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ABSTRACT Plazomicin was tested against 697 recently acquired carbapenem-
resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United
States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680
isolates (97.6%) were susceptible (MICs of �2 mg/liter), 9 (1.3%) intermediate (MICs
of 4 mg/liter), and 8 (1.1%) resistant (MICs of �32 mg/liter). Resistance was associ-
ated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1
isolate.
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Antimicrobial resistance is recognized as a major challenge by the World Health
Organization and the U.S. Centers for Disease Control and Prevention, with car-

bapenem resistance in multidrug-resistant Gram-negative pathogens being of partic-
ular concern (1, 2). The most recent U.S. report notes that the burden of resistance
is greater than initially estimated, documenting that there are now more than 2.8
million antibiotic-resistant infections in the United States each year, with over
35,000 fatalities (3).

A new aminoglycoside, plazomicin, was recently approved by the Food and Drug
Administration (FDA) for the management of complicated urinary tract infections and
pyelonephritis (4). Plazomicin is active against most aminoglycoside-resistant Entero-
bacteriaceae strains but is not uniformly active against Pseudomonas aeruginosa or
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Acinetobacter baumannii (5). The Consortium on Resistance Against Carbapenems in
Klebsiella and Other Enterobacteriaceae (CRACKLE), part of the Antibacterial Resistance
Leadership Group (ARLG), is a federally funded, prospective multicenter consortium
that tracks carbapenem-resistant Enterobacteriaceae (CRE) strains. This analysis is the
second in a series of ARLG Reference Group for the Testing of Novel Therapeutics
(ARGONAUT) studies, in which the in vitro activities of plazomicin and comparators
were evaluated against a CRACKLE collection of carbapenemase-producing Klebsiella
pneumoniae clinical isolates collected from the Great Lakes region between 2012 and
2016 (6).

Plazomicin MICs against a collection of 697 carbapenem-resistant K. pneumoniae
isolates with defined carbapenem resistance mechanisms (6) were determined by broth
microdilution assays, according to current Clinical and Laboratory Standards Institute
(CLSI) guidelines (7). Testing was performed using custom frozen panels (Thermo
Fisher) containing plazomicin and comparator agents. MICs were interpreted according
to FDA and CLSI breakpoints, with plazomicin MICs being interpreted as follows:
susceptible, �2 mg/liter; intermediate, 4 mg/liter; resistant, �8 mg/liter. Resistance
mechanisms of plazomicin-intermediate and resistant isolates were characterized by
whole-genome sequencing (WGS; BioProject accession numbers PRJNA433394 and
PRJNA339843) (6). Briefly, WGS was performed using paired-end Nextera XT libraries on
an Illumina NextSeq (2 � 150 bp) to 100-fold coverage. Reads were assembled using
SPAdes, annotated with the NCBI Prokaryotic Genome Annotation Pipeline, and used to
determine resistome, plasmid types, and multilocus sequence type through ResFinder
3.2, PlasmidFinder 2.1, and MLST 2.0, respectively, from the Center for Genomic
Epidemiology (http://www.genomicepidemiology.org/index.html).

Carbapenemase genes present in the 697 study isolates included blaKPC-2 (n � 323),
blaKPC-3 (n � 364), blaKPC-4 or blaKPC-4-like (n � 2), blaOXA-48-like (n � 7), and blaNDM-5 and
blaOXA-48-like (n � 1). Antimicrobial susceptibility findings are shown in Table 1. Fewer
than 1% of isolates were susceptible to ceftriaxone, ceftazidime, aztreonam, or
piperacillin-tazobactam, while �5.4% were susceptible to imipenem, meropenem, or
doripenem. Most isolates (95.9%) were also resistant to levofloxacin. Susceptibility
to other agents was more varied, with 20.6% being susceptible to trimethoprim-
sulfamethoxazole, 87.6% to tigecycline, 14.3% to tobramycin, 53.3% to gentamicin, and
64.1% to amikacin. Plazomicin MICs ranged from �0.12 to �32 mg/liter, with MIC50 and
MIC90 values of 0.25 and 1 mg/liter, respectively. Overall, 680 isolates (97.6%) were
susceptible (MICs of �2 mg/liter), while 9 (1.3%) were intermediate and 8 (1.1%) were
resistant (MICs of �32 mg/liter) to plazomicin.

The 8 plazomicin-resistant isolates were also resistant to gentamicin, tobramycin,
and amikacin; they were collected from hospitals in Ohio between 2014 and 2016. They
were obtained from abscess (n � 3), urinary (n � 2), respiratory (n � 2), and wound

TABLE 1 MIC ranges, MIC50 values, and MIC90 values, with percentages of isolates susceptible based on CLSI/FDA breakpoints

Agent MIC range (mg/liter) MIC50 (mg/liter) MIC90 (mg/liter) % susceptible

Plazomicin �0.12 to �32 0.25 1 97.6
Gentamicin �0.5 to �32 4 �32 53.3
Tobramycin �0.25 to �32 32 �32 14.3
Amikacin �1 to �64 16 32 64.1
Ceftriaxone �1 to �8 �8 �8 0.6
Ceftazidime �0.5 to �8 �8 �8 0.9
Aztreonam �1 to �16 �16 �16 0.9
Imipenem �0.25 to �8 �8 �8 3.3
Meropenem �0.12 to �8 �8 �8 4.6
Doripenem �0.12 to �8 8 �8 5.4
Piperacillin-tazobactam 4/4 to �64/4 �64/4 �64/4 0.4
Levofloxacin �0.25 to �4 �4 �4 4.1
Trimethoprim-sulfamethoxazole �1/19 to �4/76 �4/76 �4/76 20.6
Colistin 0.5 to �8 0.5 �8 85.3a

Tigecycline 0.5 to �4 1 4 87.6
aPercentage based on EUCAST breakpoint.
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(n � 1) cultures from 6 unique patients. These patients (4 male patients and 2 female
patients) had a median age of 55 years (range, 25 to 69 years). Four patients were
admitted from long-term-care facilities. One patient was admitted from home, and 1
was transferred from a hospital abroad. Five patients were admitted to the intensive
care unit (ICU), with a median ICU stay of 6 days (range, 2 to 22 days). Five patients
required mechanical ventilation and 3 patients underwent tracheostomy prior to the first
positive CRE culture. Patients were treated with various antibiotics, sometimes in combi-
nation; 4 patients received tigecycline, 3 meropenem, 2 inhaled colistin, and 1 each
ceftazidime-avibactam, gentamicin, amikacin, and trimethoprim-sulfamethoxazole. All pa-
tients survived their hospitalizations, with 4 being discharged to long-term-care facilities
and 2 discharged home.

WGS of the 8 plazomicin-resistant isolates showed that the strains each carried
several plasmids, had multiple antibiotic resistance determinants, and belonged to four
multilocus sequence types (STs) (Table 2). The STs included ST16 (n � 1, associated with
blaOXA-1), ST147 (n � 2, associated with blaOXA-181), ST395 (n � 2, associated with
blaOXA-48), and ST231 (n � 3, associated with blaOXA-232). The isolates belonging to
ST147, ST395, and ST231 harbored the same or very similar plasmids and resistance
mechanisms associated with each ST (Table 2). Plazomicin resistance was associated
with 16S rRNA methyltransferases (a known mechanism of resistance) in 7 of the 8
isolates (8). The 16S rRNA methyltransferase genes included rmtF in the ST16, ST147,
and ST231 isolates (1 ST147 isolate also carried rmtB) and armA in 1 of the ST395
isolates. Known plazomicin resistance mechanisms could not be identified in the other
ST395 isolate (ARLG-2882). Other studies have reported ST147 and ST231 as K. pneu-
moniae STs that carry rmt genes (9–12). Interestingly, 16S rRNA methyltransferase genes
were not found by WGS in 8 of the 9 plazomicin-intermediate isolates (1 isolate was not
sequenced).

Plazomicin resistance is frequently associated with strains harboring New Delhi
metallo-�-lactamases (NDMs) in other countries (12–15). However, NDM is not com-
monly encountered in the United States (13), and only 1 of the 8 plazomicin-resistant
strains in our study possessed NDM-mediated carbapenem resistance (Table 2).

Plazomicin is a recently approved next-generation aminoglycoside agent with ac-
tivity against carbapenemase-producing Enterobacteriaceae strains, with potency com-
parable to that of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-
relebactam (16). Our results compare favorably with a recently published study in which
94.9% of 117 blaKPC-positive isolates were susceptible to plazomicin, compared to
43.6%, 56.4%, and 5.1% susceptible to amikacin, gentamicin, and tobramycin, respec-
tively (17). Although plazomicin resistance is infrequent in the United States, of concern
is the occurrence of armA and rmtF 16S rRNA methyltransferase genes in 7 of our
plazomicin-resistant isolates, a finding noted in other recent studies (8, 13–15, 18). Our
study documents the in vitro activity of plazomicin against a large U.S. collection of
carbapenemase-producing K. pneumoniae isolates, with 97.6% of isolates being sus-
ceptible to this agent.
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