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Background. Dysregulation of adaptive immunity is a hallmark of human immunodeficiency virus (HIV) infection that per-
sists on antiretroviral therapy (ART). Few long-term prospective studies have related adaptive immunity impairments to mortality 
in HIV, particularly in women.

Methods. Among 606 women with HIV in the Women’s Interagency HIV Study, peripheral blood mononuclear cells collected 
from 2002 to 2005 underwent multiparameter flow cytometry. Underlying cause of death was ascertained from the National Death 
Index up to 2018. We examined associations of CD4+ and CD8+ T-cell activation (%CD38+HLA-DR+), senescence (%CD57+CD28–), 
exhaustion (%PD-1+), and nonactivation/normal function (%CD57–CD28+) with natural-cause, HIV-related, and non-HIV-related 
mortality.

Results. At baseline, median participant age was 41, and 67% were on ART. Among 100 deaths during a median of 
13.3  years follow-up, 90 were natural-cause (53 non-HIV-related, 37 HIV-related). Higher activation and exhaustion of 
CD4+ T cells were associated with risk of natural-cause and non-HIV-related mortality, adjusting for age, demographic, be-
havioral, HIV-related, and cardiometabolic factors at baseline. Additional adjustment for time-varying viral load and CD4+ 
T-cell count did not attenuate these associations. CD8+ T-cell markers were not associated with any outcomes adjusting for
baseline factors.

Conclusions. Persistent CD4+ T-cell activation and exhaustion may contribute to excess long-term mortality risk in women with 
HIV, independent of HIV disease progression.
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Activation of the innate and adaptive immune system is a 
hallmark of human immunodeficiency virus (HIV) infec-
tion that persists despite suppressive antiretroviral therapy 
(ART) [1, 2]. On the adaptive immunity side, T-cell acti-
vation proceeds with 3 signals: antigen recognition by the 
T-cell receptor, receptor co-stimulation, and an inhibitory
termination signal [3]. These signals tightly regulate an ef-
fective immune response to acute infection, in which the
immune response is terminated after pathogen clearance. In
HIV infection, where the immune response cannot clear the

antigen, persistent T-cell activation drives excessive prolifer-
ation and differentiation and ultimately, senescence and ex-
haustion [3, 4]. T-cell senescence and exhaustion are 2 states 
of dysfunction that both involve poor effector functions (eg, 
cytotoxic capacity and cytokine secretion) [5]. Senescence 
is characterized by high differentiation and low prolifer-
ative activity, often measured by loss of CD28 and gain of 
CD57 surface expression [6], whereas exhaustion is charac-
terized by sustained expression of inhibitory receptors, such 
as programmed death-1 (PD-1) [7]. Hypothesized causes of 
persistent immune dysregulation in treated HIV infection 
include ongoing low-level viral replication, microbial trans-
location, coinfection with other viruses, and lymphoid fi-
brosis [1].

Persistent immune dysregulation may contribute to the 
higher risk of non-HIV-related conditions (eg, cardio-
vascular disease [CVD], neurocognitive decline, cancer) 
and mortality observed in people with HIV compared to 
people without HIV [8–12]. While consistently strong ev-
idence points to the role of innate immune activation (eg, 
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Summary: In women with HIV, higher activation and exhaustion of CD4+ T 
cells were associated with risk of non-HIV-related mortality during a median of 
13.3 years of follow-up, independent of baseline demographic, behavioral, HIV-
related, and cardiometabolic factors and longitudinal HIV disease progression.
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monocyte activation, inflammation) in morbidity and mor-
tality in treated HIV, the association of adaptive immune 
markers with these outcomes is not clear [13]. In resource-
limited settings, among participants initiating ART, T-cell 
activation has been associated with HIV clinical progression 
and mortality independent of CD4+ T-cell counts [14, 15]; 
however, the association of T-cell activation with mortality 
in ART-treated resource-rich settings (eg, the United States 
[US]) was not significant independent of CD4+ T-cell counts 
[16, 17]. The CD4/CD8 cell ratio, a surrogate for insufficient 
adaptive immune recovery during HIV infection, was associ-
ated with non-AIDS-related mortality in a small case-control 
study [18], but not in a large prospective cohort collaboration 
study [19]. T-cell senescence and exhaustion have not been 
associated with mortality in HIV [13, 16, 17].

To our knowledge, there are no large, prospective studies with 
long-term follow-up examining the associations of dysregulated 
T-cell states, such as T-cell activation, senescence, and exhaus-
tion, with mortality in people with HIV. Moreover, previous
studies predominantly among male populations [16, 17] did not 
consider generalizability to women. Here, we describe the rela-
tionships of T-cell activation (indicated by cell surface marker
CD38+HLA-DR+), senescence (CD57+CD28–), and exhaustion
(PD-1+), as well as nonactivated normal T-cell function (CD57–

CD28+) [20], with HIV-related and non-HIV-related mortality
in 606 women with HIV enrolled in the Women’s Interagency
HIV Study (WIHS), with a median 13.3 years of follow-up.

MATERIALS AND METHODS

Study Population

The WIHS was a multicenter cohort of women with and without 
HIV in the US (part of the Multicenter AIDS Cohort Study/
WIHS Combined Cohort Study as of 2020) that collected clin-
ical, demographic, and behavioral data semiannually through 
interviews, physical examinations, and laboratory tests, previ-
ously described in detail [21]. Participants provided written in-
formed consent and were compensated for participation.

Women in the current analysis participated in a vascular dis-
ease substudy beginning in 2004 at the original 6 WIHS sites 
(Bronx, New York; Brooklyn, New York; Chicago, Illinois; San 
Francisco, California; Los Angeles, California; Washington, 
D.C.) [22, 23]. All WIHS participants were eligible for partici-
pation in the vascular substudy at the time of recruitment. The
vascular substudy featured high-resolution B-mode carotid ar-
tery ultrasound at a baseline visit (2004–2006; wave 1) and fol-
low-up visits occurring every 2–3  years through 2013 (waves
2–4). Among women who attended the wave 2 visit, previously
frozen peripheral blood mononuclear cell (PBMC) samples
from the time roughly corresponding to the wave 1 visit were
selected for immune phenotyping (sample collection dates
ranged from 2002 to 2005). Both women with and without HIV 
were included in immune phenotyping (n = 612 with HIV;

n = 223 HIV-seronegative), but only women with HIV were 
included in the mortality analysis due to the small number 
of deaths (n = 17) in women without HIV during follow-up. 
We excluded 3 women with prevalent self-reported coronary 
heart disease and 3 women missing cause of death, leaving 606 
women with HIV included in the current mortality analysis.

Laboratory Methods

Immune phenotyping was performed using multiparameteric 
flow cytometry. Cryopreserved PBMCs were thawed and 
rested overnight at 37°C in an incubator supplied with 5% 
carbon dioxide. PBMCs were stained first with LIVE/DEAD 
Fixable Aqua stain (Molecular Probes, Inc), followed by cell 
surface staining with fluorochrome-conjugated monoclonal 
antibodies to CD3, CD4, CD8, CD57, CD28, PD-1, HLA-DR, 
and CD38. After staining, cells were washed and fixed in 2% 
formaldehyde. Flow cytometry acquisition was performed on 
a BD LSRII (BD Biosciences) and data analyzed using FlowJo 
(Tree Star, Ashland, Oregon). Analyses of markers of in-
terest (CD38+HLA-DR+, CD57+CD28–, PD-1+, CD57–CD28+) 
were performed after stringent gating on singlet live (Aqua-) 
CD3+CD4+ or CD3+CD8+ T cells.

Study Measures

The predictor variables were CD4+ and CD8+ T-cell sur-
face markers of activation (%CD38+HLA-DR+), senescence 
(%CD57+CD28–), exhaustion (%PD-1+), and nonactivated 
normal function (%CD57–CD28+). To facilitate comparison be-
tween predictors in statistical analyses, these variables were z 
score standardized.

Mortality and underlying cause of death were ascertained 
from the National Death Index (NDI, National Center for 
Health Statistics, Hyattsville, Maryland). NDI data were avail-
able through 31 December 2017 for the Bronx, Washington, 
D.C., San Francisco, and Chicago sites, through 31 December
2018 for the Brooklyn site, and through 31 December 2014 for
the Los Angeles site. Natural-cause mortality was defined as
death from any cause except external causes including accidents, 
intentional self-harm, or assault (International Classification of
Diseases, Tenth Revision [ICD-10] codes V01–Y89), or use of
psychoactive substances (ICD-10 codes F11–F16, F18–F19).
HIV-related death was defined as death that includes an ICD-
10 code for HIV disease as the underlying cause (ICD-10 codes
B20–B24). Non-HIV-related death was defined as any natural-
cause death that did not include an ICD-10 code for HIV dis-
ease. We also performed an exploratory analysis of CVD-related 
mortality, regardless of underlying cause of death. CVD-related
mortality was defined as a natural-cause death from any “major
cardiovascular diseases” (ICD-10 codes I00–I78 [24]) in the
multiple causes of death, excepting death from “cardiac arrest,
unspecified.” This definition was used because the number of
underlying-cause CVD deaths was too small (n = 13).



Statistical Analysis

We used cause-specific hazard models [25] to estimate the as-
sociations of T-cell biomarkers with natural-cause mortality, 
HIV-related mortality, non-HIV-related mortality, and CVD-
related mortality. Thus, participants who experienced a com-
peting event for the respective outcome during follow-up were 
censored at the time of competing event in Cox proportional 
hazards models. Left truncation was employed to account for 
immortal time between PBMC sample collection and the start 
of person-time at risk (2–3 years later). We developed nested 
models to serially adjust for sets of a priori potential con-
founding variables, corresponding to the baseline (ie, sample 
collection) visit: age, demographic factors (study site, race/eth-
nicity, income, education), behavioral factors (crack or cocaine 
use, injection drug history, viral hepatitis history, alcohol use, 
smoking), HIV-related factors (CD4+ T-cell count, HIV RNA 
load, ART, AIDS), and cardiometabolic factors (body mass 
index, systolic blood pressure, total cholesterol, high-density 
lipoprotein cholesterol, antihypertension medication, lipid-
lowering medication, diabetes). We checked whether further 
adjustment for C-reactive protein (CRP; marker of inflamma-
tion), the CD4/CD8 ratio (marker of adaptive immune health), 
or cytomegalovirus (CMV) and Epstein-Barr virus (EBV) im-
munoglobulin G (IgG) levels (markers of coinfection) [26], al-
tered our results. Finally, we examined time-dependent models 
adjusting for time-varying HIV RNA load and CD4+ T-cell 
count, to explore confounding by HIV disease progression 
during follow-up.

RESULTS

Participant Characteristics
At baseline, the median age of women with HIV was 41 years 
(interquartile range [IQR], 35–47 years). The majority of par-
ticipants were black (58%) or Hispanic (29%), low-income 
(<$30  000/year; 84%), premenopausal (79%), on ART (67%), 
had detectable HIV RNA loads (59%), and had CD4+ T-cell 
counts <500 cells/µL (58%) (Table 1). Among those on ART, 
43% had detectable viral load and 58% had low CD4 cell counts. 
Women without HIV, used for comparison of T-cell biomarkers, 
were similar to women with HIV regarding demographic char-
acteristics (Table 1).

Women with HIV were followed for a median of 13.3 years 
(IQR, 10.9–14.1 years) from the time of sample collection, or 
10.5 years (IQR, 7.8–11.0 years) from the start of time at risk 
(ie, accounting for immortal time) (Supplementary Table 1). 
Among 100 deaths that occurred during follow-up, 90 were 
due to natural underlying causes (53 non-HIV-related, 37 
HIV-related) and 10 to external causes. Additionally, 27 deaths 
were CVD-related when considering multiple causes of death. 
Median time from sample collection to death was 8.4 years for 
natural-cause, 9.2 years for non-HIV-related, and 6.3 years for 
HIV-related death (Supplementary Table 1). Among those who 

died, median time from the last WIHS clinic visit to death was 
0.36 years (IQR, 0.18–0.54 years). At that last visit, 60% of those 
who died had detectable HIV RNA load, and 13% had AIDS. 
AIDS at the last visit and classification of HIV-related death 
based on the death certificate were in slight agreement (κ = 0.16 
[95% confidence interval {CI}, –.01 to .32]; P = .07).

T-Cell Biomarker Characteristics

To confirm suspected T-cell dysregulation in women with 
HIV, we compared T-cell biomarkers between women with 
and without HIV. As expected, women with HIV differed 
significantly from women without HIV in most T-cell bio-
markers, with the exception of CD4+ T-cell senescence 
(Figure 1A). Specifically, women with HIV had higher fre-
quencies of CD4+ and CD8+ T cells expressing activation 
(CD38+HLA-DR+) and exhaustion (PD-1+) markers, higher 
frequencies of CD8+ T cells expressing senescence markers 
(CD57+CD28–), and lower frequencies of CD4+ and CD8+ 
T cells expressing markers of nonactivation/normal func-
tion (CD57–CD28+), than women without HIV. In general, 
women with controlled HIV (undetectable HIV RNA load 
and CD4+ T-cell count ≥500 cells/µL) had better T-cell bi-
omarker profiles than women with uncontrolled HIV; both 
groups differed from women without HIV for most bio-
markers (Figure 1B).

T-cell biomarkers were correlated, with strong positive cor-
relations between immune markers of the same class on CD4+ 
and CD8+ T cells, as well as weaker positive correlations among 
markers of activation, senescence, and exhaustion (Figure 2). 
Naturally, markers of CD4+ and CD8+ nonactivation/normal 
function had strong inverse correlations with T-cell senescence 
markers of the same cell type, and also tended to inversely cor-
relate with activation and exhaustion markers (Figure 2).

T-Cell Biomarkers and Mortality

We used cumulative mortality curves based on the Kaplan–
Meier method to describe the unadjusted relationship of 
T-cell biomarkers, dichotomized at the median, with mortality
(Figure 3). Women with higher CD4+ T-cell activation and ex-
haustion, and lower nonactivation/normal function, appeared
to have greater natural-cause mortality during follow-up; these
patterns were generally consistent for non-HIV-related and
HIV-related mortality, though not always reaching statistical
significance. Women with higher CD4+ T-cell senescence had
greater HIV-related mortality only. Women with lower CD8+

T-cell nonactivation/normal function appeared to have greater
natural-cause mortality, whereas CD8+ T-cell activation, se-
nescence, and exhaustion appeared to be unrelated to natural-
cause mortality (Figure 3).

In multivariate-adjusted, cause-specific Cox proportional 
hazards models, CD4+ T-cell activation and exhaustion were 
significantly associated with higher risk of natural-cause 
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mortality, adjusting for age and demographic, behavioral, 
HIV-related, and cardiometabolic risk factors at baseline, as 
well as time-varying HIV RNA load and CD4+ T-cell count 
(Figure 4; Supplementary Table 2). Each standard deviation 
increase in CD4+ T-cell activation or exhaustion was asso-
ciated with a 56% (95% CI, 14%–113%) and 40% (95% CI, 
5%–86%) increased risk, respectively, of natural-cause mor-
tality at any time during follow-up. A  significant inverse 
association of CD4+ T-cell nonactivation/normal func-
tion with natural-cause mortality was slightly attenuated 

upon adjustment for time-varying viral load and CD4+ 
T-cell count, while markers of CD4+ senescence and CD8+

activation, senescence, exhaustion, and nonactivation/
normal function were not associated with natural-cause
mortality after adjustment for baseline HIV-related and/or
cardiometabolic risk factors (Figure 4; Supplementary Table
2). We did not observe significant effect modification by HIV
control (all P values for interaction > .16), though sample size
was more limited for women with controlled HIV (n = 139)
(Supplementary Table 3).

Table 1. Characteristics of the Study Participants at Baseline

Characteristic HIV Positive (n = 606) HIV Negative (n = 223)

Age, y, median (IQR) 41 (35–47) 40 (34–46)

Race/ethnicity

 Black 353 (58) 152 (68)

 Hispanic 178 (29) 55 (25)

 White 57 (9) 11 (5)

 Other 18 (3) 5 (2)

Income

 <$30 000/year 509 (84) 187 (84)

 >$30 000/year 97 (16) 36 (16)

Education

Did not complete high school 256 (42) 82 (37)

Completed high school 179 (30) 75 (34)

 College 159 (26) 64 (29)

More than college 12 (2) 2 (1)

Smoking

 Never 198 (33) 53 (24)

 Former 137 (23) 46 (21)

 Current 271 (45) 124 (56)

Injection drug use history 172 (29) 53 (24)

Alcohol use

 Abstainer 317 (52) 89 (40)

Light (1–3 drinks/wk) 215 (36) 84 (38)

Moderate (4–13 drinks/wk) 59 (10) 37 (17)

Heavy (>13 drinks/wk) 15 (3) 13 (6)

Menopause or hysterectomy 129 (21) 37 (17)

Diabetes 55 (9) 19 (9)

Hypertension 168 (28) 53 (24)

History of AIDS event 223 (37) …

On ART 405 (67) …

ART regimen

 None 201 (33) …

 PI-baseda 197 (33) …

 NNRTI-basedb 124 (20) …

 NRTI-basedc 44 (7) …

 Otherd 40 (7) …

Detectable HIV RNA load (>80 copies/mL) 355 (59) …

CD4+ count <500 T-cells/µL 352 (58) …

CD4+ count, T-cells/µL, median (IQR) 436 (287–649) …

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nuceloside reverse 
transcriptase inhibitor; PI, protease inhibitor.
aAt least 1 PI and 1 NRTI.
bAt least 1 NNRTI and 1 NRTI.
cThree or more NRTIs.
d“Other” includes women on both PI and NNRTI, no NRTI, or <3 NRTIs with no PI/NNRTI.
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We next examined cause-specific models for HIV-related and 
non-HIV-related mortality. T-cell markers were generally not 
associated with HIV-related mortality independent of baseline 
HIV-related and/or cardiometabolic risk factors, with the ex-
ception of CD4+ T-cell nonactivation/normal function, which 
was marginally inversely associated with HIV-related mortality 
(Figure 4; Supplementary Table 2). This latter association was 
further attenuated after adjustment for time-varying HIV RNA 
load and CD4+ T-cell count. For non-HIV-related mortality, 
CD4+ T-cell activation and exhaustion were significantly asso-
ciated with higher risk of the outcome, independent of age and 
demographic, behavioral, HIV-related, and cardiometabolic 
risk factors at baseline, as well as time-varying HIV RNA 

load and CD4+ T-cell count (Figure 4; Supplementary Table 
2). Adjustment for baseline CRP and CD4/CD8 ratio did not 
materially impact any model estimates, nor did adjustment for 
CMV and EBV IgG levels (Supplementary Table 2).

Finally, we explored the associations of T-cell markers 
with CVD-related mortality. CD4+ T-cell senescence was 
marginally (P = .06) associated with CVD-related mortality, 
independent of age and demographic, behavioral, and HIV-
related risk factors at baseline; the relationship was somewhat 
attenuated with adjustment for baseline cardiometabolic risk 
factors (Supplementary Table 4). Other T-cell markers were 
not associated with CVD-related mortality (Supplementary 
Table 4).
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Figure 1. Distribution of T-cell biomarkers in women with or without human immunodeficiency virus (HIV). Boxplots of T-cell biomarkers by HIV serostatus (A) and HIV 
serostatus and HIV control (B). Among women with HIV, controlled HIV was defined as undetectable viral load and CD4 T-cell count ≥500 cells/µL, while uncontrolled HIV was 
defined as detectable viral load or CD4 T-cell count <500 cells/µL. HIV–, n = 223; HIV+, n = 606; controlled HIV, n = 139; uncontrolled HIV, n = 467. Asterisks indicate signifi-
cance in Wilcoxon rank-sum tests: **P < .01; ****P < .0001; ns = not significant (P > .05).
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DISCUSSION

In this prospective cohort study of women with HIV in the US, 
CD4+ T-cell activation and exhaustion were significantly associ-
ated with increased risk of natural-cause mortality, specifically 
non-HIV-related mortality, independent of cardiometabolic 
and HIV-related risk factors. Persistent CD4+ T-cell activation 
and exhaustion may contribute to excess long-term mortality 
risk in women with HIV.

It has long been known that T-cell activation, especially of 
CD8+ T cells, is associated with progression of HIV disease 
[27], even on ART treatment [2, 15]. CD8+ T-cell activation on 
ART [15] and CD4+ T-cell activation pre-ART [14] have been 
associated with all-cause mortality, independent of CD4+ T-cell 
counts, in resource-limited settings, where infectious compli-
cations predominate in cause of death. However, the relation-
ship of T-cell activation with non-HIV-related morbidity and 
mortality in people with HIV is not well understood. Previous 
work by our group and others in the WIHS has shown that, 
independent of HIV RNA load and CD4+ T-cell count, CD4+ 
T-cell activation was associated with carotid artery stiffness
[28, 29], while CD8+ T-cell activation was associated with ca-
rotid artery lesions [30]. Unlike our findings, CD4+ and CD8+

T-cell activation was not independently associated with risk of

non-AIDS-defining events in the AIDS Clinical Trials Group 
(ACTG) [17, 31, 32], nor with natural-cause mortality in the 
Longitudinal Study of the Ocular Complications of AIDS 
(LSOCA) [16]. Similar to T-cell activation, T-cell senescence 
and exhaustion markers were not associated with non-AIDS 
events [17, 32] or natural-cause mortality [16] in previous 
studies.

Although these previous analyses in ACTG and LSOCA, both 
resource-rich settings, are not in agreement with our results, our 
study here differs in several ways. First, our study features a pro-
spective design and uses survival analysis methods, rather than 
a nested case-control design, thus avoiding imperfect selection 
of controls and improving precision [33]. Our study also has 
a longer follow-up time (median, 13.3  years) than the ACTG 
(median, 3 years) and LSOCA (<1 year) analyses, allowing for 
greater capture of non-HIV-related deaths, which appeared to 
drive our findings. Last, our study population comprised only 
women, whereas the other studies comprised >80% men. While 
there is still much to learn regarding sex differences in HIV 
pathogenesis and clinical outcomes, emerging research suggests 
that premenopausal women may be protected from HIV viral 
replication by estrogen and/or progesterone [34, 35], and that 
the effect of HIV on CVD risk may be greater in women than in 
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the plot, with * indicating P < .05.
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Figure 3. Cumulative mortality curves for binary T-cell biomarkers in women with human immunodeficiency virus (HIV). Unadjusted curves are shown for natural-cause, 
non-HIV-related, and HIV-related mortality among 606 women (90, 53, and 37 deaths, respectively). Each T-cell biomarker was dichotomized at the median. Shaded area 
represents the median time to the start of time at risk (2.7 years), accounting for the immortal time after sample collection. Log-rank tests were used to evaluate difference 
in survival for above vs below the median of a given biomarker. *P < .05; #P < .10.
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men [9, 36, 37]. Future studies including both women and men 
with longer follow-up can uncover whether the associations we 
have observed of CD4+ T-cell activation and exhaustion with 
non-HIV-related mortality are specific to women.

Persistent T-cell activation in chronic HIV infection leads 
to elevated levels of T-cell exhaustion, commonly measured by 
the PD-1 checkpoint inhibitor. The mechanistic role of T cells 
expressing PD-1 in HIV pathogenesis has garnered much in-
terest, given the potential opportunity for use of anti–PD-1 
immunotherapies in HIV treatment [38]. An accumulation of 
observational and in vitro studies have demonstrated that CD4+ 
T cells expressing PD-1 are an important source of the latent 
HIV reservoir, contributing to HIV persistence on ART [3]. 
However, small case studies and phase 1 trials of PD-1 blockade 
have yielded mixed results regarding its ability to reverse HIV 
latency [38], and other trials are still ongoing [39]. Our obser-
vational study is the first to report a significant association of 
CD4+ T-cell exhaustion with non-HIV-related mortality inde-
pendent of baseline HIV-related and cardiometabolic factors; 
this finding could be related to PD-1–expressing CD4+ T cells 
harboring latent HIV infection, or other mechanisms of T-cell 
dysfunction such as poor effector function [7].

T-cell senescence, on the other hand, was not significantly
related to natural-cause, non-HIV-related, or HIV-related 
mortality in our study independent of baseline HIV-related 
and cardiometabolic factors. However, we did observe a mar-
ginally significant association of CD4+ T-cell senescence with 
CVD-related mortality, defined as deaths with any CVD-related 
cause in the multiple causes of death (ie, regardless of under-
lying cause). This result is somewhat consistent with previous 
findings from our group of a relationship of CD4+ T-cell se-
nescence with carotid artery stiffness [29], though not with ca-
rotid artery lesions [30]. Since only half of CVD-related deaths 
in our study had CVD as the underlying cause, future studies 
with larger sample sizes will be necessary to more confidently 
determine the association of T-cell biomarkers with underlying 
CVD-cause mortality.

We also observed that nonactivation/normal function of 
CD4+ T cells, indicated by CD57–CD28+ markers, was inversely 
associated with natural-cause mortality, and particularly HIV-
related mortality. T-cell co-stimulatory molecules (eg, CD28) 
are necessary for optimal T-cell activation, proliferation, and 
survival [40]—antigenic activation of T cells via the T-cell re-
ceptor without co-stimulatory signaling leads to a state of 
T-cell anergy [3]. This is in line with a protective role of CD28+,
nonactivated, normally functioning CD4+ T cells in HIV dis-
ease progression, as observed here.

Interestingly, all of our significant findings pertained to 
CD4+ rather than CD8+ T cells. This was unexpected, given 
the hypothesized role of CD8+ T-cell activation in HIV deple-
tion of CD4+ T cells [2]. We found that CD8+ T-cell activation 
was significantly associated with increased risk of HIV-related 

mortality in unadjusted analyses; however, this association was 
attenuated upon adjustment for HIV-related factors (including 
CD4+ T-cell count), suggesting that the effects of CD8+ T-cell 
activation are mediated through CD4+ T-cell depletion, con-
sistent with other studies in resource-rich settings [2, 16]. Our 
observed associations of CD4+ T-cell activation and exhaus-
tion with non-HIV-related mortality were not attenuated upon 
adjustment for baseline or time-varying CD4+ T-cell count, 
suggesting that CD4+ T-cell dysregulation pathways may op-
erate independently of HIV disease progression to influence 
mortality.

Strengths of our study include the relatively large sample 
size, prospective design, long-term follow-up, and population 
of women with HIV who have been understudied in compar-
ison to men. Additionally, the extensive data collected by the 
WIHS allowed us to adjust for many potential sources of con-
founding, including demographic, behavioral, HIV-related, 
and cardiometabolic factors, as well as biomarkers of inflam-
mation (CRP), adaptive immune health (CD4/CD8 ratio), and 
coinfections (CMV and EBV antibody levels). Our study was 
limited by the single time-point of T-cell marker measures, and 
the insufficient number of deaths to further categorize into more 
specific underlying cause of death outcomes (eg, CVD, cancer). 
We lacked comprehensive data on additional biomarkers of in-
flammation, such as inflammatory cytokines, to better tease out 
effects of adaptive and innate immune dysregulation on mor-
tality. Additionally, we relied on death certificate information 
to determine cause of death. While death certificates are the 
standard for reporting population-based mortality, there are 
well-known limitations in accuracy [41].

In summary, we observed that activation and exhaustion 
of CD4+ T cells measured at 1 point in time were significantly 
associated with future risk of non-HIV-related mortality in 
women with HIV, independent of HIV disease progression. 
This result is in contrast with previous studies in predominantly 
male populations with HIV, in which null associations were ob-
served for T-cell dysregulation markers and mortality [16, 17]. 
Future research should explore whether sex-specific mechan-
isms are involved in the relationship of CD4+ T-cell immune 
dysregulation to non-HIV-related mortality. Meanwhile, on-
going studies in the area of immunotherapy (PD-1 and other 
checkpoint blockades) will reveal whether such treatment can 
improve health outcomes in people with HIV.
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