Native Hawaiian or Pacific Islander 542 (.2) 4 (.3)
Unknown/not reported 32223 (12.3) 183 (12.0)

Procedure Abdominoperineal resection 0 3353 (1.3) 51 (3.4) <.001
Colectomy, combined transanal approach 366 (.1) 3 (.2)
L-sided colectomy 36840 (14.1) 452 (29.8)
Low anterior resection 4143 (1.6) 35 (2.3)
Laparoscopic L-sided colectomy 42971 (16.4) 374 (24.6)
Laparoscopic LAR 2770 (1.1) 12 (.8)
Laparoscopic R-sided colectomy 34869 (13.3) 48 (3.2)
Laparoscopic partial colectomy 50404 (19.3) 161 (10.6)
Laparoscopic proctocolectomy 2049 (.8) 7 (.5)
Laparoscopic rectopexy 549 (.2)
Laparoscopic total colectomy 6617 (2.5) 18 (1.2)
Partial colectomy 39998 (15.3) 191 (12.6)
Pelvic exenteration 360 (.1) 46 (3.0)
Proctectomy, perineal approach 2180 (.8) 4 (.3)
Proctectomy, other approach 109 (.0) 2 (.1)
Proctocolectomy 876 (.3) 9 (.6)
R-sided colectomy 25637 (9.8) 79 (5.2)
Total colectomy 7313 (2.8) 27 (1.8)

Indication Acute diverticulitis 2391 20202 (7.8) 159 (10.8) <.001
Anal cancer 388 (.1) 3 (.2)
Bleeding 1772 (.7) 5 (.3)
Chronic diverticular disease 32433 (12.5) 303 (20.5)
Colon cancer 86943 (33.6) 432 (29.3)
Colon cancer w/obstruction 11510 (4.4) 44 (3.0)
Crohn’s disease 14997 (5.8) 52 (3.5)
Enterocolitis (eg, C. difficile) 1448 (.6) 1 (.1)
Non-malignant polyp 20520 (7.9) 22 (1.5)
Other 43082 (16.6) 328 (22.2)
Rectal cancer 7894 (3.0) 109 (7.4)
Rectal prolapse 2448 (.9) 0 (.0)
Ulcerative colitis 8349 (3.2) 15 (1.0)
Volvulus 7071 (2.7) 2 (.1)

Antibiotic bowel prep Yes 44166 124294 (57.1) 627 (56.6) .751
No 93355 (42.9) 481 (43.4)

Mechanical bowel prep Yes 46861 90907 (42.3) 439 (41.6) .683
No 124100 (57.7) 616 (58.4)

Emergent indication Bleeding 0 1767 (.7) 1763 (.7) <.001
Obstruction 10375 (4.0) 44 (2.9)
Perforation 18115 (6.9) 27 (1.8)
Not emergent 223210 (85.4) 1431 (94.2)
Other 5295 (2.0) 12 (.8)

(Continued)
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Table 1. Continued

Variable Category Missing No Injury, n (%)
Ureter Injury

n (%)
P-

Value

Approach Open (planned) 86 95084 (36.4) 709 (46.7) <.001
Laparoscopic 125413 (48.0) 574 (37.8)
Laparoscopic w/unplanned conversion to
open

16409 (6.3) 130 (8.6)

Robotic 24016 (9.2) 103 (6.8)
Other 397 (.2) 2 (.1)

Transfer status From acute care hospital inpatient 248 8020 (3.1) 25 (1.6) <.001
Not transferred (admitted from home) 241939 (92.6) 1458 (96.0)
Nursing home—chronic care—
intermediate care

3291 (1.3) 11 (.7)

Outside emergency department 6804 (2.6) 19 (1.3)
Transfer from other 1103 (.4) 5 (.3)

Diabetes Insulin dependent 0 13863 (5.3) 67 (4.4) .204
No diabetes 221574 (84.8) 1310 (86.2)
Medication only 25967 (9.9) 142 (9.3)

Smoking Yes 0 43201 (16.5) 311 (20.5) <.001
Dyspnea At rest 0 1548 (.6) 3 (.2) .071

Moderate exertion 16223 (6.2) 84 (5.5)
No 243633 (93.2) 1432 (94.3)

Functional status Independent 0 251671 (96.7) 1483 (97.8) .040
Partially dependent 6975 (2.7) 27 (1.8)
Totally dependent 1740 (.7) 6 (.4)

COPD Yes 0 14301 (5.5) 60 (3.9) .011
Ascites Yes 0 2215 (.8) 9 (.6) .347
Heart failure Yes 0 3394 (1.3) 10 (.7) .037
Hypertension Yes 0 123636 (47.3) 663 (43.6) .005
Acute renal failure Yes 0 1746 (.7) 3 (.2) .037
Dialysis Yes 0 3062 (1.2) 7 (.5) .014
Disseminated cancer Yes 0 16892 (6.5) 191 (12.6) <.001
Steroid use Yes 19527 16888 (7.0) 68 (5.1) .007
Weight loss Yes 0 13038 (5.0) 96 (6.3) .020
Bleeding disorder Yes 0 12318 (4.7) 44 (2.9) .001
Preoperative transfusion
requirement

Yes 0 7569 (2.9) 31 (2.0) .057

Preoperative sepsis None 0 230211 (88.1) 1421 (93.5) <.001
SIRS 8476 (3.2) 38 (2.5)
Sepsis 16367 (6.3) 53 (3.5)
Septic shock 6350 (2.4) 7 (.5)

ASA classification 1-No disturbance 0 5382 (2.1) 19 (1.3) <.001
2-Mild disturbance 101812 (38.9) 591 (38.9)
3-Severe disturbance 128248 (49.1) 814 (53.6)
4-Life threatening 23844 (9.1) 88 (5.8)
5-Moribund 1821 (.7) 7 (.5)
None assigned 297 (.1) 0 (.0)

Superficial SSI PATOS Yes 0 473 (.2) 4 (.3) .361
Deep SSI PATOS Yes 0 342 (.1) 3 (.2) .457
Organ-space SSI PATOS Yes 0 5435 (2.1) 38 (2.5) .289
Pneumonia PATOS Yes 0 1320 (.5) .009
Ventilator-dependent PATOS Yes 0 1944 (.7) 2 (.1) .009
Urinary tract infection PATOS Yes 0 787 (.3) 22 (1.4) <.001
Sepsis PATOS Yes 0 6931 (2.7) 40 (2.6) 1.000
Septic shock PATOS Yes 0 6735 (2.6) 14 (.9) <.001
Work RVU, mean (SD) 0 26.8 (4.3) 29.2 (5.3) <.001

(Continued)
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implemented using scikit-learn and NN using Tensor-
Flow/Keras.12,13 All analyses were performed in Python
(version 3.8). Code to reproduce this work is available at
https://github.com/gomezlab/colorectal_predictors/tree/
main/ureter_injury.

Results

The data set included 262,923 patients. Of these, 213,786
were used for training/validation, while 49,137 were used
for testing. 12,229 patients who had prophylactic ureteral
stents placed were excluded from analysis. 1519 (.578%)
of patients experienced UI. The cohort consisted of 52%
female patients, with an average age of 61.6. By procedure
type, the rate of UI was 1.0% for left-sided colectomies,
.7% for low anterior resection, and .2% for right-sided
colectomies. By indication, the rate of UI was highest for
chronic diverticular disease (.9%) and rectal cancer
(1.3%) and lowest for colon cancer (.5%) and non-
malignant polyp (.1%). The average work relative
value unit (RVUs) for procedures with no UI was 26.8
compared with 29.2 for those with UI.

Of the 3 machine learning techniques, XGB performed
the best, with an AUROC score of .774 (95% CI .742-
.807), compared with .698 (95% CI .664-.733) for LR.
Random forest and NN also performed well with AUROC
scores of .738 (95% CI .704-.772) and .763 (95% CI .730-
.796), respectively. Comparison using the DeLong test
showed a significant difference between the AUROCs of
XGB and LR with P < .001. Receiver operating char-
acteristic curves are shown in Figure 1.

Gradient boosting also showed the highest perfor-
mance in terms of AUPRC with a score of .031 (95% CI
.027-.034), although RF showed very similar performance
at .030 (95%CI .027-.034). The AUPRC score for LRwas
much lower at .013 (95% CI .011-.015), while NN scored
.024 (95% CI .021-.027). Results for AUROC and
AUPRC are summarized in Table 2. Precision-recall
curves are shown in Figure 2.

We also calculated sensitivity, positive predictive
value, and negative predictive value across a range of
specificity thresholds. At 90% specificity, XGB showed
a sensitivity of 38%, a positive predictive value of 2%, and
a negative predictive value of 99.6%. At 50% specificity,
XGB showed a sensitivity of 88%, a positive predictive
value of 1%, and a negative predictive value of 99.9%.
Results for sensitivity, specificity, positive predictive
value, and negative predictive value for all thresholds are
available in Table 3.

We also analyzed model performance for patients who
had stents placed. Among patients who had ureteral stents
placed, the rate of UI was .883%. For the XGB model,
AUROC was .613 and AUPRC was .017. However, the
average prediction for the XGB model was .007 for pa-
tients with stents compared with .003 those without stents,
showing higher predicted average risk.

Using SHAP values, we identified which variables had
the strongest influence as predictors in the XGB model.
The type of procedure, complexity of procedure (assessed
using work relative value units), indication for surgery,
mechanical bowel prep, wound classification, emergency
procedure, and operative approach had the strongest in-
fluence on model decision making (Figure 3).

Discussion

This study sought to create and validate machine learning-
based models to predict UI during colorectal surgery and
showed significant improvements in predictive ability
compared with LR, as well as high accuracy in the test set.
Analysis of model decision making showed that the type
of procedure, procedure complexity, indication for sur-
gery, and mechanical bowel prep were the most important
variables. Model accuracy was much lower for patients
who had ureteral stents placed, suggesting that ureteral
stent placement changes the risk profile for UI, but the
model agreed with surgeon assessment that these patients
were at overall higher risk.

Table 1. Continued

Variable Category Missing No Injury, n (%)
Ureter Injury

n (%)
P-

Value

Sodium, mean (SD) 18001 138.9 (3.4) 139.0 (3.1) .057
Blood urea nitrogen, mean (SD) 26484 16.2 (11.1) 14.7 (8.7) <.001
White blood cell count, mean
(SD)

13638 8.4 (4.6) 7.9 (4.0) <.001

Hematocrit, mean (SD) 11879 37.9 (6.1) 37.6 (5.8) .075
Platelet count, mean (SD) 13858 270.9 (103.2) 281.9 (108.5) <.001
Creatinine, mean (SD) 16216 1.0 (.7) .9 (.5) <.001

Abbreviations: L, left; R, right; SIRS, systemic inflammatory response syndrome; ASA, American Society of Anesthesiologists; SSI, surgical site infection;
PATOS, present at time of surgery; RVUs, relative value units.
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Multiple previous studies have identified risk factors
for UI during colorectal surgery.14-16 The largest of these,
an analysis using NSQIP from 2012 to 2014, found that
UI was associated with diverticulitis, T4 malignancy, and
open approach.2 Additionally, a study using the Danish
Colorectal Database from 2005 to 2011 found that lap-
aroscopic approach and surgery for rectal cancer was
associated with a higher risk of UI.17 Our study contra-
dicted this study’s findings regarding operative approach,
perhaps due to increased laparoscopic experience during
the time period included in the NSQIP database. One
previous study built a predictive model for UI during
colorectal surgery using the National Inpatient Sample
from 2001 to 2010 and showed an AUROC of .73.1

However, this model required intraoperative in-
formation, including the presence of adhesions, limiting

its use for preoperative decision making and inflating its
accuracy.

One interesting finding from our study was the model’s
use of work RVUs as a risk factor for UI. While work
RVUs are mainly used for financial compensation, they
are also a measure of the complexity of operations. Work
RVUs have been strongly associated with risk of post-
operative complications in multiple previous studies.18 In
addition, other factors such as mechanical and oral an-
tibiotic bowel prep are unlikely to have a direct influence
on UI but are indirectly associated with decreased risk of
injury, so have predictive value. Overall, there is a strong
overlap between previously identified risk factors for UI
and factors used by the current model. This confirms that
one strength of machine learning approaches when ap-
plied to clinical risk prediction lies in improved

Table 2. Area Under the Receiver Operating Characteristic Curve and Precision Recall Curve for Models Predicting Ureteral Injury.

Model AUROC Mean AUROC 95% CI AUPRC Mean AUPRC 95% CI

Logistic regression .698 .664-.733 .013 .011-.015
Random forest .738 .704-.772 .030 .027-.034
XGBoost .774 .742-.807 .031 .027-.034
Neural network .763 .730-.796 .024 .021-.027

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; AUPRC, area under the precision-recall curve.

Figure 1. Receiver operating characteristic curves for models predicting ureteral injury. RF, random forest; XGB, gradient boosting;
NN, neural network; LR; logistic regression; AUROC; area under the receiver operating characteristic curve.

Chen et al 5707



interpretation of known risk factors and their combinatory
interactions rather than identification of novel ones.

Our model adds to the growing literature showing the
potential for machine learning-based models to assist with
preoperative decision making through risk prediction.
Machine learning has shown high accuracy in predicting
general postoperative outcomes across a variety of pro-
cedures and data sets.5 More recently, it has been suc-
cessfully applied to procedure and disease-specific
outcomes including complexity of abdominal wall re-
construction and response of rectal cancer to neo-adjuvant
therapy.7,19 The current models similarly show the po-
tential of using machine learning to incorporate in-
formation from large data sets and provide insights
traditionally dependent on a surgeon’s clinical judgment.
If these models were integrated into the electronic medical
record as decision-support tools, they could be used to

automatically flag patients at the highest risk of UI for the
consideration of stent placement. However, decision
making would still be dependent on surgeons, who would
choose the threshold at which they believe the benefits of
stent placement outweigh the risks.

The study of iatrogenic UI is particularly difficult be-
cause it is so rare. This results in important limitations for
the current study. The most significant is its method of
identifying UI (with the use of CPT codes) within the
NSQIP database. As noted by previous authors, this ap-
proach can incorrectly identify intentional concurrent re-
sections of the ureter, although these cases are likely
rare.2,20 Additionally, it does not identify ureteral injuries
which are not recognized intraoperatively and do not result
in return to OR. Second, the models show low AUPRC and
positive predictive value, which is expected given the rare
incidence of UI and the importance of the operation itself in

Table 3. Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value for Gradient Boosting Models Predicting
Ureteral Injury.

Specificity Sensitivity Positive predictive value Negative predictive value

.90 .38 .02 .996

.70 .706 .013 .998

.50 .875 .01 .999

.30 .953 .008 .999

.10 .989 .006 .999

Figure 2. Precision-recall curves for models predicting ureteral injury. RF, random forest; XGB, gradient boosting; NN, neural
network; LR, logistic regression; AUPRC, area under the precision-recall curve.
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causing injuries. Third, validation of the model on data
external to NSQIP is difficult due to the low incidence of UI
and models trained on the national NSQIP data set may not
perform well at individual institutions. Fourth, our dataset
does not include other preoperative information thatmay be
helpful in predicting UI, such as a history of abdominal
surgery or preoperative CT imaging. Finally, more accurate
models specific to procedure type and indication are
possible. However, we chose to balance model accuracy
and generalizability by developing a model specific to
colorectal surgery but useful for all colorectal resections.

Conclusion

In conclusion, this study shows that machine learning-
based models can significantly outperform LR in the
prediction of UI during colorectal surgery. Validation of
these models will require assembly of a large, multi-
institutional database in order to capture a sufficient
number of events. However, with proper validation, these
machine learning models could augment surgeon judg-
ment by identifying patients at highest risk of UI for
consideration of ureteral stent placement.
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