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Abstract
Many research questions in public health andmedicine concern sustained inter-
ventions in populations defined by substantive priorities. Existing methods to
answer such questions typically require a measured covariate set sufficient
to control confounding, which can be questionable in observational stud-
ies. Differences-in-differences rely instead on the parallel trends assumption,
allowing for some types of time-invariant unmeasured confounding. However,
most existing difference-in-differences implementations are limited to point
treatments in restricted subpopulations. We derive identification results for pop-
ulation effects of sustained treatments under parallel trends assumptions. In
particular, in settings where all individuals begin follow-up with exposure status
consistentwith the treatment plan of interest butmay deviate at later times, a ver-
sion of Robins’ g-formula identifies the intervention-specific mean under stable
unit treatment value assumption, positivity, and parallel trends.We develop con-
sistent asymptotically normal estimators based on inverse-probability weighting,
outcome regression, and a double robust estimator based on targeted maximum
likelihood. Simulation studies confirm theoretical results and support the use
of the proposed estimators at realistic sample sizes. As an example, the meth-
ods are used to estimate the effect of a hypothetical federal stay-at-home order
on all-cause mortality during the COVID-19 pandemic in spring 2020 in the
United States.
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1 INTRODUCTION

Many epidemiologic and other empirical studies concern
the effects of sustained treatment strategies on popula-
tion average outcomes over time. A sustained treatment or
intervention is one that sets values of a time-varying expo-
sure via a predetermined plan or algorithm. For example,
clinical studies are often concerned with optimal dosing

plans for therapeutic drugs, and policy investigations are
often concernedwith policies that determine exposure dis-
tributions repeatedly over time for the population residing
in a jurisdiction. To be concrete, suppose a binary exposure
𝐴𝑡 ∈ {0, 1} is measured at three time points (𝑡 = 0, 1, 2);
then one example of sustained intervention would be the
plan to set 𝐴0 = 0, 𝐴1 = 1, and 𝐴2 = 0.
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Existing approaches to estimating effects of sus-
tained interventions in well-defined populations include
g-computation (Robins, 1986), inverse probability of
treatment weighted (IPTW) marginal structural models
(Robins, 2000; Robins et al., 2000), g-estimation of struc-
tural nested models (Robins, 1989), and double robust
methods such as augmented IPTW (Bang & Robins,
2005) and targeted maximum likelihood (van der Laan &
Gruber, 2012). Importantly, these approaches base causal
identification on a sequential version of exchangeability
(Robins, 1986), also known as sequential ignorability or
no unmeasured confounders (Robins, 2000). Sequential
exchangeability posits that the potential outcomes are
independent of treatment, given the history of some
set of measured (possibly time-varying) covariates and
treatment; this assumption is unverifiable and can be
implausible in many settings. For example, individuals
may select medical treatments based on unmeasured risk
factors, and public policies are decided in highly complex
political contexts that may influence health.
In contrast, difference-in-differences (DID) methods

typically base identification on parallel trends assump-
tions rather than sequential exchangeability (Ashenfelter
& Card, 1985; Roth et al., 2022). Parallel trends assump-
tions posit that time trends in average potential outcomes
are independent of the observed treatment (Ashenfelter
& Card, 1985; Marcus & Sant’Anna, 2021). DID meth-
ods typically focus on the average treatment effect in the
treated (ATT) for a treatment occurring at a single time
point, although recently extensions have considered cer-
tain types of sustained treatment regimes (for a review, see
Roth et al., 2022). In particular, Callaway and Sant’Anna
(2021), deChaisemartin andD’Haultfoeuille (2020), and de
Chaisemartin and D’Haultfoeuille (2021b) consider effects
of time-varying treatments conditional on each observed
treatment path. Relevant to the present work, these recent
DIDdevelopments have included doubly robust estimators
(Callaway & Sant’Anna, 2021; Sant’Anna & Zhao, 2020).
In the majority of recent time-varying extensions to DID,
group-time-specific ATTs (or similarly conditional param-
eters) are estimated, and typically averaged in some way
to obtain an overall result. The parameters targeted by
these averages may be challenging to interpret because the
“treated” group changes over time, so that an average rep-
resents a dynamic population rather than a well-defined
population (as in a randomized trial). Therefore, the result-
ing parameters are not causal effects in the sense that they
are not contrasts between potential outcomes under differ-
ent interventions for the same population (Maldonado &
Greenland, 2002).
Departing from treatment-conditional parameters,

de Chaisemartin and D’Haultfoeuille (2021a) consider

interventions fixing a time-varying exposure to its baseline
status, focusing on unconditional cost-effectiveness ratios
and outcome regression estimators. Similarly, in this
paper, we consider inference about marginal effects of
general sustained treatment strategies under parallel
trends assumptions. The proposed estimators build on
the IPTW, g-computation, and doubly-robust targeted
maximum likelihood estimation (TMLE) approaches
developed in the context of sequential exchangeability,
thus providing important links between the biostatistics
literature on time-varying treatments (Bang & Robins,
2005; Robins, 1986, 2000; van der Laan & Gruber, 2012)
and the econometric literature on DID (Ashenfelter &
Card, 1985; Callaway & Sant’Anna, 2021). Independently
and concurrently with the present work, Shahn et al.
(2022) developed g-estimation of structural nested models
for general sustained treatment regimes under parallel
trends, with results that imply identification for the
intervention-specific means considered here. While it
is possible (but complex) to estimate the latter quantity
using the g-estimation approach of Shahn et al. (2022),
the main strength of g-estimation is in exploring effect
heterogeneity by time-varying covariates. The proposed
methods thus complement the existing DID literature
by focusing on different causal parameters and the g-
estimation methods of Shahn et al. (2022) by providing
alternative estimation strategies.

2 PRELIMINARIES

2.1 Data

Suppose data 𝑂𝑖𝑡 = {𝑊𝑖𝑡, 𝐴𝑖𝑡, 𝑌𝑖𝑡} are observed on 𝑖 =

1, 2, … , 𝑛 individuals (or units) at time points 𝑡 = 0, 1, … , 𝜏,
where 𝑊𝑖𝑡 are (possibly vector-valued) covariates; 𝐴𝑖𝑡 are
discrete, possibly multivariate treatments realized after
𝑊𝑖𝑡; and 𝑌𝑖𝑡 are outcomes realized after 𝐴𝑖𝑡, all mea-
sured without error. Denote history of a variable with
overbars, for example, 𝐴𝑖𝑡 = (𝐴𝑖0, 𝐴𝑖1, … ,𝐴𝑖𝑡), with 𝐴𝑖 ≡
𝐴𝑖𝜏 and 𝐴𝑖𝑘 = {∅} for 𝑘 < 0 by convention. Upper case
is used throughout to refer to random variables, lower
case refers to specific realizations, and scripts refer to
the support. The 𝑖 subscript is omitted unless needed to
resolve ambiguity. Throughout, it is assumed that 𝑂𝑖 ≡
{𝑊𝑖, 𝐴𝑖, 𝑌𝑖} (𝑖 = 1, 2, … , 𝑛) represent independent and
identically distributed (iid) draws from a relevant target
population.
Assume the data come from a staggered discontinuation

design, defined as follows. Suppose the target estimand
is 𝔼{𝑌𝑡(𝑎

∗
)} where 𝑎∗ = (𝑎∗0 , 𝑎

∗
1 , … , 𝑎

∗
𝜏 ) denotes the treat-

ment strategy or intervention plan of interest, and 𝑌𝑡(𝑎
∗
)
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F IGURE 1 Dates of state-issued stay-at-home orders in U.S.
states during the COVID-19 pandemic in 2020.

denotes a potential outcome; that is, the value 𝑌𝑡 would
take under the intervention setting 𝐴 = 𝑎

∗. The approach
in this paper requires that in the observed data distribu-
tion, Pr(𝐴0 = 𝑎∗0) = 1, or in other words that 𝐴𝑖0 = 𝑎∗0 for
all 𝑖. Such a scenario is called a staggered discontinuation
design with respect to the treatment plan 𝑎∗ of interest,
because units begin follow-up under the treatment plan
butmay discontinue at later points in a staggeredway.Note
thatwe donot requiremonotonic treatment assignment, in
contrast to recent DID papers (e.g., Callaway & Sant’Anna,
2021; Goodman-Bacon, 2021).

2.2 Motivating example

Consider the question, “what effects on all-cause mor-
tality would a U.S. federal stay-at-home order have had
in spring 2020 during the COVID-19 pandemic?” Let 𝑌𝑖𝑡
be a binary indicator that individual 𝑖 died during week
𝑡, 𝑡 = 0, 1, … , 11, measured as weeks since April 6, 2020.
Let 𝐴𝑖𝑡 be a binary indicator that the state in which
individual 𝑖 was living during week 𝑡 was under a state-
level stay-at-home or shelter-in-place order. Suppose that
it is of interest to estimate 𝔼{𝑌𝑡(1)} − 𝔼(𝑌𝑡), the differ-
ence in U.S. mortality rates under a hypothetical federal
stay-at-home order versus under the observed treatment
trajectory (i.e., the “natural course”). As of April 6, 43/50
U.S. states were under stay-at-home orders, which were
discontinued at times ranging from late April to late June,
with the exception of California that continued through
December (Figure 1). Thus, the observed treatment tra-
jectories give rise to a staggered discontinuation design
with respect to the treatment plan 𝑎

∗
= 1 setting every-

one to remain under stay-at-home order in those 43 states.
The methods developed below can be used to draw infer-
ence about what would have happened had such a policy
been implemented.

3 IDENTIFICATION

In this section, we consider identification, given data 𝑂,
of the quantity 𝜇𝑡 ≡ 𝔼{𝑌𝑡(𝑎

∗
)}, the mean outcome at time

𝑡, under the intervention to set all individuals to 𝐴𝑖 = 𝑎
∗.

Throughout, it is assumed that interest lies in only one
intervention 𝑎∗. Note that 𝜇𝑡 depends on 𝑎

∗, which is left
implicit for notational simplicity. Consider the following
assumptions:

Assumption 1. (Stable unit treatment value assumption
[SUTVA]): If𝐴𝑖𝑡 = 𝑎

∗
𝑡 , then𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝑎

∗
𝑡 ) for 𝑡 ∈ {0, 1, … 𝜏}.

Assumption 2. (Positivity): If 𝑓(𝑤𝑡|𝐴𝑡−1 = 𝑎
∗
𝑡−1) > 0,

then 𝑓(𝑎
∗
𝑡 |𝑊𝑡 = 𝑤𝑡, 𝐴𝑡−1 = 𝑎

∗
𝑡−1) > 0, for 𝑤𝑡 ∈ 𝑡; 𝑡 ∈

{1, 2, … , 𝜏}.

Here and throughout, 𝑓(𝑥|⋅) refers to a conditional den-
sity if 𝑋 is continuous, and a conditional probability mass
function if 𝑋 is discrete. Assumption 2 requires that units
whose treatment history up to time 𝑡 − 1 is consistent with
the regime in question (𝑎∗) have positive probability of
remaining under treatment plan 𝑎

∗ at time 𝑡. Positivity
can sometimes be a verifiable assumption. In particular,
if both 𝑊 and 𝐴 are low-dimensional and discrete, then
among units with 𝐴𝑡−1 = 𝑎

∗
𝑡−1, if one observes units who

remain under 𝑎∗ at time 𝑡 in every stratum of 𝑊𝑡, this
implies positivity in the population with probability 1 (but
not necessarily the reverse).

Assumption 3. (Parallel trends): For 𝑡 ∈ {1, 2, … , 𝜏}, 𝑘 ≤
𝑡 ∶

𝔼{𝑌𝑡(𝑎
∗
) −𝑌𝑡−1(𝑎

∗
)|𝑊𝑘,𝐴𝑘−1 = 𝑎

∗
𝑘−1}

= 𝔼{𝑌𝑡(𝑎
∗
) − 𝑌𝑡−1(𝑎

∗
)|𝑊𝑘,𝐴𝑘 = 𝑎

∗
𝑘}.

In words, Assumption 3 states that among individuals
whose treatment status is consistent with the intervention
𝑎
∗ up to time 𝑘 − 1, had (counter to fact) all individuals
followed the intervention through time 𝑡, trends would
have been parallel for those who do and do not follow the
intervention at time 𝑘 but have equal covariate histories.
Assumption 3 is identical to the time-varying conditional
parallel trends assumption of Shahn et al. (2022). Assump-
tion 3 is similar to those adopted in event study and
staggered adoption DID methods, with the key distinction
that typically only a “never-treated” regime (𝑎∗ = 0) for
a binary or ordinal treatment is considered. Aside from
considering more general regimes 𝑎∗, Assumption 3 is
identical to the Assumption 5 in Callaway and Sant’Anna
(2021) except that the latter only conditions on baseline
covariates. Similarly, Assumption 12 in de Chaisemartin



and D’Haultfoeuille (2021a) only conditions on contem-
poraneous values of time-varying covariates (rather than
the full history) and presumes a parametric model relat-
ing these covariates to the outcome trends. Thus, the
proposed assumption generalizes the standard parallel
trends assumptions by allowing for conditioning on the
whole history of time-varying covariates and by consid-
ering any static regime 𝑎∗. A static regime is one whose
values are fixed and do not depend on covariates (Sec-
tion 7.2 considers extensions of the proposed methods
to dynamic regimes that can depend on the history of
covariates).
Parallel trends are unverifiable, though closely related

conditions can often be checked (Roth, 2019). Note that
𝑊𝑖𝑡may include prior outcomes𝑌𝑖𝑚 for𝑚 < 𝑡. However, if
𝑌𝑖,𝑡−1 is included in𝑊𝑖𝑡, then the parallel trends assump-
tion is equivalent to sequential exchangeability, in which
case existing causal inference methods for observational
datawith a longitudinal exposure can be used (e.g., Robins,
1986, 2000; van der Laan & Gruber, 2012).
An important consideration is whether a given parallel

trends assumption places restrictions on treatment effect
heterogeneity. Just as the standard parallel trends assump-
tions in the DID literature place restrictions only on
untreated potential outcomes, Assumption 3 places restric-
tions only on potential outcomes corresponding to the
regime 𝑎∗, and therefore, does not imply any restrictions
on treatment effect heterogeneity. However, additionally,
assuming parallel trends for any other regimen 𝑎 ≠ 𝑎

∗

would imply such restrictions (Callaway et al., 2021; Shahn
et al., 2022).
The following lemma presents the main identification

results in this paper, which show that Assumptions 1–3 are
sufficient to equate 𝜇𝑡 to a function of the observed data
distribution.

Lemma1. (Parallel trends g-formula)Define the functional
(i.e., statistical parameter) 𝜓𝑡 ≡ 𝔼(𝑌0) +

∑𝑡

𝑘=1
∫ 𝔼(𝑌𝑘 −

𝑌𝑘−1|𝑊𝑘 = 𝑤𝑘,𝐴𝑘 = 𝑎
∗
𝑘)
∏𝑘

𝑚=0
𝑑𝐹(𝑤𝑚|𝑤𝑚−1, 𝑎

∗
𝑚−1).

Under a staggered discontinuation design and if
Assumptions 1–3 hold, then 𝜓𝑡 = 𝜇𝑡 .

Here and throughout, 𝐹(⋅|⋅) refers to a conditional
cumulative distribution function. Lemma 1 states that the
target causal quantity 𝜇𝑡 is identified by the parameter 𝜓𝑡.
The parameter 𝜓𝑡 is referred to as the parallel trends g-
formula because it represents a modification of the usual
g-formula (the dependence of 𝜓𝑡 on 𝑎

∗ is also left implicit).
A formal proof of Lemma 1 by induction is presented in

Web Appendix A. Here we give a less formal explanation
to build intuition. We have:

𝜇𝑡 ≡ 𝔼{𝑌𝑡(𝑎
∗
)} = 𝔼{𝑌0(𝑎

∗
)} +

𝑡∑
𝑘=1

𝔼{𝑌𝑘(𝑎
∗
) − 𝑌𝑘−1(𝑎

∗
)}

= 𝔼{𝑌0(𝑎
∗
)} +

𝑡∑
𝑘=1

𝔼[𝔼{𝑌𝑘(𝑎
∗
) − 𝑌𝑘−1(𝑎

∗
)|𝑊1}]

= 𝔼{𝑌0(𝑎
∗
)} +

𝑡∑
𝑘=1

𝔼[𝔼{𝑌𝑘(𝑎
∗
) − 𝑌𝑘−1(𝑎

∗
)|𝐴1 = 𝑎∗1 ,𝑊1}],

where the first equality follows by adding and subtracting
constants, the second by iterated expectation, and the third
byAssumption 3. Repeatedly applying iterated expectation
and Assumption 3, we have:

𝜇𝑡 = 𝔼{𝑌0(𝑎
∗
)}

+

𝑡∑
𝑘=1

𝔼{𝔼(⋅ ⋅ ⋅𝔼[𝔼{𝑌𝑘(𝑎
∗
) − 𝑌𝑘−1(𝑎

∗
)|

𝐴𝑘 = 𝑎
∗
𝑘,𝑊𝑘}|𝐴𝑘−1 = 𝑎

∗
𝑘−1,𝑊𝑘−1] ⋅ ⋅ ⋅ |𝐴1 = 𝑎∗1 ,𝑊1)}

= 𝔼(𝑌0) +

𝑡∑
𝑘=1

𝔼(𝔼[⋅ ⋅ ⋅𝔼{𝔼(𝑌𝑘 − 𝑌𝑘−1|

𝐴𝑘 = 𝑎
∗
𝑘,𝑊𝑘)|𝐴𝑘−1 = 𝑎

∗
𝑘−1,𝑊𝑘−1} ⋅ ⋅ ⋅ |𝐴1 = 𝑎∗1 ,𝑊1])

= 𝜓𝑡,

where the second equality follows from Assumption 1 and
the last equality from iterated expectation.

4 ESTIMATORS

This section presents estimators for the statistical parame-
ter 𝜓𝑡, which equals the target quantity 𝜇𝑡 under the above
stated assumptions. The estimators in this section utilize
existing estimators of 𝜇𝑡 under sequential exchangeabil-
ity rather than parallel trends, all of which are consistent
and asymptotically normal (CAN) estimators of the g-
formula by virtue of being solutions to unbiased estimating
equations (Stefanski & Boos, 2002). Since 𝜓𝑡 is a contin-
uous function of several g-formulas, the same function
applied to estimators of those g-formulas is a CAN esti-
mator for 𝜓𝑡. The remainder of this section formalizes
this logic and gives examples of specific estimators that
function in this capacity. The estimators presented in this
section are provided in an R package (see the Supporting
Information).



4.1 General form

Here we derive a general form of a CAN estimator for the
target statistical parameter, 𝜓𝑡. First, define:

𝜙𝑗,𝑘 = ∫ 𝔼(𝑌𝑗|𝐴𝑘 = 𝑎
∗
𝑘,𝑊𝑘 = 𝑤𝑘)

×

𝑘∏
𝑚=0

𝑑𝐹(𝑤𝑚|𝑊𝑚−1 = 𝑤𝑚−1, 𝐴𝑚−1 = 𝑎
∗
𝑚−1). (1)

Equation (1) is the g-formula, developed in the context of
identifying parameters like 𝜇𝑡 under sequential exchange-
ability. Here, sequential exchangeability is not assumed,
and therefore, 𝜙𝑗,𝑘 is not interpretable as a causal parame-
ter; instead, existing estimators of the statistical parameter
𝜙𝑗,𝑘 are used to assemble estimators of 𝜓𝑡 (which equals
the causal parameter 𝜇𝑡 under Assumptions 1–3) by not-
ing that 𝜓𝑡 = 𝜙0,0 +

∑𝑡

𝑘=1
(𝜙𝑘,𝑘 − 𝜙𝑘−1,𝑘). Next, suppose

that there is an estimator 𝜙𝑗𝑘 of 𝜙𝑗𝑘 that is the solu-
tion to an unbiased estimating function 𝑑𝜙𝑗𝑘 (𝑂; 𝜙𝑗𝑘); that
is, 0 = 𝔼{𝑑𝜙𝑗𝑘 (𝑂; 𝜙𝑗𝑘)}. Let 𝝓 = (𝜙0,0, 𝜙0,1, … , 𝜙𝑡−1,𝑡, 𝜙𝑡,𝑡).
Then simply define

𝑑𝜓𝑡 (𝑂; 𝝓, 𝜓𝑡) = 𝜙0,0 +

𝑡∑
𝑘=1

(
𝜙𝑘,𝑘 − 𝜙𝑘−1,𝑘

)
− 𝜓𝑡. (2)

Clearly, 𝔼{𝑑𝜓𝑡 (𝑂; 𝝓, 𝜓𝑡)} = 0, indicating that an estimator
(𝝓, 𝜓𝑡) that jointly solves 0 =

∑
𝑖
𝑑𝜓𝑡 (𝑂𝑖; 𝝓, 𝜓𝑡) will yield a

CAN estimator 𝜓𝑡 for 𝜓𝑡.
The following subsections show how different options

for 𝑑𝜙𝑗𝑘 (𝑂; 𝜙𝑗𝑘) (including IPTW, g-computation, and
TMLE) can be constructed and stacked with (2) to form
estimators of 𝜓𝑡 that inherit desirable properties (e.g.,
consistency, asymptotic normality, double robustness).

4.2 Inverse probability of treatment
weighted estimator

Define stabilized inverse probability of treatment weights
(IPTWs) as 𝜋𝑘(𝑎;𝑊) =

∏𝑘

𝑚=1
𝑓(𝑎𝑚|𝑎𝑚−1)∕∏𝑘

𝑚=1
𝑓

(𝑎𝑚|𝑎𝑚−1,𝑊𝑚). Robins (2000) (Lemma 1.1) showed that
𝜙𝑗,𝑘 = 𝑐𝑗𝑘(𝑎

∗
𝑘), where 𝑐𝑗𝑘(⋅) is the unique function such

that 𝔼[𝑞𝑗𝑘(𝐴𝑘){𝑌𝑗 − 𝑐𝑗𝑘(𝐴𝑘)}𝜋𝑘(𝐴;𝑊)] = 0 for all func-
tions 𝑞𝑗𝑘(𝐴𝑘) where the expectation exists. The equation
𝔼[𝑞𝑗𝑘(𝐴𝑘){𝑌𝑗 − 𝑐𝑗𝑘(𝐴𝑘)}𝜋𝑘(𝐴𝑘;𝑊)] = 0 defines a

regression of 𝑌𝑗 on 𝐴𝑘 weighted by 𝜋𝑘(𝐴;𝑊). In the
context of sequential exchangeability, estimators based
on this weighted regression formulation are called IPTW-
marginal structural model estimators and given a causal
interpretation (Robins et al., 1992; Robins, 2000). However,

in the context of this paper, sequential exchangeability
is not assumed, and therefore, the weighted regression
equation does not have a causal interpretation on its
own. Instead, the above result together with results from
Section 4.1 implies that an IPTW estimator of 𝜓𝑡 can be
formed by using a linear combination of IPTW marginal
structural model estimators for 𝜙𝑗,𝑘.
For simplicity of presentation, assume that for 𝑘 =

0, 1, … , 𝑡, 𝑓(𝑎𝑘|𝑎𝑘−1) and 𝑓(𝑎𝑘|𝑎𝑘−1, 𝑤𝑘) are known up to
a finite-dimensional parameter. That is, define 𝑔0,𝑘(𝑎, ∅) ≡∏𝑘

𝑠=0
𝑓(𝑎𝑠|𝑎𝑠−1) and 𝑔0,𝑘(𝑎, 𝑤) ≡ ∏𝑘

𝑠=0
𝑓(𝑎𝑠|𝑎𝑠−1, 𝑤𝑠), and

say we are willing to assume that 𝑔0,𝑘(𝑎, ∅) is uniquely
determined by the parametric model 𝑔𝑘(𝑎, ∅; 𝛼0), and
similarly that 𝑔0,𝑘(𝑎, 𝑤) = 𝑔𝑘(𝑎, 𝑤; 𝛼1), where 𝛼0 and 𝛼1
are finite-dimensional parameter vectors. Say we have
an estimator that solves an unbiased estimating equa-
tion for (𝛼0, 𝛼1). For example, 𝑔𝑘(𝑎, ∅; 𝛼0) and 𝑔𝑘(𝑎, 𝑤; 𝛼1)
may consist of generalized linear models with parame-
ters estimated by maximum likelihood. Specify 𝑐𝑗𝑘(𝐴𝑘)
as some appropriate functional form for the expected
value of 𝑌𝑗 conditional on 𝐴𝑘 in the weighted data dis-
tribution, such as 𝑐𝑗𝑘(𝐴𝑘) = 𝛾0𝑗𝑘 + 𝛾1𝑗𝑘𝐼(𝐴𝑘 = 𝑎

∗
𝑘) (i.e.,

leaving the model unrestricted when 𝐴𝑘 = 𝑎
∗
𝑘). Then an

estimator 𝜙𝐼𝑃𝑇𝑊
𝑗,𝑘

that solves 0 = 𝑐𝑗𝑘(𝑎
∗
𝑘) − 𝜙𝑗,𝑘 is CAN

for 𝜙𝑗,𝑘 if 𝑐𝑗𝑘(𝐴𝑘), 𝑔𝑘(𝐴, ∅; 𝛼0) and 𝑔𝑘(𝐴,𝑤; 𝛼1) are cor-
rectly specified. Finally, stack the score equations for
𝑔𝑘(𝑎, ∅; 𝛼0) and 𝑔𝑘(𝑎, 𝑤; 𝛼1), along with 0 = 𝑐𝑗𝑘(𝑎

∗
𝑘) − 𝜙𝑗,𝑘

(𝑘 = 0, 1, … , 𝑡; 𝑗 = 𝑘 − 1, 𝑘) and equation (2) to yield an
estimator for 𝜓𝑡, say 𝜓𝐼𝑃𝑇𝑊𝑡 .
In other words, the IPTW estimator for the target

parameter of interest is 𝜓𝐼𝑃𝑇𝑊𝑡 = 𝜙𝐼𝑃𝑇𝑊0,0 +
∑𝑡

𝑘=1
(𝜙𝐼𝑃𝑇𝑊
𝑘,𝑘

−

𝜙𝐼𝑃𝑇𝑊
𝑘−1,𝑘

), where 𝜙𝐼𝑃𝑇𝑊
𝑗,𝑘

are estimators of each appropri-
ate g-formula parameter based on an IPTW model. Note
that under our assumption set, 𝜙𝐼𝑃𝑇𝑊

𝑗,𝑘
are not estima-

tors of causal quantities in and of themselves, but simply
functions of the observed data distribution that may be
assembled appropriately to form the causal estimator
𝜓𝐼𝑃𝑇𝑊𝑡 . Clearly, 𝜓𝐼𝑃𝑇𝑊𝑡 solves an estimating equation that
is unbiased if 𝑔𝑘(𝐴, ∅; 𝛼0), 𝑔𝑘(𝐴,𝑤; 𝛼1), and 𝑐𝑗𝑘(𝐴𝑘) are all
correctly specified, implying that 𝜓𝐼𝑃𝑇𝑊𝑡 is CAN for 𝜓𝑡
under the same conditions. However, IPTW estimators are
known to be inefficient and 𝜓𝐼𝑃𝑇𝑊𝑡 may similarly inherit
this property. The following subsections present estimators
that may improve on efficiency relative to IPTW.

4.3 Iterated conditional expectation
estimator

Bang and Robins (2005) describe an estimator of 𝜙𝑗,𝑘 based
on the following iterated conditional expectation (ICE)
representation:



𝜙𝑗,𝑘 = 𝔼(𝔼[⋅ ⋅ ⋅𝔼{𝔼(𝑌𝑗|𝐴𝑘 = 𝑎
∗
𝑘,𝑊𝑘)|

𝐴𝑘−1 = 𝑎
∗
𝑘−1,𝑊𝑘−1} ⋅ ⋅ ⋅ |𝐴1 = 𝑎

∗
1,𝑊1]|𝐴0 = 𝑎∗0 ,𝑊0), (3)

which can equivalently be written as 𝜙𝑗,𝑘 =

𝔼{𝑄
𝑗,𝑘,0
0 (𝑎

∗
)} where, for 𝑚 = 0, 1, … , 𝑘, 𝑄

𝑗,𝑘,𝑚
0 (𝑎

∗
) =

𝔼{𝑄
𝑗,𝑘,𝑚+1
0 (𝑎

∗
)|𝐴𝑚 = 𝑎

∗
𝑚,𝑊𝑚} and 𝑄

𝑗,𝑘,𝑘+1
0 (𝑎

∗
) = 𝑌𝑗 .

An estimator of 𝜓𝑡 can then be formulated based
on this representation. For simplicity, say we are will-
ing to assume that 𝑄

𝑗,𝑘,𝑚
0 (𝑎

∗
) are known up to a

finite-dimensional parameter for 𝑚 = 0, 1, … , 𝑘. That is,
assume 𝑄

𝑗,𝑘,𝑚
0 (𝑎

∗
) = 𝑄𝑗,𝑘,𝑚(𝑎

∗
; 𝛽𝑚), where 𝛽𝑚 for 𝑚 =

0, 1, … , 𝑘 are finite-dimensional parameters. For example,
𝑄𝑗,𝑘,𝑚(𝑎

∗
; 𝛽𝑚) may be a generalized linear model with

parameters 𝛽𝑚. Say we are in possession of an unbi-
ased estimating function 𝑑𝑗,𝑘,𝑚{𝑂, 𝑄𝑗,𝑘,𝑚+1(𝑎

∗
; 𝛽𝑚+1); 𝛽𝑚}

for 𝛽𝑚. For example, if maximum likelihood is used,
then 𝑑𝑗,𝑘,𝑚{𝑂, 𝑄𝑗,𝑘,𝑚+1(𝑎

∗
; 𝛽𝑚+1); 𝛽𝑚} is the vector of first

derivatives of the model log-likelihood with respect to 𝛽𝑚.
Note that including 𝑄𝑗,𝑘,𝑚+1(𝑎∗; 𝛽𝑚+1) as an argument to
the estimating function makes explicit the nested nature
of the iterated expectations being modeled. The ICE esti-
mator of 𝜙𝑗,𝑘 is then defined (Bang & Robins, 2005) as the
solution 𝜙𝐼𝐶𝐸

𝑗,𝑘
to 𝟎 =

∑𝑛

𝑖=1
𝑑𝑗,𝑘(𝑂𝑖; 𝜙𝑗,𝑘) where

𝑑𝑗,𝑘(𝑂; 𝜙𝑗,𝑘) =

⎛⎜⎜⎜⎜⎜⎝

𝑑𝑗,𝑘,𝑘(𝑂; 𝛽𝑘)

𝑑𝑗,𝑘,𝑘−1{𝑂, 𝑄
𝑗,𝑘,𝑘(𝑎

∗
; 𝛽𝑘); 𝛽𝑘−1}

⋮

𝑑𝑗,𝑘,0{𝑂, 𝑄
𝑗,𝑘,1(𝑎

∗
; 𝛽1); 𝛽0}

𝑄𝑗,𝑘,0(𝑎
∗
; 𝛽0) − 𝜙𝑗,𝑘

⎞⎟⎟⎟⎟⎟⎠
.

Then, simply stack 𝑑𝑗,𝑘(𝑂; 𝜙𝑗,𝑘)with (2) to yield an estima-
tor 𝜓𝐼𝐶𝐸𝑡 for 𝜓𝑡. In other words, the ICE estimator of the
target parameter is 𝜓𝐼𝐶𝐸𝑡 = 𝜙𝐼𝐶𝐸

0,0
+
∑𝑡

𝑘=1
(𝜙𝐼𝐶𝐸
𝑘,𝑘

− 𝜙𝐼𝐶𝐸
𝑘−1,𝑘

),
where each 𝜙𝐼𝐶𝐸

𝑗,𝑘
is an estimator of the corresponding g-

formula parameter based on ICE g-computation. Clearly,
𝜓𝐼𝐶𝐸𝑡 solves an unbiased estimating equation when-
ever all the iterated outcome models {𝑄𝑗,𝑘,𝑚(𝑎∗; 𝛽𝑚) ∶
𝑘 = 0, 1, … , 𝑡; 𝑗 = 𝑘, 𝑘 − 1;𝑚 = 0, 1, … , 𝑘 + 1} are correctly
specified. Estimators of 𝜙𝑗,𝑘 based on outcome regres-
sion generally have smaller asymptotic variance that IPTW
estimators, and 𝜓𝐼𝐶𝐸𝑡 may inherit this property.

4.4 Doubly robust targeted maximum
likelihood estimator

IPTW estimators are only guaranteed to be CAN if the
treatment models are correctly specified, and ICE estima-
tors are only guaranteed to be CAN if all the outcomemod-
els are correctly specified. Doubly robust estimators are

CAN if either the outcome or treatment models are correct
(but not necessarily both), which is an advantage because
one is rarely certain that models are correctly specified.
Doubly robust estimators of𝜙𝑗,𝑘 generally consist of aug-

menting the ICE algorithm by including predicted values
from the treatment models used to construct IPTWs in
some way. Such estimators are called semiparametric effi-
cient if they solve the estimating equation corresponding
to the following efficient influence curve (Tran et al., 2019;
van der Laan & Gruber, 2012):

𝑘∑
𝑚=0

𝐼(𝐴𝑚 = 𝑎
∗
𝑚)

𝑔0,𝑚(𝑎
∗
, 𝑤)

{𝑄
𝑗,𝑘,𝑚+1

0 (𝑎
∗
) − 𝑄

𝑗,𝑘,𝑚

0 (𝑎
∗
)} + 𝑄

𝑗,𝑘,0

0 (𝑎
∗
) − 𝜙𝑗,𝑘

(4)
with 𝑔0,𝑚(𝑎

∗
, 𝑤) and𝑄𝑗,𝑘,𝑚0 defined as in previous sections.

Many estimators correspond to this efficient influence
curve, meaning that they all have the smallest asymptotic
variance of any regular asymptotically linear estimator in
this class (Bang & Robins, 2005; van der Laan & Gruber,
2012). We present one such example of a TMLE that may
outperform others in finite samples (Tran et al., 2019).
First consider the TMLE of 𝜙𝑗,𝑘. For simplicity, assume

that outcome models {𝑄
𝑗,𝑘,𝑚
0 (𝑎

∗
) ∶ 𝑚 = 0, 1, … , 𝑘} and

treatment models {𝑔0,𝑚(𝑎
∗
) ∶ 𝑚 = 0, 1, … , 𝑘} are known

up to a finite-dimensional parameter. That is, assume
𝑔0,𝑚(𝑎

∗
) = 𝑔𝑚(𝑎

∗
; 𝛼𝑚) and 𝑄

𝑗,𝑘,𝑚
0 (𝑎

∗
) = 𝑄𝑗,𝑘,𝑚(𝑎

∗
; 𝛽𝑚),

where 𝛼𝑚 and 𝛽𝑚 are finite-dimensional parameters,
𝑚 = 0, 1, … , 𝑘. Then proceed as follows:

1. For 𝑚 = 0, 1, … , 𝑘, estimate 𝛼𝑚, for example, using
maximum likelihood. Denote estimators of 𝛼𝑚 as
�̂�𝑚 and corresponding estimators of 𝑔𝑚(𝑎

∗
; 𝛼𝑚) as

𝑔𝑚(𝑎
∗
; �̂�𝑚).

2. For 𝑚 = 𝑘, estimate 𝛽𝑚, for example, using maxi-
mum likelihood, denoting this estimator 𝛽𝑚. Calculate
𝑄
𝑗,𝑘,𝑚

𝑖
(𝑎
∗
; 𝛽𝑚) for each unit 𝑖 and denote this estimator

𝑄
𝑗,𝑘,𝑚

𝑖
(𝑎
∗
). Note that these are model predictions that

implicitly depend on the data, and so vary across units
𝑖.

3. Also, for 𝑚 = 𝑘, update the initial fit 𝑄
𝑗,𝑘,𝑚

𝑖
(𝑎
∗
)

by fitting a new model, defined as ℎ{𝑄𝑗,𝑘,𝑚,∗
𝑖

(𝑎
∗
)} =

ℎ{𝑄
𝑗,𝑘,𝑚

𝑖
(𝑎
∗
)} + 𝜖𝑗,𝑘,𝑚, where ℎ(⋅) is an appropriate link

function, 𝜖𝑗,𝑘,𝑚 is an intercept, and 𝑄
𝑗,𝑘,𝑚,∗

𝑖
(𝑎
∗
) are

conditional expectations under the updated model.
Note that the response variable in this model is
𝑄
𝑗,𝑘,𝑘+1

𝑖
(𝑎
∗
) = 𝑌𝑗 . The logit link is recommended to

ensure that the estimator respects bounds implied by
the data (if 𝑌𝑗 is not bounded by (0,1), it will need
to be appropriately transformed for the logit function
to be defined) (van der Laan & Gruber, 2012). Esti-
mators 𝑄𝑗,𝑘,𝑚,∗

𝑖
(𝑎
∗
) for the updated fit are found by



TABLE 1 Simulation results.

𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟏𝟎, 𝟎𝟎𝟎 𝒏 = 𝟏𝟎𝟎, 𝟎𝟎𝟎

estimator variance1∕𝑛 bias2 p3 variance1∕𝑛 bias2 p3 variance1∕𝑛 bias2 p3

ice_qfal 4.3 1.15 0.68 4.6 1.10 0.81 4.5 1.16 0.76
ice_true 4.2 −0.04 0.82 4.5 −0.02 0.23 4.2 0.02 0.45
iptw_gfal 4.5 1.17 0.86 4.7 1.17 0.49 4.6 1.25 0.69
iptw_true 6.0 −0.17 0.37 6.3 −0.08 0.87 7.4 −0.01 0.57
tmle_bfal 4.4 1.19 0.51 4.6 1.15 0.65 4.5 1.22 0.62
tmle_gfal 4.2 −0.08 0.86 4.5 −0.04 0.28 4.3 0.02 0.21
tmle_qfal 5.9 −0.09 0.15 6.4 −0.07 0.78 7.6 −0.02 0.41
tmle_true 5.4 −0.03 0.82 5.6 0.01 0.11 5.7 0.01 0.69

01Empirical variance of estimates over 1000 simulated datasets. 2Multiplied by 100. 3 P-value for Lilliefors test against the null hypothesis of normality.
0Abbreviations: ice=iterated conditional expectation, iptw=inverse probability of treatment weighted, tmle=targetedmaximum likelihood, qfal=outcomemodels
misspecified, gfal=treatment models misspecified, bfal=both sets of models misspecified, true=all models correctly specified.

maximizing an appropriate weighted likelihood with
weights 𝐼(𝐴𝑖𝑚 = 𝑎

∗
𝑚)∕𝑔𝑚(𝑎

∗
; �̂�𝑚).

4. Repeat steps 2–3, estimating 𝑄𝑗,𝑘,𝑚(𝑎
∗
; 𝛽𝑚) and

𝑄𝑗,𝑘,𝑚,∗(𝑎
∗
) for𝑚 = 𝑘 − 1, 𝑘 − 2,… , 0.

5. The TMLE for 𝜙𝑗,𝑘 is then defined as 𝜙𝑇𝑀𝐿𝐸
𝑗,𝑘

=

𝑛−1
∑𝑛

𝑖=1
𝑄
𝑗,𝑘,0,∗

𝑖
(𝑎
∗
).

Then, the TMLE for 𝜓𝑡 is defined as 𝜓𝑇𝑀𝐿𝐸𝑡 = 𝜙𝑇𝑀𝐿𝐸0,0 +∑𝑡

𝑘=1
(𝜙𝑇𝑀𝐿𝐸
𝑘,𝑘

− 𝜙𝑇𝑀𝐿𝐸
𝑘−1,𝑘

). Since 𝜙𝑇𝑀𝐿𝐸
𝑗,𝑘

solves the estimat-
ing equation corresponding to the efficient influence curve
(4), it will be CAN for 𝜙𝑗,𝑘 so long as either (i) the set
of outcome models {𝑄𝑗,𝑘,𝑚(𝑎∗; 𝛽𝑚) ∶ 𝑚 = 0, 1, … , 𝑘} are
correctly specified, or (ii) the set of treatment models
{𝑔𝑚(𝑎

∗
; 𝛼𝑚) ∶ 𝑚 = 0, 1, … , 𝑘} is correctly specified, but it

is not necessary that both be correct. Therefore, if one of
these two conditions holds for all 𝑘 = 0, 1, … , 𝑡 and 𝑗 = 𝑘 −

1, 𝑘, then𝜓𝑇𝑀𝐿𝐸𝑡 will be CAN for𝜓𝑡. The double robustness
property carries through to 𝜓𝑇𝑀𝐿𝐸𝑡 by virtue of the fact that
the estimating equation in (2) is unbiased if the estimating
equations for all the 𝜙𝑗,𝑘 are unbiased, which is the case for
𝜙𝑇𝑀𝐿𝐸
𝑗,𝑘

under conditions (i) or (ii) above.

5 SIMULATION STUDY

A simulation study was conducted to evaluate the finite
sample performance of the IPTW, ICE, and TMLE esti-
mators described in Section 4 when Assumptions 1–3
hold and all models were correctly specified. The TMLE
estimator was also evaluated under misspecification of
either the treatment or outcome model. Implementation
details and code for the simulation are provided in the
Supporting Information.
Table 1 shows estimates of the bias, variance, and

p-values from a Lilliefors test for normality, based on

1000 simulations each sample sizes 𝑛 =1000, 10,000, and
100,000 for each estimator of 𝜇5. The results suggest
that all stated theoretical properties hold approximately
in simulated data. First, when all models are correctly
specified, all estimators appear approximately unbiased
with decreasing variance as the sample size increases.
When outcomemodels and treatmentmodels aremisspec-
ified, ICE and IPTWestimators appear biased, respectively.
TMLE appears consistent when either the treatment or
outcomemodels are correctly specified, but not when both
are misspecified, supporting the double robustness prop-
erty. Lastly, all estimators appear normally distributed for
all sample sizes considered, based on Lilliefors tests.

6 COVID-19 APPLICATION

6.1 Data

This section presents an analysis of the motivating exam-
ple, introduced in Section 2.2. Code and data are provided
in the Supporting Information. State-level weekly mortal-
ity data come from the Centers for Disease Control and
Prevention’s National Death Index, and weekly counts
of COVID-19 cases from the COVID-19 Data Repository
at the Center for Systems Science and Engineering at
Johns Hopkins University. Data on state-level stay-at-
home orders come from the COVID-19 U.S. State Policy
database. Though the outcome variable of interest is an
individual-level indicator of death inweek 𝑡, this variable is
not directly observed; instead, the observed data represent
counts of deaths occurring in each state. Let 𝑠 = 1, 2, … , 43

be a state index, and let 𝑌𝑖𝑠𝑡 be an indicator of mortality
during week 𝑡 for the 𝑖th individual (𝑖 = 1, … , 𝑛𝑠) living
in state 𝑠, where 𝑛𝑠 denotes the population size in state
𝑠, and 𝑛 =

∑43

𝑠=1
𝑛𝑠 ≈ 309 million. The observed outcome



variable is 𝑌𝑠𝑡 =
∑𝑛𝑠
𝑖=1

𝑌𝑖𝑠𝑡, the state-level weekly sum of
individual-level mortality counts, along with population
counts 𝑛𝑠 (drawn from the 2010 Census). The observed
treatment variable𝐴𝑠𝑡 is an indicator of state 𝑠 being under
stay-at-home order inweek 𝑡. Finally, let𝑊𝑠𝑡 be the change
in confirmed COVID-19 cases reported per 100k popula-
tion in the previous 4 weeks (i.e., the difference fromweek
𝑡 − 4 to 𝑡) in state 𝑠. Thus, in this example, the parallel
trends assumption is conditional on the local state of the
pandemic, which may be plausible for pandemic-related
policies (Callaway & Li, 2021).

6.2 Estimator implementation

6.2.1 IPTW

For the treatmentmodels, the following parametricmodels
pooled over 𝑘 = 1,… , 11 were assumed:

𝑓(𝐴𝑠𝑘|𝐴𝑠,𝑘−1; 𝛼0) =

Bernoulli{logit−1(𝛼00 + 𝛼01𝜔(𝑘) + 𝛼02𝐴𝑠,𝑘−1)}

𝑓(𝐴𝑠𝑘|𝐴𝑠,𝑘−1,𝑊𝑠𝑘; 𝛼1) =

Bernoulli{logit−1(𝛼10 + 𝛼11𝜔(𝑘) + 𝛼12𝐴𝑠,𝑘−1 + 𝛼13 log𝑊𝑠𝑘)},

where 𝜔(𝑘) is a natural cubic spline basis with 3
degrees of freedom for time 𝑘. The outcome model
𝑐𝑗𝑘(𝐴) = 𝛾0𝑗𝑘 + 𝛾1𝑗𝑘𝐼(𝐴𝑘 = 1), 𝑘 = 1,… , 11, 𝑗 = 𝑘, 𝑘 − 1

was specified, which allows the outcome to depend on the
full exposure history. The parameters 𝛼0 = (𝛼00, 𝛼01, 𝛼02)

and 𝛼1 = (𝛼10, … , 𝛼13) were estimated using max-
imum likelihood, weighted by 1∕𝑛𝑠 to account
for differing population sizes across states. Then,
𝛾0𝑗𝑘, 𝛾1𝑗𝑘, 𝑘 = 1,… 11, 𝑗 = 𝑘, 𝑘 − 1 were estimated by
maximizing the state-level binomial likelihood weighted
by inverse probability of treatment weights 𝜋𝑘(𝐴;𝑊, �̂�) =∏𝑘

𝑚=1
𝑓(𝐴𝑚|𝐴𝑚−1; �̂�0)∕∏𝑘

𝑚=1
𝑓(𝐴𝑚|𝐴𝑚−1,𝑊𝑚; �̂�1),

where �̂�0 and �̂�1 denote maximum likelihood estimators
of 𝛼0 and 𝛼1. Then estimators 𝜓𝐼𝑃𝑇𝑊𝑡 , 𝑡 = 0, … , 11 were
calculated as 𝜙𝐼𝑃𝑇𝑊0,0 +

∑𝑡

𝑘=1
(𝜙𝐼𝑃𝑇𝑊
𝑘,𝑘

− 𝜙𝐼𝑃𝑇𝑊
𝑘−1,𝑘

), where
𝜙𝐼𝑃𝑇𝑊
𝑗,𝑘

= 𝛾0𝑗𝑘 + 𝛾1𝑗𝑘 and 𝛾0𝑗𝑘, 𝛾1𝑗𝑘 denote the weighted
maximum likelihood estimators.

6.2.2 ICE

For ICE estimators, the following parametric outcome
regressionmodels pooled over𝑘 = 1,… , 11were assumed:

𝑄𝑗,𝑘,𝑚(𝑎
∗
; 𝛽𝑚) = logit−1{𝛽0𝑗𝑚 + 𝛽1𝑗𝑚𝜔(𝑘)

+ 𝛽2𝑗𝑚𝜔(𝑘)𝑎
∗
𝑚 + 𝛽3𝑗𝑚 log𝑊𝑚}

for 𝑗 = 𝑘, 𝑘 − 1 and 𝑚 = 𝑘, 𝑘 − 1,… , 0, where again 𝜔(𝑘)
refers to a natural cubic spline basis with 3 degrees
of freedom. Note that due to the monotonic treatment
pattern, the interaction between time and treatment
allows the outcome to depend on the full exposure his-
tory. The parameters 𝛽𝑚 were estimated by maximiz-
ing a binomial quasi-likelihood, with estimators denoted
as 𝛽𝑚. To account for varying state population sizes,
state contributions to the quasi-likelihood were weighted
by 1∕𝑛𝑠. Finally, ICE estimators 𝜓𝐼𝐶𝐸𝑡 , 𝑡 = 0, … , 11 were
calculated as 𝜙𝐼𝐶𝐸0,0 +

∑𝑡

𝑘=1
(𝜙𝐼𝐶𝐸
𝑘,𝑘

− 𝜙𝐼𝐶𝐸
𝑘−1,𝑘

), where 𝜙𝐼𝐶𝐸
𝑗,𝑘

=∑43

𝑟=1
𝑄
𝑗,𝑘,0
𝑟 (𝑎

∗
; 𝛽𝑚)∕43 (as there are 43 states included in

the analysis).

6.2.3 TMLE

For TMLE, the same treatment models as specified for
IPTW were used, along with the same outcome mod-
els as specified for ICE. Specifically, when estimating
𝜙𝑗𝑘, for the 𝑚th ICE step (𝑚 = 𝑘, 𝑘 − 1,… , 0), the TMLE
updating step was performed by maximizing another
weighted quasi-binomial likelihood with response vari-
able 𝑄

𝑗,𝑘,𝑚+1
𝑠 (𝑎

∗
; 𝛽𝑚+1) with an intercept and offset

𝑄
𝑗,𝑘,𝑚
𝑠 (𝑎

∗
; 𝛽𝑚), weighted by 𝐼(𝐴𝑘 = 1)∕𝑔𝑘(𝐴, �̂�𝑘). Predic-

tions 𝑄𝑗,𝑘,𝑚,∗𝑠 (𝑎
∗
) from this model were then passed to

the (𝑚 − 1)th ICE step, and the process was repeated for
𝑚 = 𝑘, 𝑘 − 1,… , 0. Finally,𝜓𝑇𝑀𝐿𝐸𝑡 , 𝑡 = 0, … , 11were calcu-
lated as 𝜙𝑇𝑀𝐿𝐸0,0 +

∑𝑡

𝑘=1
(𝜙𝑇𝑀𝐿𝐸
𝑘,𝑘

− 𝜙𝑇𝑀𝐿𝐸
𝑘−1,𝑘

), where 𝜙𝑇𝑀𝐿𝐸
𝑗,𝑘

=∑43

𝑟=1
𝑄
𝑗,𝑘,0,∗
𝑟 (𝑎

∗
)∕43.

6.2.4 Bootstrap standard errors and
confidence intervals

Standard errors were estimated using a nonparametric
bootstrap. Specifically, for 𝐵 bootstrap replicates (𝑏 =
1, 2, … , 𝐵), a resampled outcome variable 𝑌𝑏𝑠𝑡 =

∑𝑛𝑠
𝑖=1

𝑌𝑏
𝑖𝑠𝑡

(𝑡 = 0, … , 12) was drawn from a multinomial distribu-
tion with 𝑛𝑠 trials and probabilities 𝑛−1𝑠 (𝑌𝑠0, 𝑌𝑠1, … , 𝑌𝑠,12),
where 𝑌𝑠,12 denotes the number of individuals who sur-
vived beyond 𝑡 = 11 in state 𝑠. IPTW, ICE, and TMLE
estimators 𝜓

𝐼𝑃𝑇𝑊,𝑏
𝑡 , 𝜓

𝐼𝐶𝐸,𝑏
𝑡 , 𝜓

𝑇𝑀𝐿𝐸,𝑏
𝑡 were calculated on

each replicate (𝑏 = 1,… , 𝐵). Then, Wald 95% confidence
intervals were computed using the standard deviation of
bootstrap estimates.

6.3 Results

Figure 2 shows results in the form of estimatedU.S. weekly
mortality rates per 100,000 person weeks over the study
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F IGURE 2 Estimated U.S. weekly mortality rates—observed (red) and estimated under hypothetical treatment setting all states to
remain under stay-at-home order using IPTW (green), ICE (blue), and TMLE (purple). Note that TMLE and ICE estimates and 95% CIs are
nearly identical. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

period under the natural course (red) and under the hypo-
thetical sustained treatment of setting 𝐴𝑡 = 1 for all 𝑡,
that is, under a scenario where all 43 included states
maintained stay-at-home orders through June 2020. This
figure appears in color in the electronic version of this arti-
cle, and any mention of color refers to that version. The
three estimators largely agree in their predictions that all-
cause mortality rates would have been moderately lower
throughout most of the study period, had stay-at-home
orders remained in place. Translating the counterfactual
mortality rate estimates to lives saved, if all causal and
modeling assumptions hold, based onTMLE, stay-at-home
orders remaining in place from April through June 2020
would have saved appoximately 11,100 (95% CI: 6,800,
15,500) lives in those 43 states during the same time period.
Results based on ICE were similar (point estimate: 11,300,
95% CI: 6900, 15,600), whereas IPTW gave a smaller point
estimate and somewhat wider CI (point estimate: 4100,
95% CI: −500, 8700).

7 EXTENSIONS

7.1 Violations of parallel trends

In some applications, the parallel trends assumption
(Assumption 3) may be questionable, and investigators
may be interested in how inferences are altered by plau-
sible deviations from parallel trends. A sensitivity analysis

can be conducted as follows. Let

Δ(𝑤𝑘, 𝑡) = 𝔼{𝑌𝑡(𝑎
∗
) − 𝑌𝑡−1(𝑎

∗
)|𝑊𝑘 = 𝑤𝑘,𝐴𝑘−1 = 𝑎

∗
𝑘−1}

−𝔼{𝑌𝑡(𝑎
∗
) − 𝑌𝑡−1(𝑎

∗
)|𝑊𝑘 = 𝑤𝑘,𝐴𝑘 = 𝑎

∗
𝑘},

where Δ(𝑤𝑘, 𝑡) quantifies a deviation from parallel
trends, which may depend on both the covariates 𝑤𝑘

and time 𝑡. Then, consider the following statistical
parameter:

Δ𝑘 =

𝑘−1∑
𝑚=0

∫ 𝔼{Δ(𝑊𝑚+1, 𝑘)|𝐴𝑚 = 𝑎
∗
𝑚,𝑊𝑚 = 𝑤𝑚}

×

𝑚∏
𝑠=0

𝑑𝐹(𝑤𝑠|𝑤𝑠−1, 𝑎
∗
𝑠−1).

If Assumptions 1 and 2 hold, then

𝜇𝑡 = 𝜓Δ𝑡 ≡ 𝜓𝑡 +

𝑡∑
𝑘=1

Δ𝑘. (5)

A proof of (5) is given in Web Appendix D. If a particu-
lar value is assumed known for Δ(𝑤𝑘, 𝑡), then estimation
can proceed by noting that, like 𝜓𝑡, Δ𝑘 is also a linear com-
bination of g-formulas, where in this case, the outcome
variable is Δ(𝑊𝑚+1, 𝑘). Thus, one can form estimators Δ̂𝑘
of Δ𝑘 using IPTW, ICE, or TMLE, and define the estimator
𝜓Δ𝑡 = 𝜓𝑡 +

∑𝑡

𝑘=1
Δ̂𝑘, where 𝜓𝑡 is one of the estimators of 𝜓𝑡



described in Section 4. By the same arguments as in Sec-
tion 4, 𝜓Δ𝑡 will be CAN for 𝜓𝑡 under Assumptions 1 and 2,
and correct model specification (if using TMLE to estimate
Δ𝑘, either the treatment or outcomes models can be mis-
specified, but not both). In practice, Δ(𝑤𝑘, 𝑡) will typically
not be known, and thus, estimatesmay be computed over a
range of plausible values of Δ(𝑤𝑘, 𝑡). Differences in trends
between subgroups of units before discontinuation occurs
may be helpful in determining plausible values of Δ(𝑤𝑘, 𝑡)

(Roth & Rambachan, 2019).

7.2 Dynamic regimes

In addition to the static regimes considered above, the
proposed approach can accommodate regimeswhere treat-
ment decisions may depend on the history of covari-
ates and/or treatments. Let 𝑔 = {𝑔0(𝑤0), 𝑔1(𝑤1), … , 𝑔𝜏(𝑤𝜏)}

denote a dynamic regime, where 𝑔𝑘(𝑤𝑘) returns the treat-
ment value 𝑎𝑘 that would be assigned given covariate
history 𝑤𝑘. Note that 𝑔𝑘(⋅) may also depend on treat-
ment history, which we suppress for notational simplicity.
Likewise, let 𝑌𝑘(𝑔) be a potential outcome under treat-
ment regime 𝑔. Suppose interest is in the estimand 𝜇𝑔𝑡 =
𝔼{𝑌𝑡(𝑔)}. Then, consider the following modifications to
Assumptions 1–3.

Assumption 4. (SUTVA for dynamic regimes): If 𝐴𝑖𝑡 =
𝑔𝑡(𝑊𝑖𝑡), then 𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝑔𝑡) for 𝑡 ∈ {0, 1, … 𝜏}.

Assumption 5. (Positivity for dynamic regimes):
If 𝑓{𝑤𝑡|𝐴𝑡−1 = 𝑔𝑡−1(𝑊𝑡−1)} > 0, then 𝑓{𝑔𝑡(𝑤𝑡)|𝑊𝑡 =

𝑤𝑡, 𝐴𝑡−1 = 𝑔𝑡−1(𝑤𝑡−1)} > 0, for 𝑤𝑡 ∈ 𝑡; 𝑡 ∈ {1, 2, … , 𝜏}.

Assumption 6. (Parallel trends for dynamic regimes): For
𝑡 ∈ {1, 2, … , 𝜏}, 𝑘 ≤ 𝑡 ∶

𝔼{𝑌𝑡(𝑔) −𝑌𝑡−1(𝑔)|𝑊𝑘,𝐴𝑘−1 = 𝑔𝑘−1(𝑊𝑘−1)}

= 𝔼{𝑌𝑡(𝑔) − 𝑌𝑡−1(𝑔)|𝑊𝑘,𝐴𝑘 = 𝑔𝑘(𝑊𝑘)}.

Lemma 2. (Parallel trends g-formula, dynamic regimes)
Define the functional (i.e., statistical parameter)

𝜓
𝑔
𝑡 ≡ 𝔼(𝑌0) +

𝑡∑
𝑘=1

∫ 𝔼{𝑌𝑘 − 𝑌𝑘−1|𝑊𝑘 = 𝑤𝑘,

𝐴𝑘 = 𝑔𝑘(𝑤𝑘)}

𝑘∏
𝑚=0

𝑑𝐹{𝑤𝑚|𝑤𝑚−1, 𝑔𝑚−1(𝑤𝑚−1)}.

Under a staggered discontinuation design and if Assump-
tions 4–6 hold, then 𝜓𝑔𝑡 = 𝜇

𝑔
𝑡 .

The proof of Lemma 2 follows from results in Web
Appendix A. Thus, the IPTW, ICE, and TMLE estimators
described can be used, with 𝜙𝑗,𝑘 appropriately redefined.

8 DISCUSSION

This paper considers a new approach to identifying effects
of sustained intervention strategies based on an assump-
tion set that includes parallel trends. This assumption
is popular in DIDs because it allows for some degree
of unmeasured confounding (Zeldow & Hatfield, 2021).
Recently, parallel trends assumptions have been leveraged
to target sustained treatment estimands, mainly consid-
ering certain types of treatment regimes (Callaway &
Sant’Anna, 2021; de Chaisemartin &D’Haultfoeuille, 2020,
2021b, 2021a). Relative to previous work, the main contri-
bution of this paper is a framework for estimatingmarginal
intervention-specific means for general treatment regimes
(including dynamic regimes) under parallel trends, thus
connecting disparate causal inference literatures from bio-
statistics (Bang&Robins, 2005; Robins, 1986, 2000; van der
Laan & Gruber, 2012) and econometrics (Ashenfelter &
Card, 1985; Callaway & Sant’Anna, 2021).
The proposed methods bear a close relationship to

recently developed econometric methods for DID. Specifi-
cally, existing estimators for time-varying ATT parameters
in event study and staggered adoption designs could be
adapted to target the estimands and more general regimes
considered here. Given any regime 𝑎∗, one could relabel
individuals consistent with 𝑎

∗ as “untreated” and those
who deviated as “treated,” estimate group-time ATTs con-
sidered by Callaway and Sant’Anna (2021), and then take
an appropriate linear combination to arrive at an estimate
of 𝔼[𝑌𝑡(𝑎

∗
)]. In the absence of time-varying covariates,

the estimators of Callaway and Sant’Anna (2021) could
be adapted in this way. Likewise, the estimators proposed
here could be adapted to target group-time ATTs account-
ing for time-varying covariates. Thus, relative to existing
econometric methods, the contributions of the present
work are to highlight that existing DID approaches are
perhaps more general than commonly believed, propose
new estimators tailored to this generality, allow for flexible
adjustment for time-varying covariates, and draw connec-
tions with the literature on time-varying treatments.
Regarding the example presented in Section 6, care

should be taken when assuming parallel trends for
pandemic-related outcomes without conditioning on pan-
demic state variables such as infection rates, as marginal
parallel trends are incompatible with standard epidemic
models (Callaway & Li, 2021). DID methods have been
used to estimate effects of stay-at-home orders on the
treated (e.g., Fowler et al., 2021). The methods in this



paper allow for (i) a different target parameter that may
more directly correspond to decisions facing policy mak-
ers and public health officials (Maldonado & Greenland,
2002), and (ii) adjustment for time-varying pandemic state
variables likely affected by prior treatment, which DID
methods have only recently begun to consider (Callaway &
Li, 2021). That said, assessing effects of stay-at-home orders
is complex, and a comprehensive analysis should consider
potential biases not factored into the present analysis; for
example, there is likely some interference (Haber et al.,
2021). Thus, the application results are notmeant to inform
policy or scientific conclusions.
The approach presented here may have application in

many other contexts. Many U.S. state-level policies have
changed in such a way as to accommodate a staggered
discontinuation design, including in domains other than
pandemic mitigation. Outside of staggered discontinua-
tion designs, the proposed methods apply more generally
in settings where baseline potential outcomes are identi-
fied. For example, the approach could be used to estimate
per-protocol effects in a clinical trial of a time-varying
treatment regime with nonadherence.
Several areas for future research remain. First, it will

be important to explore efficiency for competing estima-
tors in this framework. Notably, the TMLE presented here
is only known to be semiparametric efficient for the nui-
sance parameters 𝜙𝑗𝑘 and not necessarily for the target
parameter 𝜓𝑡 (van der Laan & Gruber, 2012). Second,
there is a notable similarity between the proposed paral-
lel trends assumption and the discrete-time independent
censoring assumption from linear increments methods for
missing data (Diggle et al., 2007); this connection may
be informative for suggesting new estimators, particu-
larly in the case of nonmonotonic treatments. Finally,
though parallel trends may be considered more plausible
than sequential exchangeability in some settings, strategies
for evaluating the plausibility of the assumption (includ-
ing any implications regarding effect heterogeneity) using
domain knowledge are needed (e.g., Ghanem et al., 2022).
While the parallel trends assumption in this paper avoid
restricting effect heterogeneity by considering only one
regime, structural models that allow parallel trends for
one regime but not others may be difficult to justify in
practice (Shahn et al., 2022). Thus, an important focus of
future research is to elucidate under what structural con-
ditions parallel trends are plausible and forwhat regime(s),
and to develop diagnostics for evaluating these conditions
in practice.
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