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We report the emergence of colistin resistance in Klebsiella 
pneumoniae carbapenemase (KPC)–producing Klebsiella 
pneumoniae after 8 days of colistin-based therapy, resulting in 
relapse of bloodstream infection and death. Disruption of the 
mgrB gene by insertion of a mobile genetic element was found 
to be the mechanism, which was replicated in vitro after expos-
ure to subinhibitory concentrations of colistin and meropenem.
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Carbapenem-resistant Klebsiella pneumoniae, commonly medi-
ated in the United States by production of Klebsiella pneumoniae 
carbapenemase (KPC), is a cause of difficult-to-treat infections 
associated with high mortality. Among the only currently available 
agents with reliable activity against KPC-producing K.  pneumo-
niae are polymyxin B, colistin, and combinations containing novel 
inhibitors of KPC that restore the activity of β-lactams. Therefore, 
reports describing the decreased activity of ceftazidime-avibactam, 
one of the combinations, and the emergence of resistance to colis-
tin in KPC-producing K. pneumoniae are of special concern [1, 2].  
Although the plasmid-mediated mcr genes are increasingly 

reported as a cause of colistin resistance in Escherichia coli, the 
most common mechanism of colistin resistance in K. pneumoniae 
is insertional inactivation of the mgrB gene [1]. The temporal pace 
and factors leading to colistin resistance through this mechanism 
are unknown. We report a case of a 52-year-old man (Figure 1) 
with neutropenia and chronic myelogenous leukemia who devel-
oped a central line–associated bloodstream infection with KPC-
producing K. pneumoniae. The organism (isolate 1, Kpn918) had 
decreased ceftazidime-avibactam susceptibility in the absence of 
previous treatment with that agent. Despite removal of the line 
and 8 days of combination therapy with meropenem, tigecycline 
and colistin (loading dose of 5 mg/kg ideal body weight, followed 
by 1.75 mg/kg every 12 hours, adjusting for a creatinine clearance 
<50 mL/min), he relapsed with colistin-resistant KPC–K. pneumo-
niae bloodstream infection (isolate 2, Kpn926) and died from the 
infection in the setting of persistent neutropenia.

METHODS

To define the molecular mechanism of treatment-emergent 
colistin resistance and characterize the genetic background and 
evolution of colistin resistance, we performed the following 
microbiological tests. Antibiotic susceptibility testing was per-
formed with disc diffusion assay and broth microdilution. In the 
case of colistin, broth macrodilution was performed in triplicate 
[3]. Results were interpreted according to Clinical and Laboratory 
Standards Institute guidelines, except for tigecycline and colistin 
minimum inhibitory concentrations (MICs), which were inter-
preted according to guidelines from the European Committee on 
Antimicrobial Susceptibility Testing [4, 5]. Multilocus sequence 
typing (MLST), wzi sequencing, and repetitive sequence-based 
polymerase chain reaction (rep-PCR) assessed genetic relat-
edness. Whole-genome sequencing of the isolates Kpn918 and 
Kpn926 was performed using the MiSeq platform (Illumina Inc., 
San Diego, CA) and analyzed using ResFinder, PlasmidFinder, 
and BLAST [6–8]. Additionally, blaKPC, blaSHV, blaNDM, blaVIM, 
blaIMP, blaTEM, blaOXA-48-like, ompK35/36, mcr-1/2, and mgrB genes 
were queried using established PCR primers, and plasmid rep-
licon typing with PCR was performed [9]. To better understand 
the evolution of colistin resistance, isolate 1 (Kpn918, colis-
tin-susceptible) was exposed to serial passages with 0.25 µg/mL 
of colistin and 2 µg/mL of meropenem.

RESULTS

Antibiotic susceptibility testing of both isolates revealed resist-
ance to meropenem (MIC > 8  µg/mL), ceftazidime (MIC > 
16 µg/mL; zone of inhibition, 6 mm), aztreonam (MIC > 16 µg/
mL), and tigecycline (MIC, 2  µg/mL). Ceftazidime-avibactam 
displayed decreased susceptibility (MIC, 4  µg/mL; zone of 
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inhibition, 19 mm). In regards to colistin, isolate 1 demonstrated 
an MIC of 0.5 µg/mL (susceptible) while isolate 2 had an MIC 
of 32  µg/mL (resistant). Among antibiotic combinations tested 
using disc diffusion, only ceftazidime-avibactam combined with 
aztreonam resulted in an increased zone of inhibition (to 24 mm). 
Genetic analysis indicated that Kpn918 and Kpn926 belonged to 
ST258, contained wzi 29, and shared 98.4% similarity according 
to rep-PCR. Each harbored blaKPC-2, blaSHV-2, and blaTEM-1. Both 
isolates possessed FIIK plasmids harboring blaKPC-2 on a Tn4401a 
transposon. Neither contained additional carbapenemase genes 
or mcr-1/2. IS903, a 1057 base-pair-long sequence was detected 
within mgrB in isolate 2 (colistin-resistant). Insertional inactiva-
tion of mgrB also occurred after 3 serial passages of isolate 1 in 
0.25 µg/mL of colistin; however, a different element was found 
(IS4). In ompK35 and ompK36 from both isolates, we identified 
mutations that led to a stop codon at amino acid position 50 in 
ompK35, and insertions encoding glycine and aspartic acid at 
amino acid positions 134 and 135 in ompK36. Supplementary 
Figure 1 shows the results of draft whole-genome sequencing.

DISCUSSION

This report describes the occurrence of treatment-emer-
gent colistin-resistant KPC–K.  pneumoniae after 8  days of 

colistin-based combination therapy and highlights important 
observations. First, colistin resistance emerged due to disrup-
tion of mgrB by IS903. Similar emergence of colistin resistance 
was previously reported after 30 days of colistin therapy due to 
disruptive insertion of IS4-like insertion sequence into mgrB [1].  
Insertion sequences are self-transmissible elements that can 
integrate into and excise from the chromosomes. The strain 
of K. pneumoniae infecting this patient belongs to ST258, the 
most common strain of KPC-producing K.  pneumoniae in 
the United States and other countries, and insertional events 
may represent the genetic basis of its success [10, 11]. We 
hypothesize that this strain is prone to random transposition 
of insertion sequences, explaining the variability in insertion 
sequences found in isolate 2 in vitro during exposure to sub-
inhibitory concentrations of colistin. The cause of transposi-
tion of insertion sequences is not known, although exposure 
to subinhibitory concentrations of antibiotics may be associ-
ated with such events, as reproduced in vitro in the original 
isolate. Antibiotic-induced bacterial stress responses can lead 
to insertional mutations that contribute to methicillin resist-
ance in Staphylococcus aureus and to deletions of regulatory 
genes in E. coli resistant to fluoroquinolones [12, 13]. Second, 
we found that the porin genes ompK35 and ompK36 in both 
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isolates contained mutations previously linked to reduced sus-
ceptibility to ceftazidime-avibactam and carbapenems [2]. Of 
note, our patient had not been treated with ceftazidime-avibac-
tam; therefore, reinfection with a new strain or horizontal gene 
transfer from a strain previously exposed to ceftazidime-avibac-
tam cannot be dismissed. Approximately 5 cases of carbape-
nem-resistant K.  pneumoniae occur at our hospital monthly. 
Although analyses of genetic relatedness suggest that both iso-
lates from this case are clonally related, genome sequencing of 
KPC-producing K. pneumoniae from our hospital reveal that 
highly similar subpopulations can coexist over time, includ-
ing isolates containing blaKPC-2 in IncFIIK plasmids, as in this 
patient [14]. In conclusion, clinicians should strongly suspect 
emergence of resistance to colistin during treatment with colis-
tin-based combination therapies in patients with persistent or 
relapsing KPC–K.  pneumoniae bloodstream infection. These 
observations highlight the dynamic nature of resistance to 
colistin, often a “last-line agent” in critically ill patients.

Supplementary Data
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