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SIZE EFFECTS AND DEFORMATION MECHANISMS IN NANOSCALE 
METALLIC MULTILAYERED COMPOSITES 

 

 

ABSTRACT 
 

By Firas Akasheh, Ph.D 

Washington State University 

May 2007 

 
 
Chair: Hussein M. Zbib 
 
 In this work, size effects and deformation mechanisms in nanoscale metallic 

multilayered (NMM) composites were studied. Existing models for the prediction of the 

dependence of strength of NMM composites on the individual layer thickness do not 

capture the experimentally observed dependence. Dislocation interactions have been 

suggested as a significant contributor to this discrepancy. Due to the complexity and 

multiplicity of dislocation interaction in real systems, the study started by examining the 

hardening effect and implications on the dislocation structure of two known-to-be 

significant dislocation interactions in NMM composites. The first is the interaction 

between a threading dislocation and orthogonally intersection interfacial dislocations. 

Dislocation dynamics (DD) analysis was employed and it was found that the strongest 

interaction occurs when the interacting dislocations are collinear and involves 

annihilation reactions and the formation of 90o dislocation bends at the interfaces, as 

commonly observed in experiments. The strength predictions indicate a strengthen 
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increase of about 50%; however, they do not follow the experimentally observed trend. 

The second interaction to study was that between a threading dislocation and parallel 

interfacial dislocations. A semi-analytical energetic approach was employed and it was 

found that parallel interactions can lead to softening effect, as well as hardening effect 

depending on the relative sign of the Burgers vector of the threading and the parallel 

dislocations. It was also found that when the Burgers vectors are collinear, the interaction 

is stronger. A comparison with the measured strength of real multilayered system shows 

that accounting for parallel interactions improves the strength predictions for an isolated 

glide dislocation, however that does not offer answers regarding the observed strength 

saturation when the individual layer thickness in the few nanometer range. Finally, large-

scale DD simulations of NMM composites were performed. Such simulations naturally 

accounts for all the possible and complex interactions in a real system. The strength 

predictions of such simulations are in better qualitative agreement with experimental 

trends than any of the unit process. Nevertheless, more work is needed to validate the 

results by investigating different relaxation models to accomplish the initial dislocations 

structure used in subsequent loading. The simulations were also valuable in identifying 

dislocation mechanisms which can take place during the deformation. 
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Chapter One: Introduction 
 
1.1 Background 
 
1.1.1 Size effects in metals 
 

Accurate models for predicting the elastic-plastic response of crystalline materials 

are crucial for the design and development of materials that can perform more efficiently 

and reliably under service conditions. The classical approach to modeling the mechanical 

response of metals has been phenomenological in nature. Based on macroscopic 

observations, theories were developed and translated into models describing the 

deformation behavior, e.g. Tresca and von-Mises yield criteria for metals. The fact that 

such an approach worked well for bulk materials and components (bulk meaning 

millimeter scale and above) does not change its inherent deficiency of ignoring the 

physical mechanisms involved in the deformation and not taking into account the details 

of the microstructure of the material. Those deficiencies, however, become obvious when 

such models are used to predict the experimentally measured response of materials at the 

microscale and smaller. For example, experiments on the bending of micro beams [1] 

showed that both the yield and flow stress increase as the beam size decreases. Similar 

experiments on torsion of microsized wires [2] and nanoindentation [3] showed the same 

trend. This effect, which came to be known as the “size effect”, became a major focus of 

the materials and mechanics research aiming at understanding the origin of such 

discrepancy and ways to account for it. 

The origin of size effect can be traced back to the presence of internal defects and 

inhomogeneties at the microstructure level of the material. Chief among such internal 

defects are dislocations, line defects whose motion and interactions are well known to be 
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the main factor governing deformation in crystalline materials. Besides making plastic 

deformation easier compared to defect-free crystals, dislocations exhibit long-range stress 

fields. This introduces non-local effects, which implies that the material behavior at a 

certain material point depends not only on the local state but also on the state at 

neighboring material points. Besides their interactions among themselves and other 

crystal defects, dislocations contribute to non-local effects through their interaction with 

surfaces and interfaces in the material. When the material is in the bulk scale, the range of 

influence of such effects is small compared to the overall size, making their effect 

insignificant. Furthermore, when the material scale is large, the statistical nature of 

dislocation distributions result in the averaging out of the stress fields from all 

dislocations. However, as the material scale enters the micrometer regime, the details of 

the distribution of dislocations and their discrete nature do not average out and, hence, net 

dislocation densities with non-vanishing Burgers vector become increasingly significant 

in determining the mechanical response leading to the observed size effects.  

As a first step towards modeling size effects in crystals, the framework of 

classical crystal plasticity was proposed [4, 5]. This framework is an improvement over 

classical plasticity because it recognizes that plasticity in crystals is the result of motion 

of dislocations and hence incorporates the kinematics and kinetics of such motion. The 

fact that the macroscopic plastic strain in crystals is the result of the collective motion of 

large numbers of dislocations on a finite number of slip systems, each identified by a 

specific atomic plane and slip direction (slip system) depending on the crystal structure, 

is inherent to the theory. In this framework, the plastic strain increment is expressed as 

the tensorial sum of slip on specific slip systems, 

pε&
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( )sym
)()()(p n̂ŝ  ββ

β

βγε ⊗= ∑ && …………………….(1.1) 

where β  is the slip system index, is the increment of slip on system β, is the unit 

slip direction, and is the slip plane normal. In the case of small deformation rate-

independent crystal plasticity, Schmid law states that yield begins on a slip system when 

the resolved shear stress on the slip plane in the slip direction, , reaches a critical 

value, , the current strength of the slip system.  is a function of the plastic strain 

and is typically described by a hardening law of the form, 

)(βγ& )(ˆ βs

)(ˆ βn

βτ

βτ cr
βτ cr

 ……………………………….(1.2) ∑=
α

αβαβ γτ && hcr

where  are the hardening moduli which relate the rate of increase of the strength of 

slip system β due to slip on system α. At the macroscale, the stress is related to the strain 

by Hooke’s law, 

βαh

( )pC εεσ &&& −=  ……………………………..(1.3) 

where C is the fourth order elastic tensor of the material. Finally to determine the 

increments of slip on the different slip systems, , loading/unloading criteria similar to 

those in classical plasticity are used. 

βγ&

 

1.1.2 Modeling size effects in metals 
 
1.1.2.1 Gradient crystal plasticity approach 
 

Although the classical crystal plasticity framework does account for the physical 

deformation mechanism in crystals, it still fails to capture size effects because it does not 

account for the non-local effects due to non-vanishing long-range internal stress fields. In 
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terms of the dislocation structure, such fields can be physically associated with the net 

content of dislocations referred to as geometrically necessary dislocations (GND), which 

in turn can be associated with the gradients in strain (the dislocation content which 

statistically cancel out is called statistically stored dislocations and, to a first 

approximation, do not contribute to long-range effect). This concept, introduced by Nye 

and Ashby [6, 7], became the basis of the development of what is known as strain 

gradient crystal plasticity theory which can predict size effect. 

Among the pioneering works in this area, Aifantis [8] and Zbib and Aifantis [9, 

10] modified the flow stress of the classical crystal plasticity to include a dependence on 

the shear strain gradients, in addition to the shear strain. Fleck et al. [2] developed an 

asymmetric stress Crosserat-type gradient plasticity theory which successfully captured 

size effect in wire torsion experiments. Fleck and Hutchinson [11] expanded the 

formulation of the classical J2 theory to accommodate more than one material length 

scale. Other gradient theories were developed which are based on the explicit 

introduction of GND density and length scales associated with it. Shizawa and Zbib [12], 

Gurtin [13], and Mesarovic [14], introduced the GND density tensor, the Nye’s tensor, 

into the free energy expression along with a configurational stress as its work conjugate. 

Other researchers invoked crystallographic dislocations densities as internal variables 

with their own evolution laws, e.g., Arsenlis et al. [15], Yefimov et al. [16], Groma [17], 

Zaiser and Hochrainer [18], and El-Azab [19]. Some researchers introduced the GND 

density into the flow strength expression , while others introduced it into the 

hardening law, e.g., Acharya [20] and Ohashi [21]. For example, the hardening 

βτ cr
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coefficients matrix , Eq. (1.2), in the original size-independent form of the later 

model [21] are given as,  

βαh

hβα
)(

ssd
)( ρL

Ωc a 0.5
αα

βαµ
= , with  

∑
=

α

βαβ

α
)(

ssd

*
)(

ρω

cL ……….….(1.4a,b) 

where  is the mean free path of mobile dislocations, c* is a constant on the order of 

10-100 and  is the weight matrix quantifying the contribution of dislocation density 

on system β to the mean free path length for system α. Based on the argument that the 

GND density leads to the shortening of the mean path length of dislocation motion, the 

following modified relation for the mean free path length was proposed, 

)(L α

αβω

  ( )∑ +
=

β

ββαβ

α
)(

gnd
)(

ssd

*
)(

ρ.gρ.sω

cL ………………………(1.5) 

where s and g are controlling coefficients with values ranging from 0-1. g is an example 

of the parameters introduced as part of this phenomenological approach, which has to be 

determined based on some fitting procedure to experimental results. This model has been 

used to address the plastic bending of microsized beams, see Appendix A. Bending is a 

classical problem where gradients in strain are inherent and studying such problem 

provides an introductory step towards a continuum approach to size effect prediction in 

NMM composites.  

Each of the above approaches to gradient plasticity is motivated by different 

arguments and/or experimental evidence which can be controversial. The 

phenomenological nature of those theories leads to parameters whose physical meaning is 

not clear and whose values have to be determined by fitting model predictions to 
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experimental results. The conditions of such experiments are typically difficult to control 

so as to match the conditions under which the models are tested. The result of those 

drawbacks is that no general framework for gradient crystal plasticity is agreed upon. 

Differnet models show different degrees of success in adressing differnt problems.  

1.1.2.2 Discrete dislocation dynamics (DD) approach 
 

A recent significant develpoment in computational materials science which allows 

addressing plasticity problems in a more physical manner is DD  analysis [22-27]. This 

framework was introduced in the early 1990s motivated by the improvement in the power 

and availability of computers and parallel processing algorithims. In this framework, 

dislocation motion and interactions are treated explicitly according to the well establsihed 

theory of dislocations. Dislocations move and evolve as they do in real systems and thus, 

size effects are naturally captured with minimal phenomenological assumptions. In three-

dimansional DD, dislocations are modeled as curved lines and are identified by their 

Burgers vectors and line lense. According to the theory of dilsocations, the equation of 

motion of a dislocation segment is written as, 

s
s

ss F
M

m =+ υυ 1
&      (1.6) 

which expresses the relation between the velocity of the dislocation segment of effective 

mass ms, moving in a viscous medium with a drag coefficient of 1/Ms under the effect of 

a net force Fs on the segment. Depending on the problem, Fs can have several 

contributions including the Peierls stress (lattice friction), forces due to the long-range 

stress fields of other dislocations and obstacles in the medium, self-force on a dislocation, 

forces due to externally applied loads, image forces due to free surfaces and interfaces 

separating inhomogeneous domains, and forces due to thermally activated processes, 
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thermalosmoticimageobstacleexternalselfndislocatioPeierlss FFFFFFFFF +++++++=       (1.7) 

To track the evolution of the dislocation structure, the equation of motion is integrated 

using an implicit algorithm with a backward integration scheme, 

t t

s

t
t t

ss

t t F
m

tv
Mm
tv δ

δ
δ +

+
+ +=








+

∆∆1      (1.8) 

This scheme is unconditionally stable for any time step δt. The time step in DD is 

determined by shortest flight distance for short-range interactions and based on the 

largest dislocation node speed. As for the spatial discretization, the dislocation curves are 

disrectized into linear segments bounded by dislocation nodes. Typical finite element 

formulation for linear elements with matrix lumping is used to determine the velocity 

distribution over dislocation lines, 

[ ]{ } [ ]{ } { }

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ] dlFNmF  ,dlNN
M

C  ,dlNNmM  where

FVCVM

ss
T

s

T
s ∫∫∫ ===

=+
1

&

  (1.9) 

The increment of the plastic strain can be explicitly calculated from the area swept by the 

dislocation segments using the following relation, 

( ssss

N

s

ssp nbbn
V
 ls

⊗+⊗= ∑
=1 2

υε& )     (1.10) 

where Ns is the total number of dislocation segments, ls is the segment length, vs is the 

segment glide velocity, bs is the segment Burgers vector, ns is the normal to the slip plane 

of the segment, and V is the volume of the RVE. This explicit calculation of the plastic 

strain eliminates the need for phenomenological relations of gradient plasticity and all the 

drawbacks associated with them. Similarly, no phenomenological relations are needed for 

the back stress. In real systems, dislocations collide with each other while in motion and, 
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based on the relative orientation of their Burgers vectors and line senses, can result in 

reactions which modify the dislocation structure and result in significant effects on the 

overall behavior. The DD framework accounts for such short-range interactions through 

constitutive rules inferred from experimental observations or molecular dynamics 

sinulations. Such interactions include annihilation, jog formation, junction formation, and 

dipole formation [28]. Finally, DD analysis can be coupled with contimuun scale finite 

element analysis expanding the scope of problems that can be treated. This multiscale 

coupling allows the rigorous treatment of dilsocation interactions with free surfaces and 

interfaces [24, 29].  

 Since its inception in the early 90s, DD analysis made major advancement and 

was successfully used to address problems related to microstructure-property 

relationships in small-scale plasticity. Shear banding and dislocation patterning are two 

important phenomena which were successfully predicted by DD analysis [30, 31]. The 

effect of size and distribution on the strength of metal matrix composites [32, 33] and 

hardening due to second phase inclusion during cyclic loading [34] were also analyzed 

using DD. Several authors simulated dislocation structure during nanoindentation, e.g. 

[29]. The effect of free surfaces on the yield strength was studied in [35]. The analysis of 

the stress fields and the relaxed structure of finite planar dilsocation boundaries of tilt and 

twist types were studied by Khan et al. [36]. Other interesting problems like the dynamic 

response of cyrstals to impact loading [37] and the study of deformation in irradiated 

materials [38, 39] were successfully anayzed as well. 
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 In this thesis, DD analysis will be used to address s new problem of technological 

and scientific significance: plasticity in nanoscale multilayered dilsocation composites. 

Following is a brief introduction to the significance and issues related to these materials. 

1.1.3 Nanoscale multilayered Metallic (NMM) composites 
 

Nanoscale metallic multilayered (NMM) composites represent an important class 

of advanced engineering materials which have a great promise for multifunctional high 

performance that can be tailored for different applications.  Traditionally, NMM 

composites are made of bimetallic systems produced by sputtering or electrodeposition.  

Careful experiments by several groups have clearly demonstrated that such materials 

exhibit ultrahigh strength, reaching 1/3 to 1/2 of the theoretical strength of any of the 

constituent materials [40], high ductility [41], and morphological stability under high 

temperatures [42] and after large deformation[41]. Enhanced fatigue resistance, order of 

magnitude higher than the values typically reported for the bulk form, were also reported 

[43, 44] as well as improved irradiation damage resistance [45].  However, the basic 

understanding of the behavior of those materials is lagging and not yet at a level that 

allows them to be harnessed and designed for engineering applications. For example the 

strong dependence of the strength of NMM composites on their characteristic size, 

identified by the individual layer thickness, is not well understood. While such 

dependence can be interpreted by the Hall-Petch effect (dislocation pileups) in the 

micrometer scale range, the known primary plasticity mechanism at the nanoscale, 

dislocation threading (also known as Orowan bowing), does not provide a satisfactory 

explanation. One reason for such discrepancy lies in the fact that threading dislocations 

strongly interact with other dislocations at the interfaces. Such interactions can modify 

the stress needed to propagate a threading dislocation. Furthermore, they can result in 
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new dislocation structures which in turn can affect the threading stress and lead to new 

interactions. Other factors include the interaction between interfaces and dislocations, 

image forces due to elastic modulus mismatch between the two constituent metals of the 

composite, anisotropic effects, and the chemical forces due to stacking fault energies.  

The combined complexity and interactions among all of the above-mentioned factors 

explains the deficiency in the theoretical understanding of the response of NMM 

composites. 

1.2 Objective and Approach 
 

The objective of this work is to understand the effect of dislocation interactions 

on the size effect in NMM composites. Two primary deformation mechanisms expected 

to be significant in goverening the response of NMM composites are studied: intersection 

of a threading dislocation with orthogonal pre-deposited interfacial dislocations, and the 

interaction of a threading dislocation with parallel pre-deposited interfacial dislocations. 

In doing so, an attempt is made to find out if either of these two significant processes, or 

both combined, can be used to model and understand the behavior of real composites.  In 

both cases, the dependence of strength on the individual layer thickness of the composite 

is determined. Also the implications of those mechanisms on the dislocation structure and 

evolution in NMM compsites is outlined. Finally, large scale simulations of more realistic 

systems of dislocations in NMM composites is studied. In these simulations, all possible 

dislocation mechanisms and interactions occur naturally and interplay to determine the 

overall behavior. The dependence of strength on individual layer thickness in such 

simultaions is determined and qualitatively compared to the experimental results.  

1.3 Dissertation Layout  
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The format of this thesis will be based on journal papers. This applies to Chapters 

Two and Three as well as Appendix A. In Chapter 2, the interaction between a threading 

dislocation and orthogonal dislocations is studied. The dependnce of the strengthening 

effect of this mechanism on the individual layer thickness is estimated using DD analysis. 

In Chapter 3, the interaction of a threading dislocation with parallel interfacial 

dislocations is examined. The effect of the layer thickness on the strength is calculated 

and the implications of the resulting trends on the nature of dislocation structure 

evolution is discussed. In Chapter 4, the large scale simulations methodology and results 

are presented. Finally, the conclusions from this work are made and directions of furure 

works and issues are suggested in Chapter 5. Appendix A presents multiscale approach 

for addressing size effects in crystals. This work addresses the classical problem of size 

effect in bending and is a first step towards a different future approach to study size effect 

in NMM composites, which will be a much more difficult problem to handle due the high 

density of interfaces, image forces and dislocations interface interactions. 
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Chapter Two: Dislocation dynamics analysis of dislocation intersections in 
nanoscale metallic multilayered composites 

 
F. Akasheh*, H. M. Zbib*, J. P. Hirth**, R. G. Hoagland**, and A. Misra** 

*School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 
** MST Division, Los Alamos National Laboratory, Los Alamos, NM 

 
Abstract 

 
In this work, dislocation dynamics (DD) analysis is used to investigate the strength of 

nanoscale metallic multilayered composites. Several possible interactions between 

threading (glide) dislocations and intersecting interfacial dislocations are considered and 

found to lead to strength predictions in better agreement with experimental trends and 

significantly higher than the predictions of the simplified confined layer plasticity model 

based on Orowan bowing of single dislocation in a rigid channel. The strongest 

interaction occurs when threading and intersecting interfacial dislocations have the same 

Burgers’ vector and involves an annihilation reaction at their crossing points followed by 

the resumption of threading with a new dislocation configuration. The other possible 

dislocation intersections involve the formation of junctions, which are found to be more 

complex than simple models suggest. When the layer interfaces are modeled as 

impenetrable walls, as in existing analytical and some DD models, the predicted 

strengthening effect is weaker than that predicted by DD with more physical boundary 

conditions at the interfaces.  

2.1 Introduction 

Nanoscale metallic multilayered (NMM) composites represent an important class 

of advanced engineering materials due to their unusually high strength, several times 

larger than the rule-of-mixture prediction, and ductility among other favorable properties. 

Typically, NMM composites are made of bimetallic systems, built into alternating layers 
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of equal thickness, with individual layer thickness on the order of a few to tens of 

nanometers, by vapor or electro deposition. Careful experiments by several groups have 

clearly demonstrated that such materials exhibit a combination of superior mechanical 

properties: ultra high strength reaching 1/3 to ½ of the theoretical strength of any of the 

constituent materials [40], high ductility[46], morphological stability under high 

temperatures [42]and after large deformation[46], enhanced fatigue resistance[47], and 

improved irradiation damage resistance[45]. In this article, we focus our attention on 

understanding the deformation mechanisms and their contribution to the high strength of 

NMM composites. 

 

Figure 2.1 shows the scale dependence of yield strength of multilayered 

structures. In Regime I (100’s of nanometers and above) the strength can be well 

described by the Hall-Petch relation with the individual layer thickness acting as the 

characteristic length scale. Deformation in this regime is characterized by the formation 

of dislocation cell structure in the interior of the layers and dislocation pile-ups at the 

interfaces. In Regime II, the nanoscale range of interest to us here, the strength continues 

to increase as the layer thickness decreases; however, the dependence deviates from the 

Hall-Petch relation. Furthermore, no cell structure formation in the layer interior is 

observed upon deformation. Both observations indicate a fundamental difference in the 

active dislocation mechanisms at the two scales. While Frank-Read source operation 

leading to dislocation pile-ups is possible in the micrometer range, it becomes 

increasingly difficult as the layer thickness decreases, ultimately ceasing. Instead, glide of 

what is known as threading dislocations is believed to be the primary plasticity 
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mechanism at the nanoscale. Threading dislocations originate as faults in the atom 

arrangement during the deposition process and, once formed in one layer, replicate 

themselves in the next overlaid layer and so on. They are perfect glide dislocations, 

inhabiting typical glide planes and having Burgers’ vectors of type a/2<110> in fcc, and 

stretch along the glide planes between the interfaces. When the stress in the layer is high 

enough, a threading dislocation glides on its slip plane depositing, in its wake, two 

dislocations, one at each interface, which results in the well-known hairpin configuration, 

Figure 2.2. This process is commonly referred as Orowan bowing and the stress required 

to propagate a threading dislocation in this confined fashion is commonly referred to as 

the channeling stress. As well established, the prediction of the channeling stress based 

on the Orowan bowing of single dislocation in a rigid channel model significantly 

underestimates the strength of NMM composites. In real systems, one expects that a 

threading dislocation will interact with other existing dislocations including threading 

dislocations and interfacial dislocation on parallel and/or intersection planes. In this 

work, we use DD analysis to investigate the contribution of the interaction between a 

threading dislocation and orthogonal interfacial dislocations to the increased strength 

measured in real systems. 

 

Analytical models, for the onset of confined layer plasticity (CLP) by the glide of 

threading dislocations were developed by Frank and van der Merwe [48] and Matthews 

and Blakeslee [49]. Historically, these models were developed to predict the critical 

thickness at which interfacial dislocations are generated in heterogeneous epitaxial 

semiconductor films and layers. During the growth of coherent multilayered structures, 
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mismatch between the lattice parameters of the two materials results in a biaxial misfit 

stress in the layers and hence elastic energy stored in the structure, which increases 

linearly with thickness as the layer grows thicker. At a certain critical thickness it 

becomes energetically favorable for the system to relax part of the misfit strain by 

nucleating dislocations, thus trading elastic energy for defect energy. The same physical 

concept governs the determination of the channeling stress of a threading dislocation for 

a given layer thickness. From a mechanistic point of view[49], the idea is based on the 

balance between the force exerted by the misfit stress on the threading dislocation and the 

tension force in the created dislocation lines. For a certain critical layer thickness, hc, the 

two forces become equal and the threading dislocation becomes unstable and propagates. 

By equating those forces, one finds the channeling stress dependence on layer thickness 

to be proportional to ln(h)/h, h being the layer thickness. The same concept can also be 

considered from an energetic point of view leading to the same result[50-52]. This simple 

model, however, underestimates the measured strength of NMM composites. Figure 2.3 

is a compilation of the predictions of this classical model (the CLP model) for the 

channeling stress and experimentally measured strength of Cu/Ni cube-on-cube system 

with {100}interface orientation. The fact that both Cu and Ni are FCC metals and have 

low lattice parameter mismatch and a small difference in elastic properties, makes this 

system well-suited for comparison to simple starting-point models before further 

complexity associated with general real systems is included. As can be seen from the 

figure, the measured strength is higher with the gap increasing for increasing layer 

thicknesses. Suggested explanations for this discrepancy again came historically from 

observations regarding the relaxation process of misfit strain and the corresponding 
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critical thickness. The observation that the fraction of misfit strain relaxed by dislocations 

is much lower than that predicted for a given system and layer thickness indicates that 

significant impediment to dislocation propagation must exist in real systems. Among the 

proposed reasons for this impediment include dislocation-dislocation interactions leading 

to work hardening, barriers to dislocation nucleation, kinetic effects[53], Peierls friction 

stress [54], and step formation at surfaces and interfaces[55]. To complete the general 

picture drawn in Figure 2.3, the saturation and eventual dropping of the strengthening 

effect represent other important issues, which yet have to be understood. Theories put 

forward to explain the latter effects tie the point of saturation to the breakdown of the 

confining effect due to the interface acting as a barrier to dislocation crossing from one 

layer to the other[56]. 

 

The above-mentioned models for dislocation threading consider the introduction, 

in an otherwise defect-free medium, of a single dislocation dipole. In a real system, 

however, the threading of many dislocations in the form of orthogonal arrays will occur. 

Based on this observation, several authors developed energy expressions for stable 

dislocation arrays in multilayered systems as a function of layer thickness [57-63]. These 

approaches are more realistic and resulted in enhanced predictions for the critical layer 

thickness for the onset of dislocation generation in multilayered structures. However, 

they assume simplified configurations for intersecting dislocations and perforce give 

approximate results. The same applies for the calculations made by Freund[64] and 

Nix[65] for the blocking effect an orthogonal interfacial dislocation and an array of them, 

respectively, has on a threading dislocation. The use of DD modeling gives an improved 
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analysis of local configurations and should give an improved relationship for the effect of 

layer thickness on strength.   

 

In DD analysis actual dislocation structures with complex geometry are explicitly 

treated by the direct calculation of the Peach-Koehler force exerted on a dislocation by all 

existing stress fields, including those of the dislocations themselves, followed by the 

advancement and updating of dislocation positions using a physical mobility law. Other 

long-range effects from different boundary conditions can also be accounted for through 

the multiscale finite element (FE) and DD coupling. To the extent to which the short 

reaction rules used are physical, DD analysis can also capture dislocation-dislocation 

interactions including junction formation, annihilation, and cross slip; all of which are 

critical to any realistic predictions. When large systems consisting of many dislocations, 

applied loads, and various boundary conditions are dealt with, DD coupled with FE can 

handle this complexity simultaneously. For complete details on the DD analysis and its 

coupling with FE, the reader is referred to [66, 67] which provide a comprehensive 

overview of the topic. 

Published DD analyses of nanoscale multilayers are limited. Pant et al. [68] 

studied dislocation interactions in layers with impenetrable walls and found that the 

blocking effect an intersecting interfacial dislocation has on a threading dislocation is 

weak, contrary to the predictions of simple analytical models [56, 64, 65]. Considering all 

four possibilities of orthogonal encounters between interfacial dislocations and a 

threading dislocation in (001) and (111) Cu films, they observed interactions that were 

either junction formation (2 cases) or annihilation (one case) while the fourth case, 
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involving the interaction between the (1-11)[011] threading dislocation and the (111) [0-

11] interfacial dislocation, did not result in a junction (nor annihilation). Furthermore, 

junction formation was found to depend on layer thickness: the thinner the film, the 

greater the channeling stress, which in turn leads to the interfacial dislocations being 

pushed so strongly against the impenetrable interfaces to the point where they can no 

longer move locally and reorient themselves so as to engage in short-range reactions. The 

maximum increase in the channeling strength for an 800 nm thick layer was found to be 

about 20% for the no junction case, 10% for the junction formation case with the effect 

being stronger for thicker layers, while for the annihilation case the strengthening effect 

was 16%. In another effort, DD analysis of the blocking effect of a single fixed (non-

reacting) interfacial dislocation[69] found that the maximum strengthening effect above 

the unobstructed channeling stress was 15%,  much less than the  corresponding 

analytical result of 50% [64]. The suggested reason for this discrepancy was that in DD 

calculations, the threading dislocation can dynamically adjust its configuration so as to 

bypass the obstacle with minimum resistance. The same problem addressed in [69]was 

revisited (using DD) but with the interfacial dislocation free to move and react while 

being confined to its layer by a stress free neighboring layer[70]. The blocking effect was 

found to be even weaker than that found for the fixed dislocation case[69] because the 

interfacial dislocation could now be locally pushed into the stress-free layer, hence 

presenting less restriction on the threading dislocation. As reported, even if a small 

restoring stress is applied to the neighboring layer, the strengthening effect is never above 

15%.  
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Hence, a few DD analyses with a limited number of dislocations [68-70] have 

indicated that the predicted strengthening can differ markedly from the simple analytical 

results.  In this work, we use a more extensive DD analysis to examine the strengthening 

effect due to the interaction between threading dislocations and intersecting interfacial 

dislocations. First, we obtain DD predictions for the channeling stress in a rigid channel, 

and compare them to the results of the classical CLP model as well as with a complete 

energetic model, which was developed for validation purposes. Using flexible boundary 

conditions for layer interfaces, we then investigate the reactions resulting from the 

intersection of different combinations of threading and interfacial dislocations and their 

strengthening effects. Climb, as a possible relaxation mechanism, is not considered in this 

analysis. 

2.2 Problem setup in DD 
 

Figure 2.4 shows the problem setup and crystallography. A 3-layered Cu system 

is used to idealize confined layer slip in a coherent multilayer system with small lattice 

parameter mismatch and moderate elastic properties difference, as in a {001} Cu/Ni 

cube-on-cube system. Table 2.1 lists the physical properties of Cu used in the model. The 

initial configuration consists of an a/2<011> threading dislocation residing on a (111) slip 

plane in the middle layer, as well as a long orthogonal a/2<011> interfacial dislocation 

dipole residing on the (-111) plane. This interfacial dipole can be thought of as resulting 

from an earlier threading event on a (-111) plane. In accordance with the fundamental 

principle of continuity of dislocations lines, two fixed semi-infinite dislocation lines, with 

the same line sense as that of the threading dislocation segment, are attached to both 

ends. Dislocations in the middle layer are driven by the application of biaxial tensile 
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stress of a desired magnitude in this layer. In the bounding layers, a biaxial compressive 

stress equal in magnitude to that applied in the middle layer is applied. As in coherent or 

semicoherent systems, the effect of this stress is to confine dislocations initially in the 

middle layer to that layer. With these flexible boundary conditions, interfacial 

dislocations are not overconstrained, as in the case of impenetrable boundaries, because, 

although confined to their layer, they can still move locally to adjust their configuration 

in response to the stress state. This in turn allows for the possibility of short-range 

interactions upon the encounter of the threading dislocation with the interfacial 

dislocations. Restricted by slip crystallography, four representative encounters between 

threading dislocations and intersecting interfacial dislocations are possible (see Figure 

2.4). 

 Nanoscale composites, represent an unconventional application for DD analysis. 

While typical DD applications involve microscale specimens and dislocation segments on 

the order of 100 b, the layer thickness range of interest in our case can be as small as 25 b 

and up to 500 b. This requires the use of discrete segment lengths on the order of few b’s. 

The stress, of the order of several GPa, needed to drive dislocations confined to 

nanolayers requires the use of suitably small time steps. Both the spatial and temporal 

discretizations in this problem require optimization for stability and accuracy. An 

optimized mean segment length of 3.5 b was used in these simulations: however, the 

actual segment length is locally decided, based on the dislocation line curvature, by an 

adaptive meshing technique[66]. The choice of the time step is also automated based on 

dislocation velocities and the detected possibility of short-range interactions[66]. Table 

2.2 lists the main numerical parameters used in the DD simulation. Originally, the core 
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was optimized as a numerical parameter to match the force calculations from an exact 

analytical model for a corresponding problem[71].  Here instead, the core size was fixed 

as 1 b and the average force per unit length on a given dislocation segment from its 

neighboring segment is calculated from the following equation, which is equivalent to an 

earlier expression for the case of an adjustable core size[71]. 
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where (F/L)avg is the average force per unit length acting on a dislocation segment of 

length L, µ is the shear modulus, f1(θ,b) is a functional multiplier given in Ref.[72], p. 

138, and β is an adjustable parameter that compensates for the energy contained in the 

core size. To validate our choice of parameters, a complete energetic model for the 

threading process in a rigid channel is developed and its results, as well as those of the 

classical CLP model, are compared to DD results. Here, “complete” means that the 

inherent assumptions to the CLP model, infinite dipole length and the layer thickness as 

the external cutoff radius in the logarithmic term in the energy expression, are relaxed. 

Appendix A describes the details of the model and the comparison results, which strongly 

validate the DD model for confidence in its results in more complex situations.   

2.3 Results and discussion 
 
 The four representative cases for the intersection encounters between threading 

dislocations and glide interfacial dislocations are shown in Figure 2.4. Table 2.3 lists 

these interactions and their energetic favorability. Consistent with these trends, 

annihilation reaction is observed in the DD simulation for Case 1 at both the lower and 

upper interfaces where interfacial dislocations reside. For the threading dislocation to 
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overcome the obstacle (i.e., the interfacial dipole) and the threading process to continue, 

the annihilation process needs to occur twice. Figures 2.5a-d show this process and the 

corresponding dislocation configuration in the intermediate stages. As shown in Figure 

2.6, which is a close-up of the annihilation reaction occurring within circled region in 

Figure 2.5b, the interaction involves a complex process of local realignment of the 

interfacial and threading dislocations to produce a configuration that is admissible to an 

annihilation reaction. This configuration consists of two antiparallel screw-oriented 

segments, each belonging to a different dislocation, and attracting each other to a 

common position along the line of intersection of the two slip planes. After this 

configuration is achieved, Figure 2.6c, the annihilation process occurs leaving behind two 

dislocation nodes, i and j, which can move only along the line of intersection of slip 

planes, Figure 2.6d. Notice that a 90o dislocation bend structure has resulted from the 

joining of the trailing arm of the threading dislocation at the lower interface with that part 

of the interfacial dislocation at the lower interface which maintains the line sense of the 

aforementioned part of the threading dislocation, Figures 2.5b-d and 2.6d. This 

dislocation structure has been observed experimentally at the interfaces in NMM 

composites (e.g., see TEM images in [73]). The above observation that dislocations with 

initially repulsive interaction readjusting their configuration to reach a minimum energy 

configuration involving annihilation was also made by Madec et. al [74]. 

Table 2.4a details the incremental strengthening effect of the two annihilation 

reactions as a function of layer thickness. The third column in this table indicates the 

increase in stress, above that of the unobstructed threading case listed in column 2, 

necessary to push the threading dislocation against the long-range stress field of the 
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interfacial dislocation dipole, as close as possible to it, yet not close enough to over come 

the repulsive force and interact. In the simulation, this stress was noted after allowing the 

simulation to run long enough at that stress without observing the first annihilation 

reaction. The additional stress needed to push the threading dislocation beyond the first 

interfacial dislocation by inducing the annihilation reaction, fourth column in Table 2.4a, 

is the needed activation energy to reorient the dislocation segments for annihilation. If the 

stress is not increased further, the new dislocation configuration, Figure 2.5b, remains 

unchanged. To push the dislocation ahead from this position, another increase in stress is 

needed.  Although a small portion of the original threading configuration is lost upon the 

first annihilation interaction, the new connection to the interfacial dislocation has a high 

curvature, resulting in higher line tension and leading to higher resistance to further 

threading. Another contribution to this hardening effect is that, as in the first reaction, 

energy needs to be spent to perform the realignment necessary for the reaction to take 

place. The same behavior is observed for the case of a single a/2<011> interfacial 

dislocation acting as the obstacle to threading. Obviously, only one annihilation reaction 

occurs. Table 2.4b breaks down the strengthening effect due to each of the three stages of 

the bypass process for this case: (a) bowing out of the threading dislocation to closely 

approach the interfacial dislocation just before the reaction is induced, column 3, (b) 

annihilation reaction leaving behind a configuration similar to that in Figure 2.5b (except 

for the absence of the interfacial dislocation at the upper interface), column 4, and (c) the 

final stage of completely overcoming the obstacle and the resumption of the threading 

process, column 5. If the stress value shown in column 4 of Table 2.4b is applied without 

further increase, the threading dislocation will only perform the annihilation and get stuck 
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at that point. Similarly if only the stress level shown in column 3 is applied and no more, 

the threading dislocation will be arrested close to the interfacial dislocation and will not 

advance any further. A comparison of the strengthening effect due to a single and a 

dipole a/2<001> interfacial dislocation obstacle for any corresponding bypassing stages, 

Tables 2.4a and b, indicates that the presence of the second interfacial dislocation in the 

dipole contributes to a higher resistance at all stages. Furthermore, the strengthening 

effect due to this interaction (dislocations with collinear Burgers vectors on intersecting 

slip planes) was found to be the strongest among other possible interactions. The same 

conclusion was made from large-scale DD simulations of forest interactions in FCC 

crystals [74]. 

Figure 2.7 summarizes the DD predictions, based on the 3-layer model, for the 

channeling stress in the absence and presence of a/2<01-1> single and dipole interfacial 

dislocations intersecting the path of a threading dislocation with the same Burgers vector. 

When an interfacial dislocation(s) exits, the channeling stress, i.e. the minimum stress 

needed for the threading dislocation to completely overcome the obstacle and continue 

past it, has the values reported in column 5 in Tables 2.4a and b. Also shown on the same 

plot are the experimental results for the strength of Cu/Ni multilayered system previously 

shown in Figure 2.3. Thus, including the interactions of a threading dislocation with 

orthogonal interfacial dislocations, as expected to happen frequently in a real system, 

does bring the baseline DD predictions (threading without obstacle) closer to the 

experimental measurements for layer thicknesses of 30 nm and above. However, the 3-

layer model overestimates the strength below this range, as does the CLP model. This 

indicates that orthogonal intersections between threading dislocations and interfacial 
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dislocations cannot be considered as the single mechanism to account for the discrepancy 

between the experiment and the model. Obviously other mechanisms such as interface 

crossing, which are softening in nature, play an important role in the 30 nm and below 

range. This conclusion supports a similar general one made by Pant [68]on the existence 

of different mechanisms at different length scales. Also other mechanisms could be 

important with larger misfits, and with different crystal structures for the two types of 

layers. 

For the other cases of intersections where a junction forms upon interaction, the 

threading process ceases, as long as no other conditions, e.g. load reversal, arise to unzip 

the junction and free the threading dislocation. DD analyses reporting on junction 

formation under different boundary conditions from the ones used here indicate that the 

strength is weaker and annihilation remains the stronger reaction[68].  Other 

mechanisms, such as cross-slip, as well as long-range effects in systems with many 

dislocations play an important role in determining strength. Those issues are the subject 

of a forthcoming article in which results from massive DD analyses will be reported [75]. 

Finally, we examined the effect of the assumption of rigid channel walls on the 

threading process.  DD analysis for the interaction of an a/2[01-1](111) threading 

dislocation with a/2[01-1](-111) single and dipole interfacial dislocations as well as with 

Lomer-type interfacial dislocation was performed under the assumption of rigid channel 

walls with pinned dislocation. The first two cases correspond to those studied using the 3-

layer model and whose results are presented in Tables 2.4a and b and in Figure2.7. Figure 

2.8 shows a sequence of DD snapshots of the bypassing process of the threading 

dislocation in two cases: (a) over a Lomer-type interfacial dislocation, and (b) through an 
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interfacial dislocation dipole representing the two arms deposited in the wake of a 

threading dislocation. A third case, bypassing over an a/2<011> type interfacial 

dislocation, was also performed and the sequence was found to be similar to that of the 

Lomer-type case; thus, it is not included here for brevity. As can be deduced from the 

figure, there is a sequence of complex, dynamically changing configurations for the 

threading dislocation during the bypassing process and the notion of a critical effective 

thickness through which the threading dislocation passes[64] is not well-defined. Another 

difference between the rigid channel model with pinned interfacial dislocations and the 

flexible boundary results is in the predictions of the strengthening effect. Figure 2.9 

shows DD predictions, for the case of the rigid channel model with pinned interfacial 

dislocation, for the channeling stress in the absence and presence of a/2<01-1> single and 

dipole interfacial dislocations intersecting the path of a threading dislocation with the 

same Burgers vector (same cases used to generate Figure 2.7). Also shown in the figure 

are the Cu/Ni measured strength values[56] and the strengthening effect due to a Lomer-

type interfacial reaction. As can be seen by comparing Figures 2.7 and 2.9, which are 

plotted using the same scale for the ease of comparison, the strength predictions of rigid 

channel with pinned interfacial dislocations underestimate the strength of NMM 

composites when compared to the more realistic 3-layer model predictions and more so 

when compared to the experimental results. 

2.4 Conclusions 
 

• The use of flexible dislocations (which allows for short-range interactions) and 

flexible channel walls (where dislocations are confined by coherency stress) leads 
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to an improved agreement between predicted and experimentally measured 

strengths in nanoscale multilayered composites. 

 

• Among the possible interactions between threading and orthogonal interfacial 

dislocations, the strongest contributor to hardening is that involving dislocations 

of same Burgers vector. For this case, the bypassing process entails annihilation 

reactions and leaves behind a 90o bend dislocation structure.  In the thickness 

range of 10-100 nm, the increased strength due to this interaction is about 1.5 

times the reference (free threading with no obstacles present) strength.  
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Appendix: Energetic model for channeling strength 
 
Figure 2.10 outlines the main features of an energetic model to estimate the channeling 

strength of a threading dislocation. The initial configuration consists of an infinite 

dislocation line, here made of a finite segment 0 and two semi-infinite segments 4 and 5. 

As the side view shows, the dislocation resides on a {111}slip plane and the 

crystallographic setup corresponds to that in Figure 2.4. Segment 0 represents the part of 

the dislocation which will bow out into a hairpin confined to the layer of thickness h 

under the effect of the applied stress. The semi-infinite segments are a necessity to 

maintain the dislocation continuity. A stress is applied to the layer with τ representing its 

resolved shear component in the slip plane along the Burgers vector. Under the effect of 

this applied stress, the threading dislocation advances, segment 3, depositing two finite 

misfit dislocations of length l, segments 1 and 2. The change of the system configuration 

energy ∆W as follows, 
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W with a single subscript represents a self-energy while that with two subscripts 

represents the interaction energy between the two segments indicated by the two 

subscripts. All the expressions needed for self and interaction energies can be found in 

Ref. [72]. The final result for the ∆W expression is a function of h and l and, after some 

algebra, reduces to, (to avoid the infinite energies of the semi-infinites segments, the 

terms W35 and W05 should be considered simultaneously, series expansion performed on 

the combined expression, and second term in the expansion kept)  
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The equilibrium position of the threading dislocation corresponding to a certain applied 

stress can be determined by minimizing the free energy, lbWG ητ∆∆  −= , while the 

stable point beyond which the threading dislocation propagates indefinitely can be 

determined for a given layer thickness h from the condition 02

2
=

∂

∂

l
G∆ . Figure 2.11 

shows the results of performing those calculations for the critical channeling stress as a 

function of layer thickness, expressed in terms of its resolved shear component, which 

satisfies both conditions. Physically, this stress corresponds to the stress needed to bow 

out the threading dislocation to the point were the hairpin configuration is not stable any 

more and the dislocation will propagate indefinitely. At any stress value below this 

critical stress the dislocation will bow out to a certain equilibrium length proportional to 

the applied stress. For comparison and validation purposes, the channeling stress 

prediction from the classical confined layer plasticity model (CLP) and the prediction of 

our DD model are shown in Figure 2.11. As can been seen from the figure, our DD model 
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produces excellent agreement with the analytical models. Furthermore, our energetic 

model and the CLP model match perfectly as far as the stress prediction is concerned in 

spite of the fact that the CLP model starts out by assuming semi-infinite arms connected 

to the threading dislocation and finding their dipole energy by taking the external cutoff 

radius in the logarithmic term of the energy expression to be equal to the layer thickness. 

Our energetic model remains more complete because it considers the exact configuration 

and includes all the interaction energies, and is physically based on minimizing the free 

energy of the system. This principle difference reflects in the fact that our energetic 

model predicts an equilibrium threading length for any applied stress below the critical 

stress, while the CLP model does not. In this regard, DD calculations support this finding 

of our energetic model predictions. Figure 2.12, shows the agreement between the DD 

model and our energetic model in this regard. 
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Figure 2.2 Schematic illustrating the glide of a threading dislocation in different layers. 
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Figure 2.3 Comparison between the strength predictions of the classical confined layer 
plasticity model with experimental results for Cu/Ni system[56].   
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Figure 2.4 Problem setup, (a) crystallographic orientation of the layers idealized setup, 
(b) four encounters representing all possible intersections between threading dislocation 
and a/2<011> type interfacial dislocation dipoles. 
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(c) 

 

   
(d) 

Figure 2.5 Stages of interaction between a/2[01-1](111) threading and a/2[01-1](-111) 
interfacial dislocation, (a) arrest of threading dislocation by the long-range stress field of 
the interfacial dislocation; stress needs to be increased to propagate further (b) 
intermediate configuration after first annihilation reaction at lower interface (circled 
region indicated region zoomed-in at in Figure 7), (c) final configuration after second 
annihilation at upper interface, (d) interface plane view of final dislocation configuration. 
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(a)      (b) 

 

   
(c)      (d) 

 
Figure 2.6 Sequence showing the details of the realignment process which the a/2[01-
1](111) threading dislocation A and the a/2[01-1](-111) interfacial dislocation B undergo 
to admit the annihilation reaction. 
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Figure 2.7 Comparison of measured strength of Cu/Ni bimetallic system with DD 
predictions using the3-layer idealized model (flexible confinement boundary conditions 
and reacting interfacial dislocations). The strengthening effect is due to annihilation 
reactions occurring between a threading dislocation and an intersecting interfacial 
dislocation of the same Burgers vector. 
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        (a)      (b) 

 

            
       (c)       (d) 
 

Figure 2.8a Slip plane (111) view of a sequence of simulation snapshots of the bypassing 
process of a/2 [01-1](111) threading dislocation over a Lomer-type interfacial dislocation 
with Burgers’ vector a/2[10-1] (globally, parallel to the x-axis) in a 13 nm-thick layer 
under a stress of 1.7 GPa. 
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(a) (b) 

 

    
                                 (c)         (d) 

    
                                 (e)         (f) 
Figure 2.8b Slip plane (111) view of a sequence of simulation snapshots of the bypassing 
process of a/2 [01-1](111) threading dislocation over a/2[01-1](-111) interfacial dislocation 
dipole treated as pinned and non reacting in a 13 nm-thick layer under a stress of 2.1 GPa. 
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Figure 2.9. Comparison of measured strength of Cu/Ni bimetallic system with DD 
predictions using the rigid channel idealized model (impenetrable layer interfaces and 
pinned interfacial dislocations). The strengthening effect is due to annihilation reactions 
occurring between a threading dislocation and an intersecting interfacial dislocation of 
the same Burgers vector. 
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Figure 2.10. Dislocation configuration modeling the threading process in a confined 
layer. 
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Figure 2.11.  Critical stress for threading in a confined rigid channel of thickness h, 
comparison of different models’ predictions: classical confined layer plasticity (CLP) 
model, DD models, and our energetic model. 
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Figure 2.12.  Threading length as a function of applied stress, comparison between DD 
model and our energetic model. The CLP model only predicts infinite threading once the 
applied stress reaches a critical value. 
 
 
 

 44



 
Density (Kg/m3) 8980.0 
Burgers vector magnitude (Ao) 2.556 
Shear modulus (GPa) 38.46 
Poisson’s ratio 0.3 
Core size (b: Burgers’ vector magnitude) 1.0 
Mobility (1/pa.s) 1.0x104 
 
Table 2.1. Physical properties of Cu used in DD calculations. 
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Mean segment length (b) 3.5 
Minimum segment length (b) 1.75 
Maximum segment length (b) 5.25 
β parameter (Equation 1) 0.5 
Time step (s) (variable) 1.0 x10-13-3.0x10-13 
 
Table 2.2. Main numerical parameters used in DD calculations. Within the minimum and 
maximum segment length, the precise choice is made automatically based on adaptive 
meshing. 
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Reactants Reaction favorability Case 

no. Threading 
dislocation 

interfacial 
dislocation 

parallel 
sense 

anti-parallel 
sense 

Expected 
reaction 

1 a/2 [01-1]; 
(111) 

a/2[01-1];  
(-111) neutral favorable Annihilation 

2 a/2 [01-1]; 
(111) 

a/2 [-1-10];  
(-111) favorable unfavorable Junction 

formation 

3 a/2 [-110]; 
(111) 

a/2 [01-1];  
(-111) unfavorable favorable Junction 

formation 

4 a/2 [-110]; 
(111) 

a/2 [-1-10];  
(-111) neutral neutral Junction 

formation 
 
Table 2.3. Possible encounters between threading and a/2<011> type interfacial 
dislocations on intersecting planes and the corresponding reactions. 
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Layer 
thickness 

 
 

(nm) 

Reference 
(no obstacle) 
strength τo 

*  

 
(GPa) 

Stress to approach 
obstacle, just 

before reacting 
 

(τ /τo) 

Stress to overcome 
first dislocation in 

the interfacial 
dislocation dipole 

(τ /τo) 

Stress to overcome 
second dislocation 

and completely 
bypass the dipole 

(τ /τo) 
6.4 1.04 1.06 1.10 1.13 
12.8 0.57 1.14 1.21 1.51 
19.2 0.41 1.20 1.29 1.59 
25.6 0.31 1.32 1.45 1.58 
51.1 0.16 1.25 1.50 1.66 

*Strength values are as resolved on the slip system. 
 
 Table 2.4a. Strengthening effect of annihilation reactions between a/2[01-1] (111) 
threading dislocation and a/2[01-1] (-111) interfacial dipole as a function of layer 
thickness. 
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Layer 

thickness 
 
 

(nm) 

Reference 
(no obstacle) 
strength τo 

*  

 
(GPa) 

Stress to 
approach 

obstacle, just 
before reacting 

(τ /τo)  

Stress to overcome the 
interfacial dislocation 

by inducing 
annihilation reaction 

(τ /τo) 

Stress to 
completely bypass 

the dipole and 
resume threading 

(τ /τo) 
6.4 1.04 1.04 1.06 1.26 
12.8 0.57 1.11 1.15 1.29 
19.2 0.41 1.05 1.10 1.29 
25.6 0.31 1.05 1.19 1.58 
51.1 0.16 1.28 1.35 1.48 

*Strength values are as resolved on the slip system. 
 
Table 2.4b. Strengthening effect of annihilation reactions between a/2[01-1] (111) 
threading dislocation and single a/2[01-1] (-111) single interfacial dislocation as a 
function of layer thickness. 
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Abstract 
 
Plastic deformation in nanoscale multilayered structures is thought to proceed by the 

successive propagation of single dislocation piles ups at the interfaces. Based on this 

view, we simulate the effect of pre-deposited interfacial dislocation on the stress 

(channeling stress) needed to propagate a new loop parallel to them. Single interfacial 

dislocations as well as finite parallel arrays are considered in the computation. When the 

gliding dislocation and the pre-deposited interfacial array have collinear Burgers vectors, 

the channeling stress increases monotonically as the density of dislocations in the array 

increases.  In the case when their Burgers vectors are inclined at 60o, a regime of perfect 

plasticity is observed which can be traced back to an instability in the flow stress arising 

from the interaction between the glide dislocation and a single interfacial dislocation 

dipole. This interaction leads to a tendency for dislocations of alternating Burgers vectors 

to propagate during deformation leading to non-uniform arrays. Inclusion of these 

parallel interactions in the analysis improves the strength predictions as compared with 

the measured strength of a Cu-Ni multilayered system in the regime where isolated glide 

dislocation motion controls flow, but does not help to explain the observed strength 

saturation when the individual layer thickness is in the few nanometer range. 
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3.1 Introduction 

It is well known that the primary plasticity mechanism in nanoscale multilayered 

structures is the channeling of dislocation loops confined within individual layers 

resulting in the familiar hairpin dislocation configuration. In contrast to microscale 

layers, where multiple dislocation pileups at the interfaces are possible, only single 

dislocations are thought to be present in the case of nanoscale layers. Consequently, 

deformation under this condition proceeds by the successive propagation of single 

dislocation loops [76], Figure 1. This unique deformation pattern results in a more 

uniform dislocation distribution in nanoscale layers, which leads to improved ductility 

[41, 46, 77] and fatigue resistance [43, 44, 78, 79] because of the suppression of both 

strain localization and cell structure formation within the layers [80]. Furthermore, 

multilayered laminates exhibit both ultra high strength, reaching a factor of 1/3 to 1/2 of 

the theoretical strength of the constituents [40, 56], and morphological stability, even at 

high temperatures [42], making them uniquely multifunctional materials. Nevertheless, 

many aspects of deformation in these structures are not well understood. The nature of 

dislocation mechanisms and their interactions among each other and with interfaces, 

including nucleation, recovery, and interface crossing are not clear, let alone their 

implications to the overall strength and work hardening. A full understanding of the 

observed dependence of strength on individual layer thickness, particularly the saturation 

of the strengthening at thicknesses of few nanometers, remains elusive. In a previous 

article [81], we employed dislocation dynamics (DD) analysis to investigate how 

interactions between channeling dislocations and orthogonal pre-deposited interfacial 

dislocations affect the strength and dislocation structure in nanoscale multilayers. Here, 
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we examine the effect of pre-deposited parallel dislocations on the strength and the nature 

of dislocation evolution in nanoscale multilayers. 

The framework for the calculation of the channeling stress of an isolated loop was 

presented by Matthews et al. [49, 54]. Their main interest was in the determination of the 

critical film thickness below which an epilayer is coherent with its substrate with no 

dislocation generation. The same analysis can be used to calculate the critical stress 

required to propagate a dislocation for a given layer thickness. The underlying concept 

involves the balance between the force from the applied stress, tending to propagate a 

threading dislocation along its glide plane, Figure 1, and the impeding forces arising from 

the line tension of the newly created dislocation and from lattice friction. This results in 

the ln(h)/h dependence of the channeling stress on the layer thickness, h, better known as 

Orowan strengthening. An essentially equivalent energy argument leading to the same 

result has also been employed by several researchers [48, 51, 52]. The energy approach, 

nevertheless, is more versatile, allowing further refinement of the model. For example, 

other sources of resistance to dislocation propagation like surface steps [82, 83], 

interactions with intersecting interfacial dislocations [64, 65], and the effect of square 

networks of interfacial dislocation arrays [57, 58, 60, 62, 63] can be included readily in 

the analysis. 

 The interaction of threading dislocations with parallel pre-deposited interfacial 

dislocation arrays in strained layers was studied by several authors. In a two-dimensional 

setup, Weihnacht and Bruckner [84] used a force balance to estimate the critical stress 

required to propagate the gliding trailing arm of a threading dislocation to a film-

substrate interface in the presence of several film-substrate pre-deposited parallel 
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dislocations. However, their model consisted of infinite dislocations in a two-dimensional 

arrangement and included only the segment of the threading dislocation parallel to the 

array.  They showed that the critical stress increases linearly with the inverse of spacing. 

Furthermore, this slope is steeper when all dislocations in the array have the same 

Burgers vector as that of the threader, as compared to the case when they alternate 

between that Burgers vector and the other Burgers vector on the same slip plane inclined 

at 60o.  Pant et al. [68] used DD analysis to show that the glide of a threading dislocation 

parallel to a single pre-existing interfacial dislocation leads to hardening that increases as 

the spacing between the two dislocation decreases.  Using an energetic approach, Embury 

and Hirth [76] calculated the stress needed to propagate a threading dislocation in an 

embedded layer having an infinite uniform array of interfacial dislocations. The authors 

showed that the channeling stress is inversely proportional to layer thickness h, compared 

to ln(h)/h in the case of isolated threading. Following the analysis of Embury and Hirth 

[76], Kreidler and Anderson [85] analyzed the difference between “shear” and “stretch” 

channeling loops in single and multiple layers. They found that at large plastic strains, the 

behavior is significantly different in the two cases. In the shear case, strain softening was 

observed in the single embedded layer case but not in the multilayer case. In an extension 

to the later work, Anderson and Kriedler [86] studied the properties of channeling stress 

in close connection to the view  that deformation in nanoscale layers proceeds by the 

successive  propagation of single-loop pileups. For an existing array with uniform 

spacing λ, they calculated the stress needed to propagate the first loop to halve a pair in 

the array and the last loop to complete the array starting from one with 2λ spacing.  In the 

shear case, the softening effect is manifested in the possibility of an avalanche of such 
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halving loops in the course of completion of the uniform array. Following a similar 

energetic approach as in [58, 76], Misra et al. [56] developed a more comprehensive 

model to predict the strength of multilayered metallic structures. The model assumes that 

macroscopic yield occurs when layer-confined single dislocation loops overcome the 

resistance to interface crossing offered by the stress field of the interfacial dislocation 

arrays. It also accounts for the residual coherency stress in the case of semicoherent 

multilayer systems and provides a good match to the measured strength of Cu-Ni 

multilayers. Also Atkinson and Jain [61, 62] presented an energetic approach where the 

layer energy is calculated by the explicit calculation of the interaction energy between the 

dislocations in the array as they are successively introduced into the system at random 

locations. 

  In the spirit of [56, 76, 85, 86], we employ an energetic approach in a three-

dimensional arrangement to study the characteristics of the interaction between a 

threading dislocation and finite arrays of parallel interfacial dislocations in FCC strained 

layers. The actual mixed character of the interacting dislocations is considered without 

distinction of the stretch and shear contributions to the interactions [85, 86]. Also, the 

effect of the relative orientation of the Burgers vectors of the interacting dislocations on 

the strength and nature of evolution of dislocation structure is explored. In agreement 

with the theories and experimental observations regarding the early stages of deformation 

in nanoscale layers [49, 54, 76, 87, 88], see also Figure 1, we assume that the interfacial 

dislocations consist of dipoles, each representing the trailing “arms” deposited at the 

interfaces during a previous threading event. They are located at the intersection of {111} 

glide planes and the layer interfaces and are perfect glide dislocations.  
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3.2 Problem setup and method 
 

Figure 2a shows the problem setup. A strained layer of thickness h having an FCC 

structure is bound by two impenetrable walls but otherwise lies in an infinite 

homogenous elastic medium. The x, y, and z- axes coincide with the ]110[ , [ , and ]101

]010[  crystallographic directions, respectively, with the interface normal parallel to the 

z-axis. This {100} interface orientation is common in epitaxial multilayered coherent 

FCC-FCC systems and is referred to as the cube-on-cube orientation. The multilayered 

Cu-Ni system is an example of such systems and is used a basis of comparison with the 

modeling results.  Threading dislocations successively propagate parallel to each other on 

the )111(  slip plane in the y-direction under the effect of some applied load the same 

direction. A given dislocation will only propagate if it has either the a/2 ]011[  or the 

a/2 ]110[  Burgers vector, which are inclined at 60o to each other. A dislocation 

exhibiting the other possible Burgers vector on the same plane, a/2[ , would not move 

under the described loading. The question is how a finite array of “long” pre-deposited 

parallel dislocation dipoles affect the stress needed to propagate the next fresh threading 

dislocation  

]101

An energetic approach based on the complete account of the mutual interactions 

between all dislocation segments is used to estimate the channeling stress.  The model 

has been previously detailed in [81].  The initial configuration consists of a threading 

dislocation segment, having a Burgers vector bthreader =a/2 ]110[  and extending between 

the layer walls along the glide plane. The length of this segment is extended in both 

directions by a semi-infinite segment to ensure dislocation continuity, Figure 2b. Also 
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included in the initial configuration is an array of infinitely long pre-deposited interfacial 

dipoles of Burgers vector barray, which can have one of the two possible Burgers vector 

on the plane mentioned above, Figure 2a. Under the effect of the layer strain, the portion 

of the threading dislocation in the layer starts to bow out as shown. The change of the 

energy of the system in the new configuration, ∆W, is evaluated as a function of the 

threading length, lth. The expressions for the self energies of individual segments and the 

interaction energies between different segments can be found in reference [89]. For a 

certain layer thickness h, the applied resolved stress τ at which the threading dislocation 

becomes unstable can be determined from the minimization of the Gibbs free energy 

thlb WG ητ∆∆ −=  along with the stability condition, 02

2
=

∂

∂

thl
G∆ .The energy is 

monitored as the system evolves to the unstable configuration. 

 

3.3 Results and discussion 
 

Typically, the estimation of the channeling stress in strained layers has been 

restricted to infinite arrays of interfacial dislocations with the threader and the array 

having the same Burgers vector. As a starting point, we revisit the same problem using 

our model along with more realistic dislocation arrangements in agreement with the 

physical view of how dislocations evolve in the early stages of deformation of nanoscale 

layers. We assume that plastic deformation has uniformly proceeded to a configuration 

where the dislocation spacing in the array is λ, and estimate the stress needed to 

propagate the next threading dislocation expected to occur at a position half way between 

neighboring dipoles, Figure 3. Thereafter, deformation proceeds at stress increments 
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corresponding to the successive introduction of threaders each halving the λ spaced 

dipoles finally arriving at a uniform array of spacing λ/2.   

Figure 4 shows the convergence behavior of the calculated channeling stress as 

the breadth B of the array increases for a layer thickness h of 25b, where b is the 

magnitude of the Burgers vector. The case where both the threader and the array have the 

same Burgers vector is shown in Figure 4a, while Figure 4b shows the corresponding 

result when they are inclined at 60o. The stress is normalized by the saturation stress 

arrived at when B becomes sufficiently large so that the influence of any additional 

dislocations on the threading stress is negligible. This value is largest for the denser 

arrays and is approximately 300h. The observation that the denser array case converges to 

the infinite array case slowly was also made by Atkinson and Jain [61, 62] in their 

calculations for the energy of strained layers with misfit dislocations of the same Burgers 

vector. The convergence characteristics are the same for the collinear and inclined 

Burgers vector cases although the convergence is faster in the collinear case for denser 

arrays. The difference in convergence rate vanishes for arrays of spacing 2h and larger. 

Figure 5 shows the hardening effect caused by an infinite array (i.e. with B large 

enough to ensure saturation) of parallel interfacial dislocations of spacing λ and Burgers 

vector collinear with that of the threading dislocation. The spacing is normalized by the 

layer thickness. The hardening is associated with the increased energy of the system due 

to the introduction of new segments of dislocation lines whose net interaction energy is 

positive. To explore the scaling characteristics, the channeling stress τ (resolved stress) in 

Figure 5b is normalized by τo=τo(h), the channeling stress of a single isolated threader for 

the same layer thickness. Figure 6 shows the actual values of τo as calculated using our 
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model for Cu with shear modulus of 38.46 GPa. Figure 5 demonstrates that interfacial 

dislocations can severely impede the glide of dislocation loops parallel to them and that 

this effect increases rapidly when the spacing of interfacial dislocations is less than two 

times the layer thickness. The other important observation is that the channeling stress 

does not scale with the layer thickness. This can be explained by the fact that, for a given 

layer thickness, the current configuration energy is a function of the threading length lth, 

Figure 2b. The interaction energies among the leading segment and trailing arms and 

among both of them and the parallel dislocations do not scale with h.  The scaling with 

the thickness would be true, however, in the case for the simple line tension model, that 

has no dependence on the threading length. The fact that the channeling stress is large for 

the smaller thicknesses is physically sensible as one expects that more work is needed to 

cause the threading segment to break away from the stronger interactions which hold it 

back when the thickness is smaller. DD calculations, e.g. [66], which are based on the 

explicit calculation of the Peach-Koehler force from the stress field of dislocations also 

support this result [81].  

Similar to Figure 5, Figure 7 shows the dependence of the channeling stress on 

the spacing λ of the infinite array when the Burgers vectors of the threader and the array 

dipoles are inclined at 60o to each other, Figure 2a. Two major differences can be 

deduced from a comparison with the collinear results in Figure 5. First, the stress needed 

to propagate the threader is much smaller in the case of inclined Burgers vectors than that 

for the collinear case, particularly when the array spacing is less than two times the layer 

thickness; there is almost a factor of two difference between the two cases. This can be 

easily understood since, although the edge components of the threader and array are the 
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same in both cases, yet the screw components are antiparallel in the inclined case while 

parallel in the collinear case. The attractive interaction between the screw components in 

the inclined case reduces the stress required to propagate the threader. The second notable 

difference is that the stress is almost constant in the range 42 << λ/h .  This implies that, 

in the stage of plastic deformation corresponding to this range of array spacing, there 

would be an avalanche of dislocation motion that does not require any additional loading. 

This is effectively a form of unstable deformation.  

To examine the origin of this behavior, we consider the simple system consisting 

of a threader and a single dislocation dipole separated by a distance l. The result is shown 

in Figures 8a and 8b for the two extreme layer thickness considered in this work, 25b and 

200b. In both cases the effect of the parallel interfacial dipole on the channeling stress is 

characteristically different for the collinear and inclined cases. In the inclined case, the 

system exhibits a distinct unstable regime when 0.5<(l/h)<3, roughly, where the 

channeling stress dips. This behavior can have important implications on the evolution of 

the dislocation structure. Since deformation in nanoscale strained layered proceeds by the 

successive propagation of single dislocation loops, once a dislocation of a certain Burgers 

vector has propagated, then it would be easiest for a dislocation having the 60o-inclined 

Burgers vector to be the next one to propagate in the vicinity of the first glide event. One 

would then expect that deformation proceeds by the successive propagation of loops of 

alternating Burgers vectors. This expectation is not precise because it ignores the effect 

other neighboring interfacial dislocations have on the threader-single interfacial dipole 

interaction characteristics. Other relevant considerations include the probability of 

existence of the right dislocation (easiest to propagate) at the right location and the other 
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stochastic aspects of dislocation motion. Furthermore, in a real system, dislocations from 

different planes and/or layers can intersect at the layer interfaces and react to produce 

dislocations of different Burgers vector or annihilate, all of which complicate the 

simplified picture depicted above regarding the nature of evolution of dislocation 

structure. Nonetheless, the present result suggests that during plastic deformation a 

dislocation array with non-uniform spacing is more likely to evolve than a uniform one.  

Another relevant conclusion regarding how close interfacial dislocations can 

come to each other may be made form Figure 8, for the isolated case, and from Figures 

5a and 7a for the case where large arrays are present. Dislocations can be more closely 

spaced in thicker layers, also supported by experimental observations [90]. Furthermore, 

the minimum spacing between dislocations increases when there are other dislocations in 

the interface. Such a conclusion has implications to the type and potential for short-range 

interactions between interfacial dislocations. Such interaction have been hypothesized to 

occur and to be significant in influencing the overall deformation characteristics in 

nanoscale multilayers [80, 91].  More detailed examination of these issues is needed. 

 In Figure 9, we plot the stress normalized by the shear modulus µ of the material 

(here Cu with µ=38.46 GPa and b=2.556Ao) against the inverse of the spacing 

normalized by the Burgers vector magnitude d/b. The plot clearly shows the 

characteristics of the hardening behavior. The hardening is linear only at small spacing 

corresponding to large inelastic strains, i.e., in the later stages of deformation.  A similar 

observation was also made by Weihnacht and Bruckner [84] in their analysis of parallel 

interaction at film-substrate interface. However, their result does not show the divergence 

from nonlinearity in the early stage of deformation.  In this stage when dislocation loops 
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are being propagated successively at large separations, the hardening is nonlinear as can 

be deduced from Figure 9.  

Figure 10 summarizes the effect of parallel dislocation interactions on the 

channeling stress for both the collinear and inclined Burgers vectors cases. In both cases, 

parallel interactions can lead to either hardening or softening depending on the relative 

orientation of the Burgers vectors of the threading and the interface dislocations. In all 

cases the interactions are stronger when the Burgers vector are collinear. For the purpose 

of qualitative comparisons, Figure 10 also overlays the measured strength of Cu-Ni cube-

on-cube with {100} interface multilayered structure [56]. Besides having the same 

crystallographic orientation as that used in our model, this particular system departs least 

from our idealized single layer model because the small difference in their elastic 

properties allows image the effects to be neglected. The comparison suggests that the 

behavior of a real system can be explained based on parallel interactions over a wide 

thickness range. Based on the results presented in this paper and from previous work [81] 

we propose the following constitutive relation for the macroscopic stress σ in nanoscale 

layers  

l
bµc

h/b
ln(h/b)µcl)σ(h, 21 +=  

where l is the dislocation spacing in the interface and c1 and c2 are constants on the order 

of 10-1 and where c2 can be positive or negative. The first term on the right hand side of 

the equation represents a structure-induced layer thickness dependent hardening, while 

the second is strain hardening which, to a first approximation, is dependent only on the 

dislocation spacing. The statistical aspects of the dislocation content of the interface and 

their influence of the stress are all lumped together in c2. As mentioned before, a more 
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detailed discussion on such factor has to be made in view of how the dislocation content 

evolves during the deformation and how the dislocations react at the interfaces.  

 Of course, the strength saturation effect observed in real multilayered systems in 

the few nanometer layer thickness regime cannot be explained by either the Orowan 

model or that including parallel interactions.  Other dislocation mechanisms, particularly 

those involving dislocation-interface interactions, seem to control the behavior in that 

regime, where atomistic calculations are the most suitable methodology. 

3.4 Conclusions 
 

An energetic model based on the explicit determination of self and interaction 

energies between a threading dislocation and pre-deposited interfacial dislocations was 

used to study the characteristic of such interactions and their effect on the flow stress in 

strained nanoscale layers. The findings can be summarized as follows, 

• Parallel dislocations interactions are stronger for smaller layer thicknesses. 

• Parallel dislocation interactions are stronger when the threading dislocation and 

the pre-deposited interfacial dislocations have collinear Burgers vectors. This 

suggests that the successive propagation of loops on non-collinear Burgers vectors 

would be energetically favored over that of uniform Burgers vector.  

• When the threading and array dislocations have inclined Burgers vectors, an 

unstable deformation regime exists. 

• Parallel interactions can lead to either hardening or softening. None of these 

effects can independently explain the measured dependence of strength on layer 

thickness in multilayered structures. The statistical aspects of the dislocation 
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structure evolution during deformation, neglected in this study of regular arrays, 

needs to be considered. 
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Figure 3.2b. Elements of the energetic model used to estimate the channeling stress. The 
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 Effect array spacing on convergence; h 25b;
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Figure 3.4, Convergence behavior of the channeling stress for a finite array of interfacial 
dipoles, (a) threading dislocation and array Burgers vectors both a/2 ]110[ , (b) threading 
dislocation and array Burgers vector inclined at 60o. 
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(b) 
 Figure 3.5, Hardening due to an infinite array of parallel interfacial dislocations with 
spacing λ and Burgers vector collinear with that of the threading dislocation, (a) absolute 
resolved shear stress, (b) stress normalized by τo, the channeling stress of the isolated 
threading dislocation τo(h), see Figure6. 
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 Figure 3.6, Resolved channeling stress τo of an isolated threading in a confined layer. 
The same energetic model based on explicit dislocation interaction energies, Figure 2b, 
was employed for these estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 70



 
"infinite" interfacial array; threader/ array same 
sense; b array= a/2[1-10];b threader  = a/2[0-1-1]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0
λ/h 

τ 
(G

Pa
)

h 25b
h 200b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(b) 

"infinite" interfacial array; threader/ array same 
sense; b array = a/2[1-10];b threader  = a/2[0-1-1]

1.0

1.3

1.5

1.8

2.0

2.3

2.5

2.8

3.0

3.3

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0
λ/h 

τ/
το

h 25b
h 200b

 Figure 3.7, Hardening effect due to an infinite array of parallel interfacial dislocations 
with spacing λ and Burgers vector inclined at 60o to that of the threading dislocation, (a) 
absolute resolved shear stress, (b) stress normalized by τo, the channeling stress of the 
isolated threading dislocation τo(h), see Figure 6. 
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(b) 
 Figure 3.8, Hardening effect due to a single interfacial dislocation dipole located at 
distance d from the threading dislocation (a) h 25 b = 6.4nm in Cu (b: magnitude of 
Burgers vector) thick layer, (b) h= 200 b= 51nm. 
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 Figure 3.9, Stress strain response due to parallel dislocation interaction. Stress is 
normalized by the shear modulus µ (here equal to 38.46 GPa for Cu case) 
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(b) 
Figure 3.10. Effect of parallel dislocation interactions on the strength of stained layers as 
a function of layer thickness h, (a) inclined threader/array Burgers vectors, and (b) 
collinear threader/array Burgers vectors. Measured strength of cube-on-cube (100) Cu/Ni 
system is overlaid for qualitative comparison. 
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Chapter Four: Large scale simulations of deformation in nanoscale 
multilayered metallic (NMM) composites 

 
4.1 Introduction 
 

In a realistic multilayered system, the dislocation density can be on the order of 

1015 1/m2, which implies that a large number and a wide variety of dislocation 

interactions and collisions take place simultaneously and in a coupled manner. Besides 

the interactions between threading dislocations and pre-deposited orthogonal and parallel 

interfacial dislocations, other essential mechanisms like cross slip and short-range 

interactions like annihilation, jog, junction, and dipole formation can take place. 

Furthermore, the net stress field within the layers and at the interfaces will have a 

complex distribution further complicating the situation. This implies that the behavior of 

a certain dislocation mechanism when in isolation can be different from that in a realistic 

system. For example, DD simulations showed that, while in isolation from other 

dislocations in their vicinity, two threading dislocations gliding in opposite directions on 

parallel planes can form a dipole and block each other.  However, a third threading 

dislocation approaching this dipole on a close parallel plane can “free” one of the 

dislocations in the existing dipole and form a new dipole [68]. From the above, it can be 

concluded that dislocation interactions and how they influence the plastic behavior are 

practically intractable and attempts to understand the macroscopic behavior of NMM 

composites based on one or few significant isolated unit dislocation processes may not be 

sufficient. Indeed this was demonstrated when orthogonal and parallel interactions, 

potentially thought of as representative of the overall behavior, where studied in Chapters 

2 and 3. In both cases, the two mechanisms were able to bridge the gap between the 

theory and experiment only over certain range of layer thicknesses. 
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The above complexity of dislocation behavior in NMM composites can be 

handled using DD analysis. As eluded for in Chapter 1, DD analysis provides a physical 

framework where the motion and interaction of dislocation populations are explicitly 

treated. All dislocation interactions, both among themselves and with the complex stress 

field, are naturally captured and used to evolve the dislocation structure. Besides allowing 

better predictions for the strength of NMM composites, such simulations can also be 

valuable in examining the details of dislocation interactions and mechanisms occurring 

during the deformation. Such “in-situ” observations can provide answers regarding the 

origin of experimentally observed dislocation structures as well as the origin of 

dislocation multiplication and other macroscopic phenomena like the uniform reduction 

in reduction in thickness and texture preservation observed during the rolling of NMM 

composites [41]. Nevertheless, such simulations are computationally expensive and the 

extraction of information from large output data can be challenging.  

Reports on large-scale simulations of nanoscale strained layers are limited in the 

literature. Schwarz et al. [92] used DD analysis to simulate the relaxation of SiGe films 

using a single layer with impenetrable walls having double the film thickness to 

approximately account for image effects. They found good agreement with experimental 

results regarding the residual strain after relaxation and the relaxed dislocation structure. 

Similar type of analysis was carried out by Schwarz to identify mechanisms for threading 

dislocation blockage in 2-8 µm thick layers [93]. It was found that local hardening 

interactions like jog, junction, and dipole formation played a significant role in limiting 

the extent of relaxation. It was also found that local over-relaxation is equally significant 

in impeding relaxation in strained layers and can help understand the discrepancy 
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between experimental observations and theory regarding the degree of relaxation of 

strained layers.  

In this work, our primary objective is to predict the strength of NMM composites 

as a function of their individual layer thickness. The validity of such simulations rests on 

the proper choice of initial dislocation structure and the method used to generate it. In the 

next section, we layout the methodology used to obtain such initial dislocation structure 

and their subsequent loading. Then we present the problem setup followed by the results 

and their discussion and conclude with a summary.   

 
4.2 Method and approach 
 

As mentioned in Chapter 1, DD analysis is currently the only framework available 

to study the behavior of large systems of dislocation explicitly at the fundamental level. 

Here, we will employ DD to study the collective behavior of dislocation systems in 

NMM composites. An essential requirement for valid simulations is an initial dislocation 

structure which is representative of that in the real composite system. NMM composites 

are typically produced by vapor deposition and the origin of dislocations is believed to be 

threading dislocations. Threading dislocations are nucleated during the deposition process 

at random locations due to faults in atomic arrangement, see Section 2.1. In the case of 

coherent NMM composites, which is the focus of this study, the alternating layers 

experience tensile/compressive stresses due to the lattice parameter mismatch. This 

implies that a threading dislocation extending through the layers will glide in opposite 

directions in the alternating layers. This process is commonly known as the relaxation 

process because the glide of dislocation is driven by the minimization of the total energy 

of the system. When the stored elastic energy (from coherency strain) becomes high, it 
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becomes favorable to replace the strained structure with a dislocated structure of lower 

total energy.  Thus, in obtaining the initial dislocation structure for our DD simulations, 

we mimic this process by first performing a “relaxation” simulation where random 

distributions of threading dislocations is subjected to the appropriate coherency stresses 

and allowed to move and interact until the process naturally ceases. This implies that a 

dislocation structure has resulted which is in equilibrium with the net stress field from 

coherency and the generated dislocation network. This relaxed configuration now serves 

as the initial configuration for the “loading” phase simulation. In this phase, the structure 

is loaded under constant strain rate conditions and the yield strength obtained.   

 

4.3 Problem setup 
 

Figure 4.1 shows the simulation setup. A representative volume element (RVE) 

consisting of four layers, each of thickness h and representing two sets of the periodic 

bimetal layered structure, is used. The two metals are assumed to have the same elastic 

properties and crystal structure but to differ in the lattice parameter. This mismatch 

results in the layers being subjected to tension/compression alternating biaxial stress 

state, which drives the dislocation threading process if h is larger than a certain critical 

thickness. In the case of Cu/Ni bimetal system, such stress amounts to 2.6 GPa [94]. The 

properties of the medium are those of copper with shear modulus of 38.46 GPa, Poisson’s 

ratio of 0.3, density of 8980 Kg/m3, and Burgers vector magnitude of 2.556 Ao. Although 

this is an idealized model, the small lattice parameter mismatch and mild difference in 

elastic properties makes the model plausible for qualitative comparison with actual Cu/Ni 

systems. In such system, slip systems can be considered continuous across the interfaces 
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and image forces effects can be neglected for a first approximation [76]. Periodic 

boundary conditions are imposed in all directions. An initial random distribution of glide 

loops is created which amounts to threading dislocation density on the order of 1014 1/m2. 

The average dislocation line segment is 5b, where b is the magnitude of the Burgers 

vector. For the loading phase, the same crystallographic setup is used as in the relaxation 

phase. However, the initial dislocation structure becomes that produced at the end of the 

relaxation phase. Also the loading is performed through the application of a constant 

strain biaxial stretching along the x- and y-directions, as shown. A high strain rate on the 

order of 104 1/s is used to expedite the calculation.  

 

4.4 Results and discussion 
 
4.4.1 Relaxation phase 
 

Figure 4.2 shows the dislocation density history for the relaxation process of a 

NMM composite with individual layer thickness h of 25.6 nm. As can be seen, the 

dislocation density increases with time as threading dislocations move and, in the 

process, deposit interfacial dislocation dipoles. The saturation of the density in the figure 

marks the end of the relaxation process when dislocation activity ceases and an 

equilibrium structure is arrived at. Figure 4.3 shows the resulting relaxed dislocation 

structure. As can be seen it consists of an orthogonal network of interfacial dislocations 

aligned with the loading axes. The side view shows a number of remnant threading 

dislocations which are blocked, while most of them disappeared due to annihilation 

events. The blocking can be attributed to the repulsive stress fields of the interfacial 

dislocation network and/or other threading dislocations acting to oppose the continued 
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threading process driven by the coherency stress. This final dislocation configuration will 

be the point of departure of the subsequent loading phase. 

4.4.2 Loading phase 
 

The objective of this phase of the simulation is to capture the dependence of the 

strength of NMM composites on the layer thickness. As concluded in Chapters 2 and 3, 

strength models individually based on any of the two significant dislocation unit 

processes, orthogonal and parallel interactions, where not sufficient to explain the 

observed dependence of strength on layer thickness in a satisfactory way. Figure 4.4 

shows an example of an initial relaxed dislocation structure for a loading simulation for 

the case of 12.8 nm thick NMM composite. For that case, the side view shows that the 

layers were free from any remnant threading dislocations to act as subsequent 

multiplication sources. In the early stages of loading, the two layers which were 

originally under tensile coherency stresses (the top and third-from-top layers, Figure 

4.4b) experience increased stress and are under elastic loading conditions due to the 

absence of dislocation activity. Meanwhile, the loading will act to decrease the residual 

compressive stresses in the layers originally subjected to compressive coherency stress 

during the relaxation phase (the second-from-top and bottom layers). This implies that 

those layers will start to deform plastically before the other two layers. This can be seen 

in Figure 4.5, which shows higher dislocation activity in the second and forth layers due 

to the collapse of dislocation loops. The other observation to make from the same figure 

is that threading dislocations now exist in the other two layers in spite of the fact that they 

were free of any threading dislocation at the beginning of the simulation. These threaders 

are the result of different multiplication events that take place at the interfaces. The 

details of one such event are depicted in Figure 4.6. All the dislocation segments shown 
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have the same Burgers vector, a/2[011] while their line senses are as shown. Segments 

FG, FH, ED and CD reside on the lower interface of the layer which was originally under 

compressive stress, while segment AB is on the upper interface. Apart from segments DE 

and FG, which lie on the (-11-1) plane, all segments lie on the orthogonally oriented 

plane (-1-11). As the residual stress in the layer decreases, the threading dislocation BC 

retracts on its glide plane. The corner point D of the bend acts as a pinning point for 

further retraction beyond it. Together with the repulsive effect of the segment FG, the 

retreating loop is forced into the configuration shown in Figure 4.6c, which leads to an 

annihilation reaction and leaves behind segment DF which has an opposite line sense. 

This results in this segment gliding into the neighboring elastically loaded layer and 

acting as a source. The avalanche of dislocation motion and multiplication in all layers 

marks the yield point of the composite. Figure 4.7 plots the yield strength captured from 

such simulations as a function of the individual layer thickness. Actual strength 

measurements of Cu/Ni maultilayered system are overlaid for qualitative comparison. As 

pointed out earlier, this system comes closest to our idealized model due to the small 

lattice parameter mismatch and the moderate difference in elastic moduli, making it 

suitable for comparison. As can be seen from the figure, the predicted strength is in better 

agreement with the experimentally measured strength particularly in the range of 25 nm 

and above. This less steep drop in strength as layer thickness increases comes closer to 

the trend due to the Hall-Petch pile-up strengthening mechanism. In fact, as observed 

from our simulations, multiple dislocation pileups at the interfaces become increasingly 

frequent in the case of layers with thickness above 25 nm and maybe one contributor to 

this better match with the measured strength trend. In the range of 12-25 nm, the strength 
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predictions of the large simulations are similar to the strength predictions due to unit 

orthogonal and parallel interactions presented in Chapters 2 and 3, respectively. The 

reason why the large simulations predict a lower strength in the case of the 6 nm thick 

layers than does the free threading model of an isolated dislocation lies in the residual 

stress field due to the dislocation structure which develops at the interface and acts to 

assist in threading dislocations’ glide. 

4.4.3 Observations on dislocation structure and mechanisms 
 

Besides the extraction of the macroscopic yield strength of NMM composites, 

large scale simulations contain a wealth of information about dislocation mechanisms and 

interactions and the details of how they occur. To the extent that such simulations are 

realistic, they can be thought of as in-situ experiments where dislocation motion and 

interactions can be observed as they happen. This is important because only hypothesis 

about dislocation mechanisms in NMM composites can be made based on TEM 

observations of end- result dislocation structures. A number of important observations 

were made from our simulations by animating the evolution of the dislocation structure. 

One example is the case of nucleation from the interface during loading which was 

described in Section 4.4.2 in connection with Figure 4.6. Another mechanism observed in 

NMM structures during relaxation is multiplication by cross slip. This mechanism, which 

was observed in the case of individual layer thickness of 25 nm and above, involves a 

segment of the threading dislocation (the threading front) cross slipping into the 

orthogonally intersecting slip plane. This configuration acts as a Frank-Read type source 

on the new plane. Figure 4.8 shows an interface top view of a sequence of snapshots 

detailing the process as captured from our DD simulation. The two mechanisms 

mentioned above are just an example and not meant to be exhaustive. More analysis of 
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this type can lead to the identification of more important dislocation mechanisms and 

interactions, which in turn can help better understand and model the macroscopic 

behavior of NMM composites.  

 
4.5 Conclusion 
 
 Large scale DD simulations proved valuable for advancing our understanding of 

the behavior of NMM composites. The strength predictions of such simulations are in 

better qualitative agreement with experimental trends and in any case better than unit 

mechanism predictions. Nevertheless, more work is needed to validate the results by 

investigating different relaxation models to accomplish the initial dislocations structure 

used in subsequent loading. The simulations were also valuable in identifying dislocation 

mechanisms which can take place during the deformation. Two such mechanisms, 

nucleation from the interfaces and multiplication by cross slip within the layers, were 

noted but more detailed investigation can lead to the identification of more mechanisms 

and interactions.  The simulations also indicate that multiple dislocation pileups are 

possible in 25 nm and thicker layer but not in 12 nm and thinner layers. 
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Figure 4.1, Setup for the large simulation of the relaxation process in NMM composites 
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 Figure 4.2, Dislocation density history during the relaxation phase of a NMM composite 
with individual layer thickness of 25.6 nm. 
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 Figure 4.3, Relaxed structure of a NMM composite with individual layer thickness of 
25.6 nm, (a) view normal to the interface, and (b) side view. 
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 Figure 4.4 Initial (as-relaxed) dislocation structure of an NMM composite having 12.8 
nm individual layer thickness, (a) interface view, (b) side view. 
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 Figure 4.5 side view snapshot of the dislocation structure during loading for the same 
case shown in Figure 4.4.   
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 Figure 4.6, Example of a nucleation event from the interface into the neighboring layer. 
Nodes E, D, C, H, F, and G are the lower interface while nodes B and A are the upper 
interface.   
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Figure 4.7, Strength predictions due to large scale simulations as qualitatively compared 
to those based on the free threading of a single dislocation model and those measured 
experimentally for Cu/Ni multilayered structures. 
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Figure 4.8, Simulation snapshots showing the sequence of events leading to 
multiplication by cross slip during the relaxation process of a NMM composite structure 
having individual layer thickness of 25 nm. 
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Chapter Five: Conclusion and future work 
 

 
 Size effects in NMM composites were investigated to understand the dependence 

of their strength on the individual layer thickness. Under the confinement conditions 

encountered in NMM composites, it is thought that the threading of dislocations confined 

to their respective layers is the primary deformation mechanism. Based on this process, 

however, strength predictions underestimate the experimentally measured strength. 

Among other reasons, this discrepancy can be attributed to dislocation interactions which 

naturally occur in a real system. Two important unit dislocation interactions of common 

occurrence in a real system were separately considered in an attempt to improve the 

predictions of the simple threading model (i.e. with no interactions). The first is the 

interaction between a threading dislocation and orthogonal intersecting interfacial 

dislocations. DD analysis was employed to study such an interaction due to the potential 

of short-range interactions taking place. It was found that the strongest of such 

interactions occurs when the two interacting dislocations have collinear Burgers vectors. 

The interaction involves an annihilation reaction at the intersection line of their glide 

planes and leaves two 90o dislocation bends at the interfaces, a common dislocation 

structure observed in NMM composites. The interaction produces a hardening effect 

which improves the strength predictions but cannot fully explain the trend in measured 

dependence of strength on thickness in NMM composites. The second significant 

interaction studied is that between threading dislocations and parallel interfacial 

dislocations. A semi-analytical energetic model was used for these calculations. As in the 

previous case, the interaction is stronger when the Burgers vectors of the interacting 

dislocations are collinear. Parallel interactions can lead to either hardening or softening 
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depending on the Burgers vector directions, while the strength of such interaction 

depends on the statistics of the distribution of dislocations in the vicinity of the threading 

dislocation. More investigation is needed to determine the nature of such distributions 

and hence the overall strength. Nevertheless, the experimentally measured dependence of 

strength on thickness in NMM composites cannot be completely explained based solely 

on parallel interactions.   

 To better capture the macroscopic behavior of NMM composites, large-scale DD 

simulations of the collective behavior of dislocation systems were conducted. Such 

simulations naturally combine the complex effects of all possible dislocation interactions 

occurring simultaneously as the dislocation structure evolves under loading. An essential 

requirement for the validity of those simulations is a realistic initial dislocation structure. 

To this end, relaxation simulations mimicking the coherency strain relaxation process in 

actual systems are first conducted. In agreement with experimental evidence regarding 

the origin of dislocations in NMM composites, a random distribution of threading 

dislocations is subjected to the proper magnitude of coherency stresses, which alternates 

in sign in the alternating layers of the simulation cell. The end-result dislocation structure 

of this phase then serves as the initial structure for the loading phase, which is used to 

capture the yield strength of the composite. The resulting strength predictions better 

match the experimentally measured dependence of strength on layer thickness in Ni/Cu 

system. This particular system was chosen because it is compatible with our idealized 

model as explained in Chapter 3. Other useful information can also be extracted from the 

simulations. For example, a mechanism for dislocation multiplication due to cross slip 

and a mechanism for nucleation from the interface upon loading were observed. More 
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detailed examination can yield more insight about other dislocation mechanisms in NMM 

composites. The simulation also showed that multiple dislocation pileups do occur when 

the layer thickness is 25 nm and above.  

 As indicated above, the initial dislocation structure is critical in determining the 

validity of the large-scale simulations. Hence more work is needed to validate the 

relaxation model used above. Although is it well established that threading dislocations 

contribute to misfit relief in NMM composites, other contributions come from misfit 

dislocation nucleation and loop nucleation at interfaces. One immediate suggestion for 

future work is to examine a relaxation model that combines misfit dislocations as well as 

threading loops with the proper partitioning of the lattice parameter mismatch, f, between 

misfit and coherency,  

δε +=f , with 
f

fs

a
aa

f
−

= …………………..…(5.1) 

where δ  is the portion of f relieved by an orthogonal array of misfit dislocations having 

an average spacing λ, λδ /b=  and b is the Burgers vector of the misfit dislocation 

network. ε  is the “left-over” lattice parameter misfit resulting in coherency stress, Figure 

5.1. Another important factor to account for in future efforts is the effect of image forces 

due to the difference in elastic modulus of the two materials in the layered structures. 

Although such forces can be ignored for a first approximation in the Ni/Cu case, as 

suggested in literature, it is worthwhile quantifying such effect and to be able to account 

for it in other bimetal systems where the difference in modulus is more pronounced. 

Image forces repel dislocations in the softer layer away from the interface, leading to an 
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effective layer thickness that is smaller than the nominal thickness, which in turn may 

change the interaction characteristics at the interfaces.   
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 Figure 5.1, Initial configuration for a relaxation model based on both misfit and 
coherency strain.  
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Abstract 
 
 A multiscale approach to modeling size effect in crystal plasticity is presented. At 

the microscale, discrete dislocation dynamics (DD) coupled with finite element (FE) 

analysis allows the rigorous treatment of a broad range of micro plasticity problems with 

minimal phenomenological assumptions. At the macroscale, a gradient crystal plasticity 

model, which incorporates scale-dependence by introducing the density of geometrically 

necessary dislocations (GNDs) in the expression of mean glide path length, is used. As a 

case study, bending of micro-sized single crystal beams is considered and the 

correspondence between the predictions of both models is made. In its current 

framework, the macroscale model did not capture the experimentally observed effect of 

specimen size on the initial yield stress. With this effect naturally captured in the 

corresponding DD analysis, the absence of a density-independent size effect in the 

expression for the strength of slip systems was concluded. In an independent work on the 

tensile loading of micrometer-sized polycrystals [95], a size effect, physically rooted in 

the size and location of a Frank-Read sources (FRS) relative to grain boundaries, was 

identified. This effect can be generalized in the context of dislocation-interfaces 

interactions, typically missing, to one extent or another, in current gradient crystal 

plasticity models and can, in principle, be used to understand the initial yield size-

dependence in single crystal bending identified through DD analysis. 
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A.1 Introduction 
 
Modeling the mechanical response of metallic structures with features on the order of 

tens of micrometers and below is growing to be more and more important from the 

technological point of view. As technology continues to drive the development of 

miniaturized devices exhibiting superior performance, more functional mechanical 

components on this scale need to be designed and their response adequately understood 

and predicted. Existing phenomenological models, good to predict the response of metals 

in large volumes (“bulk” range of millimeters and above), fail to make similar good 

predictions in the microscale range for several reasons. As components become smaller, 

details of the microstructure and the nature of interfaces (both external and internal) 

become increasingly significant in determining the mechanical response. Besides, 

crystalline materials are far from perfect and generally contain defects such as vacancies, 

interstitials, dislocations, incidental dislocations boundaries, grain boundaries, and 

cracks.  Such defects introduce internal stress fields whose range of influence are on the 

microscale level and hence cannot be ignored when the sample size is on a similar order. 

Even if not for internal defects, the mere existence of external free surfaces naturally 

made up of higher energy atoms influences the mechanical response in an increasingly 

significant manner when surface-to-volume ratio becomes significant as in the case of 

miscroscale specimens. The above factors generally result in the microscale “smaller-

stronger” trend seen in many experiments, including bending of thin beams [1], torsion of 

wires [2], and micro/nano indentation [3]. Attempts at providing a better understanding of 

the origin of this size effect and developing models that predict it have been the subject of 

much research efforts. 
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In spite of the complexity of the details of the microstructure and its effect on 

small scale, most of the physics of deformation at the microscale can be captured if 

dislocation motion and interactions are properly accounted for in any predictive model.  

The basis for this argument has been well founded in the early experimental and 

theoretical studies by pioneers like Taylor [96] and Frank and van der Merwe [48] who  

established that dislocation motion is the origin of plasticity in metals. Generally 

speaking, there have been two main approaches to dislocation-based modeling of the 

response of materials in small volumes. The first approach starts from the continuum 

level and attempts at including dislocation-based constitutive relations within existing 

classical frameworks of plasticity. The idea here, originally introduced by Nye [6] and 

further established by Ashby [7], is that size dependence is intimately connected to the 

non-local effects, which in turn can be related to the presence of slip gradients and their 

physical manifestation, GND densities. Among the pioneering works in this area, Aifantis 

[8] and Zbib and Aifantis[9, 10] proposed a “symmetric stress” strain gradient theory, 

where strain gradients were introduced in the flow stress relation of classical plasticity, 

and showed that size effects can indeed be rationalized through this approach. 

Justifications for this preposition included the reaction-diffusion model for dislocation 

motion used in the original work [8] and the Taylor expansion of the average strain over a 

material volume and retention of second-order terms [97], while Zbib drew on the 

inclusion-matrix model to justify the use of strain gradients and to provide rigorous 

evaluation and physical connection for the gradient coefficients used in the theory[98]. 

Fleck et al. developed an asymmetric stress Crosserat-type gradient plasticity theory and 

 99



successfully used it to capture their experiment observations of size effect in wire 

torsion[2]. Fleck and Hutchinson [11] expanded the formulation of the classical J2 theory 

to accommodate more than one material length scale. GND-based plasticity theories, 

which are not fundamentally different from the strain gradient plasticity theories, 

represent another class of size-dependent theories. As mentioned above, the physically 

motivated GND densities can be linked to plastic strain gradients through geometric[7] 

and dislocation dynamics arguments[99]. Nevertheless, the exact method by which the 

effect of GNDs is incorporated in these theories is not generally agreed upon. While 

some researchers introduced it into the flow strength expression [2, 100], others 

incorporated it into the hardening law, e.g., Acharya [20], Ohashi [21]. Shizawa and Zbib 

[12], Gurtin [13], and Mesarovic [14], introduced GND density, quantified by the Nye’s 

tensor, into the free energy expression along with a configurational stress as its work 

conjugate. Yet a different approach is to invoke crystallographic dislocations densities as 

internal variables with their own evolution laws, e.g., Arsenlis et al.[15], Yefimov et al. 

[16], Groma[17], Zaiser and Hochrainer[18], Aifantis [101], and El-Azab[19], with the 

latter four works being based on statistical mechanics approach to describe the collective 

behavior of discrete dislocations. The second general approach, DD [26, 102-105], starts 

form the microscale level where dislocations are explicitly represented as line defects in 

an elastic medium and the dynamics of their motion and interactions fundamentally 

determined.  

 

The aforementioned two approaches have their own advantage and drawbacks. 

While the continuum approach is computationally more efficient and more versatile, it 
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remains phenomenological in nature and captures the physics of deformation only in an 

approximate way. Many basic relations in this framework include experimental fitting of 

constants and parameters whose physical meaning is not clear. Real experiments to 

estimate such parameters rarely match the corresponding theoretical setup and hence such 

relations can be problem and boundary conditions-dependent. The DD approach, on the 

other hand, is argued for to naturally capture the physics of deformation with minimal 

assumptions and more physical clarity. Nevertheless, it is computationally expensive and, 

as such, is not expected to be able to handle the variety of problems and sizes of interest 

for real life engineering applications in the foreseen future. 

  

From the above discussion, it seems natural to consider a multiscale framework 

combining the strengths of both approaches and bridging the gap between them. This 

implies the development of computationally efficient dislocation-based continuum 

models through a process that is closely guided and informed by the more physical DD 

model. Moreover, DD can also be thought of as a “virtual” clean experiment against 

which such models can be verified and their parameters fine-tuned. Several researchers 

have adopted this approach. Fivel, et al.,[106] used DD simulations to identify the 

coefficients of the slip systems interaction matrix identifying the relative strength of 

latent and self-hardening in FCC crystals. In turn, the interaction matrix was used to 

determine the threshold stress for slip activation. Arsenlis and Tang[107] studied Stage 0 

deformation in BCC metals using a multiscale approach. The evolution of dislocation 

densities and their fluxes for a single slip orientation were captured by DD simulations 

and used to determine the form and to fit the parameters of the constitutive relations used 
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in a continuum density based model. The derived model was then applied for a different 

orientation and produced good predictions as well. Lemarchand et al. [108] presented a 

homogenization technique where DD analysis is substituted for the constitutive law used 

in continuum FE calculations. Needleman and Van der Giessen [109] compared results 

from two-dimensional DD and classical size-independent crystal plasticity models for 

two boundary value problems, one involving simple shear and the other metal-matrix 

composites. They showed that size effect was captured by DD analysis in both problem 

but, expectedly, not in the continuum model. Grujicic and Columbus [110] made a 

comparative study, using two-dimensional DD model and a small strain classical crystal 

plasticity model, aimed at predicting strain localization in microbeam bending. Their DD 

simulations showed continued accumulation of GNDs and plastic flow localization into 

bands. With the proper selection of the crystal plasticity model parameters, the global 

response of the beam, including localization, was comparable to that predicted by their 

DD analysis. This was not the case for the fine details of the deformation and stress 

fields. Two-dimensional DD and non-local crystal plasticity based on statistical 

mechanics were also used to study bending of microbeams by Yefimov et al. [111]. The 

study showed that the non-local continuum model, fit with the necessary parameters from 

the DD analysis of a different boundary value problem, was able to predict the effect of 

size and crystal orientation on the bending moment-bending angle response.  

In this work, we demonstrate how connections between the two scales can be 

made within the context of example problem, bending of thin beams. In the following 

sections, we describe our three-dimensional DD model and the scale-dependent crystal 
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plasticity model used in this study. The setup for the bending problem is then described 

followed by the results and discussion. 

A.2. Three-dimensional DD  
 
In three-dimensional DD analysis, dislocations are represented as general curved lines in 

an elastic medium and are restricted to move on particular slip planes and directions 

under the influence of stresses resolved along these slip systems[102-105]. The lines are 

discretized into a number of segments each identified by a corresponding node. Each 

segment can be of any character depending on its line sense relative to its Burgers vector. 

Dislocation motion is governed by a Newtonian type equation of motion of the form [28, 

112] 

s
s

s Fvv =+
M

m 1
&                                                (A.1) 

where v is the velocity of a dislocation segment s, ms is defined as the effective 

dislocation mass density, Ms is the dislocation mobility, and Fs is effective glide force per 

unit length of the segment.  In our model, Fs has several contributions, which include the 

dislocation self-force, dislocation-dislocation interaction forces, drag force, lattice 

friction, force due to external loading, image forces due to free surfaces, and a stochastic 

contribution resulting from thermal fluctuations.  The above equation is integrated 

through time in small time increments. At each increment the total force per unit length at 

each dislocation node is estimated. The resulting velocity is then used to move 

dislocations accordingly. The new resulting configuration is used in the subsequent time 

step to estimate the new forces, velocities, positions of nodes and so on. Besides the long-

range interactions of dislocations through their stress fields, dislocations can interact in 

the short range upon dislocation-dislocation encounters. The following major interactions 
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are considered in our model: cross slip, dipole formation, annihilation, and jog and 

junction formation. As far as the boundaries are concerned, three types of dislocation 

boundaries are included: free, rigid and periodic. At free boundaries, impinging 

dislocations leave the simulation cell breaking dislocation loops and resulting in 

dislocation lines ending on the surface while rigid boundaries are impenetrable and result 

in dislocation pile-up. Periodic boundaries are used to simulate infinite domains by 

allowing the simulation cell to be “seen” as repeating itself in the periodic direction of 

interest. For details, the reader is referred to the review article by Zbib and de la Rubia 

[35] and the comprehensive list of references there.  

 

Another main feature of our model is highlighted here due to its direct relevance 

to the multiscale approach and that is the coupling of DD and FE analyses allowing 

general boundary value problems to be studied [35]. This implies the capacity to 

rigorously treat finite domains and apply general boundary and loading conditions. Since 

the stress field of a dislocation is known for the case of infinite, homogenous media, the 

key for the treatment of the general boundary value problem with internal long range 

stress field sources is to use the principle of superposition to sum up two solutions: one 

from the stress field of dislocation as if they existed in an infinite medium and the 

solution for the problem consisting of the actual finite domain with arbitrary boundary 

conditions and loads, to which is added the negative of the tractions at the domain 

boundary resulting from the truncation of internal stress fields. From the above 

discussion, it can be seen that this feature is essential for the multiscale approach because 

it allows matching problems to be solved and compared in at both the continuum scale 
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and the DD microscale. A final point to emphasize here is that the size effect we seek to 

model is naturally included in our coupled DD-FE model in the sense that both the direct 

long range interactions as well as the indirect ones due to the finiteness of the medium 

and effect of surfaces and interfaces are explicitly accounted for.  

A.3 Gradient crystal plasticity model 
 
The scale-dependent crystal plasticity model used in this work, developed by Ohashi 

[113], is based on the classical small deformation, small rotation rate independent model 

developed by Hill[4]. In this model, deformation is the result of slip on particular slip 

systems. For FCC materials, those are the commonly known 12 slip systems made form 

the combinations of the {111} planes and the <110> directions. The main features of this 

model include the condition that slip on any slip system s is initiated when the resolved 

shear stress  reaches a critical threshold level, . The critical resolved shear 

strength is given by the modified Bailey-Hirsch model [113], 

)(τ s (s)
crτ

∑+=
m

m
ssd

sm
o

(s)
cr ρΩb µ aττ                                          (A.2) 

where  is the lattice friction, a is an emperical factor on the order of 0.1, µ is the shear 

modulus, b is the magnitude of the Burgers vector, and dimensionless 

oτ

smΩ  is the 

interaction matrix of slip systems relating the hardening effect slip system m has on slip 

system s based on the strength of possible interactions between dislocations belonging to 

s and m.  represents the statistically stored dislocation (SSD) density on slip system 

m, also referred to as redundant dislocation density [114] because the net Burgers vector 

of such dislocation densities is zero. SSD densities are distinguished from GND densities, 

which have a non-zero net Burgers vector and are necessary to accommodate any 

m
ssdρ
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incompatibilities resulting from inhomogeneous deformation. The evolution law for the 

dislocation density is based on the Orowan relation for plastic shear strain, 

, with being the density of mobile dislocations and  their 

mean velocity on slip system s, and the simple model that SSD density increases 

inasmuch as mobile dislocations get arrested due to dislocation-dislocation interactions 

[113], i.e., 
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where c is a numerical factor, and  )(~ s
mt  is a mean lifetime during which mobile 

dislocations can move freely before getting arrested. )(~ s
mt

)

can be equivalently related to  

the mean free path length of mobile dislocations  as follows, (sL

)()()( ~ s
m

s
m

s tL ν=      (A.4) 

Combining Eq.(A.3) and Eq.(A.4) leads to the following evolution law for SSD density, 

 

(s)
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(s)
ssd bL

γcρ
&

& =                                                          (A.5) 

Using Eq. (A.2) and Eq. (A.5), the evolution of the strength of a slip system is related to 

the increment of slip γ on all slip systems as follows, &

∑=
m

(m)sm(s)
cr γhτ && , with 

(m)
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sm
sm

ρL

Ωc a 0.5h µ
=                            (A.6a,b) 

where is the strain hardening coefficients matrix quantifying the contribution of a 

dislocation density on system m to the strength of system s. Eq.(A.6a) is the commonly 

smh
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used  multiple-slip hardening law suggested by Hill[4] and in arriving at the expression 

for , Eq.(A.6b), the variation of the critical slip system strength, Eq.(A.2), and  the 

Orowan relation for plastic shear strain were used. Notice that h  is a function of both 

ρ

smh

sm

SSD and ρGND, i.e., of slip and slip gradients as argued for in that case of gradient theory, 

e.g. [20]. The mean free path is inversely related to the dislocation density and is 

classically expressed in terms of the statistically stored dislocations only, 

)

∑
=

m

(m)
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*
(s)

ρω
cL                                                   (A.7) 

where c* is a constant on the order of 10-100 and is the weight matrix quantifying 

the contribution of dislocation density on system m to the mean free path length for 

system s. To introduce scale dependence to the model, Ohashi [21] argues for introducing 

the GND density measure, as calculated from the strain gradients [115], into the 

hardening matrix through the dependence of the mean free path length not only on the 

SSD density but also on the GND density, 

smω

(∑ +
=
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(m)
gnd

(m)
ssd

sm

*
(s)

ρ.gρ.sω
cL                                          (A.8) 

where s and g are controlling coefficients with values ranging 0-1. Thus, in this modified 

framework, the size effect can only be controlled by the value of factor g in with g=0 

implying no size effect and g=1 maximum effect. Eq.(A.8) is substituted in Eq.(A.6b) to 

obtain the final form of the hardening coefficients hsm.  

 

Finally, the GND density is calculated from the gradients of slip as, 
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where and are the parallel direction and the in-slip plane perpendicular direction 

to the slip direction of slip system s, respectively[115]. The global Nye tensor α is 

calculated from the GND density by the appropriate coordinate transformation from the 

local slip system coordinate systems to the global coordinate system and then using the 

relation, 

(s)ξ (s)ζ

(s)
j

(s)
i

(s)
screwgnd,

(s)
j

(s)
i

s

(s)
edgegnd,ij mbρtbρα += ∑                                (A.10)  

where b  is the Burgers vector, m(s)
r

(s)r is the slip direction, and (s)nr is and slip plane normal 

of slip system s, respectively and t (s)(s)(s) nm rrr
×= . The Nye tensor components can be 

understood as a physical basis for representing any arbitrary net dislocations density. For 

example, ,, 2211 αα  and 33α  represent net screw dislocation densities along the 1, 2, and 

3 axes, respectively, while all other component with non-similar indices represent edge 

dislocation densities. For example, 12α  represent the net density of those edge 

dislocations which have their line sense parallel the 2-axis and their Burgers vector 

aligned with the 1-axis. 

A.4 Connection between the scales 
 
The scale bridging approach involves using the more physical DD analysis to guide the 

development and/or the parameter fitting process of the gradient crystal plasticity model 

to enhance their ability to capture size effects observed experimentally.  In this process, it 

is also desirable that a connection between parameters of the macroscale model and the 

underlying physics be established. In our case, the specific question at hand is to evaluate 
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the capacity of our gradient crystal plasticity as formulated to capture size effects. Once 

the adequacy of the framework is established, the question of fitting the parameters of the 

model comes next. In our case, these parameters include the density independent part of 

the relation of the threshold stress for slip, Eq.(A.2), the coefficients of the interaction 

matrix smΩ , c*, s, g, and the coefficients of matrix  in Eq.(A.8). Our intention here is 

to demonstrate the multiscale approach to this question and not to present an exhaustive 

numerical fitting of the CLP model parameters.  

smω

 

A specific boundary value problem is chosen to conduct this exercise, however, 

the macroscale model arrived at should be validated for different problems before it is 

generalized As a simple, yet well-suited, problem to demonstrate the paradigm of 

multiscale bridging, bending of micro-sized single crystal beams is considered. Strain 

gradients are inherent in the bending problem, hence the size effect as well. Microbeam 

bending has been addressed by several researchers. Experimental evidence for the size-

dependence of both the initial yield and subsequent flow stress in bending of micro- and 

nano-sized beams came from the work of Stolken and Evans[1], Shrotriya et al.[116], and 

Haque and Saif [117]. Several analytical studies using one form or another of gradient 

plasticity applied to simplified two-dimensional bending problems also proved the scale-

dependence on both initial yield and hardening [1, 99, 116, 118-120]. Using two-

dimensional DD analysis, Cleveringa et al.[121] studied the evolution of dislocations 

densities and the mechanical response of micro-sized beams and were able to detect size 

effect in both cases. Yefimov et al. employed multiscale approach combining two-

dimensional DD and gradient plasticity[111] to analyze size effect in bending. [111]. 
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Their continuum model results, fit with the necessary parameters from the DD analysis of 

a different boundary value problem, showed good correspondence to their DD results 

predicting the mechanical response and density evolution dependence on specimen size. 

The last two works comes closest to out our investigation here with the main difference 

of using three-dimensional analysis for both the DD and the gradient plasticity. Three-

dimensional DD analysis is more realistic and becomes particularly important in the case 

of the freestanding micro-sized beam bending problem considered here due to the 

significance of surface effects and the small volume of the specimen. For example, our 

results show that in spite the idealized single slip system configuration and loading, 

where the slip plane normal, Burgers vector, and loading are all coplanar, the resulting 

deformation involves generalized twisting and bending about all axes. Clearly, this 

observation has important consequences on the GND density evolution, the work done, 

and the size effect.     

In our work using three-dimensional DD, the problem is set up in both models to 

be as equivalent as possible given the scale difference and hence the level of details by 

which the problem is described in each case. The sample size, elastic properties, initial 

dislocation density, loading and boundary conditions can be made identical. In the 

gradient crystal plasticity model, the dislocation content is described as a continuum 

density, which can be assigned to any desired slip system(s) and whose magnitude can be 

randomly given by a normal distribution. In DD analysis, dislocations are explicitly 

introduced by a random distribution of FRSs, both in location and size, such that the 

density calculated from the total length of the segments making the FRSs and the 

specimen volume are matching in both models. Although the yield strength in the 
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continuum model is determined by the slip systems strength, the choice of the mean FRS 

size and the dislocation boundary conditions is what determines yield in the micro model. 

In our case, the Orowan relation for the strength of a FRS, b/λ µτ ≈ , where λ is the FRS 

size, can only be used as a rough guide due to the finiteness of the medium.  

In both models the specimen is bent around the z-axis by the application of 

linearly varying displacement to the xy faces, Figure A.1. The dislocation free buffer 

region beyond the intended specimen length shown in the figure is intended to avoid any 

ambiguity at the loading surfaces resulting from an otherwise conflict between 

dislocations leaving through them and as the finite domain tractions applied to them as 

required by the auxiliary elastic problem as explained earlier. The boundary conditions 

on the xz and yz surfaces are chosen to be free, implying the beam is free standing, while 

dislocations reaching the surface can leave it readily.  

Two samples of two different sizes where studied in each model: 12x3x2 µm and 

6x1.5x2 µm. The initial dislocation density was chosen to be 1x1011 1/m2. The specimen 

material is copper with shear modulus of 38 GPa, Poisson ratio of 0.3 and Burgers vector 

magnitude of 2.5 Ao. The baseline parameters of the crystal plasticity model are c* =10, 

c=2, a=0.1. All the coefficients of the interactions matrix smΩ  are set to the value 

(approximately 1.0), implying an equal contribution from all slip systems to the strength 

 of any slip system, see Eq.(A.2). As for the matrix ω , diagonal complements were 

set to 0, while all the off-diagonal ones to 1. Due to the fact that the beam is micro-sized 

and freestanding, a completely random dislocation distribution will in general result in a 

very complex generalized deformation of the beam, including twisting and bending about 

the three axes. Although this scenario is realistic, it is far from being treatable by the 

(s)
crτ

sm
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continuum model studied here or, to this matter, most crystal plasticity models in 

existence, due to the absence from these models of a fundamental treatment of dislocation 

boundary conditions. An exception to this general status quo can be found in those 

models, which include density as an internal variable with physics based evolution laws 

[15, 16]. For the aforementioned reason and for simplicity, the crystal orientation and 

initial dislocation content are chosen so that dislocation exist only on a plane whose 

normal is lies in the xy plane and inclined at 45o to the x axis and whose slip direction 

also lies in the xy plane as shown in Figure A.1. The initial density is statistical in nature 

and hence, if any GND density evolves upon loading, it will be the result of the induced 

deformation.  

Since the GND density is at the heart of the effort to model size effect, the 

evolution of the Nye dislocation tensor will be evaluated in both models and compared. 

Within the continuum framework of gradient crystal plasticity, the Nye tensor is found 

from the gradients of slip as previously mentioned. As for the DD model, the Nye tensor 

is explicitly estimated from the following relationship[35], 

k
j

k
i

k

k
ij υbl

V
1α ∑=                                                   (A.11) 

where ,kl kυr , and kb
r

are the scalar length, dislocation line sense vector, and the Burgers 

vector of dislocation segment k. Notice the difference between this explicit calculation of 

α and the continuum density-based calculation in Eq.(A.10). While a dislocation line can 

have any arbitrary line sense kυr , a density basis consisting of a pure edge density and a 

pure screw density for each slip system is used to discretize the dislocation density space, 

hence the use of two specific line senses, (s)mr  (parallel to the Burgers vector) and (s)t
r
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(perpendicular to the Burgers vector and in the slip plane) for each slip system s. V is a 

reference volume over which α is calculated and as such is a fundamental quantity for the 

homogenization of the discrete dislocation content into continuous dislocation fields. The 

choice of V is not a trivial matter and should be tied to the resolution needed for the 

details of the dislocation structure.  

A.5 Results and discussion 
 
We start by showing an example of the initial distribution of dislocations and FE mesh, 

Figure A.2, as well as the dislocation structure and the corresponding deformed beam at 

the yield point, Figure A.3. To examine the sensitivity of the yield strength to the initial 

random of the dislocation sources, multiple initial random distributions are tested and 

compared, Figure A.4. The bending moment is normalized as  w/IMM~ = , (M is the 

bending moment, and I the moment of inertia of the beam) so that it takes stress units and 

the slope of the linear part of the curve corresponds to Young’s modulus of the material, 

in our case 100GPa. Results show that the obtained yield point obtained from any of the 

initial distributions is statistically representative of the behavior. 

Figure A.5 shows DD simulation results for the mechanical response of the 

12x3x2 µm beam measured by the bending moment-bending angle curve for different 

FRS sizes. As expected, the smaller the FRS size the higher the yield point. For the 50 

nm FRS case, the DD simulations indicates that yielding occurs at a normalized bending 

moment of approximately 4.0 GPa, which corresponds to a resolved shear stress of 250 

MPa for the outer most fiber of the beam. An estimate of the strength of a FRS of size 50 

nm in an infinite medium is approximately equal to 200 MPa. The existence of free 

surfaces results in additional image forces felt by the sources, hence a lower applied 
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stress maybe be needed to activate them. Another contributor to such discrepancy is the 

fact that the sources are not isolated, as the analytical model assumes, and a long-range 

effect from neighboring source is expected if they are close enough. 

Figure A.6 demonstrates the size effect naturally captured in DD. The reference 

sample is the large beam and the small sample was obtained in two different ways that 

would still preserve the initial dislocation content in both cases as that of the reference 

sample. In the first case the sample is scaled down including the FRS size, while in the 

second case the FRS source sized in kept constant but their number adjusted to maintain 

the same dislocation density. In both cases the common trend of size effect, “smaller-

stronger”, is evident although more pronounced in the case where the FRS size was also 

scaled down. 

 Figure A.7 shows the crystal plasticity (CLP) model prediction of the yield 

strength for different values of , Eq.(A.2). Notice that the results of the 12x3x2 µm and 

the 6x1.5x1 µm beams overlap, indicating that the model does not capture size-

dependence in the initial yield nor in the early stage of plastic deformation where the 

SSD density dominates, even when the size effect is maximized by setting g in Eq.(A.8) 

to 1.0. A recent study on bending of mircobeams using the same CLP model [120] with s 

and g , Eq(A.8), set to 0 and 1 to further augment the size effect, size effect was detected 

early on in the plastic stage but not in the initial yield. The physical interpretation 

inherent to Eq.(A.2), that its density-independent part  represents the lattice friction and 

depends solely on temperature[113, 122], does not allow a good initial yield prediction, 

compared to DD results, for any of the specimens studied. A higher value of 50 MPa had 

to be used for a reasonable match in the case of 12x3x2µm sample with the larger FRS. 

oτ

oτ
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This leads to the conclusion that the density-independent part of Eq.(A.2) must have an 

additional contribution(s) apart from the lattice friction. Furthermore, based on the 

formulation of the CLP model, this same additional contribution(s) must also contain the 

missing size-dependency of the initial yield captured by DD, Figure A.6. In fact this point 

has recently been made in the context of the study of size effect on initial yield in the case 

tensile loading of micro-sized polycrystals [95].  In this latter work, Ohashi used the same 

DD model presented here to study the activation condition of a FRS in a single grain 

modeled as having rigid grain boundaries and found a strong dependence not only on the 

FRS size but also on the relative size of the source to the size of the grain and also on the 

location of the source within the grain. When the source is small compared to the grain 

size and/or relatively far from the boundaries, the activation stress needed to nucleate at 

least one complete loop can be considered equal to that of the infinite medium case. 

However, as the source becomes large relative to the grain size and/or closely situated to 

the boundary, a significant increase in the activation stress is experienced, which is 

inversely proportional to the grain size. This effect can indeed be attributed to 

dislocation-surface interaction. The significance of this finding is that there is another 

length scale affecting the yield point, which needs to be included in a size-dependent 

crystal plasticity framework. This observation was modeled as another density-

independent contribution to the slip system strength, Eq.(A.2), as follows, [95] (dg is the 

grain size) 

∑++=
m

m
ssd

sm

g
o

(s)
cr ρΩb µ a

d
b µβ3ττ                                 (A.12) 

In principle, a similar kind of argument, dislocations-boundaries interactions, can be used 

to support the observation that came out from our DD analysis about the need to have an 
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additional contribution to the density-independent term in Eq.(A.2). A simple rough 

calculation of the magnitude of the term 
gd
b µβ3  taking β to be equal to 1, dg half the 

height h of the beam, Figure A.1, and µ and b 40 GPa and 2.5Ao respectively (same as 

used in both models), one gets a value of 30 MPa. This value is on the same order of the 

value mentioned above, 50 MPa, needed to get a good match between the models 

regarding the yield point. Although the modeled beam is made of single crystal with free 

boundaries, the presence of a neutral zone with low stresses act as a trap for dislocations 

and hence can impose a significant back stress and hence significant resistance to source 

activation. The presence of other neighboring sources can also affect on the nucleation 

threshold. Finally the image forces from the free surfaces can provide a significant 

attractive effect, toward the surfaces, on the dislocation segments stimulating the source 

activation at possibly lower stress level than expected otherwise if the boundary 

conditions are different.  

 Figure A.8 shows DD predictions for the evolution of SSD for the same cases 

detailed above. The point at which density spikes correspond to the sudden macroscopic 

yield point observed in the corresponding bending moment versus bending angle curves 

(Figures A.5 and A.7). This point marks an avalanche activity of dislocation motion, thus 

the sudden drop of measured bending moment. The crystal plasticity predictions for the 

evolution of SSD are shown in Figure A.9. As can seen, the general trend is only 

qualitatively match. The continuum model cannot capture sudden avalanches of 

dislocations because they are already expressed as averaged fields. The sensitivity of the 

DD model to the initial distribution of sources, location wise and size wise, should first 
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be studied before making a conclusion about the quantitative discrepancy in the behavior 

of the two models 

The evolution of the Nye tensor (averaged over all the sample volume) obtained 

from DD is shown in Figure A.10 and that from CLP in Figure A.11. The 1, 2, and 3 

indices refer to directions x, y and z respectively. In the case of pure bending about the z-

axis (3-axis), the expected non-trivial Nye tensor components are those of edge nature, in 

particular those representing edge dislocations whose line sense is parallel to the z-axis, 

hence components 13 and 23. If the slip plane normal were to lie along the y-axis then we 

would only expect the 13 component to be non trivial. As can be seen from Figures A.10 

and A.11, this expectation is met by both models. The existence of smaller nontrivial 

components in the DD results, indicates the inevitable occurrence of some twisting 

(indicated by the screw components 11 and 22) and some out-of-plane bending (indicated 

by the screw components 21 and 13) as dislocations leave the free surface (also can be 

seen in Figure A.3b showing the final distorted structure of the beam). Quantitative 

comparison of both model predictions quantitatively, indicates that the GND content is 

significantly higher and its evolution is much smoother in the CLP model than it is in the 

DD model. One reason for the magnitude difference is in the actual volume where the 

GNDs exist in the DD case (see Figure A.3).  This volume is considerably smaller 

(concentrated around the intense dislocation activity region) than that in the case CLP 

where the distribution is homogenous all over the specimen volume. However this still 

does not close the difference gap. One expects that at this volume scale the free surfaces 

effect, which is considered in DD but not in CLP, is a major factor and although we do 

not have it quantified at this point, might provide the answer to this difference. 
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Continuum crystal models generally do not provide a rigorous treatment of dislocation-

surface interactions and this remains an area where more contribution is needed. A point 

to make on the CLP result is that although Figure A.11 indicates an obvious size effect in 

the estimation of the Nye tensor, this effect does not propagate in the systems of 

equations to make a tangible difference for the bending moment response. This indicates 

that the method in which the GND density is included in our model, to modify the mean 

glide path length, is not sufficient to predict the size effect in bending. 

A.6 Conclusion 
 
A multiscale approach to model size effect in crystals was demonstrated using as an 

example the plastic bending of single crystal micro-sized beams. The more physical 

microscale DD model was used to evaluate capacity of the continuum gradient crystal 

plasticity model to capture size effect. Through this process, a missing size effect related 

to initial yield was identified. This effect can be rationalized in the larger context of 

dislocation-interface interactions. Results indicate that a rigorous treatment of dislocation 

boundary conditions in the crystal plasticity framework is necessary for meaningful 

comparisons. Due to the fundamental difference in which a certain problem is described 

in each model, a statistical approach aimed at averaging DD simulation results is 

necessary. 

 

 

 
 
 
 
 
 

 118



 
 
 

h 

z 

y 

x

 
 
 
 
 
 
 
 
 
 
 
 
 slip plane

normal 
slip 
direction 

Buffer zone 

Θ 

45 

61w

d 

y 

x

 
 
 
 
 
 
 
 
 Figure A.1 Bending problem setup. 
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 Figure A.2 Sample initial dislocation distribution and FE mesh 
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(a) 

 

 
(b) 

 
 Figure A.3 (a) Dislocation distribution at yield (the superimposed FE mesh is that of the 
undeformed structure and included just to show the specimen domain). (b) actual 
deformed structure shown along with plastic strain  contour(deflections x5) p

xxε
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 DD simulation

beam 12x3x2 um ; FRS 100 nm; density 1e11
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Figure A.4 DD simulation results: effect of initial random distribution on the mechanical 
response. (Rand. dist. 1,2,3: random distribution 1, 2, 3. “Ref dist.” denotes the reference 
distribution otherwise used in this graph and all other DD simulation results in the paper) 
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 DD simulation
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 Figure A.5  DD simulation results: effect of FRS size on the response of a freestanding 
12x3x2 µm beam with same initial density. 
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 Figure A.6  DD simulation results: effect of sample size on the response of different 
freestanding beams with same initial density. 
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CLP simulation- Effect of τo
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 Figure A.7 CLP simulation results: effect of oτ on the response of a freestanding 
12x3x2µm and 6x1.5x1mm beams (results of both beams overlap). 
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DD simulation- beam 12x3x2 um
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DD simulation- SSD evolution
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(b) 
 Figure A.8  DD simulation results: evolution of SSD, (a) effect of FRS size, (b) effect of 
sample size. In all cases, sample had the same initial density. 
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CLP simulation SSD evolution in 6x1.5x1 um sample
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 Figure A.9 CLP simulation results: evolution of SSD for 6x1.5x1 µm sample. 
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 DD simulation- beam 12x3x2um; FRS 100 nm
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DD simulation- Nye tensor evolution
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(b) 
Figure A.10. DD simulation results: (a) the evolution of Nye tensor, (b) effect of sample 
size. In all cases, sample had the same initial density. 
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CLP simulation- Nye tensor evolution 
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 Figure A.11. CLP simulation results: effect of size on the evolution of Nye tensor. Only 
components 13 and 23 are shown. All other components are insignificant in magnitude. 
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