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ABSTRACT

Feng Xu: Deep Learning-Based Robust Neural-Machine Interface for
Dexterous Control of Robotic Hand

(Under the direction of Xiaogang Hu)

Neuromuscular injuries can impair hand function and impact the quality of life. To restore

hand dexterity, numerous assistive devices have been developed. However, the lack of a robust

neural-machine interface may limit functionality of these devices. Accordingly, a robust neural

decoding approach was developed that can continuously decode the intended finger motor output.

High-density electromyogram (HD-EMG) signals were obtained from the extrinsic finger flexor and

extensor muscles. Convolutional neural networks were implemented to learn the mapping from

HD-EMG features to finger-specific population neuron firing frequency, which was then used to

control a prosthetic hand in real-time. In comparison with the HD-EMG amplitude approach,

the network-based decoder predicted finger forces and angles with lower prediction errors. The

network-based decoder also demonstrated better isolation with minimal predicted output in the

unintended fingers. The outcomes offer a novel neural-machine interface technique that allows

intuitive control of assistive robotic hands in a dexterous manner.
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CHAPTER 1

INTRODUCTION

Our ability to control individual fingers independently allows us to perform a wide variety of

complex tasks, such as cooking, dressing, and typing. The human digits are capable of performing

precise, coordinated movements with little conscious effort. The hand is crucial to overall upper

limb function, as evidenced by the equating of loss of the hand (e.g., hand amputation) with a 90%

loss of total upper limb function and 54% loss of the whole body function [1]. The importance of

hand function to daily life is further underscored by results of a survey taken by individuals with

tetraplegia, affecting both upper and lower limbs. Responders listed regaining hand function as

their top priority, well above walking [2]. To restore impaired or lost hand function, the design of

assistive devices, such as prosthetic hands or exoskeleton gloves, have advanced to a degree that

can imitate movements of the human biological hand [3, 4, 5, 6]. However, clinical translation of

these robotic devices has been limited. One major hurdle limiting widespread use of robotic hands

is the lack of a robust neural-machine interface that can reliably translate the user’s intent into

executable control commands for the devices. Although different neural recording modalities have

been developed to acquire brain signals for the detection of motor intent [7, 8], an accurate decoding

of individual finger movements remains challenging. For individuals with voluntary muscle activation

capability, surface electromyography (EMG), a method of recording the electrical signals arising

from muscle activation, affords an attractive means of capturing motor intent, as evidenced by its

widespread usage in the control of wearable robots [9, 10]. Typically, EMG features are extracted to

identify the desired movement from a finite set of movements [11, 12, 13, 14, 15] or the movement of

a specific joint is made proportional to the EMG feature (with EMG amplitude as a commonly used

feature) [16, 17]. These global EMG-based control strategies are prone to interference. For example,

the macro EMG absolute amplitude can be biased by intrinsic physiological factors, such as the

varying distances and tissue types located between the muscle source and the recording electrode

on the surface of the skin. EMG signals can also be biased by crosstalk of neighboring muscles
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(especially in the case of small hand muscles lying in close proximity), inconsistent electrode-skin

contact, and motion artifacts [18, 19]. All of these factors can limit the robustness and efficacy of

the human-robot interaction. Alternatively, it is possible to use spinal motoneuron firing activity

(binary events) as a neural interface. Although individual motoneurons have distinct firing properties

[20, 21] that may not directly reflect the descending command, the frequency/probability of the

spinal motoneuron firing at the population level can directly reflect high-level neural drive from the

brain to the muscles. Essentially, the spinal cord output signal (motoneuronal firing events) is used

to decode the spinal input signal (descending command from the brain). This decoded neural drive

has the potential to be much more robust for decoding user intent than global EMG patterns as the

binary discrimination is less susceptible to noise than measuring analog features.

Figure 1.1: Overview of the research approach. High-density electromyographic (HD-EMG) signals
were obtained from the extrinsic finger flexor and extensor muscles. Convolutional neural network
(CNN)-based models were used to learn the mapping from HD-EMG amplitude and frequency
features to finger-specific neural drive signals (i.e., populational motoneuron firing frequency). The
predicted neural drive signals were then used to continuously control the fingertip forces or joint
angles of the index, middle, and ring fingers of a prosthetic hand in a dexterous manner.

Currently, motoneuron firing events are extracted through motor unit (MU) decomposition of

EMG signals. MU decomposition is the process of separating the spatiotemporally superimposed

action potentials into individual motoneuron firing activities [22, 23, 24]. Different real-time

MU decomposition algorithms have shown great promise for neural decoding purposes [25, 26].

Nevertheless, one drawback of this approach is the inefficiency associated with the calculation of MU

firing activity. During decomposition, spike trains corresponding to individual MUs are extracted;

these are then additively merged to represent the firing behavior of the neural population. Ultimately,
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knowledge of firing rates of individual MUs, the most time-consuming step of the decomposition

algorithm, is not utilized or needed. Instead, a potentially more efficient computational approach

could be used to estimate the population neural firing frequency directly from the EMG without

performing MU decomposition. With the remarkable advancement in deep learning, deep neural

network models, such as convolutional neural networks (CNNs) and recurrent neural networks

(RNNs), have been developed for neural signal processing. For example, gesture recognition can be

achieved using multi-stream CNNs [27, 28]. Moreover, EMG signals have been used for inter-person

recognition of a set of hand gestures after fine-tuning the model parameters [29]. However, these

deep learning-based decoders are still finite-state classifiers, which can only specify a fixed number

of movement patterns, rather than providing a continuous prediction of the neural drive signals.

Accordingly, the purpose of this study was to develop a robust neural decoding method that can

continuously decode the motor command to individual fingers, feasible for real-time control of robotic

hands (Figure 1.1). A CNN-based neural network model was implemented to establish continuous

mapping from high-density EMG (HD-EMG) signals to population motoneuronal firing frequency

for individual finger muscles. The model mapped the HD-EMG amplitude and frequency features

directly to populational neuronal firing frequency (i.e., neural drive) without having to perform the

intermediate process of MU decomposition. Given that EMG features have a more direct relation

with MU firing activity than with fingertip force or joint kinematics, the model was trained on

populational firing frequency. This allowed us to establish a generic model that is generalizable to

fingertip force or joint kinematic control tasks. The calculation of amplitude and frequency features

for the network model input, rather than directly using raw EMG signals, further improved the model

performance and learning rate. The network model was first trained using a large dataset of different

subjects to learn the general mapping relation, and then the model parameters was calibrated

using subject-specific data such that the model can accurately predict the desired finger output

(fingertip force and joint angle) of individual subjects. The network-based neural drive decoding

performance was evaluated (prediction error and correlation) by comparing with an EMG amplitude

approach. The developed neural decoding approach could accurately predict desired fingertip forces

and joint angles with minimal predicted output in the undesired fingers. The substantially improved

independence of finger control, both in terms of isometric finger force and dynamic movement,

provides a foundation for continuous control of assistive devices in a dexterous manner.
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CHAPTER 2

METHODS

2.1 Participants

Ten neurologically intact participants (three females and seven males, age: 23-36) were recruited

for this study. Prior to the experiment, all participants gave informed consent via protocols approved

by the Institutional Review Board of the University of North Carolina at Chapel Hill.

2.2 Experimental Design

The experiment was composed of two types of tasks: isometric finger force tasks and dynamic

finger movement tasks. During the experiment, the participants were seated in front of a desk with

their right forearm in the neutral position supported by a large foam pad, with a fixed wrist angle.

After skin preparation, two 8×16 HD-EMG electrode grids (a 3-mm recording diameter for each

electrode and an inter-electrode distance of 10 mm) (OT Bioelettronica) covered the anterior and

posterior sides of the forearm to record EMG signals of extrinsic finger flexor and extensor muscles.

The position of the electrode grid was based on palpation of the targeted muscles. The biosignal

amplifier EMG-USB2+ (OT Bioelettronica) sampled the EMG signals at 2048 Hz with a gain of

1000 and band-pass filtered at 10-900 Hz. In the finger force tasks, the index, middle, and ring

fingertip forces were recorded using three miniature load cells (SM-200N, interface) sampled at

1000 Hz. The load cell position was adjusted such that the three fingers spread out comfortably.

The participants produced either single- or three-finger isometric flexion for model calibration and

validation, by following a target trajectory comprised of pseudorandom force targets (Figure 2.1B),

ranging from 0% to 50% maximum voluntary contraction (MVC). The participants completed 22

trials in a random finger order, involving index, middle, ring, and three-finger flexion forces for 4, 4,

4, and 10 target trials, respectively. The participants then produced isometric flexion forces using

either a single finger or three fingers for the construction of force regression functions, and they

followed a target trajectory composed of a trapezoidal shape ranging from 0% to 50% MVC (Figure

2.1C). Lastly, to test the decoder performance, the participants produced different forces by following
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a pseudorandom target trajectory (Figure 2.1D), and they repeated the task using either one of the

three fingers or three fingers concurrently. The different target trajectories were used to evaluate

the generalizability of the decoders in different conditions. In the dynamic finger movement tasks,

joint kinematics of the metacarpophalangeal (MCP) joints of the index, middle, and ring fingers

were recorded using a custom-made sensor glove, and the MCP angle data were sampled at 100 Hz.

The participants produced either single- or three-finger flexion and extension movements for model

refinement for 4 trials. They followed a target trajectory comprised of half-sinewaves (Figure 2.1E),

ranging from 0% (full extension) to 100% (full flexion) range of motion (ROM) for a total of 10

seconds. The participants then produced either single- or three-finger movement for the construction

of angle regression functions, by following a target trajectory from 0% to 100% ROM (Figure 2.1F).

Lastly, to test the decoder performance, the participants produced different finger movements from

0% to 100% ROM, and they repeated the task using either one of the three fingers or three fingers

concurrently (Figure 2.1G).

2.3 Neural Network Model

A neural network model (parameters detailed in Table B.1 in Appendix B) was implemented with

two parallel convolutional neural networks (CNNs) before a fusion network and multi-output layers

to predict the population motoneuronal firing frequency associated with the index, middle, and ring

fingers. Briefly, The CNN learned the mapping from HD-EMG amplitude and frequency features

with embedded spatiotemporal information to populational neuronal firing frequency (i.e., neural

drive to individual fingers). The computational latency was 37 ms (16 ms delay from retrieving data

packet, up to 3 ms for signal preprocessing, up to 11 ms for neural decoding, and 7 ms for regression

and filtering). This delay is well below the acceptable loop delay (100-150 ms) in human-robot

interactions [30, 31].

2.3.1 Feature calculation

Although CNN can directly learn features from raw EMG signals, pre-calculated features can

reduce the training and calibration time, essential for real-time control. Two types of features

were calculated as the input to the neural network model, separately for the flexor and extensor

muscles. The 128-channel HD-EMG recordings of the flexor or extensor muscles were segmented

into a sequence of 96-sample (46.88 ms) windows with a step size of 64 samples (31.25 ms), and

five consecutive windows were used to include temporal information. The first feature map (termed
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Figure 2.1: Neural network model training, refinement, and testing for real-time control of prosthesis.
A: Initial training of the neural network using a large dataset to establish a generic mapping from
EMG features to population firing frequency. B: Subject-specific model calibration using data from
single- and multi-finger force tasks. The intended fingers produced isometric forces following a
pseudorandom target ranging from 0% to 50% MVC. C: Perform a linear regression to convert
populational firing frequency to fingertip force. Data from the single- and multi-finger force tasks
following a series of trapezoidal targets were used for the regression. D: Testing of the force prediction
performance using data from the single- and multi-finger force tasks following a pseudorandom target
(0-50% MVC). E: The calibrated model was further refined using subject specific data from dynamic
single- and multi-finger movement tasks. The MCP joints started from full extension (0% ROM),
and flexed to 100% ROM, and extended back to 0% ROM. F: Perform a quadratic regression to
convert populational firing frequency to joint angle. Data from the single- and multi-finger movement
tasks were used for the regression. G: Testing of the angle prediction performance using data from
the single- and multi-finger movement tasks (0-100% MVC). H: Real-time control of a prosthesis
using a force controller or an angle controller.

amplitude map) was calculated based on the root-mean-square (RMS) value of all the samples

within a window in a channel-wise manner. The 128 RMS values were then organized into a 16×8

(height×width) amplitude map corresponding to the electrode grid spatial organization in Figure

1.1. Five amplitude maps from five consecutive windows were stacked vertically to form a three-

dimensional (3D) array. The 3D array was the amplitude feature Famp ∈ RT×H×W (Time×Spatial×

Spatial), where T=5, H=16, and W=8. The second feature map (termed frequency map) was

calculated using the short-time Fourier transform. 128 frequency spectrum vectors corresponding to

the 128 channels were calculated within each 96-sample window. Five 1D spectrum vectors from five

consecutive windows of the same channel were concatenated into a 2D array. 128 2D arrays from

the 128 channels were stacked vertically to form the third dimension, resulting the frequency feature

Fspec ∈ RN×M×T (Spatial×Frequency×Time), where N=128, M=49, and T=5.
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2.3.2 Neural network structure

Within a convolution operation, a matrix multiplication was performed between the kernel and

an area covered by the kernel of either the amplitude feature or the frequency feature, and the results

were summed onto the representation map for the next layer. The frequency CNN enabled the

exploration of the changes in frequencies at different time scales by sliding the kernel (ω ∈ RN×p×q)

pixel by pixel across the frequency feature maps (2.1), where Y is the output representation map,

and i, j are the coordinates indicating the location of the kernels on the input feature. Because

action potentials in HD-EMG signals could arrive at different channels at different times, the third

dimension of the kernels explored the spatial-frequency relation among channels.

Yij =

p−1∑
a=0

q−1∑
b=0

ωabFspec(i+a)(j+b) (2.1)

The amplitude CNN was also used to extract the information from the amplitude feature. The

kernels (ν ∈ RT×p×q) were able to detect the shape of the activated area and the change in the

EMG amplitude of each channel (2.2), where Z is the output representation map, and i, j are the

coordinates indicating the location of the kernels on the input feature.

Zij =

p−1∑
a=0

q−1∑
b=0

νabFamp(i+a)(j+b) (2.2)

Since the active area differed when each of the three fingers moved, the retained electrode

topographic information in the amplitude feature allowed an intuitive feature extraction for high-

level representations, and could provide an accurate finger isolation in terms of the populational

firing frequency of each finger. The third dimension of the kernels of the amplitude CNN explored

the temporal-spatial relation of the changes in five amplitude maps that varied over time in the

same area. By passing through all the convolutional layers, the high-level representation was

extracted, and was used to predict the population firing frequency of the three individual fingers.

The high-level representations were flattened into feature vectors, and were then passed through fully

connected layers, which improved the ability to learn nonlinear combinations from the representational

information extracted by the convolutional layers. A fusion network with two fully connected layers

mapped the extracted feature vectors to the multi-output branches. Each output branch had one

hidden layer with 256 neurons and an output layer with 16 neurons. The probability of each target
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class (0 to 15), corresponding to the normalized populational firing frequency, was given by the

softmax function [32]. Three output branches predicted the firing frequencies for the index, middle,

and ring fingers in a concurrent manner. Given the ground truth population neuron firing frequency

S ∈ R3×1 and the two input feature maps Fspec and Famp, the decoding process can be modeled

as finding the prediction that maximizes the following log probability (2.3), where d is the finger

number from one to three.

log p (S|Fspec, Famp) =

3∑
d=1

log p(Sd|Fspec, Famp;S0, S1, . . . ,Sd−1) (2.3)

In the training process, in order to maximize the log probability of a correct prediction, the

training objective was set as (2.4), where K denotes the number of training samples.

Objective = −
K∑
i=1

log p(Si|Fspec
i, Famp

i) (2.4)

Once the training process is complete, the population firing frequency was estimated by finding

the Ŝ that maximize the probability above: Ŝ = argmax
S

p(S|Fspec, Famp). The overall loss on

cross-entropy is described in (2.5), where {x, label} ∈ RB×3, and B is the batch size. x is the

network output sent to the softmax function. labeld ∈ [0, C − 1] is a scalar, and C=16 is the

number of total target classes. w ∈ RC is the weight on each class.

loss (x, label) =
3∑

d=1

−wlabel · log
exdlabeld∑C−1
i=0 exdi

= −wlabel ·

[
−xdlabeld + log

C−1∑
i=0

exdi

]
(2.5)

2.3.3 Network output target

To use the population firing frequency as the model output target for training, it was needed

to obtain the firing frequency information from the EMG signals. A fast independent component

analysis (FastICA) method was used [33, 26, 34] to extract the firing times of individual motor units

(MUs). The pseudocode of the algorithm is shown in Algorithm 1 below. Briefly, the raw EMG

signals were first extended by an extension factor (fe=10) and whitened. The separation vectors and

associated signal sources representing individual MU information were obtained via a fixed-point
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iteration algorithm [35, 36]. The binary firing events of individual MU were separated from the

background signal sources through a binary classification using the Kmeans++ algorithm [35, 36]. A

modified ‘silhouette distance’ (SIL) measurement [37] was used to quantify the separation quality of

the source signals, where source signals with low SIL values (<0.6) were excluded from the MU pool.

Algorithm 1: MOTOR UNIT DECOMPOSITION ALGORITHM
Data: Extended and Whitened multi-channel EMG signals
Result: Firing event trains of individual MUs
I. Initialize matrix B to an empty matrix
II. for j = 1, 2, . . . ,M do

1. Initialize the vector wj(0) and wj(−1)
2. while

∣∣wj(n)
Twj(n− 1)− 1

∣∣ > Tolx do
a. Fixed Point Algorithm:

wj(n) = E
{
zg

[
wj(n− 1)T z

]}
−Awj(n− 1) with A = E

{
g′
[
wj(n− 1)T z

]}
and

g(y) = y3/3
b. Orthogonalization

wj(n) = wj(n)−BBTwj(n)
c. Normalization

wj(n) =
wj(n)

∥wj(n)∥
d. set n = n+ 1

end
3. Estimate the source signal ŝj(k) = wj(n)

T z(k)
4. Estimate the firing event train Tj using peak detection and then the binary
classification of the detected peaks using the Kmeans++ algorithm

5. Calculate SIL according to TjandŜj

6. Add wj(n) to matrix B

end

The retained binary firing activities were further summated to a single composite train, from

which the populational firing frequency of the MU pool can be obtained. The population firing

frequency was normalized and categorized into 16 target classes ranging from 0 to 15 for the neural

network training. The normalization process divided the population firing frequency by the maximum

firing frequency, and then scaled up to 15. Inherently, 0 corresponded to the lowest firing frequency

and 15 corresponded to the highest firing frequency.

2.4 Neural Network Training and Testing

2.4.1 Initial training

The initial training first established a generic mapping from EMG features to population firing

frequency of individual fingers. The neural network training was optimized by the Adam optimizer
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[38] with 50% dropout [39]. HD-EMG recordings with decomposed MU firing frequency training

targets from a large dataset of isometric finger force tasks [40, 41, 42] were first used to train the

neural network (Figure 2.1A). To optimize the neural network with multi-finger targets, the firing

frequency of each finger was calculated via the summation of the firing events of individual MUs

grouped by fingers, and was then normalized and scaled to the target classes ranging from 0 to 15.

All the training data in the dataset, except a trial retained for validation, were used to train the

neural network for 1500 epochs. The validation was performed after each epoch by evaluating the

performance of the neural network on the validation trial. A validation score was calculated as the

arithmetic mean of the three correlation coefficients between the predicted firing frequencies and

the actual measured forces of the index, middle, and ring fingers of the validation trial. After the

training session has reached the maximum number of epochs, the weight coefficients of the neural

network right after the epoch with the highest validation score were adopted for the initially trained

model.

2.4.2 Model calibration

To adapt to the EMG characteristics of individual subjects, the CNNs were fine-tuned using

calibration data of each subject (Figure 2.1B). The calibration procedure was guided by a validation

trial, including one trial in each of the four force tasks (index, middle, ring, and three-finger). Based

on the initially trained weight coefficients, the neural network was fine-tuned for 80 epochs, and the

validation was performed at the end of each epoch. In each epoch, all the training data from the

calibration trials were used once. The same validation score as in the initial training was used here.

The weight coefficients of the neural network right after the epoch with the highest validation score

were adopted.

2.4.3 Model refinement for joint angle control

Given the neural network model was never trained or refined on data involving dynamic movement,

a second model refinement was performed using dynamic task based on the calibrated model using

data from finger force tasks (Figure 2.1E). The joint angle decoding performance without this

second refinement is shown in Figure A.4 in Appendix A. The second refinement was guided by a

validation trial comprised of 4 dynamic movement segments, each including one index, middle, ring,

and three-finger tasks. Similarly, the neural network was fine-tuned for 80 epochs with validation

performed at the end of each epoch. The weights of the neural network after the epoch with the
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highest validation score were adopted.

2.4.4 Fingertip force and joint angle regression

To derive the motor output (fingertip force or joint angle) for continuous control of the prosthesis,

regression analyses were performed. The predicted firing frequency was first smoothed by a moving

average filter (500-ms window with a moving step of 31.25 ms). The smoothed firing frequency

was further smoothed by a Kalman filter [43]. As a result, the smoothed firing frequencies were

updated every 31.25 ms (32 Hz) for the three individual fingers concurrently. The 32 Hz was chosen

because the data packet can be obtained from the acquisition system at 32 Hz. Three bivariate

linear regression models were constructed using data from the force regression trials (Figure 2.1C)

to estimate three finger forces based on the smoothed firing frequency. The data of the intended

finger were used for each regression. In addition, three bivariate quadratic regression models were

constructed using data from the dynamic angle regression trials (Figure 2.1F), in order to predict

MCP angles of the three fingers based on the smoothed firing frequency. An earlier study has

shown that the quadratic regression function outperformed the linear function for dynamic kinematic

estimation [43].

2.4.5 Evaluation of decoding performance

To evaluate the decoder performance, real-time decoding of intended fingertip forces and joint

angles were performed on HD-EMG signals when subjects performed fingertip force tasks (Figure

2.1D) or dynamic MCP flexion and extension tasks (Figure 2.1G). As a comparison with the

neural network decoder, a EMG amplitude method [40] (termed EMG method) was implemented to

estimated force and angle prediction. First, the top 60 channels with the highest RMS value out

of the 128 channels were selected separately for the flexor and extensor muscles. The EMG data

during the activation of individual intended fingers were used for the channel selection. Second,

because of EMG activities associated with inevitable activation of unintended fingers, some of the

selected top 60 channels could represent motor output of unintended fingers. This could lead to

false positive errors in motor output predictions of intended fingers. To address this issue, a channel

refinement procedure was performed to further remove channels with potential EMG recordings

(i.e., cross-talk) of unintended fingers. Specifically, the EMG amplitude (RMS) was calculated using

the moving average filter (500-ms window with a moving step of 31.25 ms) for the individual 60

channels. A regression analysis was then performed between the EMG amplitude and different finger
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forces during individual finger force tasks. If the coefficient of determination (R2) value with the

intended fingers were higher than with the other two fingers, the given EMG channel was retained.

Otherwise, the channel was removed. The assumption was that the EMG channel with muscle

activities associated with a given finger should have a high correlation with the motor output of

that finger. The same refinement procedure was also performed among the 60 EMG channels for

the dynamic movement tasks, except that the regression analysis was performed between the EMG

amplitude and the measured joint angles of the three fingers. Finally, the RMS values of the retained

EMG channels were calculated using the same moving average filter method and averaged across

channels for each finger. The same Kalman filter was applied to the average RMS values. Three

bivariate linear regression functions for the EMG method were also constructed using data from the

force regression trials, and three bivariate quadratic functions were constructed using data from the

angle regression trials.

2.4.6 Prosthesis control

The predicted force or angle data of the CNN method were also used to control the MCP joint of

the index, middle, and ring fingers of the prosthetic hand (i-Limb, Ossur) using a custom MATLAB

(MathWorks Inc) interface. Three force-sensitive resistors (FSR) and three angle sensors were fixed

on the prosthetic fingers to record the fingertip forces and MCP joint angles, respectively. The force

and angle information was sent to two custom-made proportional derivative (PD) controllers as

feedback signals to control the fingertip force or the MCP angle of each of the three fingers. For the

isometric force task, a force controller was employed, while an angular position controller was utilized

in the dynamic task. With the force controller, the amount of force generated by the prosthetic

hand was modulated by the predicted forces from the CNN method. With the angular position

controller, motor commands altered each finger’s angular position in order to match the predicted

joint angle of the CNN method. Both controllers updated the reference force or angle at a rate of

8 Hz, while motor commands were updated at a rate of 32 Hz. The force recordings of the FSR

were monitored, if the force was > 1 N, the force regression functions and the force controller were

activated, otherwise, the angle regression function and angle controller were used.

2.5 Statistical Analysis

To quantify the performance of force and joint angle predictions of the CNN and EMG methods,

the root mean squared error (RMSE) and coefficient of determination (R2) values were calculated

12



between the actual measured forces (or angles) and the predicted forces (or angles). To quantify finger

isolation of the decoding, both intended and unintended fingers were evaluated in the single-finger

tasks. Repeated measures analysis of variance (ANOVA) was performed on the dependent variables.

The significance level α was set as 0.05. A pairwise comparison was conducted using the Bonferroni

method when necessary. To further quantify finger isolation, we also categorized the fingers into

active or rest states based on the predicted finger output (force or angle) in the single-finger tasks.

Predicted finger output time series were categorized into active or rest states based on an output

threshold (10% MVC for the force tasks and 10% ROM for the dynamic movement tasks). At a

given time, if the output of a finger was above the threshold, this finger was categorized as active at

that time. The percentages of output data samples in different finger combination categories were

calculated. A high percentage only in the single intended finger category was considered a better

finger isolation than a high percentage in the multi-finger categories
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CHAPTER 3

RESULTS

3.1 Fingertip force decoding

To quantify the force decoding performance, the RMSE was calculated between the actual

measured fingertip force via load cells and the predicted force (either from CNN method or EMG

method). The decoding performance in the single-finger force task (one finger produced flexion forces

following a pseudorandom target while other fingers remained relaxed) is shown in Figure 3.1. A

representative trial of the index finger flexion task is shown in Figure 3.1A. The force prediction of the

CNN method accurately followed the actual measured force in the intended index finger throughout

the trial. In contrast, the force prediction of the EMG method showed large deviation from the

actual force, especially in the trial period > 40 s. In addition, the EMG method also demonstrated

large false positive forces in the unintended fingers (middle and ring). Figure 3.1B summarizes the

overall average force prediction errors of the intended fingers. Filled circles represented individual

subjects. The two-way (method (CNN vs. EMG) × finger (index vs. middle vs. ring)) ANOVA

showed that the RMSE of the CNN method was significantly smaller than that of the EMG method

across fingers (F(1,9)=10.396, p=0.010) with no interaction effect. Figure 3.1C shows the force

error of the unintended fingers. Since the unintended fingers were supposed to produce no force

output, a zero-newton force was considered the ground-truth of the unintended fingers. Accordingly,

the RMSE of the unintended fingers was calculated between zero-newton force and the actual or

predicted forces. Essentially, a larger RMSE indicated a higher force in the unintended fingers. The

two-way (method (CNN vs. EMG vs. actual force) × finger (index vs. middle vs. ring)) repeated

measures ANOVA revealed a significant effect of the method (F(2,18)=49.934, p<0.001) with no

interaction effect.

Further pairwise comparison showed that the RMSE of the EMG method was significantly higher

than that of the CNN method (p<0.001), and that of the actual force (p<0.001). The RMSE of the

CNN method was also higher than that of the actual measured force (p<0.01).
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Figure 3.1: Prediction of individual fingertip forces using the CNN and EMG methods. A: An
example trial of individual fingertip force prediction of the CNN and EMG methods, when the index
finger was instructed to produce the required forces while other fingers relaxed. The summary of
force prediction performance calculated as the root-mean-square error (RMSE) is shown separately
for the intended (B) and unintended (C) fingers. Filled circles represent individual subjects with
the same color denoting the same subject. Error bars represent standard error. D: Active finger
categorization of the CNN method (blue) and the EMG method (green). I, M, and R represent index,
middle, and ring fingers, respectively. Predicted force time series of the three fingers were categorized
into active or rest states based on a 10% maximum voluntary contraction (MVC) threshold, with >
10% MVC categorized as active. If the predicted forces of all the three fingers were smaller than
10% MVC at a given time, it was counted as the None category. The radius of the plot represented
the percentage of force data samples in each category, with different contour lines represent different
percentage values. *, p<0.05. **, p<0.01. ***, p<0.001.
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To further quantify finger isolation of the decoders, we also categorized the fingers into active or

rest states based on the predicted finger forces (Figure 3.1). Predicted force time series of the three

fingers were categorized into active or rest states based on a 10% maximum voluntary contraction

(MVC) threshold. Similar categorization results based on the 5% and 15% MVC thresholds are

shown in Figure A.1 in Appendix A. At a given time, if the force of a finger was above the 10%

MVC, this finger was categorized as active. Most of the predicted force samples of the CNN method

corresponded to the active intended fingers, and most of the forces of the unintended fingers were

categorized into a rest state. In comparison, the force of the EMG method predicted co-activation

of the intended finger coupled with one or multiple unintended fingers. For example, in the index

finger trial the EMG method predicted I, IM, IR, and IMR active fingers, in which the IM, IR, and

IMR were false positive states.

The decoding performance in the multi-finger force task (index, middle, and ring fingers produced

flexion forces concurrently) is shown in Figure 3.2. A representative trial is shown in Figure 3.2A.

The force predictions of the CNN method accurately followed the actual forces of the three fingers.

In contrast, the force prediction of the EMG method demonstrated large deviation from the actual

forces throughout the trial. Figure 3.2B illustrates the average force prediction errors of the intended

fingers. The one-way repeated measures ANOVA showed that the RMSE of the CNN method (8.8%

± 0.7%) was significantly smaller than that of the EMG method (17.8% ± 1.9%) (F(1,9)=59.349,

p<0.001). Figure 3.2C illustrates the average coefficient of determination (R2) between the actual

and predicted forces of the two methods. The ANOVA results showed that the R2 value of the

CNN method (0.836 ± 0.014) was significantly larger than that of the EMG method (0.637 ± 0.055)

(F(1,9)=11.948, p=0.007).

In addition, the CNN method also showed more stable performance across tasks and over time.

Specifically, the force prediction error of the CNN method was comparable between the single-finger

and multi-finger tasks, while the force prediction error of the EMG method increased substantially

from the single-finger task to the multi-finger task (Figure 3.2D). As shown in Figure A.2 in Appendix

A, the force prediction error during initial force regression was similar between the CNN and EMG

methods. However, a substantially larger prediction error was observed during subsequent testing in

the EMG method, compared with the CNN method, indicating a degrading performance over time

of the EMG method.

16



Figure 3.2: Prediction of multi-finger forces concurrently using the CNN and EMG methods. A:
An example trial of multi-finger force prediction of the CNN and EMG methods. The averaged
RMSE (B) and averaged coefficient of determination (C) of the two methods. D: A comparison of
the RMSE of the two methods across the finger- and multi-finger tasks. Filled circles of the same
color represent the same subjects. Error bars represent standard error. *, p<0.05. **, p<0.01. ***,
p<0.001.
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3.2 Finger joint angle decoding

We then evaluated the decoding performance of joint kinematics of individual fingers when

subjects produced either single-finger or multi-finger flexion and extension movements around the

metacarpophalangeal (MCP) joints. The decoding performance in the single-finger joint movement

task is shown in Figure 3.3. An exemplar trial of the ring finger flexion-extension task is illustrated

in Figure 3.3A. The CNN method showed a better angle prediction performance in comparison with

the EMG method. The CNN method also revealed an underestimation of the joint angle in the

unintended fingers, whereas the EMG method demonstrated an overestimation of the joint angle.

Figure 3.3B illustrates the average prediction errors of the intended fingers across subjects. The

two-way (method (CNN vs. EMG) × finger (index vs. middle vs. ring)) ANOVA revealed that the

RMSE of the CNN method was significantly smaller than that of the EMG method across fingers

(F(1,9)=5.703, p=0.041) with no interaction effect, and no significant finger effect.

We also quantified movement errors of the unintended fingers. Since the unintended fingers

were supposed to produce no joint movement, a zero-degree angle movement was considered the

ground-truth of the unintended fingers. Accordingly, the RMSE of the unintended fingers was

calculated between zero-degree angle and the actual or predicted angles. The RMSE between

zero-degree angle and the actual angle (or the predicted angles) were calculated (Figure 3.3C). The

ANOVA results indicated that the method (F(2,18)=136.951, p<0.001) had a significant effect on

the RMSE with no interaction effect. The pairwise comparison showed that the RMSE of the EMG

method was significantly higher than that of the CNN method (p<0.001) and the actual joint angle

(p<0.01). The RMSE of CNN was significantly smaller than that of the actual joint angle (p<0.001),

indicating that the CNN method can better predict intended movement of the subjects than the

actual movement. We also quantified the active vs. rest states of the fingers based on the predicted

joint angles (Figure 3.3D). At a given time, if the angle of a finger was above the 10% range of motion

(ROM) threshold, the finger was considered active. Most of the predicted joint angles of the CNN

method were categorized into the active intended fingers, with most of the angle of the unintended

fingers categorized into a rest state. In contrast, angles of the EMG method predicted coactivation

of the intended finger and one or multiple unintended fingers, with the highest percentage observed

in the three-finger IMR active state regardless of the task; this indicates poor finger isolation during

decoding. Similar categorization results based on the 5% and 15% ROM thresholds are shown in
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Figure 3.3: Prediction of individual finger joint angles using the CNN and EMG methods. A: An
example trial of the joint angle prediction, when the ring finger was instructed to flex and extend
while other fingers relaxed. Zero-degree means full extension. The RMSE of individual fingers was
shown for the intended (B) and unintended (C) fingers. The range of motion (ROM) was normalized
by the maximum flexion angle of individual fingers. Filled circles of the same color represent the
same subject. Error bars represent standard error. D: Active finger categorization of the CNN
method (Blue) and the EMG method (Green). I, M, and R represent index, middle, and ring fingers,
respectively. Predicted angle time series of the three fingers were categorized into active or rest
states based on a 10% ROM threshold. The radius of the plot represented the percentage of force
data samples in each category, with different contour lines represent different percentage values. *,
p<0.05. **, p<0.01. ***, p<0.001.

Figure A.3 in Appendix A.

The decoding performance in the multi-finger movement task is shown in Figure 3.4. An exemplar

trial comparing the actual and predicted joint angles is shown in Figure 3.4A. The predicted angle of

the CNN method followed the actual measured joint angle accurately. In contrast, a relatively larger

prediction error of the EMG method was observed across the three fingers, especially at the peak

flexion angles. The one-way repeated measures ANOVA showed that the RMSE (Figure 3.4B) of

the CNN method was significantly smaller than that of the EMG method (F(1,9)=13.071, p=0.006).

Similarly, the R2 (Figure 3.4C) of the CNN method was significantly higher than that of the EMG
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method (F(1,9)=6.892, p=0.028).

Figure 3.4: Prediction of multi-finger joint angles concurrently using the CNN and EMG methods.
A: An example trial of multi-finger joint angle prediction of the CNN and EMG methods. The
averaged RMSE (B) and coefficient of determination (C) of the two methods. Filled circles represent
individual subjects. Error bars represent standard error. *, p<0.05. **, p<0.01
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CHAPTER 4

DISCUSSION

This study developed a robust neural decoding method that can predict individual finger output

(fingertip force and joint angle) for real-time control of assistive devices. The CNN model mapped the

HD-EMG features to population neuronal firing frequency (i.e., neural drive) specific to individual

fingers, which allows accurate and robust prediction of single- and multi-finger tasks. The pre-

calculation of HD-EMG features and the two-step model training (inter-subject initial training and

subject-specific refinement) enable an efficient learning of EMG feature mapping to neural drive

signals. The decoding of neural drive based on population neuronal firing activity demonstrated

robust decoding performance, with consistent decoding accuracy across fingers, across tasks, and

over time. In contrast, the performance of the EMG decoder varied across tasks with higher error

in the multi-finger task than the single-finger task. The EMG decoder also degraded over time,

with a low decoding error during the initial regression, but the error increased substantially during

subsequent testing. The outcomes suggest that population neuronal decoding offers a robust yet

efficient method for continuous motor intent detection. The continuous decoding of motor output at

the individual finger level provides a basis for dexterous control of assistive robotic devices.

The CNN decoder also demonstrated great finger isolation with minimal force or angle prediction

in unintended fingers. Motor intent detection of isolated fingers has been a long-standing issue,

because of our limited ability to activate individual finger muscle compartments [44, 45] and inevitable

cross-talk of surface EMG recordings arising from different muscle compartments in close proximity

[18, 46]. Indeed, our EMG decoding method revealed substantial false positive error in the unintended

fingers, despite a channel selection procedure based on motor output of the desired fingers. Although

channel selection can reduce the impact of cross-talk, by selecting the best channels that correspond to

the desired finger output [46], the EMG signals can still contain substantial activity from neighboring

compartments. In contrast, the decoding of neural drive signals using the CNN model can accurately

detect intended and unintended finger output in both single-finger and multi-finger tasks. In fact, the
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predicted motor output, especially the predicted joint angle, was smaller than the actual measured

joint angle in the unintended fingers. This is beneficial from a motor intent detection perspective, in

that the decoded motor outputs reflect the desired motor tasks rather than the actually produced

motor output. The underestimation of joint angle in the unintended fingers can arise from several

factors. First, the surface HD-EMG grid on the forearm only captured activities of the extrinsic

muscles near the skin surface. Activities of the intrinsic finger muscles in the hand and the flexor

digitorum profundus were not recorded, which could contribute to the actual movement of the MCP

joint in the undesired fingers. Second, it is well known that there is coordinated movement among

fingers that limit finger independent. Mechanical coupling from the tendinous structure and skin

connections across fingers [44, 47] is one factor that contributes to coordinated finger movements.

However, this mechanical coupling effect was not considered in the CNN model.

The current study focused on the decoding of individual finger motor output, and the decoder

performance was demonstrated on the real-time control of individual prosthetic fingers. Our decoding

algorithm can also be used for the control of exoskeleton hands to assist individuals with hand

impairment. In future work, we will perform the decoding of all five digits, especially the thumb

movement, which will allow us to evaluate the decoder performance in functional tasks involving

object manipulations. In addition, the current study only evaluated intact individuals, future work

will investigate the decoder performance of individuals with an arm amputation. There will likely

be a limit on the length of residual arm needed for the HD-EMG array placement. Although a

subject-specific model refinement was performed in the current study, further refinement may be

needed to cope with the different muscle activation patterns of different amputated individuals.
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CHAPTER 5

CONCLUSION

In this study, a robust neural decoding method was developed to predict the populational firing

frequency specific to individual fingers. The predicted population firing frequency was then used

to control multiple digits of a robotic hand in a real-time manner. The method was evaluated in

the isometric condition and the dynamic condition, where single-finger and multi-finger tasks were

evaluated in both conditions. Our results showed that the extracted MU firing frequency information

with regression models can obtain a better force estimation performance and a better joint angle

estimation performance, compared with the conventional EMG amplitude-based method. Further

development of this method can potentially provide a more reliable prediction of all five digits to

achieve intuitive control of robotic hands with higher dexterity.
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APPENDIX A

SUPPLEMENTAL FIGURES

Figure A.1: Categorization of the intended fingers based on the predicted forces of the CNN and EMG
methods in the single-finger tasks. The predicted forces of the three fingers were first normalized
by the MVC of each finger, and were then categorized into active or rest states based on different
force thresholds (5%, 10%, and 15% MVC). Specifically at a given time, if the predicted force of a
finger was above the threshold, this finger was categorized as active at that time. The percentages
of force samples in different finger combination categories were calculated and averaged across all
subjects. The confusion matrics using the three thresholds are constructed in A, B, and C. Each
row represents the prediction probability distribution in a single-finger force task when the intended
finger was the index (I), middle (M), and ring (R) fingers, respectively, using the CNN method (left)
or the EMG method (right). As an example in the confusion matrix of CNN prediction in A, the
orange contour enframes the false active rate (probability of an unintended finger being identified
as active), the green contour encircles the false rest rate (probability of an intended finger being
identified in a resting state), and the blue cells are the true positive rate (probability of accurate
categorization). Substantial false active errors were observed across the three thresholds in the EMG
method, indicating poor finger isolation during force prediction. D: The average accuracy across all
subjects across the three thresholds. E: The average false active rate across all subjects. F: The
average false rest rate across all subjects. Error bars represent standard error. *, p<0.05; **, p<0.01;
***, p<0.001
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Figure A.2: Force prediction during regression and testing. A: An examplar trial during the initial
force regression for the CNN and the EMG methods. B: An examplar trial during the subsequent
testing of force prediction using the regression function for the CNN and the EMG methods. A
substantially larger force prediction error was observed during testing in the EMG method, compared
with the CNN method.
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Figure A.3: Categorization of the intended fingers based on the predicted joint angles of the CNN
and EMG methods in the single-finger tasks. The predicted joint angles of the three fingers were first
normalized by the maximum ROM of MCP joint of each finger, and were then categorized into active
or rest states based on different angle thresholds (5%, 10%, and 15% ROM). Specifically at a given
time, if the predicted angle of a finger was above the threshold, this finger was categorized as active at
that time. The percentages of angle samples in different finger combination categories were calculated
and averaged across all subjects. The confusion matrics using the three thresholds are constructed
in A, B, and C. Each row represents the prediction probability distribution when the intended finger
was the index (I), middle (M), and ring (R) fingers, respectively. As an example in the confusion
matrix of CNN prediction in A, the orange contour enframes the false active rate, the green contour
encircles the false rest rate, and the blue cells are the true positive rate (accuracy). Substantial false
active errors were observed across the three thresholds in the EMG method, indicating poor finger
isolation during joint angle prediction. D: The average accuracy across all subjects across the three
thresholds. E: The average false active rate across all subjects. F: The average false rest rate across
all subjects. Error bars represent standard error. *, p<0.05; **, p<0.01.
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Figure A.4: Joint angle estimation results using the CNN method without refinement and the EMG
method. In the single-finger joint movement task, the RMSE of individual fingers for the intended
(A) and unintended fingers (C). In the multi-finger joint movement task, the average RMSE (B)
and coefficient of determination (D) of the two methods. Filled circles represent individual subjects
with the same color denoting the same subject. Without refinement using dynamic movement data,
the CNN method showed similar performance as the EMG method in the intended fingers. The
angle prediction errors of the CNN method were still smaller than that of the EMG method in the
unintended fingers. Error bars represent standard error. **, p<0.01.
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APPENDIX B

TABLE OF CONVOLUTIONAL NEURAL NETWORK STRUCTURE

Table B.1: Convolutional Neural Network Structure.

Input feature Ffreq Famp

CNN module Frequency CNN Amplitude CNN

Parallel CNN

structure

[3×3, 128] [3×3, 64]

[6×2, 128] [6×2, 64]

maxpool-3×1 maxpool-1×3

[3×3, 128] [3×3, 64]

[6×2, 256] [2×4, 64]

maxpool-3×1 maxpool-1×2

[3×3, 256] [3×3, 64]

[3×3, 512] [2×2, 64]

maxpool-2×2 maxpool-2×2

[3×3, 512] [3×3, 64]

[2×2, 1024] [2×2, 128]

maxpool-2×2 maxpool-2×2

FC-1024 FC-256

FC-512 -

Fusion

network

FC-512

FC-512

Multi-output

branches

FC-256 FC-256 FC-256

FC-16 FC-16 FC-16

softmax softmax softmax
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